pypsa-eur/scripts/add_electricity.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

918 lines
32 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
2024-02-19 15:21:48 +00:00
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
2021-09-14 14:37:41 +00:00
# SPDX-License-Identifier: MIT
"""
Adds electrical generators and existing hydro storage units to a base network.
2019-08-11 09:40:47 +00:00
Relevant Settings
-----------------
2019-08-11 11:17:36 +00:00
.. code:: yaml
costs:
year:
version:
2019-08-11 11:17:36 +00:00
dicountrate:
emission_prices:
electricity:
max_hours:
marginal_cost:
capital_cost:
conventional_carriers:
co2limit:
extendable_carriers:
estimate_renewable_capacities:
2019-08-11 11:17:36 +00:00
load:
scaling_factor:
renewable:
2019-08-11 11:17:36 +00:00
hydro:
carriers:
hydro_max_hours:
hydro_capital_cost:
lines:
length_factor:
.. seealso::
Documentation of the configuration file ``config/config.yaml`` at :ref:`costs_cf`,
:ref:`electricity_cf`, :ref:`load_cf`, :ref:`renewable_cf`, :ref:`lines_cf`
2019-08-11 09:40:47 +00:00
Inputs
------
- ``resources/costs.csv``: The database of cost assumptions for all included technologies for specific years from various sources; e.g. discount rate, lifetime, investment (CAPEX), fixed operation and maintenance (FOM), variable operation and maintenance (VOM), fuel costs, efficiency, carbon-dioxide intensity.
2019-08-12 17:01:53 +00:00
- ``data/bundle/hydro_capacities.csv``: Hydropower plant store/discharge power capacities, energy storage capacity, and average hourly inflow by country.
2023-03-09 12:28:42 +00:00
.. image:: img/hydrocapacities.png
2019-08-12 17:01:53 +00:00
:scale: 34 %
- ``data/geth2015_hydro_capacities.csv``: alternative to capacities above; not currently used!
2024-02-12 09:49:45 +00:00
- ``resources/electricity_demand.csv`` Hourly per-country electricity demand profiles.
2019-08-11 20:34:18 +00:00
- ``resources/regions_onshore.geojson``: confer :ref:`busregions`
- ``resources/nuts3_shapes.geojson``: confer :ref:`shapes`
- ``resources/powerplants.csv``: confer :ref:`powerplants`
- ``resources/profile_{}.nc``: all technologies in ``config["renewables"].keys()``, confer :ref:`renewableprofiles`.
- ``networks/base.nc``: confer :ref:`base`
2019-08-11 09:40:47 +00:00
Outputs
-------
2019-08-11 20:34:18 +00:00
- ``networks/elec.nc``:
2023-03-09 12:28:42 +00:00
.. image:: img/elec.png
2019-08-11 20:34:18 +00:00
:scale: 33 %
2019-08-11 09:40:47 +00:00
Description
-----------
The rule :mod:`add_electricity` ties all the different data inputs from the preceding rules together into a detailed PyPSA network that is stored in ``networks/elec.nc``. It includes:
2019-08-12 17:01:53 +00:00
2019-08-11 20:34:18 +00:00
- today's transmission topology and transfer capacities (optionally including lines which are under construction according to the config settings ``lines: under_construction`` and ``links: under_construction``),
- today's thermal and hydro power generation capacities (for the technologies listed in the config setting ``electricity: conventional_carriers``), and
- today's load time-series (upsampled in a top-down approach according to population and gross domestic product)
It further adds extendable ``generators`` with **zero** capacity for
2019-08-11 20:34:18 +00:00
2019-08-12 17:01:53 +00:00
- photovoltaic, onshore and AC- as well as DC-connected offshore wind installations with today's locational, hourly wind and solar capacity factors (but **no** current capacities),
2019-08-11 20:34:18 +00:00
- additional open- and combined-cycle gas turbines (if ``OCGT`` and/or ``CCGT`` is listed in the config setting ``electricity: extendable_carriers``)
"""
2019-11-14 16:50:24 +00:00
import logging
from itertools import product
from typing import Dict, List
Add logging to logfiles to all snakemake workflow scripts. (#102) * Add logging to logfiles to all snakemake workflow scripts. * Fix missing quotation marks in Snakefile. * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * doc: fix _ec_ filenames in docs * Allow logging message format to be specified in config.yaml. * Add logging for Snakemake rule 'retrieve_databundle '. * Add limited logging to STDERR only for retrieve_*.py scripts. * Import progressbar module only on demand. * Fix logging to file and enable concurrent printing to STDERR for most scripts. * Add new 'logging_format' option to Travis CI test config.yaml. * Add missing parenthesis (bug fix) and cross-os compatible paths. * Fix typos in messages. * Use correct log files for logging (bug fix). * doc: fix line references * config: logging_format in all configs * doc: add doc for logging_format * environment: update to powerplantmatching 0.4.3 * doc: update line references for tutorial.rst * Change logging configuration scheme for config.yaml. * Add helper function for doing basic logging configuration. * Add logpath for prepare_links_p_nom rule. * Outsource basic logging configuration for all scripts to _helper submodule. * Update documentation for changed config.yaml structure. Instead of 'logging_level' and 'logging_format', now 'logging' with subcategories is used. * _helpers: Change configure_logging signature.
2019-11-28 07:22:52 +00:00
import geopandas as gpd
import numpy as np
import pandas as pd
import powerplantmatching as pm
import pypsa
import scipy.sparse as sparse
import xarray as xr
from _helpers import (
configure_logging,
get_snapshots,
set_scenario_config,
update_p_nom_max,
)
from powerplantmatching.export import map_country_bus
2023-05-10 07:58:25 +00:00
from shapely.prepared import prep
2020-09-11 10:40:53 +00:00
2019-11-14 16:50:24 +00:00
idx = pd.IndexSlice
2020-09-11 10:40:53 +00:00
logger = logging.getLogger(__name__)
def normed(s):
return s / s.sum()
2020-09-11 10:40:53 +00:00
def calculate_annuity(n, r):
"""
Calculate the annuity factor for an asset with lifetime n years and.
discount rate of r, e.g. annuity(20, 0.05) * 20 = 1.6
"""
if isinstance(r, pd.Series):
return pd.Series(1 / n, index=r.index).where(
r == 0, r / (1.0 - 1.0 / (1.0 + r) ** n)
)
elif r > 0:
return r / (1.0 - 1.0 / (1.0 + r) ** n)
else:
return 1 / n
def add_missing_carriers(n, carriers):
"""
Function to add missing carriers to the network without raising errors.
"""
missing_carriers = set(carriers) - set(n.carriers.index)
if len(missing_carriers) > 0:
n.madd("Carrier", missing_carriers)
def sanitize_carriers(n, config):
"""
Sanitize the carrier information in a PyPSA Network object.
The function ensures that all unique carrier names are present in the network's
carriers attribute, and adds nice names and colors for each carrier according
to the provided configuration dictionary.
Parameters
----------
n : pypsa.Network
A PyPSA Network object that represents an electrical power system.
config : dict
A dictionary containing configuration information, specifically the
"plotting" key with "nice_names" and "tech_colors" keys for carriers.
Returns
-------
None
The function modifies the 'n' PyPSA Network object in-place, updating the
carriers attribute with nice names and colors.
Warnings
--------
Raises a warning if any carrier's "tech_colors" are not defined in the config dictionary.
"""
for c in n.iterate_components():
if "carrier" in c.df:
2023-07-06 13:01:00 +00:00
add_missing_carriers(n, c.df.carrier)
carrier_i = n.carriers.index
nice_names = (
pd.Series(config["plotting"]["nice_names"])
.reindex(carrier_i)
.fillna(carrier_i.to_series())
)
n.carriers["nice_name"] = n.carriers.nice_name.where(
n.carriers.nice_name != "", nice_names
)
colors = pd.Series(config["plotting"]["tech_colors"]).reindex(carrier_i)
if colors.isna().any():
missing_i = list(colors.index[colors.isna()])
logger.warning(f"tech_colors for carriers {missing_i} not defined in config.")
2023-06-29 14:02:09 +00:00
n.carriers["color"] = n.carriers.color.where(n.carriers.color != "", colors)
def sanitize_locations(n):
n.buses["x"] = n.buses.x.where(n.buses.x != 0, n.buses.location.map(n.buses.x))
n.buses["y"] = n.buses.y.where(n.buses.y != 0, n.buses.location.map(n.buses.y))
n.buses["country"] = n.buses.country.where(
n.buses.country.ne("") & n.buses.country.notnull(),
n.buses.location.map(n.buses.country),
)
def add_co2_emissions(n, costs, carriers):
"""
Add CO2 emissions to the network's carriers attribute.
"""
suptechs = n.carriers.loc[carriers].index.str.split("-").str[0]
n.carriers.loc[carriers, "co2_emissions"] = costs.co2_emissions[suptechs].values
2020-09-11 10:40:53 +00:00
2023-06-15 17:35:41 +00:00
def load_costs(tech_costs, config, max_hours, Nyears=1.0):
# set all asset costs and other parameters
costs = pd.read_csv(tech_costs, index_col=[0, 1]).sort_index()
# correct units to MW
costs.loc[costs.unit.str.contains("/kW"), "value"] *= 1e3
costs.unit = costs.unit.str.replace("/kW", "/MW")
fill_values = config["fill_values"]
costs = costs.value.unstack().fillna(fill_values)
costs["capital_cost"] = (
(
calculate_annuity(costs["lifetime"], costs["discount rate"])
+ costs["FOM"] / 100.0
)
* costs["investment"]
* Nyears
)
costs.at["OCGT", "fuel"] = costs.at["gas", "fuel"]
costs.at["CCGT", "fuel"] = costs.at["gas", "fuel"]
costs["marginal_cost"] = costs["VOM"] + costs["fuel"] / costs["efficiency"]
costs = costs.rename(columns={"CO2 intensity": "co2_emissions"})
2018-02-19 09:09:39 +00:00
costs.at["OCGT", "co2_emissions"] = costs.at["gas", "co2_emissions"]
2018-03-13 09:50:28 +00:00
costs.at["CCGT", "co2_emissions"] = costs.at["gas", "co2_emissions"]
costs.at["solar", "capital_cost"] = (
config["rooftop_share"] * costs.at["solar-rooftop", "capital_cost"]
+ (1 - config["rooftop_share"]) * costs.at["solar-utility", "capital_cost"]
)
2018-02-19 09:09:39 +00:00
def costs_for_storage(store, link1, link2=None, max_hours=1.0):
capital_cost = link1["capital_cost"] + max_hours * store["capital_cost"]
if link2 is not None:
capital_cost += link2["capital_cost"]
return pd.Series(
dict(capital_cost=capital_cost, marginal_cost=0.0, co2_emissions=0.0)
)
costs.loc["battery"] = costs_for_storage(
costs.loc["battery storage"],
costs.loc["battery inverter"],
max_hours=max_hours["battery"],
)
costs.loc["H2"] = costs_for_storage(
costs.loc["hydrogen storage underground"],
costs.loc["fuel cell"],
costs.loc["electrolysis"],
max_hours=max_hours["H2"],
)
for attr in ("marginal_cost", "capital_cost"):
overwrites = config.get(attr)
if overwrites is not None:
overwrites = pd.Series(overwrites)
costs.loc[overwrites.index, attr] = overwrites
return costs
2020-09-11 10:40:53 +00:00
def load_powerplants(ppl_fn):
carrier_dict = {
"ocgt": "OCGT",
"ccgt": "CCGT",
"bioenergy": "biomass",
"ccgt, thermal": "CCGT",
"hard coal": "coal",
2023-01-06 17:45:36 +00:00
"natural gas": "OCGT",
}
return (
pd.read_csv(ppl_fn, index_col=0, dtype={"bus": "str"})
.powerplant.to_pypsa_names()
.rename(columns=str.lower)
.replace({"carrier": carrier_dict})
)
def shapes_to_shapes(orig, dest):
2023-05-10 07:58:25 +00:00
"""
Adopted from vresutils.transfer.Shapes2Shapes()
"""
orig_prepped = list(map(prep, orig))
transfer = sparse.lil_matrix((len(dest), len(orig)), dtype=float)
for i, j in product(range(len(dest)), range(len(orig))):
2023-05-10 07:58:25 +00:00
if orig_prepped[j].intersects(dest[i]):
area = orig[j].intersection(dest[i]).area
transfer[i, j] = area / dest[i].area
2023-05-10 07:58:25 +00:00
return transfer
2023-01-06 17:45:36 +00:00
def attach_load(n, regions, load, nuts3_shapes, ua_md_gdp, countries, scaling=1.0):
substation_lv_i = n.buses.index[n.buses["substation_lv"]]
regions = gpd.read_file(regions).set_index("name").reindex(substation_lv_i)
opsd_load = pd.read_csv(load, index_col=0, parse_dates=True).filter(items=countries)
ua_md_gdp = pd.read_csv(ua_md_gdp, dtype={"name": "str"}).set_index("name")
logger.info(f"Load data scaled by factor {scaling}.")
Update load processing (#211) * build_load_data * Add documentation * updating load data import * Update Config files * Update load.csv * Update add_electricity.py * change log file name * Update scripts/add_electricity.py Co-authored-by: FabianHofmann <hofmann@fias.uni-frankfurt.de> * Update scripts/build_load_data.py Co-authored-by: FabianHofmann <hofmann@fias.uni-frankfurt.de> * Update scripts/build_load_data.py Co-authored-by: FabianHofmann <hofmann@fias.uni-frankfurt.de> * Update scripts/build_load_data.py Co-authored-by: FabianHofmann <hofmann@fias.uni-frankfurt.de> * Update build_load_data.py * Update build_load_data.py * Update scripts/build_load_data.py Co-authored-by: FabianHofmann <hofmann@fias.uni-frankfurt.de> * update gap handling in build_load_data * Update build_load_data.py * Update config.test1.yaml * update test.config * Update config.tutorial.yaml * update load csv function for load data * Update build_load_data.py * Update config.test1.yaml * Update add_electricity.py * Update build_load_data.py * Added error messages if load data contains gaps after modifications * general adjustments: - reduce data source to only entsoe statistics - sanitize code - adjust logging messages - adjust daocstrings * update Snakefile config and docs * update release notes rename build_load -> build_load_data in config * small follow up * - reintroduce choice between powerstatistics and transparency - remove load_ timeseries from databundle - always build load_data - reinsert scaling factor in config - fix url to 2019 version * update doc: configtable, release notes update config.yaml * follow up Co-authored-by: Jan Frederick <jan.frederick.unnewehr@inatech.uni-freiburg.de> Co-authored-by: JanFrederickUnnewehr <50404069+JanFrederickUnnewehr@users.noreply.github.com>
2020-12-03 11:49:04 +00:00
opsd_load *= scaling
nuts3 = gpd.read_file(nuts3_shapes).set_index("index")
def upsample(cntry, group):
load = opsd_load[cntry]
if len(group) == 1:
return pd.DataFrame({group.index[0]: load})
2023-10-08 09:20:36 +00:00
nuts3_cntry = nuts3.loc[nuts3.country == cntry]
transfer = shapes_to_shapes(group, nuts3_cntry.geometry).T.tocsr()
gdp_n = pd.Series(
transfer.dot(nuts3_cntry["gdp"].fillna(1.0).values), index=group.index
)
pop_n = pd.Series(
transfer.dot(nuts3_cntry["pop"].fillna(1.0).values), index=group.index
)
2023-10-08 09:20:36 +00:00
# relative factors 0.6 and 0.4 have been determined from a linear
# regression on the country to continent load data
factors = normed(0.6 * normed(gdp_n) + 0.4 * normed(pop_n))
if cntry in ["UA", "MD"]:
# overwrite factor because nuts3 provides no data for UA+MD
factors = normed(ua_md_gdp.loc[group.index, "GDP_PPP"].squeeze())
2023-10-08 09:20:36 +00:00
return pd.DataFrame(
factors.values * load.values[:, np.newaxis],
index=load.index,
2023-10-08 09:20:36 +00:00
columns=factors.index,
)
load = pd.concat(
[
upsample(cntry, group)
for cntry, group in regions.geometry.groupby(regions.country)
],
axis=1,
)
2024-01-31 16:10:08 +00:00
n.madd(
"Load", substation_lv_i, bus=substation_lv_i, p_set=load
) # carrier="electricity"
2022-03-24 13:47:00 +00:00
def update_transmission_costs(n, costs, length_factor=1.0):
# TODO: line length factor of lines is applied to lines and links.
# Separate the function to distinguish.
n.lines["capital_cost"] = (
n.lines["length"] * length_factor * costs.at["HVAC overhead", "capital_cost"]
)
if n.links.empty:
return
dc_b = n.links.carrier == "DC"
# If there are no dc links, then the 'underwater_fraction' column
# may be missing. Therefore we have to return here.
if n.links.loc[dc_b].empty:
return
2022-03-24 13:47:00 +00:00
costs = (
n.links.loc[dc_b, "length"]
* length_factor
* (
(1.0 - n.links.loc[dc_b, "underwater_fraction"])
* costs.at["HVDC overhead", "capital_cost"]
+ n.links.loc[dc_b, "underwater_fraction"]
* costs.at["HVDC submarine", "capital_cost"]
)
+ costs.at["HVDC inverter pair", "capital_cost"]
)
n.links.loc[dc_b, "capital_cost"] = costs
def attach_wind_and_solar(
n, costs, input_profiles, carriers, extendable_carriers, line_length_factor=1
):
add_missing_carriers(n, carriers)
for car in carriers:
if car == "hydro":
continue
with xr.open_dataset(getattr(input_profiles, "profile_" + car)) as ds:
if ds.indexes["bus"].empty:
continue
# if-statement for compatibility with old profiles
if "year" in ds.indexes:
ds = ds.sel(year=ds.year.min(), drop=True)
supcar = car.split("-", 2)[0]
if supcar == "offwind":
underwater_fraction = ds["underwater_fraction"].to_pandas()
connection_cost = (
line_length_factor
* ds["average_distance"].to_pandas()
* (
underwater_fraction
* costs.at[car + "-connection-submarine", "capital_cost"]
+ (1.0 - underwater_fraction)
* costs.at[car + "-connection-underground", "capital_cost"]
)
)
capital_cost = (
costs.at["offwind", "capital_cost"]
+ costs.at[car + "-station", "capital_cost"]
+ connection_cost
)
logger.info(
"Added connection cost of {:0.0f}-{:0.0f} Eur/MW/a to {}".format(
connection_cost.min(), connection_cost.max(), car
2019-10-31 12:01:08 +00:00
)
)
else:
capital_cost = costs.at[car, "capital_cost"]
n.madd(
"Generator",
ds.indexes["bus"],
" " + car,
bus=ds.indexes["bus"],
carrier=car,
p_nom_extendable=car in extendable_carriers["Generator"],
p_nom_max=ds["p_nom_max"].to_pandas(),
weight=ds["weight"].to_pandas(),
marginal_cost=costs.at[supcar, "marginal_cost"],
capital_cost=capital_cost,
efficiency=costs.at[supcar, "efficiency"],
p_max_pu=ds["profile"].transpose("time", "bus").to_pandas(),
2023-08-23 11:24:25 +00:00
lifetime=costs.at[supcar, "lifetime"],
)
def attach_conventional_generators(
n,
costs,
ppl,
conventional_carriers,
extendable_carriers,
conventional_params,
conventional_inputs,
unit_commitment=None,
fuel_price=None,
):
carriers = list(set(conventional_carriers) | set(extendable_carriers["Generator"]))
add_missing_carriers(n, carriers)
add_co2_emissions(n, costs, carriers)
# Replace carrier "natural gas" with the respective technology (OCGT or
# CCGT) to align with PyPSA names of "carriers" and avoid filtering "natural
# gas" powerplants in ppl.query("carrier in @carriers")
ppl.loc[ppl["carrier"] == "natural gas", "carrier"] = ppl.loc[
ppl["carrier"] == "natural gas", "technology"
]
2020-09-11 10:40:53 +00:00
ppl = (
ppl.query("carrier in @carriers")
.join(costs, on="carrier", rsuffix="_r")
2023-10-08 09:20:36 +00:00
.rename(index=lambda s: f"C{str(s)}")
)
ppl["efficiency"] = ppl.efficiency.fillna(ppl.efficiency_r)
if unit_commitment is not None:
committable_attrs = ppl.carrier.isin(unit_commitment).to_frame("committable")
for attr in unit_commitment.index:
default = pypsa.components.component_attrs["Generator"].default[attr]
committable_attrs[attr] = ppl.carrier.map(unit_commitment.loc[attr]).fillna(
default
)
else:
committable_attrs = {}
if fuel_price is not None:
fuel_price = fuel_price.assign(
OCGT=fuel_price["gas"], CCGT=fuel_price["gas"]
).drop("gas", axis=1)
missing_carriers = list(set(carriers) - set(fuel_price))
fuel_price = fuel_price.assign(**costs.fuel[missing_carriers])
fuel_price = fuel_price.reindex(ppl.carrier, axis=1)
fuel_price.columns = ppl.index
marginal_cost = fuel_price.div(ppl.efficiency).add(ppl.carrier.map(costs.VOM))
else:
marginal_cost = (
ppl.carrier.map(costs.VOM) + ppl.carrier.map(costs.fuel) / ppl.efficiency
)
# Define generators using modified ppl DataFrame
caps = ppl.groupby("carrier").p_nom.sum().div(1e3).round(2)
logger.info(f"Adding {len(ppl)} generators with capacities [GW] \n{caps}")
n.madd(
"Generator",
ppl.index,
carrier=ppl.carrier,
bus=ppl.bus,
p_nom_min=ppl.p_nom.where(ppl.carrier.isin(conventional_carriers), 0),
p_nom=ppl.p_nom.where(ppl.carrier.isin(conventional_carriers), 0),
p_nom_extendable=ppl.carrier.isin(extendable_carriers["Generator"]),
efficiency=ppl.efficiency,
2023-05-16 14:15:51 +00:00
marginal_cost=marginal_cost,
capital_cost=ppl.capital_cost,
build_year=ppl.datein.fillna(0).astype(int),
lifetime=(ppl.dateout - ppl.datein).fillna(np.inf),
**committable_attrs,
)
2023-06-30 09:37:53 +00:00
for carrier in set(conventional_params) & set(carriers):
# Generators with technology affected
idx = n.generators.query("carrier == @carrier").index
for attr in list(set(conventional_params[carrier]) & set(n.generators)):
values = conventional_params[carrier][attr]
if f"conventional_{carrier}_{attr}" in conventional_inputs:
# Values affecting generators of technology k country-specific
# First map generator buses to countries; then map countries to p_max_pu
values = pd.read_csv(
snakemake.input[f"conventional_{carrier}_{attr}"], index_col=0
).iloc[:, 0]
bus_values = n.buses.country.map(values)
2024-01-31 16:10:08 +00:00
n.generators.update(
{attr: n.generators.loc[idx].bus.map(bus_values).dropna()}
)
else:
# Single value affecting all generators of technology k indiscriminantely of country
n.generators.loc[idx, attr] = values
2020-09-11 10:40:53 +00:00
def attach_hydro(n, costs, ppl, profile_hydro, hydro_capacities, carriers, **params):
add_missing_carriers(n, carriers)
add_co2_emissions(n, costs, carriers)
ppl = (
ppl.query('carrier == "hydro"')
.reset_index(drop=True)
2023-10-08 09:20:36 +00:00
.rename(index=lambda s: f"{str(s)} hydro")
)
ror = ppl.query('technology == "Run-Of-River"')
phs = ppl.query('technology == "Pumped Storage"')
hydro = ppl.query('technology == "Reservoir"')
country = ppl["bus"].map(n.buses.country).rename("country")
inflow_idx = ror.index.union(hydro.index)
if not inflow_idx.empty:
dist_key = ppl.loc[inflow_idx, "p_nom"].groupby(country).transform(normed)
with xr.open_dataarray(profile_hydro) as inflow:
inflow_countries = pd.Index(country[inflow_idx])
missing_c = inflow_countries.unique().difference(
inflow.indexes["countries"]
)
assert missing_c.empty, (
f"'{profile_hydro}' is missing "
f"inflow time-series for at least one country: {', '.join(missing_c)}"
)
inflow_t = (
inflow.sel(countries=inflow_countries)
.rename({"countries": "name"})
.assign_coords(name=inflow_idx)
.transpose("time", "name")
.to_pandas()
.multiply(dist_key, axis=1)
)
if "ror" in carriers and not ror.empty:
n.madd(
"Generator",
ror.index,
carrier="ror",
bus=ror["bus"],
p_nom=ror["p_nom"],
efficiency=costs.at["ror", "efficiency"],
capital_cost=costs.at["ror", "capital_cost"],
weight=ror["p_nom"],
p_max_pu=(
inflow_t[ror.index]
.divide(ror["p_nom"], axis=1)
.where(lambda df: df <= 1.0, other=1.0)
),
)
if "PHS" in carriers and not phs.empty:
# fill missing max hours to params value and
2020-09-11 10:40:53 +00:00
# assume no natural inflow due to lack of data
max_hours = params.get("PHS_max_hours", 6)
phs = phs.replace({"max_hours": {0: max_hours, np.nan: max_hours}})
n.madd(
"StorageUnit",
phs.index,
carrier="PHS",
bus=phs["bus"],
p_nom=phs["p_nom"],
capital_cost=costs.at["PHS", "capital_cost"],
max_hours=phs["max_hours"],
efficiency_store=np.sqrt(costs.at["PHS", "efficiency"]),
efficiency_dispatch=np.sqrt(costs.at["PHS", "efficiency"]),
cyclic_state_of_charge=True,
)
if "hydro" in carriers and not hydro.empty:
hydro_max_hours = params.get("hydro_max_hours")
assert hydro_max_hours is not None, "No path for hydro capacities given."
hydro_stats = pd.read_csv(
2019-11-01 12:27:42 +00:00
hydro_capacities, comment="#", na_values="-", index_col=0
)
e_target = hydro_stats["E_store[TWh]"].clip(lower=0.2) * 1e6
e_installed = hydro.eval("p_nom * max_hours").groupby(hydro.country).sum()
e_missing = e_target - e_installed
missing_mh_i = hydro.query("max_hours.isnull()").index
2019-11-01 12:27:42 +00:00
if hydro_max_hours == "energy_capacity_totals_by_country":
2019-11-01 12:27:42 +00:00
# watch out some p_nom values like IE's are totally underrepresented
max_hours_country = (
e_missing / hydro.loc[missing_mh_i].groupby("country").p_nom.sum()
)
2019-11-01 12:27:42 +00:00
elif hydro_max_hours == "estimate_by_large_installations":
2019-11-01 12:27:42 +00:00
max_hours_country = (
hydro_stats["E_store[TWh]"] * 1e3 / hydro_stats["p_nom_discharge[GW]"]
)
2019-11-01 12:27:42 +00:00
max_hours_country.clip(0, inplace=True)
2019-11-01 12:27:42 +00:00
missing_countries = pd.Index(hydro["country"].unique()).difference(
max_hours_country.dropna().index
)
if not missing_countries.empty:
logger.warning(
2023-10-08 09:20:36 +00:00
f'Assuming max_hours=6 for hydro reservoirs in the countries: {", ".join(missing_countries)}'
)
2019-11-01 12:27:42 +00:00
hydro_max_hours = hydro.max_hours.where(
hydro.max_hours > 0, hydro.country.map(max_hours_country)
).fillna(6)
if params.get("flatten_dispatch", False):
buffer = params.get("flatten_dispatch_buffer", 0.2)
average_capacity_factor = inflow_t[hydro.index].mean() / hydro["p_nom"]
p_max_pu = (average_capacity_factor + buffer).clip(upper=1)
else:
p_max_pu = 1
n.madd(
"StorageUnit",
hydro.index,
carrier="hydro",
bus=hydro["bus"],
p_nom=hydro["p_nom"],
max_hours=hydro_max_hours,
capital_cost=costs.at["hydro", "capital_cost"],
marginal_cost=costs.at["hydro", "marginal_cost"],
p_max_pu=p_max_pu, # dispatch
p_min_pu=0.0, # store
efficiency_dispatch=costs.at["hydro", "efficiency"],
efficiency_store=0.0,
cyclic_state_of_charge=True,
inflow=inflow_t.loc[:, hydro.index],
)
2023-11-03 11:51:44 +00:00
def attach_OPSD_renewables(n: pypsa.Network, tech_map: Dict[str, List[str]]) -> None:
"""
Attach renewable capacities from the OPSD dataset to the network.
Args:
- n: The PyPSA network to attach the capacities to.
- tech_map: A dictionary mapping fuel types to carrier names.
Returns:
- None
"""
tech_string = ", ".join(sum(tech_map.values(), []))
logger.info(f"Using OPSD renewable capacities for carriers {tech_string}.")
df = pm.data.OPSD_VRE().powerplant.convert_country_to_alpha2()
technology_b = ~df.Technology.isin(["Onshore", "Offshore"])
df["Fueltype"] = df.Fueltype.where(technology_b, df.Technology).replace(
{"Solar": "PV"}
)
df = df.query("Fueltype in @tech_map").powerplant.convert_country_to_alpha2()
df = df.dropna(subset=["lat", "lon"])
for fueltype, carriers in tech_map.items():
gens = n.generators[lambda df: df.carrier.isin(carriers)]
buses = n.buses.loc[gens.bus.unique()]
gens_per_bus = gens.groupby("bus").p_nom.count()
caps = map_country_bus(df.query("Fueltype == @fueltype"), buses)
caps = caps.groupby(["bus"]).Capacity.sum()
caps = caps / gens_per_bus.reindex(caps.index, fill_value=1)
2024-01-31 16:10:08 +00:00
n.generators.update({"p_nom": gens.bus.map(caps).dropna()})
n.generators.update({"p_nom_min": gens.bus.map(caps).dropna()})
2023-11-03 11:51:44 +00:00
def estimate_renewable_capacities(
n: pypsa.Network, year: int, tech_map: dict, expansion_limit: bool, countries: list
) -> None:
"""
Estimate a different between renewable capacities in the network and
reported country totals from IRENASTAT dataset. Distribute the difference
with a heuristic.
2023-11-03 11:51:44 +00:00
Heuristic: n.generators_t.p_max_pu.mean() * n.generators.p_nom_max
Args:
- n: The PyPSA network.
- year: The year of optimisation.
- tech_map: A dictionary mapping fuel types to carrier names.
- expansion_limit: Boolean value from config file
- countries: A list of country codes to estimate capacities for.
Returns:
- None
"""
if not len(countries) or not len(tech_map):
return
capacities = pm.data.IRENASTAT().powerplant.convert_country_to_alpha2()
capacities = capacities.query(
"Year == @year and Technology in @tech_map and Country in @countries"
)
capacities = capacities.groupby(["Technology", "Country"]).Capacity.sum()
logger.info(
f"Heuristics applied to distribute renewable capacities [GW]: "
f"\n{capacities.groupby('Technology').sum().div(1e3).round(2)}"
)
for ppm_technology, techs in tech_map.items():
tech_i = n.generators.query("carrier in @techs").index
if ppm_technology in capacities.index.get_level_values("Technology"):
stats = capacities.loc[ppm_technology].reindex(countries, fill_value=0.0)
else:
stats = pd.Series(0.0, index=countries)
country = n.generators.bus[tech_i].map(n.buses.country)
existent = n.generators.p_nom[tech_i].groupby(country).sum()
missing = stats - existent
dist = n.generators_t.p_max_pu.mean() * n.generators.p_nom_max
n.generators.loc[tech_i, "p_nom"] += (
dist[tech_i]
.groupby(country)
.transform(lambda s: normed(s) * missing[s.name])
.where(lambda s: s > 0.1, 0.0) # only capacities above 100kW
)
n.generators.loc[tech_i, "p_nom_min"] = n.generators.loc[tech_i, "p_nom"]
if expansion_limit:
assert np.isscalar(expansion_limit)
logger.info(
f"Reducing capacity expansion limit to {expansion_limit*100:.2f}% of installed capacity."
)
n.generators.loc[tech_i, "p_nom_max"] = (
expansion_limit * n.generators.loc[tech_i, "p_nom_min"]
)
2020-09-11 10:40:53 +00:00
def attach_line_rating(
n, rating, s_max_pu, correction_factor, max_voltage_difference, max_line_rating
):
2022-09-06 14:40:00 +00:00
# TODO: Only considers overhead lines
n.lines_t.s_max_pu = (rating / n.lines.s_nom[rating.columns]) * correction_factor
2022-09-06 14:40:00 +00:00
if max_voltage_difference:
x_pu = (
n.lines.type.map(n.line_types["x_per_length"])
* n.lines.length
/ (n.lines.v_nom**2)
)
# need to clip here as cap values might be below 1
2022-09-06 14:40:00 +00:00
# -> would mean the line cannot be operated at actual given pessimistic ampacity
s_max_pu_cap = (
np.deg2rad(max_voltage_difference) / (x_pu * n.lines.s_nom)
).clip(lower=1)
n.lines_t.s_max_pu = n.lines_t.s_max_pu.clip(
lower=1, upper=s_max_pu_cap, axis=1
)
2022-09-06 14:40:00 +00:00
if max_line_rating:
n.lines_t.s_max_pu = n.lines_t.s_max_pu.clip(upper=max_line_rating)
n.lines_t.s_max_pu *= s_max_pu
if __name__ == "__main__":
if "snakemake" not in globals():
Introduce mocksnakemake which acutally parses Snakefile (#107) * rewrite mocksnakemake for parsing real Snakefile * continue add function to scripts * going through all scripts, setting new mocksnakemake * fix plotting scripts * fix build_country_flh * fix build_country_flh II * adjust config files * fix make_summary for tutorial network * create dir also for output * incorporate suggestions * consistent import of mocksnakemake * consistent import of mocksnakemake II * Update scripts/_helpers.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * Update scripts/_helpers.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * Update scripts/_helpers.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * Update scripts/_helpers.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * Update scripts/plot_network.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * Update scripts/plot_network.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * Update scripts/retrieve_databundle.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * use pathlib for mocksnakemake * rename mocksnakemake into mock_snakemake * revert change in data * Update scripts/_helpers.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * remove setting logfile in mock_snakemake, use Path in configure_logging * fix fallback path and base_dir fix return type of make_io_accessable * reformulate mock_snakemake * incorporate suggestion, fix typos * mock_snakemake: apply absolute paths again, add assertion error *.py: make hard coded io path accessable for mock_snakemake * retrieve_natura_raster: use snakemake.output for fn_out * include suggestion * Apply suggestions from code review Co-Authored-By: Jonas Hörsch <jonas.hoersch@posteo.de> * linting, add return ad end of file * Update scripts/plot_p_nom_max.py Co-Authored-By: Jonas Hörsch <jonas.hoersch@posteo.de> * Update scripts/plot_p_nom_max.py fixes #112 Co-Authored-By: Jonas Hörsch <jonas.hoersch@posteo.de> * plot_p_nom_max: small correction * config.tutorial.yaml fix snapshots end * use techs instead of technology * revert try out from previous commit, complete replacing * change clusters -> clusts in plot_p_nom_max due to wildcard constraints of clusters * change clusters -> clusts in plot_p_nom_max due to wildcard constraints of clusters II
2019-12-09 20:29:15 +00:00
from _helpers import mock_snakemake
2023-04-29 10:41:37 +00:00
2024-03-04 16:48:56 +00:00
snakemake = mock_snakemake("add_electricity")
Add logging to logfiles to all snakemake workflow scripts. (#102) * Add logging to logfiles to all snakemake workflow scripts. * Fix missing quotation marks in Snakefile. * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * doc: fix _ec_ filenames in docs * Allow logging message format to be specified in config.yaml. * Add logging for Snakemake rule 'retrieve_databundle '. * Add limited logging to STDERR only for retrieve_*.py scripts. * Import progressbar module only on demand. * Fix logging to file and enable concurrent printing to STDERR for most scripts. * Add new 'logging_format' option to Travis CI test config.yaml. * Add missing parenthesis (bug fix) and cross-os compatible paths. * Fix typos in messages. * Use correct log files for logging (bug fix). * doc: fix line references * config: logging_format in all configs * doc: add doc for logging_format * environment: update to powerplantmatching 0.4.3 * doc: update line references for tutorial.rst * Change logging configuration scheme for config.yaml. * Add helper function for doing basic logging configuration. * Add logpath for prepare_links_p_nom rule. * Outsource basic logging configuration for all scripts to _helper submodule. * Update documentation for changed config.yaml structure. Instead of 'logging_level' and 'logging_format', now 'logging' with subcategories is used. * _helpers: Change configure_logging signature.
2019-11-28 07:22:52 +00:00
configure_logging(snakemake)
2023-08-15 13:02:41 +00:00
set_scenario_config(snakemake)
params = snakemake.params
n = pypsa.Network(snakemake.input.base_network)
time = get_snapshots(snakemake.params.snapshots, snakemake.params.drop_leap_day)
n.set_snapshots(time)
2023-04-29 10:41:37 +00:00
Nyears = n.snapshot_weightings.objective.sum() / 8760.0
costs = load_costs(
snakemake.input.tech_costs,
params.costs,
params.electricity["max_hours"],
Nyears,
)
ppl = load_powerplants(snakemake.input.powerplants)
attach_load(
n,
snakemake.input.regions,
snakemake.input.load,
snakemake.input.nuts3_shapes,
snakemake.input.ua_md_gdp,
params.countries,
params.scaling_factor,
)
update_transmission_costs(n, costs, params.length_factor)
2023-06-15 17:12:30 +00:00
renewable_carriers = set(params.electricity["renewable_carriers"])
extendable_carriers = params.electricity["extendable_carriers"]
conventional_carriers = params.electricity["conventional_carriers"]
conventional_inputs = {
k: v for k, v in snakemake.input.items() if k.startswith("conventional_")
}
if params.conventional["unit_commitment"]:
unit_commitment = pd.read_csv(snakemake.input.unit_commitment, index_col=0)
else:
unit_commitment = None
if params.conventional["dynamic_fuel_price"]:
fuel_price = pd.read_csv(
snakemake.input.fuel_price, index_col=0, header=0, parse_dates=True
)
fuel_price = fuel_price.reindex(n.snapshots).fillna(method="ffill")
else:
fuel_price = None
2019-08-11 20:34:18 +00:00
attach_conventional_generators(
n,
costs,
ppl,
2019-08-11 20:34:18 +00:00
conventional_carriers,
extendable_carriers,
params.conventional,
conventional_inputs,
unit_commitment=unit_commitment,
fuel_price=fuel_price,
)
attach_wind_and_solar(
n,
costs,
snakemake.input,
renewable_carriers,
extendable_carriers,
params.length_factor,
)
if "hydro" in renewable_carriers:
p = params.renewable["hydro"]
carriers = p.pop("carriers", [])
attach_hydro(
n,
costs,
ppl,
snakemake.input.profile_hydro,
snakemake.input.hydro_capacities,
carriers,
**p,
)
estimate_renewable_caps = params.electricity["estimate_renewable_capacities"]
if estimate_renewable_caps["enable"]:
tech_map = estimate_renewable_caps["technology_mapping"]
expansion_limit = estimate_renewable_caps["expansion_limit"]
year = estimate_renewable_caps["year"]
if estimate_renewable_caps["from_opsd"]:
attach_OPSD_renewables(n, tech_map)
estimate_renewable_capacities(
n, year, tech_map, expansion_limit, params.countries
)
update_p_nom_max(n)
2022-09-06 14:40:00 +00:00
line_rating_config = snakemake.config["lines"]["dynamic_line_rating"]
if line_rating_config["activate"]:
rating = xr.open_dataarray(snakemake.input.line_rating).to_pandas().transpose()
s_max_pu = snakemake.config["lines"]["s_max_pu"]
correction_factor = line_rating_config["correction_factor"]
max_voltage_difference = line_rating_config["max_voltage_difference"]
max_line_rating = line_rating_config["max_line_rating"]
2022-09-06 14:40:00 +00:00
attach_line_rating(
n,
rating,
s_max_pu,
correction_factor,
max_voltage_difference,
max_line_rating,
2022-09-06 14:40:00 +00:00
)
sanitize_carriers(n, snakemake.config)
2022-06-30 06:39:03 +00:00
n.meta = snakemake.config
n.export_to_netcdf(snakemake.output[0])