add_electricity: Add heuristic for estimating renewable capacities from country totals
Split per-country capacity totals reported in entsoe SO&AF 2016 in proportion to yearly generation potential at each bus, i.e. p_nom_max * mean(p_max_pu)
This commit is contained in:
parent
b9f1f5a8b5
commit
5c3fcb642c
@ -36,6 +36,11 @@ electricity:
|
||||
battery: 6
|
||||
H2: 168
|
||||
|
||||
# estimate_renewable_capacities_from_capacity_stats:
|
||||
# # Wind is the Fueltype in ppm.data.Capacity_stats, onwind, offwind-{ac,dc} the carrier in PyPSA-Eur
|
||||
# Wind: [onwind, offwind-ac, offwind-dc]
|
||||
# Solar: [solar]
|
||||
|
||||
conventional_carriers: [] # nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass]
|
||||
|
||||
atlite:
|
||||
|
@ -18,6 +18,13 @@ from vresutils import transfer as vtransfer
|
||||
|
||||
import pypsa
|
||||
|
||||
try:
|
||||
import powerplantmatching as ppm
|
||||
from build_powerplants import country_alpha_2
|
||||
|
||||
has_ppm = True
|
||||
except ImportError:
|
||||
has_ppm = False
|
||||
|
||||
def normed(s): return s/s.sum()
|
||||
|
||||
@ -396,6 +403,29 @@ def attach_storage(n, costs):
|
||||
# marginal_cost=options['marginal_cost_storage'],
|
||||
# p_nom_extendable=True)
|
||||
|
||||
def estimate_renewable_capacities(n, tech_map=None):
|
||||
if tech_map is None:
|
||||
tech_map = snakemake.config['electricity'].get('estimate_renewable_capacities_from_capacity_stats', {})
|
||||
|
||||
if len(tech_map) == 0: return
|
||||
|
||||
assert has_ppm, "The estimation of renewable capacities needs the powerplantmatching package"
|
||||
|
||||
capacities = ppm.data.Capacity_stats()
|
||||
capacities['alpha_2'] = capacities['Country'].map(country_alpha_2)
|
||||
capacities = capacities.loc[capacities.Energy_Source_Level_2].set_index(['Fueltype', 'alpha_2']).sort_index()
|
||||
|
||||
countries = n.buses.country.unique()
|
||||
|
||||
for ppm_fueltype, techs in tech_map.items():
|
||||
tech_capacities = capacities.loc[ppm_fueltype, 'Capacity'].reindex(countries, fill_value=0.)
|
||||
tech_b = n.generators.carrier.isin(techs)
|
||||
n.generators.loc[tech_b, 'p_nom'] = (
|
||||
(n.generators_t.p_max_pu.mean().loc[tech_b] * n.generators.loc[tech_b, 'p_nom_max']) # maximal yearly generation
|
||||
.groupby(n.generators.bus.map(n.buses.country)) # for each country
|
||||
.transform(lambda s: normed(s) * tech_capacities.at[s.name])
|
||||
.where(lambda s: s>0.1, 0.) # only capacities above 100kW
|
||||
)
|
||||
|
||||
def add_co2limit(n, Nyears=1.):
|
||||
n.add("GlobalConstraint", "CO2Limit",
|
||||
@ -418,11 +448,12 @@ if __name__ == "__main__":
|
||||
snakemake = MockSnakemake(output=['networks/elec.nc'])
|
||||
snakemake.input = snakemake.expand(
|
||||
Dict(base_network='networks/base.nc',
|
||||
tech_costs='data/costs/costs.csv',
|
||||
tech_costs='data/costs.csv',
|
||||
regions="resources/regions_onshore.geojson",
|
||||
powerplants="resources/powerplants.csv",
|
||||
hydro_capacities='data/hydro_capacities.csv',
|
||||
opsd_load='data/time_series_60min_singleindex_filtered.csv',
|
||||
hydro_capacities='data/bundle/hydro_capacities.csv',
|
||||
opsd_load='data/bundle/time_series_60min_singleindex_filtered.csv',
|
||||
nuts3_shapes='resources/nuts3_shapes.geojson',
|
||||
**{'profile_' + t: "resources/profile_" + t + ".nc"
|
||||
for t in snakemake.config['renewable']})
|
||||
)
|
||||
@ -445,4 +476,6 @@ if __name__ == "__main__":
|
||||
attach_extendable_generators(n, costs, ppl)
|
||||
attach_storage(n, costs)
|
||||
|
||||
estimate_renewable_capacities(n)
|
||||
|
||||
n.export_to_netcdf(snakemake.output[0])
|
||||
|
@ -18,50 +18,51 @@ def country_alpha_2(name):
|
||||
cntry = pyc.countries.get(official_name=name)
|
||||
return cntry.alpha_2
|
||||
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils.snakemake import MockSnakemake, Dict
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils.snakemake import MockSnakemake, Dict
|
||||
|
||||
snakemake = MockSnakemake(
|
||||
input=Dict(base_network='networks/base.nc'),
|
||||
output=['resources/powerplants.csv']
|
||||
)
|
||||
snakemake = MockSnakemake(
|
||||
input=Dict(base_network='networks/base.nc'),
|
||||
output=['resources/powerplants.csv']
|
||||
)
|
||||
|
||||
logging.basicConfig(level=snakemake.config['logging_level'])
|
||||
logging.basicConfig(level=snakemake.config['logging_level'])
|
||||
|
||||
n = pypsa.Network(snakemake.input.base_network)
|
||||
n = pypsa.Network(snakemake.input.base_network)
|
||||
|
||||
ppl = (ppm.collection.matched_data()
|
||||
[lambda df : ~df.Fueltype.isin(('Solar', 'Wind'))]
|
||||
.pipe(ppm.cleaning.clean_technology)
|
||||
.assign(Fueltype=lambda df: (
|
||||
df.Fueltype.where(df.Fueltype != 'Natural Gas',
|
||||
df.Technology.replace('Steam Turbine', 'OCGT').fillna('OCGT'))))
|
||||
.pipe(ppm.utils.fill_geoposition))
|
||||
ppl = (ppm.collection.matched_data()
|
||||
[lambda df : ~df.Fueltype.isin(('Solar', 'Wind'))]
|
||||
.pipe(ppm.cleaning.clean_technology)
|
||||
.assign(Fueltype=lambda df: (
|
||||
df.Fueltype.where(df.Fueltype != 'Natural Gas',
|
||||
df.Technology.replace('Steam Turbine', 'OCGT').fillna('OCGT'))))
|
||||
.pipe(ppm.utils.fill_geoposition))
|
||||
|
||||
# ppl.loc[(ppl.Fueltype == 'Other') & ppl.Technology.str.contains('CCGT'), 'Fueltype'] = 'CCGT'
|
||||
# ppl.loc[(ppl.Fueltype == 'Other') & ppl.Technology.str.contains('Steam Turbine'), 'Fueltype'] = 'CCGT'
|
||||
# ppl.loc[(ppl.Fueltype == 'Other') & ppl.Technology.str.contains('CCGT'), 'Fueltype'] = 'CCGT'
|
||||
# ppl.loc[(ppl.Fueltype == 'Other') & ppl.Technology.str.contains('Steam Turbine'), 'Fueltype'] = 'CCGT'
|
||||
|
||||
ppl = ppl.loc[ppl.lon.notnull() & ppl.lat.notnull()]
|
||||
ppl = ppl.loc[ppl.lon.notnull() & ppl.lat.notnull()]
|
||||
|
||||
ppl_country = ppl.Country.map(country_alpha_2)
|
||||
countries = n.buses.country.unique()
|
||||
cntries_without_ppl = []
|
||||
ppl_country = ppl.Country.map(country_alpha_2)
|
||||
countries = n.buses.country.unique()
|
||||
cntries_without_ppl = []
|
||||
|
||||
for cntry in countries:
|
||||
substation_lv_i = n.buses.index[n.buses['substation_lv'] & (n.buses.country == cntry)]
|
||||
ppl_b = ppl_country == cntry
|
||||
if not ppl_b.any():
|
||||
cntries_without_ppl.append(cntry)
|
||||
continue
|
||||
for cntry in countries:
|
||||
substation_lv_i = n.buses.index[n.buses['substation_lv'] & (n.buses.country == cntry)]
|
||||
ppl_b = ppl_country == cntry
|
||||
if not ppl_b.any():
|
||||
cntries_without_ppl.append(cntry)
|
||||
continue
|
||||
|
||||
kdtree = KDTree(n.buses.loc[substation_lv_i, ['x','y']].values)
|
||||
ppl.loc[ppl_b, 'bus'] = substation_lv_i[kdtree.query(ppl.loc[ppl_b, ['lon','lat']].values)[1]]
|
||||
kdtree = KDTree(n.buses.loc[substation_lv_i, ['x','y']].values)
|
||||
ppl.loc[ppl_b, 'bus'] = substation_lv_i[kdtree.query(ppl.loc[ppl_b, ['lon','lat']].values)[1]]
|
||||
|
||||
if cntries_without_ppl:
|
||||
logging.warning("No powerplants known in: {}".format(", ".join(cntries_without_ppl)))
|
||||
if cntries_without_ppl:
|
||||
logging.warning("No powerplants known in: {}".format(", ".join(cntries_without_ppl)))
|
||||
|
||||
bus_null_b = ppl["bus"].isnull()
|
||||
if bus_null_b.any():
|
||||
logging.warning("Couldn't find close bus for {} powerplants".format(bus_null_b.sum()))
|
||||
bus_null_b = ppl["bus"].isnull()
|
||||
if bus_null_b.any():
|
||||
logging.warning("Couldn't find close bus for {} powerplants".format(bus_null_b.sum()))
|
||||
|
||||
ppl.to_csv(snakemake.output[0])
|
||||
ppl.to_csv(snakemake.output[0])
|
||||
|
Loading…
Reference in New Issue
Block a user