[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
This commit is contained in:
parent
e9ea4c5e53
commit
5d1ef8a640
6
.github/ISSUE_TEMPLATE/config.yml
vendored
6
.github/ISSUE_TEMPLATE/config.yml
vendored
@ -1,5 +1,5 @@
|
||||
blank_issues_enabled: false
|
||||
contact_links:
|
||||
- name: PyPSA Mailing List
|
||||
url: https://groups.google.com/forum/#!forum/pypsa
|
||||
about: Please ask and answer general usage questions here.
|
||||
- name: PyPSA Mailing List
|
||||
url: https://groups.google.com/forum/#!forum/pypsa
|
||||
about: Please ask and answer general usage questions here.
|
||||
|
92
.github/workflows/ci.yaml
vendored
92
.github/workflows/ci.yaml
vendored
@ -16,7 +16,7 @@ on:
|
||||
branches:
|
||||
- master
|
||||
schedule:
|
||||
- cron: "0 5 * * TUE"
|
||||
- cron: "0 5 * * TUE"
|
||||
|
||||
env:
|
||||
CACHE_NUMBER: 1 # Change this value to manually reset the environment cache
|
||||
@ -28,63 +28,63 @@ jobs:
|
||||
matrix:
|
||||
include:
|
||||
# Matrix required to handle caching with Mambaforge
|
||||
- os: ubuntu-latest
|
||||
label: ubuntu-latest
|
||||
prefix: /usr/share/miniconda3/envs/pypsa-eur
|
||||
- os: ubuntu-latest
|
||||
label: ubuntu-latest
|
||||
prefix: /usr/share/miniconda3/envs/pypsa-eur
|
||||
|
||||
- os: macos-latest
|
||||
label: macos-latest
|
||||
prefix: /Users/runner/miniconda3/envs/pypsa-eur
|
||||
- os: macos-latest
|
||||
label: macos-latest
|
||||
prefix: /Users/runner/miniconda3/envs/pypsa-eur
|
||||
|
||||
- os: windows-latest
|
||||
label: windows-latest
|
||||
prefix: C:\Miniconda3\envs\pypsa-eur
|
||||
- os: windows-latest
|
||||
label: windows-latest
|
||||
prefix: C:\Miniconda3\envs\pypsa-eur
|
||||
|
||||
name: ${{ matrix.label }}
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
|
||||
defaults:
|
||||
run:
|
||||
shell: bash -l {0}
|
||||
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- name: Setup secrets
|
||||
run: |
|
||||
echo -ne "url: ${CDSAPI_URL}\nkey: ${CDSAPI_TOKEN}\n" > ~/.cdsapirc
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- name: Add solver to environment
|
||||
run: |
|
||||
echo -e " - glpk\n - ipopt<3.13.3" >> envs/environment.yaml
|
||||
- name: Setup secrets
|
||||
run: |
|
||||
echo -ne "url: ${CDSAPI_URL}\nkey: ${CDSAPI_TOKEN}\n" > ~/.cdsapirc
|
||||
|
||||
- name: Setup Mambaforge
|
||||
uses: conda-incubator/setup-miniconda@v2
|
||||
with:
|
||||
miniforge-variant: Mambaforge
|
||||
miniforge-version: latest
|
||||
activate-environment: pypsa-eur
|
||||
use-mamba: true
|
||||
|
||||
- name: Set cache date
|
||||
run: echo "DATE=$(date +'%Y%m%d')" >> $GITHUB_ENV
|
||||
- name: Add solver to environment
|
||||
run: |
|
||||
echo -e " - glpk\n - ipopt<3.13.3" >> envs/environment.yaml
|
||||
|
||||
- name: Create environment cache
|
||||
uses: actions/cache@v2
|
||||
id: cache
|
||||
with:
|
||||
path: ${{ matrix.prefix }}
|
||||
key: ${{ matrix.label }}-conda-${{ hashFiles('envs/environment.yaml') }}-${{ env.DATE }}-${{ env.CACHE_NUMBER }}
|
||||
- name: Setup Mambaforge
|
||||
uses: conda-incubator/setup-miniconda@v2
|
||||
with:
|
||||
miniforge-variant: Mambaforge
|
||||
miniforge-version: latest
|
||||
activate-environment: pypsa-eur
|
||||
use-mamba: true
|
||||
|
||||
- name: Update environment due to outdated or unavailable cache
|
||||
run: mamba env update -n pypsa-eur -f envs/environment.yaml
|
||||
if: steps.cache.outputs.cache-hit != 'true'
|
||||
- name: Set cache date
|
||||
run: echo "DATE=$(date +'%Y%m%d')" >> $GITHUB_ENV
|
||||
|
||||
- name: Test snakemake workflow
|
||||
run: |
|
||||
conda activate pypsa-eur
|
||||
conda list
|
||||
cp test/config.test1.yaml config.yaml
|
||||
snakemake --cores all solve_all_networks
|
||||
rm -rf resources/*.nc resources/*.geojson resources/*.h5 networks results
|
||||
- name: Create environment cache
|
||||
uses: actions/cache@v2
|
||||
id: cache
|
||||
with:
|
||||
path: ${{ matrix.prefix }}
|
||||
key: ${{ matrix.label }}-conda-${{ hashFiles('envs/environment.yaml') }}-${{ env.DATE }}-${{ env.CACHE_NUMBER }}
|
||||
|
||||
- name: Update environment due to outdated or unavailable cache
|
||||
run: mamba env update -n pypsa-eur -f envs/environment.yaml
|
||||
if: steps.cache.outputs.cache-hit != 'true'
|
||||
|
||||
- name: Test snakemake workflow
|
||||
run: |
|
||||
conda activate pypsa-eur
|
||||
conda list
|
||||
cp test/config.test1.yaml config.yaml
|
||||
snakemake --cores all solve_all_networks
|
||||
rm -rf resources/*.nc resources/*.geojson resources/*.h5 networks results
|
||||
|
@ -7,5 +7,5 @@ version: 2
|
||||
python:
|
||||
version: 3.8
|
||||
install:
|
||||
- requirements: doc/requirements.txt
|
||||
- requirements: doc/requirements.txt
|
||||
system_packages: true
|
||||
|
@ -16,4 +16,4 @@ notebooks
|
||||
doc
|
||||
cutouts
|
||||
data/bundle
|
||||
*.nc
|
||||
*.nc
|
||||
|
699
Snakefile
699
Snakefile
@ -6,207 +6,312 @@ from os.path import normpath, exists
|
||||
from shutil import copyfile, move
|
||||
|
||||
from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider
|
||||
|
||||
HTTP = HTTPRemoteProvider()
|
||||
|
||||
if not exists("config.yaml"):
|
||||
copyfile("config.default.yaml", "config.yaml")
|
||||
|
||||
|
||||
configfile: "config.yaml"
|
||||
|
||||
|
||||
run = config.get("run", {})
|
||||
RDIR = run["name"] + "/" if run.get("name") else ""
|
||||
CDIR = RDIR if not run.get("shared_cutouts") else ""
|
||||
CDIR = RDIR if not run.get("shared_cutouts") else ""
|
||||
|
||||
COSTS = "resources/" + RDIR + "costs.csv"
|
||||
ATLITE_NPROCESSES = config['atlite'].get('nprocesses', 4)
|
||||
ATLITE_NPROCESSES = config["atlite"].get("nprocesses", 4)
|
||||
|
||||
|
||||
wildcard_constraints:
|
||||
simpl="[a-zA-Z0-9]*|all",
|
||||
clusters="[0-9]+m?|all",
|
||||
ll="(v|c)([0-9\.]+|opt|all)|all",
|
||||
opts="[-+a-zA-Z0-9\.]*"
|
||||
opts="[-+a-zA-Z0-9\.]*",
|
||||
|
||||
|
||||
rule cluster_all_networks:
|
||||
input: expand("networks/" + RDIR + "elec_s{simpl}_{clusters}.nc", **config['scenario'])
|
||||
input:
|
||||
expand("networks/" + RDIR + "elec_s{simpl}_{clusters}.nc", **config["scenario"]),
|
||||
|
||||
|
||||
rule extra_components_all_networks:
|
||||
input: expand("networks/" + RDIR + "elec_s{simpl}_{clusters}_ec.nc", **config['scenario'])
|
||||
input:
|
||||
expand(
|
||||
"networks/" + RDIR + "elec_s{simpl}_{clusters}_ec.nc", **config["scenario"]
|
||||
),
|
||||
|
||||
|
||||
rule prepare_all_networks:
|
||||
input: expand("networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc", **config['scenario'])
|
||||
input:
|
||||
expand(
|
||||
"networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
**config["scenario"]
|
||||
),
|
||||
|
||||
|
||||
rule solve_all_networks:
|
||||
input: expand("results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc", **config['scenario'])
|
||||
input:
|
||||
expand(
|
||||
"results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
**config["scenario"]
|
||||
),
|
||||
|
||||
|
||||
if config['enable'].get('prepare_links_p_nom', False):
|
||||
if config["enable"].get("prepare_links_p_nom", False):
|
||||
|
||||
rule prepare_links_p_nom:
|
||||
output: 'data/links_p_nom.csv'
|
||||
log: "logs/" + RDIR + "prepare_links_p_nom.log"
|
||||
output:
|
||||
"data/links_p_nom.csv",
|
||||
log:
|
||||
"logs/" + RDIR + "prepare_links_p_nom.log",
|
||||
threads: 1
|
||||
resources: mem_mb=500
|
||||
script: 'scripts/prepare_links_p_nom.py'
|
||||
resources:
|
||||
mem_mb=500,
|
||||
script:
|
||||
"scripts/prepare_links_p_nom.py"
|
||||
|
||||
|
||||
datafiles = ['ch_cantons.csv', 'je-e-21.03.02.xls',
|
||||
'eez/World_EEZ_v8_2014.shp',
|
||||
'hydro_capacities.csv', 'naturalearth/ne_10m_admin_0_countries.shp',
|
||||
'NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp', 'nama_10r_3popgdp.tsv.gz',
|
||||
'nama_10r_3gdp.tsv.gz', 'corine/g250_clc06_V18_5.tif']
|
||||
datafiles = [
|
||||
"ch_cantons.csv",
|
||||
"je-e-21.03.02.xls",
|
||||
"eez/World_EEZ_v8_2014.shp",
|
||||
"hydro_capacities.csv",
|
||||
"naturalearth/ne_10m_admin_0_countries.shp",
|
||||
"NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp",
|
||||
"nama_10r_3popgdp.tsv.gz",
|
||||
"nama_10r_3gdp.tsv.gz",
|
||||
"corine/g250_clc06_V18_5.tif",
|
||||
]
|
||||
|
||||
|
||||
if not config.get('tutorial', False):
|
||||
if not config.get("tutorial", False):
|
||||
datafiles.extend(["natura/Natura2000_end2015.shp", "GEBCO_2014_2D.nc"])
|
||||
|
||||
|
||||
if config['enable'].get('retrieve_databundle', True):
|
||||
if config["enable"].get("retrieve_databundle", True):
|
||||
|
||||
rule retrieve_databundle:
|
||||
output: expand('data/bundle/{file}', file=datafiles)
|
||||
log: "logs/" + RDIR + "retrieve_databundle.log"
|
||||
resources: mem_mb=1000
|
||||
script: 'scripts/retrieve_databundle.py'
|
||||
output:
|
||||
expand("data/bundle/{file}", file=datafiles),
|
||||
log:
|
||||
"logs/" + RDIR + "retrieve_databundle.log",
|
||||
resources:
|
||||
mem_mb=1000,
|
||||
script:
|
||||
"scripts/retrieve_databundle.py"
|
||||
|
||||
|
||||
rule retrieve_load_data:
|
||||
input: HTTP.remote("data.open-power-system-data.org/time_series/2019-06-05/time_series_60min_singleindex.csv", keep_local=True, static=True)
|
||||
output: "data/load_raw.csv"
|
||||
resources: mem_mb=5000
|
||||
input:
|
||||
HTTP.remote(
|
||||
"data.open-power-system-data.org/time_series/2019-06-05/time_series_60min_singleindex.csv",
|
||||
keep_local=True,
|
||||
static=True,
|
||||
),
|
||||
output:
|
||||
"data/load_raw.csv",
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
run:
|
||||
move(input[0], output[0])
|
||||
|
||||
|
||||
rule build_load_data:
|
||||
input: "data/load_raw.csv"
|
||||
output: "resources/" + RDIR + "load.csv"
|
||||
log: "logs/" + RDIR + "build_load_data.log"
|
||||
resources: mem_mb=5000
|
||||
script: 'scripts/build_load_data.py'
|
||||
input:
|
||||
"data/load_raw.csv",
|
||||
output:
|
||||
"resources/" + RDIR + "load.csv",
|
||||
log:
|
||||
"logs/" + RDIR + "build_load_data.log",
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
script:
|
||||
"scripts/build_load_data.py"
|
||||
|
||||
|
||||
rule build_powerplants:
|
||||
input:
|
||||
base_network="networks/" + RDIR + "base.nc",
|
||||
custom_powerplants="data/custom_powerplants.csv"
|
||||
output: "resources/" + RDIR + "powerplants.csv"
|
||||
log: "logs/" + RDIR + "build_powerplants.log"
|
||||
custom_powerplants="data/custom_powerplants.csv",
|
||||
output:
|
||||
"resources/" + RDIR + "powerplants.csv",
|
||||
log:
|
||||
"logs/" + RDIR + "build_powerplants.log",
|
||||
threads: 1
|
||||
resources: mem_mb=5000
|
||||
script: "scripts/build_powerplants.py"
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
script:
|
||||
"scripts/build_powerplants.py"
|
||||
|
||||
|
||||
rule base_network:
|
||||
input:
|
||||
eg_buses='data/entsoegridkit/buses.csv',
|
||||
eg_lines='data/entsoegridkit/lines.csv',
|
||||
eg_links='data/entsoegridkit/links.csv',
|
||||
eg_converters='data/entsoegridkit/converters.csv',
|
||||
eg_transformers='data/entsoegridkit/transformers.csv',
|
||||
parameter_corrections='data/parameter_corrections.yaml',
|
||||
links_p_nom='data/links_p_nom.csv',
|
||||
links_tyndp='data/links_tyndp.csv',
|
||||
eg_buses="data/entsoegridkit/buses.csv",
|
||||
eg_lines="data/entsoegridkit/lines.csv",
|
||||
eg_links="data/entsoegridkit/links.csv",
|
||||
eg_converters="data/entsoegridkit/converters.csv",
|
||||
eg_transformers="data/entsoegridkit/transformers.csv",
|
||||
parameter_corrections="data/parameter_corrections.yaml",
|
||||
links_p_nom="data/links_p_nom.csv",
|
||||
links_tyndp="data/links_tyndp.csv",
|
||||
country_shapes="resources/" + RDIR + "country_shapes.geojson",
|
||||
offshore_shapes="resources/" + RDIR + "offshore_shapes.geojson",
|
||||
europe_shape="resources/" + RDIR + "europe_shape.geojson"
|
||||
output: "networks/" + RDIR + "base.nc"
|
||||
log: "logs/" + RDIR + "base_network.log"
|
||||
benchmark: "benchmarks/" + RDIR + "base_network"
|
||||
europe_shape="resources/" + RDIR + "europe_shape.geojson",
|
||||
output:
|
||||
"networks/" + RDIR + "base.nc",
|
||||
log:
|
||||
"logs/" + RDIR + "base_network.log",
|
||||
benchmark:
|
||||
"benchmarks/" + RDIR + "base_network"
|
||||
threads: 1
|
||||
resources: mem_mb=500
|
||||
script: "scripts/base_network.py"
|
||||
resources:
|
||||
mem_mb=500,
|
||||
script:
|
||||
"scripts/base_network.py"
|
||||
|
||||
|
||||
rule build_shapes:
|
||||
input:
|
||||
naturalearth='data/bundle/naturalearth/ne_10m_admin_0_countries.shp',
|
||||
eez='data/bundle/eez/World_EEZ_v8_2014.shp',
|
||||
nuts3='data/bundle/NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp',
|
||||
nuts3pop='data/bundle/nama_10r_3popgdp.tsv.gz',
|
||||
nuts3gdp='data/bundle/nama_10r_3gdp.tsv.gz',
|
||||
ch_cantons='data/bundle/ch_cantons.csv',
|
||||
ch_popgdp='data/bundle/je-e-21.03.02.xls'
|
||||
naturalearth="data/bundle/naturalearth/ne_10m_admin_0_countries.shp",
|
||||
eez="data/bundle/eez/World_EEZ_v8_2014.shp",
|
||||
nuts3="data/bundle/NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp",
|
||||
nuts3pop="data/bundle/nama_10r_3popgdp.tsv.gz",
|
||||
nuts3gdp="data/bundle/nama_10r_3gdp.tsv.gz",
|
||||
ch_cantons="data/bundle/ch_cantons.csv",
|
||||
ch_popgdp="data/bundle/je-e-21.03.02.xls",
|
||||
output:
|
||||
country_shapes="resources/" + RDIR + "country_shapes.geojson",
|
||||
offshore_shapes="resources/" + RDIR + "offshore_shapes.geojson",
|
||||
europe_shape="resources/" + RDIR + "europe_shape.geojson",
|
||||
nuts3_shapes="resources/" + RDIR + "nuts3_shapes.geojson"
|
||||
log: "logs/" + RDIR + "build_shapes.log"
|
||||
nuts3_shapes="resources/" + RDIR + "nuts3_shapes.geojson",
|
||||
log:
|
||||
"logs/" + RDIR + "build_shapes.log",
|
||||
threads: 1
|
||||
resources: mem_mb=500
|
||||
script: "scripts/build_shapes.py"
|
||||
resources:
|
||||
mem_mb=500,
|
||||
script:
|
||||
"scripts/build_shapes.py"
|
||||
|
||||
|
||||
rule build_bus_regions:
|
||||
input:
|
||||
country_shapes="resources/" + RDIR + "country_shapes.geojson",
|
||||
offshore_shapes="resources/" + RDIR + "offshore_shapes.geojson",
|
||||
base_network="networks/" + RDIR + "base.nc"
|
||||
base_network="networks/" + RDIR + "base.nc",
|
||||
output:
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore.geojson",
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore.geojson"
|
||||
log: "logs/" + RDIR + "build_bus_regions.log"
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore.geojson",
|
||||
log:
|
||||
"logs/" + RDIR + "build_bus_regions.log",
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
script: "scripts/build_bus_regions.py"
|
||||
resources:
|
||||
mem_mb=1000,
|
||||
script:
|
||||
"scripts/build_bus_regions.py"
|
||||
|
||||
|
||||
if config["enable"].get("build_cutout", False):
|
||||
|
||||
if config['enable'].get('build_cutout', False):
|
||||
rule build_cutout:
|
||||
input:
|
||||
input:
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore.geojson",
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore.geojson"
|
||||
output: "cutouts/" + CDIR + "{cutout}.nc"
|
||||
log: "logs/" + CDIR + "build_cutout/{cutout}.log"
|
||||
benchmark: "benchmarks/" + CDIR + "build_cutout_{cutout}"
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore.geojson",
|
||||
output:
|
||||
"cutouts/" + CDIR + "{cutout}.nc",
|
||||
log:
|
||||
"logs/" + CDIR + "build_cutout/{cutout}.log",
|
||||
benchmark:
|
||||
"benchmarks/" + CDIR + "build_cutout_{cutout}"
|
||||
threads: ATLITE_NPROCESSES
|
||||
resources: mem_mb=ATLITE_NPROCESSES * 1000
|
||||
script: "scripts/build_cutout.py"
|
||||
resources:
|
||||
mem_mb=ATLITE_NPROCESSES * 1000,
|
||||
script:
|
||||
"scripts/build_cutout.py"
|
||||
|
||||
|
||||
if config['enable'].get('retrieve_cutout', True):
|
||||
if config["enable"].get("retrieve_cutout", True):
|
||||
|
||||
rule retrieve_cutout:
|
||||
input: HTTP.remote("zenodo.org/record/6382570/files/{cutout}.nc", keep_local=True, static=True)
|
||||
output: "cutouts/" + CDIR + "{cutout}.nc"
|
||||
log: "logs/" + CDIR + "retrieve_cutout_{cutout}.log"
|
||||
resources: mem_mb=5000
|
||||
input:
|
||||
HTTP.remote(
|
||||
"zenodo.org/record/6382570/files/{cutout}.nc",
|
||||
keep_local=True,
|
||||
static=True,
|
||||
),
|
||||
output:
|
||||
"cutouts/" + CDIR + "{cutout}.nc",
|
||||
log:
|
||||
"logs/" + CDIR + "retrieve_cutout_{cutout}.log",
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
run:
|
||||
move(input[0], output[0])
|
||||
|
||||
if config['enable'].get('retrieve_cost_data', True):
|
||||
|
||||
if config["enable"].get("retrieve_cost_data", True):
|
||||
|
||||
rule retrieve_cost_data:
|
||||
input: HTTP.remote(f"raw.githubusercontent.com/PyPSA/technology-data/{config['costs']['version']}/outputs/costs_{config['costs']['year']}.csv", keep_local=True)
|
||||
output: COSTS
|
||||
log: "logs/" + RDIR + "retrieve_cost_data.log"
|
||||
resources: mem_mb=5000
|
||||
input:
|
||||
HTTP.remote(
|
||||
f"raw.githubusercontent.com/PyPSA/technology-data/{config['costs']['version']}/outputs/costs_{config['costs']['year']}.csv",
|
||||
keep_local=True,
|
||||
),
|
||||
output:
|
||||
COSTS,
|
||||
log:
|
||||
"logs/" + RDIR + "retrieve_cost_data.log",
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
run:
|
||||
move(input[0], output[0])
|
||||
|
||||
if config['enable'].get('build_natura_raster', False):
|
||||
|
||||
if config["enable"].get("build_natura_raster", False):
|
||||
|
||||
rule build_natura_raster:
|
||||
input:
|
||||
natura="data/bundle/natura/Natura2000_end2015.shp",
|
||||
cutouts=expand("cutouts/" + CDIR + "{cutouts}.nc", **config['atlite'])
|
||||
output: "resources/" + RDIR + "natura.tiff"
|
||||
resources: mem_mb=5000
|
||||
log: "logs/" + RDIR + "build_natura_raster.log"
|
||||
script: "scripts/build_natura_raster.py"
|
||||
cutouts=expand("cutouts/" + CDIR + "{cutouts}.nc", **config["atlite"]),
|
||||
output:
|
||||
"resources/" + RDIR + "natura.tiff",
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
log:
|
||||
"logs/" + RDIR + "build_natura_raster.log",
|
||||
script:
|
||||
"scripts/build_natura_raster.py"
|
||||
|
||||
|
||||
if config['enable'].get('retrieve_natura_raster', True):
|
||||
if config["enable"].get("retrieve_natura_raster", True):
|
||||
|
||||
rule retrieve_natura_raster:
|
||||
input: HTTP.remote("zenodo.org/record/4706686/files/natura.tiff", keep_local=True, static=True)
|
||||
output: "resources/" + RDIR + "natura.tiff"
|
||||
resources: mem_mb=5000
|
||||
input:
|
||||
HTTP.remote(
|
||||
"zenodo.org/record/4706686/files/natura.tiff",
|
||||
keep_local=True,
|
||||
static=True,
|
||||
),
|
||||
output:
|
||||
"resources/" + RDIR + "natura.tiff",
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
run:
|
||||
move(input[0], output[0])
|
||||
|
||||
|
||||
rule retrieve_ship_raster:
|
||||
input: HTTP.remote("https://zenodo.org/record/6953563/files/shipdensity_global.zip", keep_local=True, static=True)
|
||||
output: "data/shipdensity_global.zip"
|
||||
resources: mem_mb=5000
|
||||
input:
|
||||
HTTP.remote(
|
||||
"https://zenodo.org/record/6953563/files/shipdensity_global.zip",
|
||||
keep_local=True,
|
||||
static=True,
|
||||
),
|
||||
output:
|
||||
"data/shipdensity_global.zip",
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
run:
|
||||
move(input[0], output[0])
|
||||
|
||||
@ -214,74 +319,112 @@ rule retrieve_ship_raster:
|
||||
rule build_ship_raster:
|
||||
input:
|
||||
ship_density="data/shipdensity_global.zip",
|
||||
cutouts=expand("cutouts/" + CDIR + "{cutouts}.nc", **config['atlite'])
|
||||
output: "resources/" + RDIR + "shipdensity_raster.nc"
|
||||
log: "logs/" + RDIR + "build_ship_raster.log"
|
||||
resources: mem_mb=5000
|
||||
benchmark: "benchmarks/" + RDIR + "build_ship_raster"
|
||||
script: "scripts/build_ship_raster.py"
|
||||
cutouts=expand("cutouts/" + CDIR + "{cutouts}.nc", **config["atlite"]),
|
||||
output:
|
||||
"resources/" + RDIR + "shipdensity_raster.nc",
|
||||
log:
|
||||
"logs/" + RDIR + "build_ship_raster.log",
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
benchmark:
|
||||
"benchmarks/" + RDIR + "build_ship_raster"
|
||||
script:
|
||||
"scripts/build_ship_raster.py"
|
||||
|
||||
|
||||
rule build_renewable_profiles:
|
||||
input:
|
||||
base_network="networks/" + RDIR + "base.nc",
|
||||
corine="data/bundle/corine/g250_clc06_V18_5.tif",
|
||||
natura=lambda w: ("resources/" + RDIR + "natura.tiff"
|
||||
if config["renewable"][w.technology]["natura"]
|
||||
else []),
|
||||
gebco=lambda w: ("data/bundle/GEBCO_2014_2D.nc"
|
||||
if "max_depth" in config["renewable"][w.technology].keys()
|
||||
else []),
|
||||
ship_density= lambda w: ("resources/" + RDIR + "shipdensity_raster.nc"
|
||||
if "ship_threshold" in config["renewable"][w.technology].keys()
|
||||
else []),
|
||||
natura=lambda w: (
|
||||
"resources/" + RDIR + "natura.tiff"
|
||||
if config["renewable"][w.technology]["natura"]
|
||||
else []
|
||||
),
|
||||
gebco=lambda w: (
|
||||
"data/bundle/GEBCO_2014_2D.nc"
|
||||
if "max_depth" in config["renewable"][w.technology].keys()
|
||||
else []
|
||||
),
|
||||
ship_density=lambda w: (
|
||||
"resources/" + RDIR + "shipdensity_raster.nc"
|
||||
if "ship_threshold" in config["renewable"][w.technology].keys()
|
||||
else []
|
||||
),
|
||||
country_shapes="resources/" + RDIR + "country_shapes.geojson",
|
||||
offshore_shapes="resources/" + RDIR + "offshore_shapes.geojson",
|
||||
regions=lambda w: ("resources/" + RDIR + "regions_onshore.geojson"
|
||||
if w.technology in ('onwind', 'solar')
|
||||
else "resources/" + RDIR + "regions_offshore.geojson"),
|
||||
cutout=lambda w: "cutouts/" + CDIR + config["renewable"][w.technology]['cutout'] + ".nc"
|
||||
output: profile="resources/" + RDIR + "profile_{technology}.nc",
|
||||
log: "logs/" + RDIR + "build_renewable_profile_{technology}.log"
|
||||
benchmark: "benchmarks/" + RDIR + "build_renewable_profiles_{technology}"
|
||||
regions=lambda w: (
|
||||
"resources/" + RDIR + "regions_onshore.geojson"
|
||||
if w.technology in ("onwind", "solar")
|
||||
else "resources/" + RDIR + "regions_offshore.geojson"
|
||||
),
|
||||
cutout=lambda w: "cutouts/"
|
||||
+ CDIR
|
||||
+ config["renewable"][w.technology]["cutout"]
|
||||
+ ".nc",
|
||||
output:
|
||||
profile="resources/" + RDIR + "profile_{technology}.nc",
|
||||
log:
|
||||
"logs/" + RDIR + "build_renewable_profile_{technology}.log",
|
||||
benchmark:
|
||||
"benchmarks/" + RDIR + "build_renewable_profiles_{technology}"
|
||||
threads: ATLITE_NPROCESSES
|
||||
resources: mem_mb=ATLITE_NPROCESSES * 5000
|
||||
wildcard_constraints: technology="(?!hydro).*" # Any technology other than hydro
|
||||
script: "scripts/build_renewable_profiles.py"
|
||||
resources:
|
||||
mem_mb=ATLITE_NPROCESSES * 5000,
|
||||
wildcard_constraints:
|
||||
technology="(?!hydro).*", # Any technology other than hydro
|
||||
script:
|
||||
"scripts/build_renewable_profiles.py"
|
||||
|
||||
|
||||
rule build_hydro_profile:
|
||||
input:
|
||||
country_shapes="resources/" + RDIR + "country_shapes.geojson",
|
||||
eia_hydro_generation='data/eia_hydro_annual_generation.csv',
|
||||
cutout=f"cutouts/" + CDIR + "{config['renewable']['hydro']['cutout']}.nc" if "hydro" in config["renewable"] else "config['renewable']['hydro']['cutout'] not configured",
|
||||
output: "resources/" + RDIR + "profile_hydro.nc"
|
||||
log: "logs/" + RDIR + "build_hydro_profile.log"
|
||||
resources: mem_mb=5000
|
||||
script: 'scripts/build_hydro_profile.py'
|
||||
eia_hydro_generation="data/eia_hydro_annual_generation.csv",
|
||||
cutout=f"cutouts/" + CDIR + "{config['renewable']['hydro']['cutout']}.nc"
|
||||
if "hydro" in config["renewable"]
|
||||
else "config['renewable']['hydro']['cutout'] not configured",
|
||||
output:
|
||||
"resources/" + RDIR + "profile_hydro.nc",
|
||||
log:
|
||||
"logs/" + RDIR + "build_hydro_profile.log",
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
script:
|
||||
"scripts/build_hydro_profile.py"
|
||||
|
||||
|
||||
rule add_electricity:
|
||||
input:
|
||||
**{
|
||||
f"profile_{tech}": "resources/" + RDIR + f"profile_{tech}.nc"
|
||||
for tech in config["renewable"]
|
||||
},
|
||||
**{
|
||||
f"conventional_{carrier}_{attr}": fn
|
||||
for carrier, d in config.get("conventional", {None: {}}).items()
|
||||
for attr, fn in d.items()
|
||||
if str(fn).startswith("data/")
|
||||
},
|
||||
base_network="networks/" + RDIR + "base.nc",
|
||||
tech_costs=COSTS,
|
||||
regions="resources/" + RDIR + "regions_onshore.geojson",
|
||||
powerplants="resources/" + RDIR + "powerplants.csv",
|
||||
hydro_capacities='data/bundle/hydro_capacities.csv',
|
||||
geth_hydro_capacities='data/geth2015_hydro_capacities.csv',
|
||||
hydro_capacities="data/bundle/hydro_capacities.csv",
|
||||
geth_hydro_capacities="data/geth2015_hydro_capacities.csv",
|
||||
load="resources/" + RDIR + "load.csv",
|
||||
nuts3_shapes="resources/" + RDIR + "nuts3_shapes.geojson",
|
||||
**{f"profile_{tech}": "resources/" + RDIR + f"profile_{tech}.nc"
|
||||
for tech in config['renewable']},
|
||||
**{f"conventional_{carrier}_{attr}": fn
|
||||
for carrier, d in config.get('conventional', {None: {}}).items()
|
||||
for attr, fn in d.items() if str(fn).startswith("data/")},
|
||||
output: "networks/" + RDIR + "elec.nc"
|
||||
log: "logs/" + RDIR + "add_electricity.log"
|
||||
benchmark: "benchmarks/" + RDIR + "add_electricity"
|
||||
output:
|
||||
"networks/" + RDIR + "elec.nc",
|
||||
log:
|
||||
"logs/" + RDIR + "add_electricity.log",
|
||||
benchmark:
|
||||
"benchmarks/" + RDIR + "add_electricity"
|
||||
threads: 1
|
||||
resources: mem_mb=5000
|
||||
script: "scripts/add_electricity.py"
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
script:
|
||||
"scripts/add_electricity.py"
|
||||
|
||||
|
||||
rule simplify_network:
|
||||
@ -289,18 +432,22 @@ rule simplify_network:
|
||||
network="networks/" + RDIR + "elec.nc",
|
||||
tech_costs=COSTS,
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore.geojson",
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore.geojson"
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore.geojson",
|
||||
output:
|
||||
network="networks/" + RDIR + "elec_s{simpl}.nc",
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore_elec_s{simpl}.geojson",
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore_elec_s{simpl}.geojson",
|
||||
busmap="resources/" + RDIR + "busmap_elec_s{simpl}.csv",
|
||||
connection_costs="resources/" + RDIR + "connection_costs_s{simpl}.csv"
|
||||
log: "logs/" + RDIR + "simplify_network/elec_s{simpl}.log"
|
||||
benchmark: "benchmarks/" + RDIR + "simplify_network/elec_s{simpl}"
|
||||
connection_costs="resources/" + RDIR + "connection_costs_s{simpl}.csv",
|
||||
log:
|
||||
"logs/" + RDIR + "simplify_network/elec_s{simpl}.log",
|
||||
benchmark:
|
||||
"benchmarks/" + RDIR + "simplify_network/elec_s{simpl}"
|
||||
threads: 1
|
||||
resources: mem_mb=4000
|
||||
script: "scripts/simplify_network.py"
|
||||
resources:
|
||||
mem_mb=4000,
|
||||
script:
|
||||
"scripts/simplify_network.py"
|
||||
|
||||
|
||||
rule cluster_network:
|
||||
@ -309,57 +456,84 @@ rule cluster_network:
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore_elec_s{simpl}.geojson",
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore_elec_s{simpl}.geojson",
|
||||
busmap=ancient("resources/" + RDIR + "busmap_elec_s{simpl}.csv"),
|
||||
custom_busmap=("data/custom_busmap_elec_s{simpl}_{clusters}.csv"
|
||||
if config["enable"].get("custom_busmap", False) else []),
|
||||
tech_costs=COSTS
|
||||
custom_busmap=(
|
||||
"data/custom_busmap_elec_s{simpl}_{clusters}.csv"
|
||||
if config["enable"].get("custom_busmap", False)
|
||||
else []
|
||||
),
|
||||
tech_costs=COSTS,
|
||||
output:
|
||||
network="networks/" + RDIR + "elec_s{simpl}_{clusters}.nc",
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore_elec_s{simpl}_{clusters}.geojson",
|
||||
regions_onshore="resources/"
|
||||
+ RDIR
|
||||
+ "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
regions_offshore="resources/"
|
||||
+ RDIR
|
||||
+ "regions_offshore_elec_s{simpl}_{clusters}.geojson",
|
||||
busmap="resources/" + RDIR + "busmap_elec_s{simpl}_{clusters}.csv",
|
||||
linemap="resources/" + RDIR + "linemap_elec_s{simpl}_{clusters}.csv"
|
||||
log: "logs/" + RDIR + "cluster_network/elec_s{simpl}_{clusters}.log"
|
||||
benchmark: "benchmarks/" + RDIR + "cluster_network/elec_s{simpl}_{clusters}"
|
||||
linemap="resources/" + RDIR + "linemap_elec_s{simpl}_{clusters}.csv",
|
||||
log:
|
||||
"logs/" + RDIR + "cluster_network/elec_s{simpl}_{clusters}.log",
|
||||
benchmark:
|
||||
"benchmarks/" + RDIR + "cluster_network/elec_s{simpl}_{clusters}"
|
||||
threads: 1
|
||||
resources: mem_mb=6000
|
||||
script: "scripts/cluster_network.py"
|
||||
resources:
|
||||
mem_mb=6000,
|
||||
script:
|
||||
"scripts/cluster_network.py"
|
||||
|
||||
|
||||
rule add_extra_components:
|
||||
input:
|
||||
network="networks/" + RDIR + "elec_s{simpl}_{clusters}.nc",
|
||||
tech_costs=COSTS,
|
||||
output: "networks/" + RDIR + "elec_s{simpl}_{clusters}_ec.nc"
|
||||
log: "logs/" + RDIR + "add_extra_components/elec_s{simpl}_{clusters}.log"
|
||||
benchmark: "benchmarks/" + RDIR + "add_extra_components/elec_s{simpl}_{clusters}_ec"
|
||||
output:
|
||||
"networks/" + RDIR + "elec_s{simpl}_{clusters}_ec.nc",
|
||||
log:
|
||||
"logs/" + RDIR + "add_extra_components/elec_s{simpl}_{clusters}.log",
|
||||
benchmark:
|
||||
"benchmarks/" + RDIR + "add_extra_components/elec_s{simpl}_{clusters}_ec"
|
||||
threads: 1
|
||||
resources: mem_mb=3000
|
||||
script: "scripts/add_extra_components.py"
|
||||
resources:
|
||||
mem_mb=3000,
|
||||
script:
|
||||
"scripts/add_extra_components.py"
|
||||
|
||||
|
||||
rule prepare_network:
|
||||
input: "networks/" + RDIR + "elec_s{simpl}_{clusters}_ec.nc", tech_costs=COSTS,
|
||||
output: "networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc"
|
||||
log: "logs/" + RDIR + "prepare_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.log"
|
||||
benchmark: "benchmarks/" + RDIR + "prepare_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}"
|
||||
input:
|
||||
"networks/" + RDIR + "elec_s{simpl}_{clusters}_ec.nc",
|
||||
tech_costs=COSTS,
|
||||
output:
|
||||
"networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
log:
|
||||
"logs/" + RDIR + "prepare_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.log",
|
||||
benchmark:
|
||||
(
|
||||
"benchmarks/"
|
||||
+ RDIR
|
||||
+ "prepare_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}"
|
||||
)
|
||||
threads: 1
|
||||
resources: mem_mb=4000
|
||||
script: "scripts/prepare_network.py"
|
||||
resources:
|
||||
mem_mb=4000,
|
||||
script:
|
||||
"scripts/prepare_network.py"
|
||||
|
||||
|
||||
def memory(w):
|
||||
factor = 3.
|
||||
for o in w.opts.split('-'):
|
||||
m = re.match(r'^(\d+)h$', o, re.IGNORECASE)
|
||||
factor = 3.0
|
||||
for o in w.opts.split("-"):
|
||||
m = re.match(r"^(\d+)h$", o, re.IGNORECASE)
|
||||
if m is not None:
|
||||
factor /= int(m.group(1))
|
||||
break
|
||||
for o in w.opts.split('-'):
|
||||
m = re.match(r'^(\d+)seg$', o, re.IGNORECASE)
|
||||
for o in w.opts.split("-"):
|
||||
m = re.match(r"^(\d+)seg$", o, re.IGNORECASE)
|
||||
if m is not None:
|
||||
factor *= int(m.group(1)) / 8760
|
||||
break
|
||||
if w.clusters.endswith('m'):
|
||||
if w.clusters.endswith("m"):
|
||||
return int(factor * (18000 + 180 * int(w.clusters[:-1])))
|
||||
elif w.clusters == "all":
|
||||
return int(factor * (18000 + 180 * 4000))
|
||||
@ -368,44 +542,87 @@ def memory(w):
|
||||
|
||||
|
||||
rule solve_network:
|
||||
input: "networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc"
|
||||
output: "results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc"
|
||||
input:
|
||||
"networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
output:
|
||||
"results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
log:
|
||||
solver=normpath("logs/" + RDIR + "solve_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_solver.log"),
|
||||
python="logs/" + RDIR + "solve_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_python.log",
|
||||
memory="logs/" + RDIR + "solve_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_memory.log"
|
||||
benchmark: "benchmarks/" + RDIR + "solve_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}"
|
||||
solver=normpath(
|
||||
"logs/"
|
||||
+ RDIR
|
||||
+ "solve_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_solver.log"
|
||||
),
|
||||
python="logs/"
|
||||
+ RDIR
|
||||
+ "solve_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_python.log",
|
||||
memory="logs/"
|
||||
+ RDIR
|
||||
+ "solve_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_memory.log",
|
||||
benchmark:
|
||||
"benchmarks/" + RDIR + "solve_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}"
|
||||
threads: 4
|
||||
resources: mem_mb=memory
|
||||
shadow: "minimal"
|
||||
script: "scripts/solve_network.py"
|
||||
resources:
|
||||
mem_mb=memory,
|
||||
shadow:
|
||||
"minimal"
|
||||
script:
|
||||
"scripts/solve_network.py"
|
||||
|
||||
|
||||
rule solve_operations_network:
|
||||
input:
|
||||
unprepared="networks/" + RDIR + "elec_s{simpl}_{clusters}_ec.nc",
|
||||
optimized="results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc"
|
||||
output: "results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_op.nc"
|
||||
optimized="results/networks/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
output:
|
||||
"results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_op.nc",
|
||||
log:
|
||||
solver=normpath("logs/" + RDIR + "solve_operations_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_op_solver.log"),
|
||||
python="logs/" + RDIR + "solve_operations_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_op_python.log",
|
||||
memory="logs/" + RDIR + "solve_operations_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_op_memory.log"
|
||||
benchmark: "benchmarks/" + RDIR + "solve_operations_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}"
|
||||
solver=normpath(
|
||||
"logs/"
|
||||
+ RDIR
|
||||
+ "solve_operations_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_op_solver.log"
|
||||
),
|
||||
python="logs/"
|
||||
+ RDIR
|
||||
+ "solve_operations_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_op_python.log",
|
||||
memory="logs/"
|
||||
+ RDIR
|
||||
+ "solve_operations_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_op_memory.log",
|
||||
benchmark:
|
||||
(
|
||||
"benchmarks/"
|
||||
+ RDIR
|
||||
+ "solve_operations_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}"
|
||||
)
|
||||
threads: 4
|
||||
resources: mem_mb=(lambda w: 5000 + 372 * int(w.clusters))
|
||||
shadow: "minimal"
|
||||
script: "scripts/solve_operations_network.py"
|
||||
resources:
|
||||
mem_mb=(lambda w: 5000 + 372 * int(w.clusters)),
|
||||
shadow:
|
||||
"minimal"
|
||||
script:
|
||||
"scripts/solve_operations_network.py"
|
||||
|
||||
|
||||
rule plot_network:
|
||||
input:
|
||||
network="results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
tech_costs=COSTS
|
||||
network="results/networks/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
tech_costs=COSTS,
|
||||
output:
|
||||
only_map="results/plots/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{attr}.{ext}",
|
||||
ext="results/plots/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{attr}_ext.{ext}"
|
||||
log: "logs/" + RDIR + "plot_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{attr}_{ext}.log"
|
||||
script: "scripts/plot_network.py"
|
||||
only_map="results/plots/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{attr}.{ext}",
|
||||
ext="results/plots/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{attr}_ext.{ext}",
|
||||
log:
|
||||
"logs/"
|
||||
+ RDIR
|
||||
+ "plot_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{attr}_{ext}.log",
|
||||
script:
|
||||
"scripts/plot_network.py"
|
||||
|
||||
|
||||
def input_make_summary(w):
|
||||
@ -416,39 +633,79 @@ def input_make_summary(w):
|
||||
ll = [l for l in ll if l[0] == w.ll[0]]
|
||||
else:
|
||||
ll = w.ll
|
||||
return ([COSTS] +
|
||||
expand("results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
ll=ll,
|
||||
**{k: config["scenario"][k] if getattr(w, k) == "all" else getattr(w, k)
|
||||
for k in ["simpl", "clusters", "opts"]}))
|
||||
return [COSTS] + expand(
|
||||
"results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
ll=ll,
|
||||
**{
|
||||
k: config["scenario"][k] if getattr(w, k) == "all" else getattr(w, k)
|
||||
for k in ["simpl", "clusters", "opts"]
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
rule make_summary:
|
||||
input: input_make_summary
|
||||
output: directory("results/summaries/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}")
|
||||
log: "logs/" + RDIR + "make_summary/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}.log",
|
||||
resources: mem_mb=500
|
||||
script: "scripts/make_summary.py"
|
||||
input:
|
||||
input_make_summary,
|
||||
output:
|
||||
directory(
|
||||
"results/summaries/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}"
|
||||
),
|
||||
log:
|
||||
"logs/"
|
||||
+ RDIR
|
||||
+ "make_summary/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}.log",
|
||||
resources:
|
||||
mem_mb=500,
|
||||
script:
|
||||
"scripts/make_summary.py"
|
||||
|
||||
|
||||
rule plot_summary:
|
||||
input: "results/summaries/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}"
|
||||
output: "results/plots/" + RDIR + "summary_{summary}_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}.{ext}"
|
||||
log: "logs/" + RDIR + "plot_summary/{summary}_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}_{ext}.log"
|
||||
resources: mem_mb=500
|
||||
script: "scripts/plot_summary.py"
|
||||
input:
|
||||
"results/summaries/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}",
|
||||
output:
|
||||
"results/plots/"
|
||||
+ RDIR
|
||||
+ "summary_{summary}_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}.{ext}",
|
||||
log:
|
||||
"logs/"
|
||||
+ RDIR
|
||||
+ "plot_summary/{summary}_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}_{ext}.log",
|
||||
resources:
|
||||
mem_mb=500,
|
||||
script:
|
||||
"scripts/plot_summary.py"
|
||||
|
||||
|
||||
def input_plot_p_nom_max(w):
|
||||
return [("results/networks/" + RDIR + "elec_s{simpl}{maybe_cluster}.nc"
|
||||
.format(maybe_cluster=('' if c == 'full' else ('_' + c)), **w))
|
||||
for c in w.clusts.split(",")]
|
||||
return [
|
||||
(
|
||||
"results/networks/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}{maybe_cluster}.nc".format(
|
||||
maybe_cluster=("" if c == "full" else ("_" + c)), **w
|
||||
)
|
||||
)
|
||||
for c in w.clusts.split(",")
|
||||
]
|
||||
|
||||
|
||||
rule plot_p_nom_max:
|
||||
input: input_plot_p_nom_max
|
||||
output: "results/plots/" + RDIR + "elec_s{simpl}_cum_p_nom_max_{clusts}_{techs}_{country}.{ext}"
|
||||
log: "logs/" + RDIR + "plot_p_nom_max/elec_s{simpl}_{clusts}_{techs}_{country}_{ext}.log"
|
||||
resources: mem_mb=500
|
||||
script: "scripts/plot_p_nom_max.py"
|
||||
|
||||
input:
|
||||
input_plot_p_nom_max,
|
||||
output:
|
||||
"results/plots/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_cum_p_nom_max_{clusts}_{techs}_{country}.{ext}",
|
||||
log:
|
||||
"logs/"
|
||||
+ RDIR
|
||||
+ "plot_p_nom_max/elec_s{simpl}_{clusts}_{techs}_{country}_{ext}.log",
|
||||
resources:
|
||||
mem_mb=500,
|
||||
script:
|
||||
"scripts/plot_p_nom_max.py"
|
||||
|
@ -9,7 +9,7 @@ logging:
|
||||
level: INFO
|
||||
format: '%(levelname)s:%(name)s:%(message)s'
|
||||
|
||||
run:
|
||||
run:
|
||||
name: "" # use this to keep track of runs with different settings
|
||||
shared_cutouts: false # set to true to share the default cutout(s) across runs
|
||||
|
||||
@ -52,7 +52,7 @@ electricity:
|
||||
|
||||
max_hours:
|
||||
battery: 6
|
||||
H2: 168
|
||||
H2: 168
|
||||
|
||||
extendable_carriers:
|
||||
Generator: [solar, onwind, offwind-ac, offwind-dc, OCGT]
|
||||
@ -63,7 +63,7 @@ electricity:
|
||||
# use pandas query strings here, e.g. Country not in ['Germany']
|
||||
powerplants_filter: (DateOut >= 2022 or DateOut != DateOut)
|
||||
# use pandas query strings here, e.g. Country in ['Germany']
|
||||
custom_powerplants: false
|
||||
custom_powerplants: false
|
||||
|
||||
conventional_carriers: [nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass]
|
||||
renewable_carriers: [solar, onwind, offwind-ac, offwind-dc, hydro]
|
||||
@ -120,8 +120,7 @@ renewable:
|
||||
corine:
|
||||
# Scholz, Y. (2012). Renewable energy based electricity supply at low costs:
|
||||
# development of the REMix model and application for Europe. ( p.42 / p.28)
|
||||
grid_codes: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
|
||||
24, 25, 26, 27, 28, 29, 31, 32]
|
||||
grid_codes: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32]
|
||||
distance: 1000
|
||||
distance_grid_codes: [1, 2, 3, 4, 5, 6]
|
||||
natura: true
|
||||
@ -182,8 +181,7 @@ renewable:
|
||||
# This correction factor of 0.854337 may be in order if using reanalysis data.
|
||||
# for discussion refer to https://github.com/PyPSA/pypsa-eur/pull/304
|
||||
# correction_factor: 0.854337
|
||||
corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
|
||||
14, 15, 16, 17, 18, 19, 20, 26, 31, 32]
|
||||
corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 26, 31, 32]
|
||||
natura: true
|
||||
excluder_resolution: 100
|
||||
potential: simple # or conservative
|
||||
@ -195,7 +193,7 @@ renewable:
|
||||
hydro_max_hours: "energy_capacity_totals_by_country" # one of energy_capacity_totals_by_country, estimate_by_large_installations or a float
|
||||
clip_min_inflow: 1.0
|
||||
|
||||
conventional:
|
||||
conventional:
|
||||
nuclear:
|
||||
p_max_pu: "data/nuclear_p_max_pu.csv" # float of file name
|
||||
|
||||
@ -221,7 +219,7 @@ transformers:
|
||||
type: ''
|
||||
|
||||
load:
|
||||
power_statistics: True # only for files from <2019; set false in order to get ENTSOE transparency data
|
||||
power_statistics: true # only for files from <2019; set false in order to get ENTSOE transparency data
|
||||
interpolate_limit: 3 # data gaps up until this size are interpolated linearly
|
||||
time_shift_for_large_gaps: 1w # data gaps up until this size are copied by copying from
|
||||
manual_adjustments: true # false
|
||||
@ -304,7 +302,7 @@ solving:
|
||||
plotting:
|
||||
map:
|
||||
figsize: [7, 7]
|
||||
boundaries: [-10.2, 29, 35, 72]
|
||||
boundaries: [-10.2, 29, 35, 72]
|
||||
p_nom:
|
||||
bus_size_factor: 5.e+4
|
||||
linewidth_factor: 3.e+3
|
||||
@ -323,50 +321,50 @@ plotting:
|
||||
AC_carriers: ["AC line", "AC transformer"]
|
||||
link_carriers: ["DC line", "Converter AC-DC"]
|
||||
tech_colors:
|
||||
"onwind" : "#235ebc"
|
||||
"onshore wind" : "#235ebc"
|
||||
'offwind' : "#6895dd"
|
||||
'offwind-ac' : "#6895dd"
|
||||
'offshore wind' : "#6895dd"
|
||||
'offshore wind ac' : "#6895dd"
|
||||
'offwind-dc' : "#74c6f2"
|
||||
'offshore wind dc' : "#74c6f2"
|
||||
"hydro" : "#08ad97"
|
||||
"hydro+PHS" : "#08ad97"
|
||||
"PHS" : "#08ad97"
|
||||
"hydro reservoir" : "#08ad97"
|
||||
'hydroelectricity' : '#08ad97'
|
||||
"ror" : "#4adbc8"
|
||||
"run of river" : "#4adbc8"
|
||||
'solar' : "#f9d002"
|
||||
'solar PV' : "#f9d002"
|
||||
'solar thermal' : '#ffef60'
|
||||
'biomass' : '#0c6013'
|
||||
'solid biomass' : '#06540d'
|
||||
'biogas' : '#23932d'
|
||||
'waste' : '#68896b'
|
||||
'geothermal' : '#ba91b1'
|
||||
"OCGT" : "#d35050"
|
||||
"gas" : "#d35050"
|
||||
"natural gas" : "#d35050"
|
||||
"CCGT" : "#b20101"
|
||||
"nuclear" : "#ff9000"
|
||||
"coal" : "#707070"
|
||||
"lignite" : "#9e5a01"
|
||||
"oil" : "#262626"
|
||||
"H2" : "#ea048a"
|
||||
"hydrogen storage" : "#ea048a"
|
||||
"battery" : "#b8ea04"
|
||||
"Electric load" : "#f9d002"
|
||||
"electricity" : "#f9d002"
|
||||
"lines" : "#70af1d"
|
||||
"transmission lines" : "#70af1d"
|
||||
"AC-AC" : "#70af1d"
|
||||
"AC line" : "#70af1d"
|
||||
"links" : "#8a1caf"
|
||||
"HVDC links" : "#8a1caf"
|
||||
"DC-DC" : "#8a1caf"
|
||||
"DC link" : "#8a1caf"
|
||||
"onwind": "#235ebc"
|
||||
"onshore wind": "#235ebc"
|
||||
'offwind': "#6895dd"
|
||||
'offwind-ac': "#6895dd"
|
||||
'offshore wind': "#6895dd"
|
||||
'offshore wind ac': "#6895dd"
|
||||
'offwind-dc': "#74c6f2"
|
||||
'offshore wind dc': "#74c6f2"
|
||||
"hydro": "#08ad97"
|
||||
"hydro+PHS": "#08ad97"
|
||||
"PHS": "#08ad97"
|
||||
"hydro reservoir": "#08ad97"
|
||||
'hydroelectricity': '#08ad97'
|
||||
"ror": "#4adbc8"
|
||||
"run of river": "#4adbc8"
|
||||
'solar': "#f9d002"
|
||||
'solar PV': "#f9d002"
|
||||
'solar thermal': '#ffef60'
|
||||
'biomass': '#0c6013'
|
||||
'solid biomass': '#06540d'
|
||||
'biogas': '#23932d'
|
||||
'waste': '#68896b'
|
||||
'geothermal': '#ba91b1'
|
||||
"OCGT": "#d35050"
|
||||
"gas": "#d35050"
|
||||
"natural gas": "#d35050"
|
||||
"CCGT": "#b20101"
|
||||
"nuclear": "#ff9000"
|
||||
"coal": "#707070"
|
||||
"lignite": "#9e5a01"
|
||||
"oil": "#262626"
|
||||
"H2": "#ea048a"
|
||||
"hydrogen storage": "#ea048a"
|
||||
"battery": "#b8ea04"
|
||||
"Electric load": "#f9d002"
|
||||
"electricity": "#f9d002"
|
||||
"lines": "#70af1d"
|
||||
"transmission lines": "#70af1d"
|
||||
"AC-AC": "#70af1d"
|
||||
"AC line": "#70af1d"
|
||||
"links": "#8a1caf"
|
||||
"HVDC links": "#8a1caf"
|
||||
"DC-DC": "#8a1caf"
|
||||
"DC link": "#8a1caf"
|
||||
nice_names:
|
||||
OCGT: "Open-Cycle Gas"
|
||||
CCGT: "Combined-Cycle Gas"
|
||||
|
@ -9,7 +9,7 @@ logging:
|
||||
level: INFO
|
||||
format: '%(levelname)s:%(name)s:%(message)s'
|
||||
|
||||
run:
|
||||
run:
|
||||
name: ""
|
||||
|
||||
scenario:
|
||||
@ -73,8 +73,7 @@ renewable:
|
||||
corine:
|
||||
# Scholz, Y. (2012). Renewable energy based electricity supply at low costs:
|
||||
# development of the REMix model and application for Europe. ( p.42 / p.28)
|
||||
grid_codes: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
|
||||
24, 25, 26, 27, 28, 29, 31, 32]
|
||||
grid_codes: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32]
|
||||
distance: 1000
|
||||
distance_grid_codes: [1, 2, 3, 4, 5, 6]
|
||||
natura: true
|
||||
@ -126,8 +125,7 @@ renewable:
|
||||
# power." Applied Energy 135 (2014): 704-720.
|
||||
# This correction factor of 0.854337 may be in order if using reanalysis data.
|
||||
# correction_factor: 0.854337
|
||||
corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
|
||||
14, 15, 16, 17, 18, 19, 20, 26, 31, 32]
|
||||
corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 26, 31, 32]
|
||||
natura: true
|
||||
excluder_resolution: 200
|
||||
potential: simple # or conservative
|
||||
@ -155,9 +153,9 @@ transformers:
|
||||
type: ''
|
||||
|
||||
load:
|
||||
power_statistics: True # only for files from <2019; set false in order to get ENTSOE transparency data
|
||||
power_statistics: true # only for files from <2019; set false in order to get ENTSOE transparency data
|
||||
interpolate_limit: 3 # data gaps up until this size are interpolated linearly
|
||||
time_shift_for_large_gaps: 1w # data gaps up until this size are copied by copying from
|
||||
time_shift_for_large_gaps: 1w # data gaps up until this size are copied by copying from
|
||||
manual_adjustments: true # false
|
||||
scaling_factor: 1.0
|
||||
|
||||
@ -218,7 +216,7 @@ solving:
|
||||
plotting:
|
||||
map:
|
||||
figsize: [7, 7]
|
||||
boundaries: [-10.2, 29, 35, 72]
|
||||
boundaries: [-10.2, 29, 35, 72]
|
||||
p_nom:
|
||||
bus_size_factor: 5.e+4
|
||||
linewidth_factor: 3.e+3
|
||||
@ -237,50 +235,50 @@ plotting:
|
||||
AC_carriers: ["AC line", "AC transformer"]
|
||||
link_carriers: ["DC line", "Converter AC-DC"]
|
||||
tech_colors:
|
||||
"onwind" : "#235ebc"
|
||||
"onshore wind" : "#235ebc"
|
||||
'offwind' : "#6895dd"
|
||||
'offwind-ac' : "#6895dd"
|
||||
'offshore wind' : "#6895dd"
|
||||
'offshore wind ac' : "#6895dd"
|
||||
'offwind-dc' : "#74c6f2"
|
||||
'offshore wind dc' : "#74c6f2"
|
||||
"hydro" : "#08ad97"
|
||||
"hydro+PHS" : "#08ad97"
|
||||
"PHS" : "#08ad97"
|
||||
"hydro reservoir" : "#08ad97"
|
||||
'hydroelectricity' : '#08ad97'
|
||||
"ror" : "#4adbc8"
|
||||
"run of river" : "#4adbc8"
|
||||
'solar' : "#f9d002"
|
||||
'solar PV' : "#f9d002"
|
||||
'solar thermal' : '#ffef60'
|
||||
'biomass' : '#0c6013'
|
||||
'solid biomass' : '#06540d'
|
||||
'biogas' : '#23932d'
|
||||
'waste' : '#68896b'
|
||||
'geothermal' : '#ba91b1'
|
||||
"OCGT" : "#d35050"
|
||||
"gas" : "#d35050"
|
||||
"natural gas" : "#d35050"
|
||||
"CCGT" : "#b20101"
|
||||
"nuclear" : "#ff9000"
|
||||
"coal" : "#707070"
|
||||
"lignite" : "#9e5a01"
|
||||
"oil" : "#262626"
|
||||
"H2" : "#ea048a"
|
||||
"hydrogen storage" : "#ea048a"
|
||||
"battery" : "#b8ea04"
|
||||
"Electric load" : "#f9d002"
|
||||
"electricity" : "#f9d002"
|
||||
"lines" : "#70af1d"
|
||||
"transmission lines" : "#70af1d"
|
||||
"AC-AC" : "#70af1d"
|
||||
"AC line" : "#70af1d"
|
||||
"links" : "#8a1caf"
|
||||
"HVDC links" : "#8a1caf"
|
||||
"DC-DC" : "#8a1caf"
|
||||
"DC link" : "#8a1caf"
|
||||
"onwind": "#235ebc"
|
||||
"onshore wind": "#235ebc"
|
||||
'offwind': "#6895dd"
|
||||
'offwind-ac': "#6895dd"
|
||||
'offshore wind': "#6895dd"
|
||||
'offshore wind ac': "#6895dd"
|
||||
'offwind-dc': "#74c6f2"
|
||||
'offshore wind dc': "#74c6f2"
|
||||
"hydro": "#08ad97"
|
||||
"hydro+PHS": "#08ad97"
|
||||
"PHS": "#08ad97"
|
||||
"hydro reservoir": "#08ad97"
|
||||
'hydroelectricity': '#08ad97'
|
||||
"ror": "#4adbc8"
|
||||
"run of river": "#4adbc8"
|
||||
'solar': "#f9d002"
|
||||
'solar PV': "#f9d002"
|
||||
'solar thermal': '#ffef60'
|
||||
'biomass': '#0c6013'
|
||||
'solid biomass': '#06540d'
|
||||
'biogas': '#23932d'
|
||||
'waste': '#68896b'
|
||||
'geothermal': '#ba91b1'
|
||||
"OCGT": "#d35050"
|
||||
"gas": "#d35050"
|
||||
"natural gas": "#d35050"
|
||||
"CCGT": "#b20101"
|
||||
"nuclear": "#ff9000"
|
||||
"coal": "#707070"
|
||||
"lignite": "#9e5a01"
|
||||
"oil": "#262626"
|
||||
"H2": "#ea048a"
|
||||
"hydrogen storage": "#ea048a"
|
||||
"battery": "#b8ea04"
|
||||
"Electric load": "#f9d002"
|
||||
"electricity": "#f9d002"
|
||||
"lines": "#70af1d"
|
||||
"transmission lines": "#70af1d"
|
||||
"AC-AC": "#70af1d"
|
||||
"AC line": "#70af1d"
|
||||
"links": "#8a1caf"
|
||||
"HVDC links": "#8a1caf"
|
||||
"DC-DC": "#8a1caf"
|
||||
"DC link": "#8a1caf"
|
||||
nice_names:
|
||||
OCGT: "Open-Cycle Gas"
|
||||
CCGT: "Combined-Cycle Gas"
|
||||
|
@ -47,4 +47,4 @@ Report generated on: 03-28-2022 11:20:48
|
||||
"INTL.33-12-SWE-BKWH.A"," Sweden","58.133","59.006","54.369","62.801","67.106","70.095","60.134","70.95","69.016","70.911","71.778","62.603","73.588","73.905","58.508","67.421","51.2226","68.365","74.25","70.974","77.798","78.269","65.696","53.005","59.522","72.075","61.106","65.497","68.378","65.193","66.279","66.047","78.333","60.81","63.227","74.734","61.645","64.651","61.79","64.46583","71.6"
|
||||
"INTL.33-12-CHE-BKWH.A"," Switzerland","32.481","35.13","35.974","35.069","29.871","31.731","32.576","34.328","35.437","29.477","29.497","31.756","32.373","35.416","38.678","34.817","28.458","33.70257","33.136","39.604","36.466","40.895","34.862","34.471","33.411","30.914","30.649","34.898","35.676","35.366","35.704","32.069","38.218","38.08","37.659","37.879","34.281","33.754","34.637","37.6596","40.62"
|
||||
"INTL.33-12-TUR-BKWH.A"," Turkey","11.159","12.308","13.81","11.13","13.19","11.822","11.637","18.314","28.447","17.61","22.917","22.456","26.302","33.611","30.28","35.186","40.07","39.41784","41.80671","34.33","30.57","23.77","33.346","34.977","45.623","39.165","43.802","35.492","32.937","35.598","51.423","51.155","56.669","58.225","39.75","65.856","66.686","57.824","59.49","87.99714","77.39"
|
||||
"INTL.33-12-GBR-BKWH.A"," United Kingdom","3.921","4.369","4.543","4.548","3.992","4.08","4.767","4.13","4.915","4.732","5.119","4.534","5.329","4.237","5.043","4.79","3.359","4.127","5.067","5.283","5.035","4.015","4.74","3.195","4.795","4.873","4.547","5.026","5.094","5.178","3.566","5.655","5.286","4.667","5.832","6.246","5.342","5.836","5.189","5.89941","7.64"
|
||||
"INTL.33-12-GBR-BKWH.A"," United Kingdom","3.921","4.369","4.543","4.548","3.992","4.08","4.767","4.13","4.915","4.732","5.119","4.534","5.329","4.237","5.043","4.79","3.359","4.127","5.067","5.283","5.035","4.015","4.74","3.195","4.795","4.873","4.547","5.026","5.094","5.178","3.566","5.655","5.286","4.667","5.832","6.246","5.342","5.836","5.189","5.89941","7.64"
|
||||
|
Can't render this file because it has a wrong number of fields in line 3.
|
@ -13,4 +13,4 @@ SI,0.94
|
||||
ES,0.89
|
||||
SE,0.82
|
||||
CH,0.86
|
||||
GB,0.67
|
||||
GB,0.67
|
||||
|
|
2
doc/_static/theme_overrides.css
vendored
2
doc/_static/theme_overrides.css
vendored
@ -71,4 +71,4 @@
|
||||
.wy-nav-content {
|
||||
max-width: 910px !important;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
186
doc/conf.py
186
doc/conf.py
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: 20017-2020 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
@ -16,19 +17,19 @@
|
||||
# All configuration values have a default; values that are commented out
|
||||
# serve to show the default.
|
||||
|
||||
import sys
|
||||
import os
|
||||
import shlex
|
||||
import sys
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
sys.path.insert(0, os.path.abspath('../scripts'))
|
||||
sys.path.insert(0, os.path.abspath("../scripts"))
|
||||
|
||||
# -- General configuration ------------------------------------------------
|
||||
|
||||
# If your documentation needs a minimal Sphinx version, state it here.
|
||||
#needs_sphinx = '1.0'
|
||||
# needs_sphinx = '1.0'
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
@ -36,47 +37,47 @@ sys.path.insert(0, os.path.abspath('../scripts'))
|
||||
extensions = [
|
||||
#'sphinx.ext.autodoc',
|
||||
#'sphinx.ext.autosummary',
|
||||
'sphinx.ext.intersphinx',
|
||||
'sphinx.ext.todo',
|
||||
'sphinx.ext.mathjax',
|
||||
'sphinx.ext.napoleon',
|
||||
'sphinx.ext.graphviz',
|
||||
"sphinx.ext.intersphinx",
|
||||
"sphinx.ext.todo",
|
||||
"sphinx.ext.mathjax",
|
||||
"sphinx.ext.napoleon",
|
||||
"sphinx.ext.graphviz",
|
||||
#'sphinx.ext.pngmath',
|
||||
#'sphinxcontrib.tikz',
|
||||
#'rinoh.frontend.sphinx',
|
||||
'sphinx.ext.imgconverter', # for SVG conversion
|
||||
"sphinx.ext.imgconverter", # for SVG conversion
|
||||
]
|
||||
|
||||
autodoc_default_flags = ['members']
|
||||
autodoc_default_flags = ["members"]
|
||||
autosummary_generate = True
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
templates_path = ["_templates"]
|
||||
|
||||
# The suffix(es) of source filenames.
|
||||
# You can specify multiple suffix as a list of string:
|
||||
# source_suffix = ['.rst', '.md']
|
||||
source_suffix = '.rst'
|
||||
source_suffix = ".rst"
|
||||
|
||||
# The encoding of source files.
|
||||
#source_encoding = 'utf-8-sig'
|
||||
# source_encoding = 'utf-8-sig'
|
||||
|
||||
# The master toctree document.
|
||||
master_doc = 'index'
|
||||
master_doc = "index"
|
||||
|
||||
# General information about the project.
|
||||
project = u'PyPSA-Eur'
|
||||
copyright = u'2017-2022 Jonas Hoersch (KIT, FIAS), Fabian Hofmann (TUB, FIAS), David Schlachtberger (FIAS), Tom Brown (TUB, KIT, FIAS); 2019-2022 Fabian Neumann (TUB, KIT)'
|
||||
author = u'Jonas Hoersch (KIT, FIAS), Fabian Hofmann (TUB, FIAS), David Schlachtberger (FIAS), Tom Brown (TUB, KIT, FIAS), Fabian Neumann (TUB, KIT)'
|
||||
project = "PyPSA-Eur"
|
||||
copyright = "2017-2022 Jonas Hoersch (KIT, FIAS), Fabian Hofmann (TUB, FIAS), David Schlachtberger (FIAS), Tom Brown (TUB, KIT, FIAS); 2019-2022 Fabian Neumann (TUB, KIT)"
|
||||
author = "Jonas Hoersch (KIT, FIAS), Fabian Hofmann (TUB, FIAS), David Schlachtberger (FIAS), Tom Brown (TUB, KIT, FIAS), Fabian Neumann (TUB, KIT)"
|
||||
|
||||
# The version info for the project you're documenting, acts as replacement for
|
||||
# |version| and |release|, also used in various other places throughout the
|
||||
# built documents.
|
||||
#
|
||||
# The short X.Y version.
|
||||
version = u'0.6'
|
||||
version = "0.6"
|
||||
# The full version, including alpha/beta/rc tags.
|
||||
release = u'0.6.0'
|
||||
release = "0.6.0"
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
@ -87,37 +88,37 @@ language = None
|
||||
|
||||
# There are two options for replacing |today|: either, you set today to some
|
||||
# non-false value, then it is used:
|
||||
#today = ''
|
||||
# today = ''
|
||||
# Else, today_fmt is used as the format for a strftime call.
|
||||
#today_fmt = '%B %d, %Y'
|
||||
# today_fmt = '%B %d, %Y'
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
exclude_patterns = ['_build']
|
||||
exclude_patterns = ["_build"]
|
||||
|
||||
# The reST default role (used for this markup: `text`) to use for all
|
||||
# documents.
|
||||
#default_role = None
|
||||
# default_role = None
|
||||
|
||||
# If true, '()' will be appended to :func: etc. cross-reference text.
|
||||
#add_function_parentheses = True
|
||||
# add_function_parentheses = True
|
||||
|
||||
# If true, the current module name will be prepended to all description
|
||||
# unit titles (such as .. function::).
|
||||
#add_module_names = True
|
||||
# add_module_names = True
|
||||
|
||||
# If true, sectionauthor and moduleauthor directives will be shown in the
|
||||
# output. They are ignored by default.
|
||||
#show_authors = False
|
||||
# show_authors = False
|
||||
|
||||
# The name of the Pygments (syntax highlighting) style to use.
|
||||
pygments_style = 'sphinx'
|
||||
pygments_style = "sphinx"
|
||||
|
||||
# A list of ignored prefixes for module index sorting.
|
||||
#modindex_common_prefix = []
|
||||
# modindex_common_prefix = []
|
||||
|
||||
# If true, keep warnings as "system message" paragraphs in the built documents.
|
||||
#keep_warnings = False
|
||||
# keep_warnings = False
|
||||
|
||||
# If true, `todo` and `todoList` produce output, else they produce nothing.
|
||||
todo_include_todos = True
|
||||
@ -127,35 +128,35 @@ todo_include_todos = True
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
html_theme = 'sphinx_rtd_theme'
|
||||
html_theme = "sphinx_rtd_theme"
|
||||
|
||||
# Theme options are theme-specific and customize the look and feel of a theme
|
||||
# further. For a list of options available for each theme, see the
|
||||
# documentation.
|
||||
html_theme_options = {
|
||||
'display_version': True,
|
||||
'sticky_navigation': True,
|
||||
"display_version": True,
|
||||
"sticky_navigation": True,
|
||||
}
|
||||
|
||||
|
||||
# Add any paths that contain custom themes here, relative to this directory.
|
||||
#html_theme_path = []
|
||||
# html_theme_path = []
|
||||
|
||||
# The name for this set of Sphinx documents. If None, it defaults to
|
||||
# "<project> v<release> documentation".
|
||||
#html_title = None
|
||||
# html_title = None
|
||||
|
||||
# A shorter title for the navigation bar. Default is the same as html_title.
|
||||
#html_short_title = None
|
||||
# html_short_title = None
|
||||
|
||||
# The name of an image file (relative to this directory) to place at the top
|
||||
# of the sidebar.
|
||||
#html_logo = None
|
||||
# html_logo = None
|
||||
|
||||
# The name of an image file (within the static path) to use as favicon of the
|
||||
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
|
||||
# pixels large.
|
||||
#html_favicon = None
|
||||
# html_favicon = None
|
||||
|
||||
# These folders are copied to the documentation's HTML output
|
||||
html_static_path = ["_static"]
|
||||
@ -167,130 +168,127 @@ html_css_files = ["theme_overrides.css"]
|
||||
# Add any extra paths that contain custom files (such as robots.txt or
|
||||
# .htaccess) here, relative to this directory. These files are copied
|
||||
# directly to the root of the documentation.
|
||||
#html_extra_path = []
|
||||
# html_extra_path = []
|
||||
|
||||
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
|
||||
# using the given strftime format.
|
||||
#html_last_updated_fmt = '%b %d, %Y'
|
||||
# html_last_updated_fmt = '%b %d, %Y'
|
||||
|
||||
# If true, SmartyPants will be used to convert quotes and dashes to
|
||||
# typographically correct entities.
|
||||
#html_use_smartypants = True
|
||||
# html_use_smartypants = True
|
||||
|
||||
# Custom sidebar templates, maps document names to template names.
|
||||
#html_sidebars = {}
|
||||
# html_sidebars = {}
|
||||
|
||||
# Additional templates that should be rendered to pages, maps page names to
|
||||
# template names.
|
||||
#html_additional_pages = {}
|
||||
# html_additional_pages = {}
|
||||
|
||||
# If false, no module index is generated.
|
||||
#html_domain_indices = True
|
||||
# html_domain_indices = True
|
||||
|
||||
# If false, no index is generated.
|
||||
#html_use_index = True
|
||||
# html_use_index = True
|
||||
|
||||
# If true, the index is split into individual pages for each letter.
|
||||
#html_split_index = False
|
||||
# html_split_index = False
|
||||
|
||||
# If true, links to the reST sources are added to the pages.
|
||||
#html_show_sourcelink = True
|
||||
# html_show_sourcelink = True
|
||||
|
||||
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
|
||||
#html_show_sphinx = True
|
||||
# html_show_sphinx = True
|
||||
|
||||
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
|
||||
#html_show_copyright = True
|
||||
# html_show_copyright = True
|
||||
|
||||
# If true, an OpenSearch description file will be output, and all pages will
|
||||
# contain a <link> tag referring to it. The value of this option must be the
|
||||
# base URL from which the finished HTML is served.
|
||||
#html_use_opensearch = ''
|
||||
# html_use_opensearch = ''
|
||||
|
||||
# This is the file name suffix for HTML files (e.g. ".xhtml").
|
||||
#html_file_suffix = None
|
||||
# html_file_suffix = None
|
||||
|
||||
# Language to be used for generating the HTML full-text search index.
|
||||
# Sphinx supports the following languages:
|
||||
# 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja'
|
||||
# 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr'
|
||||
#html_search_language = 'en'
|
||||
# html_search_language = 'en'
|
||||
|
||||
# A dictionary with options for the search language support, empty by default.
|
||||
# Now only 'ja' uses this config value
|
||||
#html_search_options = {'type': 'default'}
|
||||
# html_search_options = {'type': 'default'}
|
||||
|
||||
# The name of a javascript file (relative to the configuration directory) that
|
||||
# implements a search results scorer. If empty, the default will be used.
|
||||
#html_search_scorer = 'scorer.js'
|
||||
# html_search_scorer = 'scorer.js'
|
||||
|
||||
# Output file base name for HTML help builder.
|
||||
htmlhelp_basename = 'PyPSAEurdoc'
|
||||
htmlhelp_basename = "PyPSAEurdoc"
|
||||
|
||||
# -- Options for LaTeX output ---------------------------------------------
|
||||
|
||||
latex_elements = {
|
||||
# The paper size ('letterpaper' or 'a4paper').
|
||||
#'papersize': 'letterpaper',
|
||||
|
||||
# The font size ('10pt', '11pt' or '12pt').
|
||||
#'pointsize': '10pt',
|
||||
|
||||
# Additional stuff for the LaTeX preamble.
|
||||
#'preamble': '',
|
||||
|
||||
# Latex figure (float) alignment
|
||||
#'figure_align': 'htbp',
|
||||
# The paper size ('letterpaper' or 'a4paper').
|
||||
#'papersize': 'letterpaper',
|
||||
# The font size ('10pt', '11pt' or '12pt').
|
||||
#'pointsize': '10pt',
|
||||
# Additional stuff for the LaTeX preamble.
|
||||
#'preamble': '',
|
||||
# Latex figure (float) alignment
|
||||
#'figure_align': 'htbp',
|
||||
}
|
||||
|
||||
# Grouping the document tree into LaTeX files. List of tuples
|
||||
# (source start file, target name, title,
|
||||
# author, documentclass [howto, manual, or own class]).
|
||||
latex_documents = [
|
||||
(master_doc, 'PyPSA-Eur.tex', u'PyPSA-Eur Documentation',
|
||||
u'author', 'manual'),
|
||||
(master_doc, "PyPSA-Eur.tex", "PyPSA-Eur Documentation", "author", "manual"),
|
||||
]
|
||||
|
||||
|
||||
#Added for rinoh http://www.mos6581.org/rinohtype/quickstart.html
|
||||
rinoh_documents = [(master_doc, # top-level file (index.rst)
|
||||
'PyPSA-Eur', # output (target.pdf)
|
||||
'PyPSA-Eur Documentation', # document title
|
||||
'author')] # document author
|
||||
# Added for rinoh http://www.mos6581.org/rinohtype/quickstart.html
|
||||
rinoh_documents = [
|
||||
(
|
||||
master_doc, # top-level file (index.rst)
|
||||
"PyPSA-Eur", # output (target.pdf)
|
||||
"PyPSA-Eur Documentation", # document title
|
||||
"author",
|
||||
)
|
||||
] # document author
|
||||
|
||||
|
||||
# The name of an image file (relative to this directory) to place at the top of
|
||||
# the title page.
|
||||
#latex_logo = None
|
||||
# latex_logo = None
|
||||
|
||||
# For "manual" documents, if this is true, then toplevel headings are parts,
|
||||
# not chapters.
|
||||
#latex_use_parts = False
|
||||
# latex_use_parts = False
|
||||
|
||||
# If true, show page references after internal links.
|
||||
#latex_show_pagerefs = False
|
||||
# latex_show_pagerefs = False
|
||||
|
||||
# If true, show URL addresses after external links.
|
||||
#latex_show_urls = False
|
||||
# latex_show_urls = False
|
||||
|
||||
# Documents to append as an appendix to all manuals.
|
||||
#latex_appendices = []
|
||||
# latex_appendices = []
|
||||
|
||||
# If false, no module index is generated.
|
||||
#latex_domain_indices = True
|
||||
# latex_domain_indices = True
|
||||
|
||||
|
||||
# -- Options for manual page output ---------------------------------------
|
||||
|
||||
# One entry per manual page. List of tuples
|
||||
# (source start file, name, description, authors, manual section).
|
||||
man_pages = [
|
||||
(master_doc, 'pypsa-eur', u'PyPSA-Eur Documentation',
|
||||
[author], 1)
|
||||
]
|
||||
man_pages = [(master_doc, "pypsa-eur", "PyPSA-Eur Documentation", [author], 1)]
|
||||
|
||||
# If true, show URL addresses after external links.
|
||||
#man_show_urls = False
|
||||
# man_show_urls = False
|
||||
|
||||
|
||||
# -- Options for Texinfo output -------------------------------------------
|
||||
@ -299,23 +297,29 @@ man_pages = [
|
||||
# (source start file, target name, title, author,
|
||||
# dir menu entry, description, category)
|
||||
texinfo_documents = [
|
||||
(master_doc, 'PyPSA-Eur', u'PyPSA-Eur Documentation',
|
||||
author, 'PyPSA-Eur', 'One line description of project.',
|
||||
'Miscellaneous'),
|
||||
(
|
||||
master_doc,
|
||||
"PyPSA-Eur",
|
||||
"PyPSA-Eur Documentation",
|
||||
author,
|
||||
"PyPSA-Eur",
|
||||
"One line description of project.",
|
||||
"Miscellaneous",
|
||||
),
|
||||
]
|
||||
|
||||
# Documents to append as an appendix to all manuals.
|
||||
#texinfo_appendices = []
|
||||
# texinfo_appendices = []
|
||||
|
||||
# If false, no module index is generated.
|
||||
#texinfo_domain_indices = True
|
||||
# texinfo_domain_indices = True
|
||||
|
||||
# How to display URL addresses: 'footnote', 'no', or 'inline'.
|
||||
#texinfo_show_urls = 'footnote'
|
||||
# texinfo_show_urls = 'footnote'
|
||||
|
||||
# If true, do not generate a @detailmenu in the "Top" node's menu.
|
||||
#texinfo_no_detailmenu = False
|
||||
# texinfo_no_detailmenu = False
|
||||
|
||||
|
||||
# Example configuration for intersphinx: refer to the Python standard library.
|
||||
intersphinx_mapping = {'https://docs.python.org/': None}
|
||||
intersphinx_mapping = {"https://docs.python.org/": None}
|
||||
|
@ -26,4 +26,4 @@ estimate_renewable_capacities,,,
|
||||
-- from_opsd,--,bool,"Add capacities from OPSD data"
|
||||
-- year,--,bool,"Renewable capacities are based on existing capacities reported by IRENA for the specified year"
|
||||
-- expansion_limit,--,float or false,"Artificially limit maximum capacities to factor * (IRENA capacities), i.e. 110% of <years>'s capacities => expansion_limit: 1.1 false: Use estimated renewable potentials determine by the workflow"
|
||||
-- technology_mapping,,,"Mapping between powerplantmatching and PyPSA-Eur technology names"
|
||||
-- technology_mapping,,,"Mapping between powerplantmatching and PyPSA-Eur technology names"
|
||||
|
|
@ -1,6 +1,6 @@
|
||||
,Unit,Values,Description
|
||||
url,--,string,"Link to open power system data time series data."
|
||||
power_statistics,bool,"{true, false}",Whether to load the electricity consumption data of the ENTSOE power statistics (only for files from 2019 and before) or from the ENTSOE transparency data (only has load data from 2015 onwards).
|
||||
power_statistics,bool,"{true, false}",Whether to load the electricity consumption data of the ENTSOE power statistics (only for files from 2019 and before) or from the ENTSOE transparency data (only has load data from 2015 onwards).
|
||||
interpolate_limit,hours,integer,"Maximum gap size (consecutive nans) which interpolated linearly."
|
||||
time_shift_for_large_gaps,string,string,"Periods which are used for copying time-slices in order to fill large gaps of nans. Have to be valid ``pandas`` period strings."
|
||||
manual_adjustments,bool,"{true, false}","Whether to adjust the load data manually according to the function in :func:`manual_adjustment`."
|
||||
|
|
@ -9,4 +9,4 @@ Trigger, Description, Definition, Status
|
||||
``BAU``, Add a per-``carrier`` minimal overall capacity; i.e. at least ``40GW`` of ``OCGT`` in Europe; configured in ``electricity: BAU_mincapacities``, ``solve_network``: `add_opts_constraints() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/solve_network.py#L66>`__, Untested
|
||||
``SAFE``, Add a capacity reserve margin of a certain fraction above the peak demand to which renewable generators and storage do *not* contribute. Ignores network., ``solve_network`` `add_opts_constraints() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/solve_network.py#L73>`__, Untested
|
||||
``carrier+{c|p|m}factor``,"Alter the capital cost (``c``), installable potential (``p``) or marginal costs (``m``) of a carrier by a factor. Example: ``solar+c0.5`` reduces the capital cost of solar to 50\% of original values.", ``prepare_network``, In active use
|
||||
``CH4L``,"Add an overall absolute gas limit. If configured in ``electricity: gaslimit`` it is given in MWh thermal, if a float is appended, the overall gaslimit is assumed to be given in TWh thermal (e.g. ``CH4L200`` limits gas dispatch to 200 TWh termal)", ``prepare_network``: ``add_gaslimit()``, In active use
|
||||
``CH4L``,"Add an overall absolute gas limit. If configured in ``electricity: gaslimit`` it is given in MWh thermal, if a float is appended, the overall gaslimit is assumed to be given in TWh thermal (e.g. ``CH4L200`` limits gas dispatch to 200 TWh termal)", ``prepare_network``: ``add_gaslimit()``, In active use
|
||||
|
|
@ -35,7 +35,7 @@ It is common conduct to analyse energy system optimisation models for **multiple
|
||||
e.g. assessing their sensitivity towards changing the temporal and/or geographical resolution or investigating how
|
||||
investment changes as more ambitious greenhouse-gas emission reduction targets are applied.
|
||||
|
||||
The ``run`` section is used for running and storing scenarios with different configurations which are not covered by :ref:`wildcards`. It determines the path at which resources, networks and results are stored. Therefore the user can run different configurations within the same directory. If a run with a non-empty name should use cutouts shared across runs, set ``shared_cutouts`` to `true`.
|
||||
The ``run`` section is used for running and storing scenarios with different configurations which are not covered by :ref:`wildcards`. It determines the path at which resources, networks and results are stored. Therefore the user can run different configurations within the same directory. If a run with a non-empty name should use cutouts shared across runs, set ``shared_cutouts`` to `true`.
|
||||
|
||||
.. literalinclude:: ../config.default.yaml
|
||||
:language: yaml
|
||||
@ -107,7 +107,7 @@ Specifies the temporal range to build an energy system model for as arguments to
|
||||
``atlite``
|
||||
==========
|
||||
|
||||
Define and specify the ``atlite.Cutout`` used for calculating renewable potentials and time-series. All options except for ``features`` are directly used as `cutout parameters <https://atlite.readthedocs.io/en/latest/ref_api.html#cutout>`_.
|
||||
Define and specify the ``atlite.Cutout`` used for calculating renewable potentials and time-series. All options except for ``features`` are directly used as `cutout parameters <https://atlite.readthedocs.io/en/latest/ref_api.html#cutout>`_.
|
||||
|
||||
.. literalinclude:: ../config.default.yaml
|
||||
:language: yaml
|
||||
@ -194,7 +194,7 @@ Define and specify the ``atlite.Cutout`` used for calculating renewable potentia
|
||||
``conventional``
|
||||
=============
|
||||
|
||||
Define additional generator attribute for conventional carrier types. If a scalar value is given it is applied to all generators. However if a string starting with "data/" is given, the value is interpreted as a path to a csv file with country specific values. Then, the values are read in and applied to all generators of the given carrier in the given country. Note that the value(s) overwrite the existing values in the corresponding section of the ``generators`` dataframe.
|
||||
Define additional generator attribute for conventional carrier types. If a scalar value is given it is applied to all generators. However if a string starting with "data/" is given, the value is interpreted as a path to a csv file with country specific values. Then, the values are read in and applied to all generators of the given carrier in the given country. Note that the value(s) overwrite the existing values in the corresponding section of the ``generators`` dataframe.
|
||||
|
||||
.. literalinclude:: ../config.default.yaml
|
||||
:language: yaml
|
||||
|
@ -195,7 +195,7 @@ The included ``.nc`` files are PyPSA network files which can be imported with Py
|
||||
|
||||
import pypsa
|
||||
|
||||
filename = "elec_s_1024_ec.nc" # example
|
||||
filename = "elec_s_1024_ec.nc" # example
|
||||
n = pypsa.Network(filename)
|
||||
|
||||
Licence
|
||||
|
@ -30,7 +30,7 @@ The :ref:`tutorial` uses a smaller cutout than required for the full model (30 M
|
||||
|
||||
.. note::
|
||||
To download cutouts yourself from the `ECMWF ERA5 <https://software.ecmwf.int/wiki/display/CKB/ERA5+data+documentation>`_ you need to `set up the CDS API <https://cds.climate.copernicus.eu/api-how-to>`_.
|
||||
|
||||
|
||||
|
||||
**Relevant Settings**
|
||||
|
||||
|
@ -10,7 +10,7 @@ Release Notes
|
||||
Upcoming Release
|
||||
================
|
||||
|
||||
* Individual commits are now tested against pre-commit hooks. This includes black style formatting, sorting of package imports, Snakefile formatting and others. Installation instructions can for the pre-commit can be found `here <https://pre-commit.com/>`_.
|
||||
* Individual commits are now tested against pre-commit hooks. This includes black style formatting, sorting of package imports, Snakefile formatting and others. Installation instructions can for the pre-commit can be found `here <https://pre-commit.com/>`_.
|
||||
* Pre-commit CI is now part of the repository's CI.
|
||||
|
||||
|
||||
@ -24,7 +24,7 @@ PyPSA-Eur 0.6.0 (10th September 2022)
|
||||
|
||||
* When transforming all transmission lines to a unified voltage level of 380kV,
|
||||
the workflow now preserves the transmission capacity rather than electrical
|
||||
impedance and reactance.
|
||||
impedance and reactance.
|
||||
|
||||
* Memory resources are now specified for all rules.
|
||||
|
||||
@ -45,29 +45,29 @@ PyPSA-Eur 0.5.0 (27th July 2022)
|
||||
* New network topology extracted from the ENTSO-E interactive map.
|
||||
|
||||
* Added existing renewable capacities for all countries based on IRENA
|
||||
statistics (IRENASTAT) using new ``powerplantmatching`` version:
|
||||
* The corresponding ``config`` entries changed, cf. ``config.default.yaml``:
|
||||
* old: ``estimate_renewable_capacities_from_capacity_stats``
|
||||
* new: ``estimate_renewable_capacities``
|
||||
* The estimation is endabled by setting the subkey ``enable`` to ``True``.
|
||||
statistics (IRENASTAT) using new ``powerplantmatching`` version:
|
||||
* The corresponding ``config`` entries changed, cf. ``config.default.yaml``:
|
||||
* old: ``estimate_renewable_capacities_from_capacity_stats``
|
||||
* new: ``estimate_renewable_capacities``
|
||||
* The estimation is endabled by setting the subkey ``enable`` to ``True``.
|
||||
* Configuration of reference year for capacities can be configured (default:
|
||||
``2020``)
|
||||
``2020``)
|
||||
* The list of renewables provided by the OPSD database can be used as a basis,
|
||||
using the tag ``from_opsd: True``. This adds the renewables from the
|
||||
database and fills up the missing capacities with the heuristic
|
||||
distribution.
|
||||
distribution.
|
||||
* Uniform expansion limit of renewable build-up based on existing capacities
|
||||
can be configured using ``expansion_limit`` option (default: ``false``;
|
||||
limited to determined renewable potentials)
|
||||
limited to determined renewable potentials)
|
||||
* Distribution of country-level capacities proportional to maximum annual
|
||||
energy yield for each bus region
|
||||
energy yield for each bus region
|
||||
* The config key ``renewable_capacities_from_OPSD`` is deprecated and was moved
|
||||
under the section, ``estimate_renewable_capacities``. To enable it, set
|
||||
``from_opsd`` to ``True``.
|
||||
``from_opsd`` to ``True``.
|
||||
|
||||
* Add operational reserve margin constraint analogous to `GenX implementation
|
||||
<https://genxproject.github.io/GenX/dev/core/#Reserves>`_. Can be activated
|
||||
with config setting ``electricity: operational_reserve:``.
|
||||
with config setting ``electricity: operational_reserve:``.
|
||||
|
||||
* Implement country-specific Energy Availability Factors (EAFs) for nuclear
|
||||
power plants based on IAEA 2018-2020 reported country averages. These are
|
||||
@ -87,7 +87,7 @@ PyPSA-Eur 0.5.0 (27th July 2022)
|
||||
* Hierarchical clustering was introduced. Distance metric is calculated from
|
||||
renewable potentials on hourly (feature entry ends with ``-time``) or annual
|
||||
(feature entry in config end with ``-cap``) values.
|
||||
|
||||
|
||||
* Greedy modularity clustering was introduced. Distance metric is based on electrical distance taking into account the impedance of all transmission lines of the network.
|
||||
|
||||
* Techno-economic parameters of technologies (e.g. costs and efficiencies) will
|
||||
@ -100,7 +100,7 @@ PyPSA-Eur 0.5.0 (27th July 2022)
|
||||
<https://github.com/PyPSA/pypsa-eur/pull/184>`_].
|
||||
|
||||
* A new section ``conventional`` was added to the config file. This section
|
||||
contains configurations for conventional carriers.
|
||||
contains configurations for conventional carriers.
|
||||
|
||||
* Add configuration option to implement arbitrary generator attributes for
|
||||
conventional generation technologies.
|
||||
@ -127,25 +127,25 @@ PyPSA-Eur 0.5.0 (27th July 2022)
|
||||
|
||||
* The inclusion of renewable carriers is now specified in the config entry
|
||||
``renewable_carriers``. Before this was done by commenting/uncommenting
|
||||
sub-sections in the ``renewable`` config section.
|
||||
sub-sections in the ``renewable`` config section.
|
||||
|
||||
* Now, all carriers that should be extendable have to be listed in the config
|
||||
entry ``extendable_carriers``. Before, renewable carriers were always set to
|
||||
be extendable. For backwards compatibility, the workflow is still looking at
|
||||
the listed carriers under the ``renewable`` key. In the future, all of them
|
||||
have to be listed under ``extendable_carriers``.
|
||||
have to be listed under ``extendable_carriers``.
|
||||
|
||||
* It is now possible to set conventional power plants as extendable by adding
|
||||
them to the list of extendable ``Generator`` carriers in the config.
|
||||
them to the list of extendable ``Generator`` carriers in the config.
|
||||
|
||||
* Listing conventional carriers in ``extendable_carriers`` but not in
|
||||
``conventional_carriers``, sets the corresponding conventional power plants as
|
||||
extendable without a lower capacity bound of today's capacities.
|
||||
extendable without a lower capacity bound of today's capacities.
|
||||
|
||||
* Now, conventional carriers have an assigned capital cost by default.
|
||||
* Now, conventional carriers have an assigned capital cost by default.
|
||||
|
||||
* The ``build_year`` and ``lifetime`` column are now defined for conventional
|
||||
power plants.
|
||||
power plants.
|
||||
|
||||
* Use updated SARAH-2 and ERA5 cutouts with slightly wider scope to east and
|
||||
additional variables.
|
||||
@ -155,7 +155,7 @@ PyPSA-Eur 0.5.0 (27th July 2022)
|
||||
<https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#standard-resources>`_
|
||||
``mem_mb`` rather than ``mem``.
|
||||
|
||||
* The powerplants that have been shut down by 2021 are filtered out.
|
||||
* The powerplants that have been shut down by 2021 are filtered out.
|
||||
|
||||
* Updated historical `EIA hydro generation data <https://www.eia.gov/international/data/world>`_.
|
||||
|
||||
@ -179,7 +179,7 @@ PyPSA-Eur 0.5.0 (27th July 2022)
|
||||
|
||||
* Fix crs bug. Change crs 4236 to 4326.
|
||||
|
||||
* ``powerplantmatching>=0.5.1`` is now required for ``IRENASTATS``.
|
||||
* ``powerplantmatching>=0.5.1`` is now required for ``IRENASTATS``.
|
||||
|
||||
* Update rasterio version to correctly calculate exclusion raster.
|
||||
|
||||
@ -251,7 +251,7 @@ PyPSA-Eur 0.4.0 (22th September 2021)
|
||||
(~factor 2). A lot of the code which calculated the land-use availability is now
|
||||
outsourced and does not rely on ``glaes``, ``geokit`` anymore. This facilitates
|
||||
the environment building and version compatibility of ``gdal``, ``libgdal`` with
|
||||
other packages [`#224 <https://github.com/PyPSA/pypsa-eur/pull/224>`_].
|
||||
other packages [`#224 <https://github.com/PyPSA/pypsa-eur/pull/224>`_].
|
||||
|
||||
* Implemented changes to ``n.snapshot_weightings`` in new PyPSA version v0.18
|
||||
(cf. `PyPSA/PyPSA/#227 <https://github.com/PyPSA/PyPSA/pull/227>`_)
|
||||
@ -274,7 +274,7 @@ PyPSA-Eur 0.4.0 (22th September 2021)
|
||||
used or maintained.
|
||||
|
||||
* The connection cost of generators in :mod:`simplify_network` are now reported
|
||||
in ``resources/connection_costs_s{simpl}.csv``
|
||||
in ``resources/connection_costs_s{simpl}.csv``
|
||||
[`#261 <https://github.com/PyPSA/pypsa-eur/pull/261>`_].
|
||||
|
||||
* The tutorial cutout was renamed from ``cutouts/europe-2013-era5.nc`` to
|
||||
@ -282,9 +282,9 @@ PyPSA-Eur 0.4.0 (22th September 2021)
|
||||
cutouts side-by-side.
|
||||
|
||||
* The flag ``keep_all_available_areas`` in the configuration for renewable
|
||||
potentials was deprecated and now defaults to ``True``.
|
||||
potentials was deprecated and now defaults to ``True``.
|
||||
|
||||
* Update dependencies in ``envs/environment.yaml``
|
||||
* Update dependencies in ``envs/environment.yaml``
|
||||
[`#257 <https://github.com/PyPSA/pypsa-eur/pull/257>`_]
|
||||
|
||||
* Continuous integration testing switches to Github Actions from Travis CI
|
||||
@ -313,7 +313,7 @@ PyPSA-Eur 0.4.0 (22th September 2021)
|
||||
* Value for ``co2base`` in ``config.yaml`` adjusted to 1.487e9 t CO2-eq
|
||||
(from 3.1e9 t CO2-eq). The new value represents emissions related to the
|
||||
electricity sector for EU+UK+Balkan. The old value was too high and used when
|
||||
the emissions wildcard in ``{opts}`` was used
|
||||
the emissions wildcard in ``{opts}`` was used
|
||||
[`#233 <https://github.com/PyPSA/pypsa-eur/pull/233>`_].
|
||||
|
||||
* Add escape in :mod:`base_network` if all TYNDP links are already
|
||||
@ -321,11 +321,11 @@ PyPSA-Eur 0.4.0 (22th September 2021)
|
||||
[`#246 <https://github.com/PyPSA/pypsa-eur/pull/246>`_].
|
||||
|
||||
* In :mod:`solve_operations_network` the optimised capacities are now
|
||||
fixed for all extendable links, not only HVDC links
|
||||
fixed for all extendable links, not only HVDC links
|
||||
[`#244 <https://github.com/PyPSA/pypsa-eur/pull/244>`_].
|
||||
|
||||
* The ``focus_weights`` are now also considered when pre-clustering in
|
||||
the :mod:`simplify_network` rule
|
||||
the :mod:`simplify_network` rule
|
||||
[`#241 <https://github.com/PyPSA/pypsa-eur/pull/241>`_].
|
||||
|
||||
* in :mod:`build_renewable_profile` where offshore wind profiles could
|
||||
@ -345,7 +345,7 @@ PyPSA-Eur 0.4.0 (22th September 2021)
|
||||
load shedding generators are only added at the AC buses, excluding buses for H2
|
||||
and battery stores [`#269 <https://github.com/PyPSA/pypsa-eur/pull/269>`_].
|
||||
|
||||
* Delete duplicated capital costs at battery discharge link
|
||||
* Delete duplicated capital costs at battery discharge link
|
||||
[`#240 <https://github.com/PyPSA/pypsa-eur/pull/240>`_].
|
||||
|
||||
* Propagate the solver log file name to the solver. Previously, the
|
||||
@ -362,7 +362,7 @@ Using the ``{opts}`` wildcard for scenarios:
|
||||
* An option is introduced which adds constraints such that each country or node produces on average a minimal share of its total consumption itself.
|
||||
For example ``EQ0.5c`` set in the ``{opts}`` wildcard requires each country to produce on average at least 50% of its consumption. Additionally,
|
||||
the option ``ATK`` requires autarky at each node and removes all means of power transmission through lines and links. ``ATKc`` only removes
|
||||
cross-border transfer capacities.
|
||||
cross-border transfer capacities.
|
||||
[`#166 <https://github.com/PyPSA/pypsa-eur/pull/166>`_].
|
||||
|
||||
* Added an option to alter the capital cost (``c``) or installable potentials (``p``) of carriers by a factor via ``carrier+{c,p}factor`` in the ``{opts}`` wildcard.
|
||||
@ -449,7 +449,7 @@ Other:
|
||||
[`#191 <https://github.com/PyPSA/pypsa-eur/pull/191>`_].
|
||||
|
||||
* Raise a warning if ``tech_colors`` in the config are not defined for all carriers
|
||||
[`#178 <https://github.com/PyPSA/pypsa-eur/pull/178>`_].
|
||||
[`#178 <https://github.com/PyPSA/pypsa-eur/pull/178>`_].
|
||||
|
||||
|
||||
PyPSA-Eur 0.2.0 (8th June 2020)
|
||||
|
@ -18,4 +18,4 @@ pyyaml
|
||||
seaborn
|
||||
memory_profiler
|
||||
tables
|
||||
descartes
|
||||
descartes
|
||||
|
@ -155,4 +155,5 @@ formats depends on the used backend. To query the supported file types on your s
|
||||
.. code:: python
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.gcf().canvas.get_supported_filetypes()
|
||||
|
@ -4,427 +4,427 @@
|
||||
|
||||
name: pypsa-eur
|
||||
channels:
|
||||
- bioconda
|
||||
- http://conda.anaconda.org/gurobi
|
||||
- conda-forge
|
||||
- defaults
|
||||
- bioconda
|
||||
- http://conda.anaconda.org/gurobi
|
||||
- conda-forge
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1
|
||||
- _openmp_mutex=4.5
|
||||
- abseil-cpp=20210324.2
|
||||
- affine=2.3.1
|
||||
- alsa-lib=1.2.3.2
|
||||
- altair=4.2.0
|
||||
- ampl-mp=3.1.0
|
||||
- amply=0.1.5
|
||||
- anyio=3.6.1
|
||||
- appdirs=1.4.4
|
||||
- argon2-cffi=21.3.0
|
||||
- argon2-cffi-bindings=21.2.0
|
||||
- arrow-cpp=8.0.0
|
||||
- asttokens=2.0.5
|
||||
- atlite=0.2.9
|
||||
- attrs=21.4.0
|
||||
- aws-c-cal=0.5.11
|
||||
- aws-c-common=0.6.2
|
||||
- aws-c-event-stream=0.2.7
|
||||
- aws-c-io=0.10.5
|
||||
- aws-checksums=0.1.11
|
||||
- aws-sdk-cpp=1.8.186
|
||||
- babel=2.10.3
|
||||
- backcall=0.2.0
|
||||
- backports=1.0
|
||||
- backports.functools_lru_cache=1.6.4
|
||||
- beautifulsoup4=4.11.1
|
||||
- bleach=5.0.1
|
||||
- blinker=1.4
|
||||
- blosc=1.21.1
|
||||
- bokeh=2.4.3
|
||||
- boost-cpp=1.74.0
|
||||
- bottleneck=1.3.5
|
||||
- branca=0.5.0
|
||||
- brotli=1.0.9
|
||||
- brotli-bin=1.0.9
|
||||
- brotlipy=0.7.0
|
||||
- bzip2=1.0.8
|
||||
- c-ares=1.18.1
|
||||
- ca-certificates=2022.6.15.1
|
||||
- cachetools=5.0.0
|
||||
- cairo=1.16.0
|
||||
- cartopy=0.20.1
|
||||
- cdsapi=0.5.1
|
||||
- certifi=2022.6.15.1
|
||||
- cffi=1.15.1
|
||||
- cfitsio=4.0.0
|
||||
- cftime=1.6.1
|
||||
- charset-normalizer=2.1.0
|
||||
- click=8.0.4
|
||||
- click-plugins=1.1.1
|
||||
- cligj=0.7.2
|
||||
- cloudpickle=2.1.0
|
||||
- coin-or-cbc=2.10.8
|
||||
- coin-or-cgl=0.60.6
|
||||
- coin-or-clp=1.17.7
|
||||
- coin-or-osi=0.108.7
|
||||
- coin-or-utils=2.11.6
|
||||
- coincbc=2.10.8
|
||||
- colorama=0.4.5
|
||||
- colorcet=3.0.0
|
||||
- commonmark=0.9.1
|
||||
- configargparse=1.5.3
|
||||
- connection_pool=0.0.3
|
||||
- country_converter=0.7.4
|
||||
- cryptography=37.0.4
|
||||
- curl=7.83.1
|
||||
- cycler=0.11.0
|
||||
- cytoolz=0.12.0
|
||||
- dask=2022.7.0
|
||||
- dask-core=2022.7.0
|
||||
- dataclasses=0.8
|
||||
- datrie=0.8.2
|
||||
- dbus=1.13.6
|
||||
- debugpy=1.6.0
|
||||
- decorator=5.1.1
|
||||
- defusedxml=0.7.1
|
||||
- deprecation=2.1.0
|
||||
- descartes=1.1.0
|
||||
- distributed=2022.7.0
|
||||
- distro=1.6.0
|
||||
- docutils=0.19
|
||||
- dpath=2.0.6
|
||||
- entrypoints=0.4
|
||||
- entsoe-py=0.5.4
|
||||
- et_xmlfile=1.0.1
|
||||
- executing=0.8.3
|
||||
- expat=2.4.8
|
||||
- filelock=3.7.1
|
||||
- fiona=1.8.20
|
||||
- flit-core=3.7.1
|
||||
- folium=0.12.1.post1
|
||||
- font-ttf-dejavu-sans-mono=2.37
|
||||
- font-ttf-inconsolata=3.000
|
||||
- font-ttf-source-code-pro=2.038
|
||||
- font-ttf-ubuntu=0.83
|
||||
- fontconfig=2.14.0
|
||||
- fonts-conda-ecosystem=1
|
||||
- fonts-conda-forge=1
|
||||
- fonttools=4.34.4
|
||||
- freetype=2.10.4
|
||||
- freexl=1.0.6
|
||||
- fsspec=2022.5.0
|
||||
- future=0.18.2
|
||||
- gdal=3.3.3
|
||||
- geographiclib=1.52
|
||||
- geojson-rewind=1.0.2
|
||||
- geopandas=0.11.0
|
||||
- geopandas-base=0.11.0
|
||||
- geopy=2.2.0
|
||||
- geos=3.10.0
|
||||
- geotiff=1.7.0
|
||||
- gettext=0.19.8.1
|
||||
- gflags=2.2.2
|
||||
- giflib=5.2.1
|
||||
- gitdb=4.0.9
|
||||
- gitpython=3.1.27
|
||||
- glog=0.6.0
|
||||
- gmp=6.2.1
|
||||
- graphite2=1.3.13
|
||||
- grpc-cpp=1.45.2
|
||||
- gst-plugins-base=1.18.5
|
||||
- gstreamer=1.18.5
|
||||
- harfbuzz=2.9.1
|
||||
- hdf4=4.2.15
|
||||
- hdf5=1.12.1
|
||||
- heapdict=1.0.1
|
||||
- icu=68.2
|
||||
- idna=3.3
|
||||
- importlib-metadata=4.11.4
|
||||
- importlib_metadata=4.11.4
|
||||
- importlib_resources=5.8.0
|
||||
- iniconfig=1.1.1
|
||||
- ipykernel=6.15.1
|
||||
- ipython=8.4.0
|
||||
- ipython_genutils=0.2.0
|
||||
- ipywidgets=7.7.1
|
||||
- jedi=0.18.1
|
||||
- jinja2=3.1.2
|
||||
- joblib=1.1.0
|
||||
- jpeg=9e
|
||||
- json-c=0.15
|
||||
- json5=0.9.5
|
||||
- jsonschema=4.7.2
|
||||
- jupyter_client=7.3.4
|
||||
- jupyter_core=4.10.0
|
||||
- jupyter_server=1.18.1
|
||||
- kealib=1.4.15
|
||||
- keyutils=1.6.1
|
||||
- kiwisolver=1.4.4
|
||||
- krb5=1.19.3
|
||||
- lcms2=2.12
|
||||
- ld_impl_linux-64=2.36.1
|
||||
- lerc=3.0
|
||||
- libblas=3.9.0
|
||||
- libbrotlicommon=1.0.9
|
||||
- libbrotlidec=1.0.9
|
||||
- libbrotlienc=1.0.9
|
||||
- libcblas=3.9.0
|
||||
- libclang=11.1.0
|
||||
- libcrc32c=1.1.2
|
||||
- libcurl=7.83.1
|
||||
- libdap4=3.20.6
|
||||
- libdeflate=1.12
|
||||
- libedit=3.1.20191231
|
||||
- libev=4.33
|
||||
- libevent=2.1.10
|
||||
- libffi=3.4.2
|
||||
- libgcc-ng=12.1.0
|
||||
- libgdal=3.3.3
|
||||
- libgfortran-ng=12.1.0
|
||||
- libgfortran5=12.1.0
|
||||
- libglib=2.72.1
|
||||
- libgomp=12.1.0
|
||||
- libgoogle-cloud=1.40.2
|
||||
- libiconv=1.16
|
||||
- libkml=1.3.0
|
||||
- liblapack=3.9.0
|
||||
- liblapacke=3.9.0
|
||||
- libllvm11=11.1.0
|
||||
- libnetcdf=4.8.1
|
||||
- libnghttp2=1.47.0
|
||||
- libnsl=2.0.0
|
||||
- libogg=1.3.4
|
||||
- libopenblas=0.3.20
|
||||
- libopus=1.3.1
|
||||
- libpng=1.6.37
|
||||
- libpq=13.5
|
||||
- libprotobuf=3.20.1
|
||||
- librttopo=1.1.0
|
||||
- libsodium=1.0.18
|
||||
- libspatialindex=1.9.3
|
||||
- libspatialite=5.0.1
|
||||
- libssh2=1.10.0
|
||||
- libstdcxx-ng=12.1.0
|
||||
- libthrift=0.16.0
|
||||
- libtiff=4.4.0
|
||||
- libutf8proc=2.7.0
|
||||
- libuuid=2.32.1
|
||||
- libvorbis=1.3.7
|
||||
- libwebp=1.2.2
|
||||
- libwebp-base=1.2.2
|
||||
- libxcb=1.13
|
||||
- libxkbcommon=1.0.3
|
||||
- libxml2=2.9.12
|
||||
- libxslt=1.1.33
|
||||
- libzip=1.9.2
|
||||
- libzlib=1.2.12
|
||||
- locket=1.0.0
|
||||
- lxml=4.8.0
|
||||
- lz4=4.0.0
|
||||
- lz4-c=1.9.3
|
||||
- lzo=2.10
|
||||
- mapclassify=2.4.3
|
||||
- markdown=3.4.1
|
||||
- markupsafe=2.1.1
|
||||
- matplotlib=3.5.2
|
||||
- matplotlib-base=3.5.2
|
||||
- matplotlib-inline=0.1.3
|
||||
- memory_profiler=0.60.0
|
||||
- metis=5.1.0
|
||||
- mistune=0.8.4
|
||||
- msgpack-python=1.0.4
|
||||
- mumps-include=5.2.1
|
||||
- mumps-seq=5.2.1
|
||||
- munch=2.5.0
|
||||
- munkres=1.1.4
|
||||
- mysql-common=8.0.29
|
||||
- mysql-libs=8.0.29
|
||||
- nbclassic=0.4.3
|
||||
- nbclient=0.6.6
|
||||
- nbconvert=6.5.0
|
||||
- nbconvert-core=6.5.0
|
||||
- nbconvert-pandoc=6.5.0
|
||||
- nbformat=5.4.0
|
||||
- ncurses=6.3
|
||||
- nest-asyncio=1.5.5
|
||||
- netcdf4=1.6.0
|
||||
- networkx=2.8.4
|
||||
- nomkl=1.0
|
||||
- notebook=6.4.12
|
||||
- notebook-shim=0.1.0
|
||||
- nspr=4.32
|
||||
- nss=3.78
|
||||
- numexpr=2.8.3
|
||||
- numpy=1.23.1
|
||||
- openjdk=11.0.9.1
|
||||
- openjpeg=2.4.0
|
||||
- openpyxl=3.0.9
|
||||
- openssl=1.1.1q
|
||||
- orc=1.7.5
|
||||
- packaging=21.3
|
||||
- pandas=1.4.3
|
||||
- pandoc=2.18
|
||||
- pandocfilters=1.5.0
|
||||
- parquet-cpp=1.5.1
|
||||
- parso=0.8.3
|
||||
- partd=1.2.0
|
||||
- patsy=0.5.2
|
||||
- pcre=8.45
|
||||
- pexpect=4.8.0
|
||||
- pickleshare=0.7.5
|
||||
- pillow=9.2.0
|
||||
- pip=22.1.2
|
||||
- pixman=0.40.0
|
||||
- plac=1.3.5
|
||||
- pluggy=1.0.0
|
||||
- ply=3.11
|
||||
- poppler=21.09.0
|
||||
- poppler-data=0.4.11
|
||||
- postgresql=13.5
|
||||
- powerplantmatching=0.5.4
|
||||
- progressbar2=4.0.0
|
||||
- proj=8.1.1
|
||||
- prometheus_client=0.14.1
|
||||
- prompt-toolkit=3.0.30
|
||||
- protobuf=3.20.1
|
||||
- psutil=5.9.1
|
||||
- pthread-stubs=0.4
|
||||
- ptyprocess=0.7.0
|
||||
- pulp=2.6.0
|
||||
- pure_eval=0.2.2
|
||||
- py=1.11.0
|
||||
- pyarrow=8.0.0
|
||||
- pycountry=20.7.3
|
||||
- pycparser=2.21
|
||||
- pyct=0.4.6
|
||||
- pyct-core=0.4.6
|
||||
- pydeck=0.7.1
|
||||
- pygments=2.12.0
|
||||
- pympler=0.9
|
||||
- pyomo=6.4.1
|
||||
- pyopenssl=22.0.0
|
||||
- pyparsing=3.0.9
|
||||
- pyproj=3.2.1
|
||||
- pypsa=0.20.0
|
||||
- pyqt=5.12.3
|
||||
- pyqt-impl=5.12.3
|
||||
- pyqt5-sip=4.19.18
|
||||
- pyqtchart=5.12
|
||||
- pyqtwebengine=5.12.1
|
||||
- pyrsistent=0.18.1
|
||||
- pyshp=2.3.0
|
||||
- pysocks=1.7.1
|
||||
- pytables=3.7.0
|
||||
- pytest=7.1.2
|
||||
- python=3.9.13
|
||||
- python-dateutil=2.8.2
|
||||
- python-fastjsonschema=2.16.1
|
||||
- python-tzdata=2022.1
|
||||
- python-utils=3.3.3
|
||||
- python_abi=3.9
|
||||
- pytz=2022.1
|
||||
- pytz-deprecation-shim=0.1.0.post0
|
||||
- pyviz_comms=2.2.0
|
||||
- pyxlsb=1.0.9
|
||||
- pyyaml=6.0
|
||||
- pyzmq=23.2.0
|
||||
- qt=5.12.9
|
||||
- rasterio=1.2.9
|
||||
- ratelimiter=1.2.0
|
||||
- re2=2022.06.01
|
||||
- readline=8.1.2
|
||||
- requests=2.28.1
|
||||
- retry=0.9.2
|
||||
- rich=12.5.1
|
||||
- rtree=1.0.0
|
||||
- s2n=1.0.10
|
||||
- scikit-learn=1.1.1
|
||||
- scipy=1.8.1
|
||||
- scotch=6.0.9
|
||||
- seaborn=0.11.2
|
||||
- seaborn-base=0.11.2
|
||||
- semver=2.13.0
|
||||
- send2trash=1.8.0
|
||||
- setuptools=63.2.0
|
||||
- setuptools-scm=7.0.5
|
||||
- setuptools_scm=7.0.5
|
||||
- shapely=1.8.0
|
||||
- six=1.16.0
|
||||
- smart_open=6.0.0
|
||||
- smmap=3.0.5
|
||||
- snakemake-minimal=7.8.5
|
||||
- snappy=1.1.9
|
||||
- sniffio=1.2.0
|
||||
- snuggs=1.4.7
|
||||
- sortedcontainers=2.4.0
|
||||
- soupsieve=2.3.1
|
||||
- sqlite=3.39.1
|
||||
- stack_data=0.3.0
|
||||
- statsmodels=0.13.2
|
||||
- stopit=1.1.2
|
||||
- streamlit=1.10.0
|
||||
- tabula-py=2.2.0
|
||||
- tabulate=0.8.10
|
||||
- tblib=1.7.0
|
||||
- tenacity=8.0.1
|
||||
- terminado=0.15.0
|
||||
- threadpoolctl=3.1.0
|
||||
- tiledb=2.3.4
|
||||
- tinycss2=1.1.1
|
||||
- tk=8.6.12
|
||||
- toml=0.10.2
|
||||
- tomli=2.0.1
|
||||
- toolz=0.12.0
|
||||
- toposort=1.7
|
||||
- tornado=6.1
|
||||
- tqdm=4.64.0
|
||||
- traitlets=5.3.0
|
||||
- typing-extensions=4.3.0
|
||||
- typing_extensions=4.3.0
|
||||
- tzcode=2022a
|
||||
- tzdata=2022a
|
||||
- tzlocal=4.2
|
||||
- unicodedata2=14.0.0
|
||||
- unidecode=1.3.4
|
||||
- unixodbc=2.3.10
|
||||
- urllib3=1.26.10
|
||||
- validators=0.18.2
|
||||
- watchdog=2.1.9
|
||||
- wcwidth=0.2.5
|
||||
- webencodings=0.5.1
|
||||
- websocket-client=1.3.3
|
||||
- wheel=0.37.1
|
||||
- widgetsnbextension=3.6.1
|
||||
- wrapt=1.14.1
|
||||
- xarray=2022.3.0
|
||||
- xerces-c=3.2.3
|
||||
- xlrd=2.0.1
|
||||
- xorg-fixesproto=5.0
|
||||
- xorg-inputproto=2.3.2
|
||||
- xorg-kbproto=1.0.7
|
||||
- xorg-libice=1.0.10
|
||||
- xorg-libsm=1.2.3
|
||||
- xorg-libx11=1.7.2
|
||||
- xorg-libxau=1.0.9
|
||||
- xorg-libxdmcp=1.1.3
|
||||
- xorg-libxext=1.3.4
|
||||
- xorg-libxfixes=5.0.3
|
||||
- xorg-libxi=1.7.10
|
||||
- xorg-libxrender=0.9.10
|
||||
- xorg-libxtst=1.2.3
|
||||
- xorg-recordproto=1.14.2
|
||||
- xorg-renderproto=0.11.1
|
||||
- xorg-xextproto=7.3.0
|
||||
- xorg-xproto=7.0.31
|
||||
- xyzservices=2022.6.0
|
||||
- xz=5.2.5
|
||||
- yaml=0.2.5
|
||||
- yte=1.5.1
|
||||
- zeromq=4.3.4
|
||||
- zict=2.2.0
|
||||
- zipp=3.8.0
|
||||
- zlib=1.2.12
|
||||
- zstd=1.5.2
|
||||
- pip:
|
||||
- countrycode==0.2
|
||||
- tsam==2.1.0
|
||||
- vresutils==0.3.1
|
||||
- _libgcc_mutex=0.1
|
||||
- _openmp_mutex=4.5
|
||||
- abseil-cpp=20210324.2
|
||||
- affine=2.3.1
|
||||
- alsa-lib=1.2.3.2
|
||||
- altair=4.2.0
|
||||
- ampl-mp=3.1.0
|
||||
- amply=0.1.5
|
||||
- anyio=3.6.1
|
||||
- appdirs=1.4.4
|
||||
- argon2-cffi=21.3.0
|
||||
- argon2-cffi-bindings=21.2.0
|
||||
- arrow-cpp=8.0.0
|
||||
- asttokens=2.0.5
|
||||
- atlite=0.2.9
|
||||
- attrs=21.4.0
|
||||
- aws-c-cal=0.5.11
|
||||
- aws-c-common=0.6.2
|
||||
- aws-c-event-stream=0.2.7
|
||||
- aws-c-io=0.10.5
|
||||
- aws-checksums=0.1.11
|
||||
- aws-sdk-cpp=1.8.186
|
||||
- babel=2.10.3
|
||||
- backcall=0.2.0
|
||||
- backports=1.0
|
||||
- backports.functools_lru_cache=1.6.4
|
||||
- beautifulsoup4=4.11.1
|
||||
- bleach=5.0.1
|
||||
- blinker=1.4
|
||||
- blosc=1.21.1
|
||||
- bokeh=2.4.3
|
||||
- boost-cpp=1.74.0
|
||||
- bottleneck=1.3.5
|
||||
- branca=0.5.0
|
||||
- brotli=1.0.9
|
||||
- brotli-bin=1.0.9
|
||||
- brotlipy=0.7.0
|
||||
- bzip2=1.0.8
|
||||
- c-ares=1.18.1
|
||||
- ca-certificates=2022.6.15.1
|
||||
- cachetools=5.0.0
|
||||
- cairo=1.16.0
|
||||
- cartopy=0.20.1
|
||||
- cdsapi=0.5.1
|
||||
- certifi=2022.6.15.1
|
||||
- cffi=1.15.1
|
||||
- cfitsio=4.0.0
|
||||
- cftime=1.6.1
|
||||
- charset-normalizer=2.1.0
|
||||
- click=8.0.4
|
||||
- click-plugins=1.1.1
|
||||
- cligj=0.7.2
|
||||
- cloudpickle=2.1.0
|
||||
- coin-or-cbc=2.10.8
|
||||
- coin-or-cgl=0.60.6
|
||||
- coin-or-clp=1.17.7
|
||||
- coin-or-osi=0.108.7
|
||||
- coin-or-utils=2.11.6
|
||||
- coincbc=2.10.8
|
||||
- colorama=0.4.5
|
||||
- colorcet=3.0.0
|
||||
- commonmark=0.9.1
|
||||
- configargparse=1.5.3
|
||||
- connection_pool=0.0.3
|
||||
- country_converter=0.7.4
|
||||
- cryptography=37.0.4
|
||||
- curl=7.83.1
|
||||
- cycler=0.11.0
|
||||
- cytoolz=0.12.0
|
||||
- dask=2022.7.0
|
||||
- dask-core=2022.7.0
|
||||
- dataclasses=0.8
|
||||
- datrie=0.8.2
|
||||
- dbus=1.13.6
|
||||
- debugpy=1.6.0
|
||||
- decorator=5.1.1
|
||||
- defusedxml=0.7.1
|
||||
- deprecation=2.1.0
|
||||
- descartes=1.1.0
|
||||
- distributed=2022.7.0
|
||||
- distro=1.6.0
|
||||
- docutils=0.19
|
||||
- dpath=2.0.6
|
||||
- entrypoints=0.4
|
||||
- entsoe-py=0.5.4
|
||||
- et_xmlfile=1.0.1
|
||||
- executing=0.8.3
|
||||
- expat=2.4.8
|
||||
- filelock=3.7.1
|
||||
- fiona=1.8.20
|
||||
- flit-core=3.7.1
|
||||
- folium=0.12.1.post1
|
||||
- font-ttf-dejavu-sans-mono=2.37
|
||||
- font-ttf-inconsolata=3.000
|
||||
- font-ttf-source-code-pro=2.038
|
||||
- font-ttf-ubuntu=0.83
|
||||
- fontconfig=2.14.0
|
||||
- fonts-conda-ecosystem=1
|
||||
- fonts-conda-forge=1
|
||||
- fonttools=4.34.4
|
||||
- freetype=2.10.4
|
||||
- freexl=1.0.6
|
||||
- fsspec=2022.5.0
|
||||
- future=0.18.2
|
||||
- gdal=3.3.3
|
||||
- geographiclib=1.52
|
||||
- geojson-rewind=1.0.2
|
||||
- geopandas=0.11.0
|
||||
- geopandas-base=0.11.0
|
||||
- geopy=2.2.0
|
||||
- geos=3.10.0
|
||||
- geotiff=1.7.0
|
||||
- gettext=0.19.8.1
|
||||
- gflags=2.2.2
|
||||
- giflib=5.2.1
|
||||
- gitdb=4.0.9
|
||||
- gitpython=3.1.27
|
||||
- glog=0.6.0
|
||||
- gmp=6.2.1
|
||||
- graphite2=1.3.13
|
||||
- grpc-cpp=1.45.2
|
||||
- gst-plugins-base=1.18.5
|
||||
- gstreamer=1.18.5
|
||||
- harfbuzz=2.9.1
|
||||
- hdf4=4.2.15
|
||||
- hdf5=1.12.1
|
||||
- heapdict=1.0.1
|
||||
- icu=68.2
|
||||
- idna=3.3
|
||||
- importlib-metadata=4.11.4
|
||||
- importlib_metadata=4.11.4
|
||||
- importlib_resources=5.8.0
|
||||
- iniconfig=1.1.1
|
||||
- ipykernel=6.15.1
|
||||
- ipython=8.4.0
|
||||
- ipython_genutils=0.2.0
|
||||
- ipywidgets=7.7.1
|
||||
- jedi=0.18.1
|
||||
- jinja2=3.1.2
|
||||
- joblib=1.1.0
|
||||
- jpeg=9e
|
||||
- json-c=0.15
|
||||
- json5=0.9.5
|
||||
- jsonschema=4.7.2
|
||||
- jupyter_client=7.3.4
|
||||
- jupyter_core=4.10.0
|
||||
- jupyter_server=1.18.1
|
||||
- kealib=1.4.15
|
||||
- keyutils=1.6.1
|
||||
- kiwisolver=1.4.4
|
||||
- krb5=1.19.3
|
||||
- lcms2=2.12
|
||||
- ld_impl_linux-64=2.36.1
|
||||
- lerc=3.0
|
||||
- libblas=3.9.0
|
||||
- libbrotlicommon=1.0.9
|
||||
- libbrotlidec=1.0.9
|
||||
- libbrotlienc=1.0.9
|
||||
- libcblas=3.9.0
|
||||
- libclang=11.1.0
|
||||
- libcrc32c=1.1.2
|
||||
- libcurl=7.83.1
|
||||
- libdap4=3.20.6
|
||||
- libdeflate=1.12
|
||||
- libedit=3.1.20191231
|
||||
- libev=4.33
|
||||
- libevent=2.1.10
|
||||
- libffi=3.4.2
|
||||
- libgcc-ng=12.1.0
|
||||
- libgdal=3.3.3
|
||||
- libgfortran-ng=12.1.0
|
||||
- libgfortran5=12.1.0
|
||||
- libglib=2.72.1
|
||||
- libgomp=12.1.0
|
||||
- libgoogle-cloud=1.40.2
|
||||
- libiconv=1.16
|
||||
- libkml=1.3.0
|
||||
- liblapack=3.9.0
|
||||
- liblapacke=3.9.0
|
||||
- libllvm11=11.1.0
|
||||
- libnetcdf=4.8.1
|
||||
- libnghttp2=1.47.0
|
||||
- libnsl=2.0.0
|
||||
- libogg=1.3.4
|
||||
- libopenblas=0.3.20
|
||||
- libopus=1.3.1
|
||||
- libpng=1.6.37
|
||||
- libpq=13.5
|
||||
- libprotobuf=3.20.1
|
||||
- librttopo=1.1.0
|
||||
- libsodium=1.0.18
|
||||
- libspatialindex=1.9.3
|
||||
- libspatialite=5.0.1
|
||||
- libssh2=1.10.0
|
||||
- libstdcxx-ng=12.1.0
|
||||
- libthrift=0.16.0
|
||||
- libtiff=4.4.0
|
||||
- libutf8proc=2.7.0
|
||||
- libuuid=2.32.1
|
||||
- libvorbis=1.3.7
|
||||
- libwebp=1.2.2
|
||||
- libwebp-base=1.2.2
|
||||
- libxcb=1.13
|
||||
- libxkbcommon=1.0.3
|
||||
- libxml2=2.9.12
|
||||
- libxslt=1.1.33
|
||||
- libzip=1.9.2
|
||||
- libzlib=1.2.12
|
||||
- locket=1.0.0
|
||||
- lxml=4.8.0
|
||||
- lz4=4.0.0
|
||||
- lz4-c=1.9.3
|
||||
- lzo=2.10
|
||||
- mapclassify=2.4.3
|
||||
- markdown=3.4.1
|
||||
- markupsafe=2.1.1
|
||||
- matplotlib=3.5.2
|
||||
- matplotlib-base=3.5.2
|
||||
- matplotlib-inline=0.1.3
|
||||
- memory_profiler=0.60.0
|
||||
- metis=5.1.0
|
||||
- mistune=0.8.4
|
||||
- msgpack-python=1.0.4
|
||||
- mumps-include=5.2.1
|
||||
- mumps-seq=5.2.1
|
||||
- munch=2.5.0
|
||||
- munkres=1.1.4
|
||||
- mysql-common=8.0.29
|
||||
- mysql-libs=8.0.29
|
||||
- nbclassic=0.4.3
|
||||
- nbclient=0.6.6
|
||||
- nbconvert=6.5.0
|
||||
- nbconvert-core=6.5.0
|
||||
- nbconvert-pandoc=6.5.0
|
||||
- nbformat=5.4.0
|
||||
- ncurses=6.3
|
||||
- nest-asyncio=1.5.5
|
||||
- netcdf4=1.6.0
|
||||
- networkx=2.8.4
|
||||
- nomkl=1.0
|
||||
- notebook=6.4.12
|
||||
- notebook-shim=0.1.0
|
||||
- nspr=4.32
|
||||
- nss=3.78
|
||||
- numexpr=2.8.3
|
||||
- numpy=1.23.1
|
||||
- openjdk=11.0.9.1
|
||||
- openjpeg=2.4.0
|
||||
- openpyxl=3.0.9
|
||||
- openssl=1.1.1q
|
||||
- orc=1.7.5
|
||||
- packaging=21.3
|
||||
- pandas=1.4.3
|
||||
- pandoc=2.18
|
||||
- pandocfilters=1.5.0
|
||||
- parquet-cpp=1.5.1
|
||||
- parso=0.8.3
|
||||
- partd=1.2.0
|
||||
- patsy=0.5.2
|
||||
- pcre=8.45
|
||||
- pexpect=4.8.0
|
||||
- pickleshare=0.7.5
|
||||
- pillow=9.2.0
|
||||
- pip=22.1.2
|
||||
- pixman=0.40.0
|
||||
- plac=1.3.5
|
||||
- pluggy=1.0.0
|
||||
- ply=3.11
|
||||
- poppler=21.09.0
|
||||
- poppler-data=0.4.11
|
||||
- postgresql=13.5
|
||||
- powerplantmatching=0.5.4
|
||||
- progressbar2=4.0.0
|
||||
- proj=8.1.1
|
||||
- prometheus_client=0.14.1
|
||||
- prompt-toolkit=3.0.30
|
||||
- protobuf=3.20.1
|
||||
- psutil=5.9.1
|
||||
- pthread-stubs=0.4
|
||||
- ptyprocess=0.7.0
|
||||
- pulp=2.6.0
|
||||
- pure_eval=0.2.2
|
||||
- py=1.11.0
|
||||
- pyarrow=8.0.0
|
||||
- pycountry=20.7.3
|
||||
- pycparser=2.21
|
||||
- pyct=0.4.6
|
||||
- pyct-core=0.4.6
|
||||
- pydeck=0.7.1
|
||||
- pygments=2.12.0
|
||||
- pympler=0.9
|
||||
- pyomo=6.4.1
|
||||
- pyopenssl=22.0.0
|
||||
- pyparsing=3.0.9
|
||||
- pyproj=3.2.1
|
||||
- pypsa=0.20.0
|
||||
- pyqt=5.12.3
|
||||
- pyqt-impl=5.12.3
|
||||
- pyqt5-sip=4.19.18
|
||||
- pyqtchart=5.12
|
||||
- pyqtwebengine=5.12.1
|
||||
- pyrsistent=0.18.1
|
||||
- pyshp=2.3.0
|
||||
- pysocks=1.7.1
|
||||
- pytables=3.7.0
|
||||
- pytest=7.1.2
|
||||
- python=3.9.13
|
||||
- python-dateutil=2.8.2
|
||||
- python-fastjsonschema=2.16.1
|
||||
- python-tzdata=2022.1
|
||||
- python-utils=3.3.3
|
||||
- python_abi=3.9
|
||||
- pytz=2022.1
|
||||
- pytz-deprecation-shim=0.1.0.post0
|
||||
- pyviz_comms=2.2.0
|
||||
- pyxlsb=1.0.9
|
||||
- pyyaml=6.0
|
||||
- pyzmq=23.2.0
|
||||
- qt=5.12.9
|
||||
- rasterio=1.2.9
|
||||
- ratelimiter=1.2.0
|
||||
- re2=2022.06.01
|
||||
- readline=8.1.2
|
||||
- requests=2.28.1
|
||||
- retry=0.9.2
|
||||
- rich=12.5.1
|
||||
- rtree=1.0.0
|
||||
- s2n=1.0.10
|
||||
- scikit-learn=1.1.1
|
||||
- scipy=1.8.1
|
||||
- scotch=6.0.9
|
||||
- seaborn=0.11.2
|
||||
- seaborn-base=0.11.2
|
||||
- semver=2.13.0
|
||||
- send2trash=1.8.0
|
||||
- setuptools=63.2.0
|
||||
- setuptools-scm=7.0.5
|
||||
- setuptools_scm=7.0.5
|
||||
- shapely=1.8.0
|
||||
- six=1.16.0
|
||||
- smart_open=6.0.0
|
||||
- smmap=3.0.5
|
||||
- snakemake-minimal=7.8.5
|
||||
- snappy=1.1.9
|
||||
- sniffio=1.2.0
|
||||
- snuggs=1.4.7
|
||||
- sortedcontainers=2.4.0
|
||||
- soupsieve=2.3.1
|
||||
- sqlite=3.39.1
|
||||
- stack_data=0.3.0
|
||||
- statsmodels=0.13.2
|
||||
- stopit=1.1.2
|
||||
- streamlit=1.10.0
|
||||
- tabula-py=2.2.0
|
||||
- tabulate=0.8.10
|
||||
- tblib=1.7.0
|
||||
- tenacity=8.0.1
|
||||
- terminado=0.15.0
|
||||
- threadpoolctl=3.1.0
|
||||
- tiledb=2.3.4
|
||||
- tinycss2=1.1.1
|
||||
- tk=8.6.12
|
||||
- toml=0.10.2
|
||||
- tomli=2.0.1
|
||||
- toolz=0.12.0
|
||||
- toposort=1.7
|
||||
- tornado=6.1
|
||||
- tqdm=4.64.0
|
||||
- traitlets=5.3.0
|
||||
- typing-extensions=4.3.0
|
||||
- typing_extensions=4.3.0
|
||||
- tzcode=2022a
|
||||
- tzdata=2022a
|
||||
- tzlocal=4.2
|
||||
- unicodedata2=14.0.0
|
||||
- unidecode=1.3.4
|
||||
- unixodbc=2.3.10
|
||||
- urllib3=1.26.10
|
||||
- validators=0.18.2
|
||||
- watchdog=2.1.9
|
||||
- wcwidth=0.2.5
|
||||
- webencodings=0.5.1
|
||||
- websocket-client=1.3.3
|
||||
- wheel=0.37.1
|
||||
- widgetsnbextension=3.6.1
|
||||
- wrapt=1.14.1
|
||||
- xarray=2022.3.0
|
||||
- xerces-c=3.2.3
|
||||
- xlrd=2.0.1
|
||||
- xorg-fixesproto=5.0
|
||||
- xorg-inputproto=2.3.2
|
||||
- xorg-kbproto=1.0.7
|
||||
- xorg-libice=1.0.10
|
||||
- xorg-libsm=1.2.3
|
||||
- xorg-libx11=1.7.2
|
||||
- xorg-libxau=1.0.9
|
||||
- xorg-libxdmcp=1.1.3
|
||||
- xorg-libxext=1.3.4
|
||||
- xorg-libxfixes=5.0.3
|
||||
- xorg-libxi=1.7.10
|
||||
- xorg-libxrender=0.9.10
|
||||
- xorg-libxtst=1.2.3
|
||||
- xorg-recordproto=1.14.2
|
||||
- xorg-renderproto=0.11.1
|
||||
- xorg-xextproto=7.3.0
|
||||
- xorg-xproto=7.0.31
|
||||
- xyzservices=2022.6.0
|
||||
- xz=5.2.5
|
||||
- yaml=0.2.5
|
||||
- yte=1.5.1
|
||||
- zeromq=4.3.4
|
||||
- zict=2.2.0
|
||||
- zipp=3.8.0
|
||||
- zlib=1.2.12
|
||||
- zstd=1.5.2
|
||||
- pip:
|
||||
- countrycode==0.2
|
||||
- tsam==2.1.0
|
||||
- vresutils==0.3.1
|
||||
|
@ -4,57 +4,57 @@
|
||||
|
||||
name: pypsa-eur
|
||||
channels:
|
||||
- conda-forge
|
||||
- bioconda
|
||||
- conda-forge
|
||||
- bioconda
|
||||
dependencies:
|
||||
- python>=3.8
|
||||
- pip
|
||||
- python>=3.8
|
||||
- pip
|
||||
|
||||
- pypsa>=0.20
|
||||
- atlite>=0.2.9
|
||||
- dask
|
||||
- pypsa>=0.20
|
||||
- atlite>=0.2.9
|
||||
- dask
|
||||
|
||||
# Dependencies of the workflow itself
|
||||
- xlrd
|
||||
- openpyxl
|
||||
- pycountry
|
||||
- seaborn
|
||||
- snakemake-minimal
|
||||
- memory_profiler
|
||||
- yaml
|
||||
- pytables
|
||||
- lxml
|
||||
- powerplantmatching>=0.5.4
|
||||
- numpy
|
||||
- pandas
|
||||
- geopandas>=0.11.0
|
||||
- xarray
|
||||
- netcdf4
|
||||
- networkx
|
||||
- scipy
|
||||
- shapely<2.0 # need to address deprecations
|
||||
- progressbar2
|
||||
- pyomo
|
||||
- matplotlib
|
||||
- proj
|
||||
- fiona <= 1.18.20 # Till issue https://github.com/Toblerity/Fiona/issues/1085 is not solved
|
||||
- country_converter
|
||||
- xlrd
|
||||
- openpyxl
|
||||
- pycountry
|
||||
- seaborn
|
||||
- snakemake-minimal
|
||||
- memory_profiler
|
||||
- yaml
|
||||
- pytables
|
||||
- lxml
|
||||
- powerplantmatching>=0.5.4
|
||||
- numpy
|
||||
- pandas
|
||||
- geopandas>=0.11.0
|
||||
- xarray
|
||||
- netcdf4
|
||||
- networkx
|
||||
- scipy
|
||||
- shapely<2.0 # need to address deprecations
|
||||
- progressbar2
|
||||
- pyomo
|
||||
- matplotlib
|
||||
- proj
|
||||
- fiona <= 1.18.20 # Till issue https://github.com/Toblerity/Fiona/issues/1085 is not solved
|
||||
- country_converter
|
||||
|
||||
# Keep in conda environment when calling ipython
|
||||
- ipython
|
||||
- ipython
|
||||
|
||||
# GIS dependencies:
|
||||
- cartopy
|
||||
- descartes
|
||||
- rasterio<=1.2.9 # 1.2.10 creates error https://github.com/PyPSA/atlite/issues/238
|
||||
- cartopy
|
||||
- descartes
|
||||
- rasterio<=1.2.9 # 1.2.10 creates error https://github.com/PyPSA/atlite/issues/238
|
||||
|
||||
# PyPSA-Eur-Sec Dependencies
|
||||
- geopy
|
||||
- tqdm
|
||||
- pytz
|
||||
- tabula-py
|
||||
- pyxlsb
|
||||
- geopy
|
||||
- tqdm
|
||||
- pytz
|
||||
- tabula-py
|
||||
- pyxlsb
|
||||
|
||||
- pip:
|
||||
- vresutils>=0.3.1
|
||||
- tsam>=1.1.0
|
||||
- pip:
|
||||
- vresutils>=0.3.1
|
||||
- tsam>=1.1.0
|
||||
|
@ -1,11 +1,14 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
import pandas as pd
|
||||
from pathlib import Path
|
||||
|
||||
REGION_COLS = ['geometry', 'name', 'x', 'y', 'country']
|
||||
import pandas as pd
|
||||
|
||||
REGION_COLS = ["geometry", "name", "x", "y", "country"]
|
||||
|
||||
|
||||
def configure_logging(snakemake, skip_handlers=False):
|
||||
"""
|
||||
@ -28,21 +31,26 @@ def configure_logging(snakemake, skip_handlers=False):
|
||||
|
||||
import logging
|
||||
|
||||
kwargs = snakemake.config.get('logging', dict()).copy()
|
||||
kwargs = snakemake.config.get("logging", dict()).copy()
|
||||
kwargs.setdefault("level", "INFO")
|
||||
|
||||
if skip_handlers is False:
|
||||
fallback_path = Path(__file__).parent.joinpath('..', 'logs', f"{snakemake.rule}.log")
|
||||
logfile = snakemake.log.get('python', snakemake.log[0] if snakemake.log
|
||||
else fallback_path)
|
||||
fallback_path = Path(__file__).parent.joinpath(
|
||||
"..", "logs", f"{snakemake.rule}.log"
|
||||
)
|
||||
logfile = snakemake.log.get(
|
||||
"python", snakemake.log[0] if snakemake.log else fallback_path
|
||||
)
|
||||
kwargs.update(
|
||||
{'handlers': [
|
||||
# Prefer the 'python' log, otherwise take the first log for each
|
||||
# Snakemake rule
|
||||
logging.FileHandler(logfile),
|
||||
logging.StreamHandler()
|
||||
{
|
||||
"handlers": [
|
||||
# Prefer the 'python' log, otherwise take the first log for each
|
||||
# Snakemake rule
|
||||
logging.FileHandler(logfile),
|
||||
logging.StreamHandler(),
|
||||
]
|
||||
})
|
||||
}
|
||||
)
|
||||
logging.basicConfig(**kwargs)
|
||||
|
||||
|
||||
@ -80,137 +88,182 @@ def load_network(import_name=None, custom_components=None):
|
||||
|
||||
if custom_components is not None:
|
||||
override_components = pypsa.components.components.copy()
|
||||
override_component_attrs = Dict({k : v.copy() for k,v in pypsa.components.component_attrs.items()})
|
||||
override_component_attrs = Dict(
|
||||
{k: v.copy() for k, v in pypsa.components.component_attrs.items()}
|
||||
)
|
||||
for k, v in custom_components.items():
|
||||
override_components.loc[k] = v['component']
|
||||
override_component_attrs[k] = pd.DataFrame(columns = ["type","unit","default","description","status"])
|
||||
for attr, val in v['attributes'].items():
|
||||
override_components.loc[k] = v["component"]
|
||||
override_component_attrs[k] = pd.DataFrame(
|
||||
columns=["type", "unit", "default", "description", "status"]
|
||||
)
|
||||
for attr, val in v["attributes"].items():
|
||||
override_component_attrs[k].loc[attr] = val
|
||||
|
||||
return pypsa.Network(import_name=import_name,
|
||||
override_components=override_components,
|
||||
override_component_attrs=override_component_attrs)
|
||||
return pypsa.Network(
|
||||
import_name=import_name,
|
||||
override_components=override_components,
|
||||
override_component_attrs=override_component_attrs,
|
||||
)
|
||||
|
||||
|
||||
def pdbcast(v, h):
|
||||
return pd.DataFrame(v.values.reshape((-1, 1)) * h.values,
|
||||
index=v.index, columns=h.index)
|
||||
return pd.DataFrame(
|
||||
v.values.reshape((-1, 1)) * h.values, index=v.index, columns=h.index
|
||||
)
|
||||
|
||||
|
||||
def load_network_for_plots(fn, tech_costs, config, combine_hydro_ps=True):
|
||||
import pypsa
|
||||
from add_electricity import update_transmission_costs, load_costs
|
||||
from add_electricity import load_costs, update_transmission_costs
|
||||
|
||||
n = pypsa.Network(fn)
|
||||
|
||||
n.loads["carrier"] = n.loads.bus.map(n.buses.carrier) + " load"
|
||||
n.stores["carrier"] = n.stores.bus.map(n.buses.carrier)
|
||||
|
||||
n.links["carrier"] = (n.links.bus0.map(n.buses.carrier) + "-" + n.links.bus1.map(n.buses.carrier))
|
||||
n.links["carrier"] = (
|
||||
n.links.bus0.map(n.buses.carrier) + "-" + n.links.bus1.map(n.buses.carrier)
|
||||
)
|
||||
n.lines["carrier"] = "AC line"
|
||||
n.transformers["carrier"] = "AC transformer"
|
||||
|
||||
n.lines['s_nom'] = n.lines['s_nom_min']
|
||||
n.links['p_nom'] = n.links['p_nom_min']
|
||||
n.lines["s_nom"] = n.lines["s_nom_min"]
|
||||
n.links["p_nom"] = n.links["p_nom_min"]
|
||||
|
||||
if combine_hydro_ps:
|
||||
n.storage_units.loc[n.storage_units.carrier.isin({'PHS', 'hydro'}), 'carrier'] = 'hydro+PHS'
|
||||
n.storage_units.loc[
|
||||
n.storage_units.carrier.isin({"PHS", "hydro"}), "carrier"
|
||||
] = "hydro+PHS"
|
||||
|
||||
# if the carrier was not set on the heat storage units
|
||||
# bus_carrier = n.storage_units.bus.map(n.buses.carrier)
|
||||
# n.storage_units.loc[bus_carrier == "heat","carrier"] = "water tanks"
|
||||
|
||||
Nyears = n.snapshot_weightings.objective.sum() / 8760.
|
||||
costs = load_costs(tech_costs, config['costs'], config['electricity'], Nyears)
|
||||
Nyears = n.snapshot_weightings.objective.sum() / 8760.0
|
||||
costs = load_costs(tech_costs, config["costs"], config["electricity"], Nyears)
|
||||
update_transmission_costs(n, costs)
|
||||
|
||||
return n
|
||||
|
||||
|
||||
def update_p_nom_max(n):
|
||||
# if extendable carriers (solar/onwind/...) have capacity >= 0,
|
||||
# e.g. existing assets from the OPSD project are included to the network,
|
||||
# the installed capacity might exceed the expansion limit.
|
||||
# Hence, we update the assumptions.
|
||||
|
||||
n.generators.p_nom_max = n.generators[['p_nom_min', 'p_nom_max']].max(1)
|
||||
|
||||
n.generators.p_nom_max = n.generators[["p_nom_min", "p_nom_max"]].max(1)
|
||||
|
||||
|
||||
def aggregate_p_nom(n):
|
||||
return pd.concat([
|
||||
n.generators.groupby("carrier").p_nom_opt.sum(),
|
||||
n.storage_units.groupby("carrier").p_nom_opt.sum(),
|
||||
n.links.groupby("carrier").p_nom_opt.sum(),
|
||||
n.loads_t.p.groupby(n.loads.carrier,axis=1).sum().mean()
|
||||
])
|
||||
return pd.concat(
|
||||
[
|
||||
n.generators.groupby("carrier").p_nom_opt.sum(),
|
||||
n.storage_units.groupby("carrier").p_nom_opt.sum(),
|
||||
n.links.groupby("carrier").p_nom_opt.sum(),
|
||||
n.loads_t.p.groupby(n.loads.carrier, axis=1).sum().mean(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def aggregate_p(n):
|
||||
return pd.concat([
|
||||
n.generators_t.p.sum().groupby(n.generators.carrier).sum(),
|
||||
n.storage_units_t.p.sum().groupby(n.storage_units.carrier).sum(),
|
||||
n.stores_t.p.sum().groupby(n.stores.carrier).sum(),
|
||||
-n.loads_t.p.sum().groupby(n.loads.carrier).sum()
|
||||
])
|
||||
return pd.concat(
|
||||
[
|
||||
n.generators_t.p.sum().groupby(n.generators.carrier).sum(),
|
||||
n.storage_units_t.p.sum().groupby(n.storage_units.carrier).sum(),
|
||||
n.stores_t.p.sum().groupby(n.stores.carrier).sum(),
|
||||
-n.loads_t.p.sum().groupby(n.loads.carrier).sum(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def aggregate_e_nom(n):
|
||||
return pd.concat([
|
||||
(n.storage_units["p_nom_opt"]*n.storage_units["max_hours"]).groupby(n.storage_units["carrier"]).sum(),
|
||||
n.stores["e_nom_opt"].groupby(n.stores.carrier).sum()
|
||||
])
|
||||
return pd.concat(
|
||||
[
|
||||
(n.storage_units["p_nom_opt"] * n.storage_units["max_hours"])
|
||||
.groupby(n.storage_units["carrier"])
|
||||
.sum(),
|
||||
n.stores["e_nom_opt"].groupby(n.stores.carrier).sum(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def aggregate_p_curtailed(n):
|
||||
return pd.concat([
|
||||
((n.generators_t.p_max_pu.sum().multiply(n.generators.p_nom_opt) - n.generators_t.p.sum())
|
||||
.groupby(n.generators.carrier).sum()),
|
||||
((n.storage_units_t.inflow.sum() - n.storage_units_t.p.sum())
|
||||
.groupby(n.storage_units.carrier).sum())
|
||||
])
|
||||
return pd.concat(
|
||||
[
|
||||
(
|
||||
(
|
||||
n.generators_t.p_max_pu.sum().multiply(n.generators.p_nom_opt)
|
||||
- n.generators_t.p.sum()
|
||||
)
|
||||
.groupby(n.generators.carrier)
|
||||
.sum()
|
||||
),
|
||||
(
|
||||
(n.storage_units_t.inflow.sum() - n.storage_units_t.p.sum())
|
||||
.groupby(n.storage_units.carrier)
|
||||
.sum()
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def aggregate_costs(n, flatten=False, opts=None, existing_only=False):
|
||||
|
||||
components = dict(Link=("p_nom", "p0"),
|
||||
Generator=("p_nom", "p"),
|
||||
StorageUnit=("p_nom", "p"),
|
||||
Store=("e_nom", "p"),
|
||||
Line=("s_nom", None),
|
||||
Transformer=("s_nom", None))
|
||||
components = dict(
|
||||
Link=("p_nom", "p0"),
|
||||
Generator=("p_nom", "p"),
|
||||
StorageUnit=("p_nom", "p"),
|
||||
Store=("e_nom", "p"),
|
||||
Line=("s_nom", None),
|
||||
Transformer=("s_nom", None),
|
||||
)
|
||||
|
||||
costs = {}
|
||||
for c, (p_nom, p_attr) in zip(
|
||||
n.iterate_components(components.keys(), skip_empty=False),
|
||||
components.values()
|
||||
n.iterate_components(components.keys(), skip_empty=False), components.values()
|
||||
):
|
||||
if c.df.empty: continue
|
||||
if not existing_only: p_nom += "_opt"
|
||||
costs[(c.list_name, 'capital')] = (c.df[p_nom] * c.df.capital_cost).groupby(c.df.carrier).sum()
|
||||
if c.df.empty:
|
||||
continue
|
||||
if not existing_only:
|
||||
p_nom += "_opt"
|
||||
costs[(c.list_name, "capital")] = (
|
||||
(c.df[p_nom] * c.df.capital_cost).groupby(c.df.carrier).sum()
|
||||
)
|
||||
if p_attr is not None:
|
||||
p = c.pnl[p_attr].sum()
|
||||
if c.name == 'StorageUnit':
|
||||
if c.name == "StorageUnit":
|
||||
p = p.loc[p > 0]
|
||||
costs[(c.list_name, 'marginal')] = (p*c.df.marginal_cost).groupby(c.df.carrier).sum()
|
||||
costs[(c.list_name, "marginal")] = (
|
||||
(p * c.df.marginal_cost).groupby(c.df.carrier).sum()
|
||||
)
|
||||
costs = pd.concat(costs)
|
||||
|
||||
if flatten:
|
||||
assert opts is not None
|
||||
conv_techs = opts['conv_techs']
|
||||
conv_techs = opts["conv_techs"]
|
||||
|
||||
costs = costs.reset_index(level=0, drop=True)
|
||||
costs = costs['capital'].add(
|
||||
costs['marginal'].rename({t: t + ' marginal' for t in conv_techs}),
|
||||
fill_value=0.
|
||||
costs = costs["capital"].add(
|
||||
costs["marginal"].rename({t: t + " marginal" for t in conv_techs}),
|
||||
fill_value=0.0,
|
||||
)
|
||||
|
||||
return costs
|
||||
|
||||
|
||||
def progress_retrieve(url, file):
|
||||
import urllib
|
||||
|
||||
from progressbar import ProgressBar
|
||||
|
||||
pbar = ProgressBar(0, 100)
|
||||
|
||||
def dlProgress(count, blockSize, totalSize):
|
||||
pbar.update( int(count * blockSize * 100 / totalSize) )
|
||||
pbar.update(int(count * blockSize * 100 / totalSize))
|
||||
|
||||
urllib.request.urlretrieve(url, file, reporthook=dlProgress)
|
||||
|
||||
|
||||
def get_aggregation_strategies(aggregation_strategies):
|
||||
# default aggregation strategies that cannot be defined in .yaml format must be specified within
|
||||
# the function, otherwise (when defaults are passed in the function's definition) they get lost
|
||||
@ -222,7 +275,7 @@ def get_aggregation_strategies(aggregation_strategies):
|
||||
bus_strategies = dict(country=_make_consense("Bus", "country"))
|
||||
bus_strategies.update(aggregation_strategies.get("buses", {}))
|
||||
|
||||
generator_strategies = {'build_year': lambda x: 0, 'lifetime': lambda x: np.inf}
|
||||
generator_strategies = {"build_year": lambda x: 0, "lifetime": lambda x: np.inf}
|
||||
generator_strategies.update(aggregation_strategies.get("generators", {}))
|
||||
|
||||
return bus_strategies, generator_strategies
|
||||
@ -244,15 +297,17 @@ def mock_snakemake(rulename, **wildcards):
|
||||
keyword arguments fixing the wildcards. Only necessary if wildcards are
|
||||
needed.
|
||||
"""
|
||||
import snakemake as sm
|
||||
import os
|
||||
|
||||
import snakemake as sm
|
||||
from packaging.version import Version, parse
|
||||
from pypsa.descriptors import Dict
|
||||
from snakemake.script import Snakemake
|
||||
from packaging.version import Version, parse
|
||||
|
||||
script_dir = Path(__file__).parent.resolve()
|
||||
assert Path.cwd().resolve() == script_dir, \
|
||||
f'mock_snakemake has to be run from the repository scripts directory {script_dir}'
|
||||
assert (
|
||||
Path.cwd().resolve() == script_dir
|
||||
), f"mock_snakemake has to be run from the repository scripts directory {script_dir}"
|
||||
os.chdir(script_dir.parent)
|
||||
for p in sm.SNAKEFILE_CHOICES:
|
||||
if os.path.exists(p):
|
||||
@ -273,9 +328,18 @@ def mock_snakemake(rulename, **wildcards):
|
||||
io[i] = os.path.abspath(io[i])
|
||||
|
||||
make_accessable(job.input, job.output, job.log)
|
||||
snakemake = Snakemake(job.input, job.output, job.params, job.wildcards,
|
||||
job.threads, job.resources, job.log,
|
||||
job.dag.workflow.config, job.rule.name, None,)
|
||||
snakemake = Snakemake(
|
||||
job.input,
|
||||
job.output,
|
||||
job.params,
|
||||
job.wildcards,
|
||||
job.threads,
|
||||
job.resources,
|
||||
job.log,
|
||||
job.dag.workflow.config,
|
||||
job.rule.name,
|
||||
None,
|
||||
)
|
||||
# create log and output dir if not existent
|
||||
for path in list(snakemake.log) + list(snakemake.output):
|
||||
Path(path).parent.mkdir(parents=True, exist_ok=True)
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
@ -50,14 +51,16 @@ The rule :mod:`add_extra_components` attaches additional extendable components t
|
||||
- ``Stores`` of carrier 'H2' and/or 'battery' in combination with ``Links``. If this option is chosen, the script adds extra buses with corresponding carrier where energy ``Stores`` are attached and which are connected to the corresponding power buses via two links, one each for charging and discharging. This leads to three investment variables for the energy capacity, charging and discharging capacity of the storage unit.
|
||||
"""
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
|
||||
import pypsa
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
from add_electricity import (load_costs, add_nice_carrier_names,
|
||||
_add_missing_carriers_from_costs)
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
from _helpers import configure_logging
|
||||
from add_electricity import (
|
||||
_add_missing_carriers_from_costs,
|
||||
add_nice_carrier_names,
|
||||
load_costs,
|
||||
)
|
||||
|
||||
idx = pd.IndexSlice
|
||||
|
||||
@ -65,8 +68,8 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def attach_storageunits(n, costs, elec_opts):
|
||||
carriers = elec_opts['extendable_carriers']['StorageUnit']
|
||||
max_hours = elec_opts['max_hours']
|
||||
carriers = elec_opts["extendable_carriers"]["StorageUnit"]
|
||||
max_hours = elec_opts["max_hours"]
|
||||
|
||||
_add_missing_carriers_from_costs(n, costs, carriers)
|
||||
|
||||
@ -77,131 +80,167 @@ def attach_storageunits(n, costs, elec_opts):
|
||||
|
||||
for carrier in carriers:
|
||||
roundtrip_correction = 0.5 if carrier == "battery" else 1
|
||||
|
||||
n.madd("StorageUnit", buses_i, ' ' + carrier,
|
||||
bus=buses_i,
|
||||
carrier=carrier,
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at[carrier, 'capital_cost'],
|
||||
marginal_cost=costs.at[carrier, 'marginal_cost'],
|
||||
efficiency_store=costs.at[lookup_store[carrier], 'efficiency']**roundtrip_correction,
|
||||
efficiency_dispatch=costs.at[lookup_dispatch[carrier], 'efficiency']**roundtrip_correction,
|
||||
max_hours=max_hours[carrier],
|
||||
cyclic_state_of_charge=True
|
||||
|
||||
n.madd(
|
||||
"StorageUnit",
|
||||
buses_i,
|
||||
" " + carrier,
|
||||
bus=buses_i,
|
||||
carrier=carrier,
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at[carrier, "capital_cost"],
|
||||
marginal_cost=costs.at[carrier, "marginal_cost"],
|
||||
efficiency_store=costs.at[lookup_store[carrier], "efficiency"]
|
||||
** roundtrip_correction,
|
||||
efficiency_dispatch=costs.at[lookup_dispatch[carrier], "efficiency"]
|
||||
** roundtrip_correction,
|
||||
max_hours=max_hours[carrier],
|
||||
cyclic_state_of_charge=True,
|
||||
)
|
||||
|
||||
|
||||
def attach_stores(n, costs, elec_opts):
|
||||
carriers = elec_opts['extendable_carriers']['Store']
|
||||
carriers = elec_opts["extendable_carriers"]["Store"]
|
||||
|
||||
_add_missing_carriers_from_costs(n, costs, carriers)
|
||||
|
||||
buses_i = n.buses.index
|
||||
bus_sub_dict = {k: n.buses[k].values for k in ['x', 'y', 'country']}
|
||||
bus_sub_dict = {k: n.buses[k].values for k in ["x", "y", "country"]}
|
||||
|
||||
if 'H2' in carriers:
|
||||
if "H2" in carriers:
|
||||
h2_buses_i = n.madd("Bus", buses_i + " H2", carrier="H2", **bus_sub_dict)
|
||||
|
||||
n.madd("Store", h2_buses_i,
|
||||
bus=h2_buses_i,
|
||||
carrier='H2',
|
||||
e_nom_extendable=True,
|
||||
e_cyclic=True,
|
||||
capital_cost=costs.at["hydrogen storage underground", "capital_cost"])
|
||||
n.madd(
|
||||
"Store",
|
||||
h2_buses_i,
|
||||
bus=h2_buses_i,
|
||||
carrier="H2",
|
||||
e_nom_extendable=True,
|
||||
e_cyclic=True,
|
||||
capital_cost=costs.at["hydrogen storage underground", "capital_cost"],
|
||||
)
|
||||
|
||||
n.madd("Link", h2_buses_i + " Electrolysis",
|
||||
bus0=buses_i,
|
||||
bus1=h2_buses_i,
|
||||
carrier='H2 electrolysis',
|
||||
p_nom_extendable=True,
|
||||
efficiency=costs.at["electrolysis", "efficiency"],
|
||||
capital_cost=costs.at["electrolysis", "capital_cost"],
|
||||
marginal_cost=costs.at["electrolysis", "marginal_cost"])
|
||||
n.madd(
|
||||
"Link",
|
||||
h2_buses_i + " Electrolysis",
|
||||
bus0=buses_i,
|
||||
bus1=h2_buses_i,
|
||||
carrier="H2 electrolysis",
|
||||
p_nom_extendable=True,
|
||||
efficiency=costs.at["electrolysis", "efficiency"],
|
||||
capital_cost=costs.at["electrolysis", "capital_cost"],
|
||||
marginal_cost=costs.at["electrolysis", "marginal_cost"],
|
||||
)
|
||||
|
||||
n.madd("Link", h2_buses_i + " Fuel Cell",
|
||||
bus0=h2_buses_i,
|
||||
bus1=buses_i,
|
||||
carrier='H2 fuel cell',
|
||||
p_nom_extendable=True,
|
||||
efficiency=costs.at["fuel cell", "efficiency"],
|
||||
#NB: fixed cost is per MWel
|
||||
capital_cost=costs.at["fuel cell", "capital_cost"] * costs.at["fuel cell", "efficiency"],
|
||||
marginal_cost=costs.at["fuel cell", "marginal_cost"])
|
||||
n.madd(
|
||||
"Link",
|
||||
h2_buses_i + " Fuel Cell",
|
||||
bus0=h2_buses_i,
|
||||
bus1=buses_i,
|
||||
carrier="H2 fuel cell",
|
||||
p_nom_extendable=True,
|
||||
efficiency=costs.at["fuel cell", "efficiency"],
|
||||
# NB: fixed cost is per MWel
|
||||
capital_cost=costs.at["fuel cell", "capital_cost"]
|
||||
* costs.at["fuel cell", "efficiency"],
|
||||
marginal_cost=costs.at["fuel cell", "marginal_cost"],
|
||||
)
|
||||
|
||||
if 'battery' in carriers:
|
||||
b_buses_i = n.madd("Bus", buses_i + " battery", carrier="battery", **bus_sub_dict)
|
||||
if "battery" in carriers:
|
||||
b_buses_i = n.madd(
|
||||
"Bus", buses_i + " battery", carrier="battery", **bus_sub_dict
|
||||
)
|
||||
|
||||
n.madd("Store", b_buses_i,
|
||||
bus=b_buses_i,
|
||||
carrier='battery',
|
||||
e_cyclic=True,
|
||||
e_nom_extendable=True,
|
||||
capital_cost=costs.at['battery storage', 'capital_cost'],
|
||||
marginal_cost=costs.at["battery", "marginal_cost"])
|
||||
n.madd(
|
||||
"Store",
|
||||
b_buses_i,
|
||||
bus=b_buses_i,
|
||||
carrier="battery",
|
||||
e_cyclic=True,
|
||||
e_nom_extendable=True,
|
||||
capital_cost=costs.at["battery storage", "capital_cost"],
|
||||
marginal_cost=costs.at["battery", "marginal_cost"],
|
||||
)
|
||||
|
||||
n.madd("Link", b_buses_i + " charger",
|
||||
bus0=buses_i,
|
||||
bus1=b_buses_i,
|
||||
carrier='battery charger',
|
||||
# the efficiencies are "round trip efficiencies"
|
||||
efficiency=costs.at['battery inverter', 'efficiency']**0.5,
|
||||
capital_cost=costs.at['battery inverter', 'capital_cost'],
|
||||
p_nom_extendable=True,
|
||||
marginal_cost=costs.at["battery inverter", "marginal_cost"])
|
||||
n.madd(
|
||||
"Link",
|
||||
b_buses_i + " charger",
|
||||
bus0=buses_i,
|
||||
bus1=b_buses_i,
|
||||
carrier="battery charger",
|
||||
# the efficiencies are "round trip efficiencies"
|
||||
efficiency=costs.at["battery inverter", "efficiency"] ** 0.5,
|
||||
capital_cost=costs.at["battery inverter", "capital_cost"],
|
||||
p_nom_extendable=True,
|
||||
marginal_cost=costs.at["battery inverter", "marginal_cost"],
|
||||
)
|
||||
|
||||
n.madd("Link", b_buses_i + " discharger",
|
||||
bus0=b_buses_i,
|
||||
bus1=buses_i,
|
||||
carrier='battery discharger',
|
||||
efficiency=costs.at['battery inverter','efficiency']**0.5,
|
||||
p_nom_extendable=True,
|
||||
marginal_cost=costs.at["battery inverter", "marginal_cost"])
|
||||
n.madd(
|
||||
"Link",
|
||||
b_buses_i + " discharger",
|
||||
bus0=b_buses_i,
|
||||
bus1=buses_i,
|
||||
carrier="battery discharger",
|
||||
efficiency=costs.at["battery inverter", "efficiency"] ** 0.5,
|
||||
p_nom_extendable=True,
|
||||
marginal_cost=costs.at["battery inverter", "marginal_cost"],
|
||||
)
|
||||
|
||||
|
||||
def attach_hydrogen_pipelines(n, costs, elec_opts):
|
||||
ext_carriers = elec_opts['extendable_carriers']
|
||||
as_stores = ext_carriers.get('Store', [])
|
||||
ext_carriers = elec_opts["extendable_carriers"]
|
||||
as_stores = ext_carriers.get("Store", [])
|
||||
|
||||
if 'H2 pipeline' not in ext_carriers.get('Link',[]): return
|
||||
if "H2 pipeline" not in ext_carriers.get("Link", []):
|
||||
return
|
||||
|
||||
assert 'H2' in as_stores, ("Attaching hydrogen pipelines requires hydrogen "
|
||||
"storage to be modelled as Store-Link-Bus combination. See "
|
||||
"`config.yaml` at `electricity: extendable_carriers: Store:`.")
|
||||
assert "H2" in as_stores, (
|
||||
"Attaching hydrogen pipelines requires hydrogen "
|
||||
"storage to be modelled as Store-Link-Bus combination. See "
|
||||
"`config.yaml` at `electricity: extendable_carriers: Store:`."
|
||||
)
|
||||
|
||||
# determine bus pairs
|
||||
attrs = ["bus0","bus1","length"]
|
||||
candidates = pd.concat([n.lines[attrs], n.links.query('carrier=="DC"')[attrs]])\
|
||||
.reset_index(drop=True)
|
||||
attrs = ["bus0", "bus1", "length"]
|
||||
candidates = pd.concat(
|
||||
[n.lines[attrs], n.links.query('carrier=="DC"')[attrs]]
|
||||
).reset_index(drop=True)
|
||||
|
||||
# remove bus pair duplicates regardless of order of bus0 and bus1
|
||||
h2_links = candidates[~pd.DataFrame(np.sort(candidates[['bus0', 'bus1']])).duplicated()]
|
||||
h2_links = candidates[
|
||||
~pd.DataFrame(np.sort(candidates[["bus0", "bus1"]])).duplicated()
|
||||
]
|
||||
h2_links.index = h2_links.apply(lambda c: f"H2 pipeline {c.bus0}-{c.bus1}", axis=1)
|
||||
|
||||
# add pipelines
|
||||
n.madd("Link",
|
||||
h2_links.index,
|
||||
bus0=h2_links.bus0.values + " H2",
|
||||
bus1=h2_links.bus1.values + " H2",
|
||||
p_min_pu=-1,
|
||||
p_nom_extendable=True,
|
||||
length=h2_links.length.values,
|
||||
capital_cost=costs.at['H2 pipeline','capital_cost']*h2_links.length,
|
||||
efficiency=costs.at['H2 pipeline','efficiency'],
|
||||
carrier="H2 pipeline")
|
||||
n.madd(
|
||||
"Link",
|
||||
h2_links.index,
|
||||
bus0=h2_links.bus0.values + " H2",
|
||||
bus1=h2_links.bus1.values + " H2",
|
||||
p_min_pu=-1,
|
||||
p_nom_extendable=True,
|
||||
length=h2_links.length.values,
|
||||
capital_cost=costs.at["H2 pipeline", "capital_cost"] * h2_links.length,
|
||||
efficiency=costs.at["H2 pipeline", "efficiency"],
|
||||
carrier="H2 pipeline",
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('add_extra_components',
|
||||
simpl='', clusters=5)
|
||||
|
||||
snakemake = mock_snakemake("add_extra_components", simpl="", clusters=5)
|
||||
configure_logging(snakemake)
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
elec_config = snakemake.config['electricity']
|
||||
|
||||
Nyears = n.snapshot_weightings.objective.sum() / 8760.
|
||||
costs = load_costs(snakemake.input.tech_costs, snakemake.config['costs'], elec_config, Nyears)
|
||||
elec_config = snakemake.config["electricity"]
|
||||
|
||||
Nyears = n.snapshot_weightings.objective.sum() / 8760.0
|
||||
costs = load_costs(
|
||||
snakemake.input.tech_costs, snakemake.config["costs"], elec_config, Nyears
|
||||
)
|
||||
|
||||
attach_storageunits(n, costs, elec_config)
|
||||
attach_stores(n, costs, elec_config)
|
||||
|
@ -1,10 +1,13 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# coding: utf-8
|
||||
"""
|
||||
Creates the network topology from a `ENTSO-E map extract <https://github.com/PyPSA/GridKit/tree/master/entsoe>`_ (March 2022) as a PyPSA network.
|
||||
Creates the network topology from a `ENTSO-E map extract
|
||||
<https://github.com/PyPSA/GridKit/tree/master/entsoe>`_ (March 2022) as a PyPSA
|
||||
network.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -59,25 +62,24 @@ Outputs
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
|
||||
import pypsa
|
||||
import yaml
|
||||
import pandas as pd
|
||||
import geopandas as gpd
|
||||
import numpy as np
|
||||
import networkx as nx
|
||||
|
||||
from scipy import spatial
|
||||
from scipy.sparse import csgraph
|
||||
from itertools import product
|
||||
|
||||
from shapely.geometry import Point, LineString
|
||||
import shapely, shapely.prepared, shapely.wkt
|
||||
import geopandas as gpd
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
import shapely
|
||||
import shapely.prepared
|
||||
import shapely.wkt
|
||||
import yaml
|
||||
from _helpers import configure_logging
|
||||
from scipy import spatial
|
||||
from scipy.sparse import csgraph
|
||||
from shapely.geometry import LineString, Point
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -97,48 +99,73 @@ def _get_country(df):
|
||||
|
||||
|
||||
def _find_closest_links(links, new_links, distance_upper_bound=1.5):
|
||||
treecoords = np.asarray([np.asarray(shapely.wkt.loads(s).coords)[[0, -1]].flatten()
|
||||
for s in links.geometry])
|
||||
querycoords = np.vstack([new_links[['x1', 'y1', 'x2', 'y2']],
|
||||
new_links[['x2', 'y2', 'x1', 'y1']]])
|
||||
treecoords = np.asarray(
|
||||
[
|
||||
np.asarray(shapely.wkt.loads(s).coords)[[0, -1]].flatten()
|
||||
for s in links.geometry
|
||||
]
|
||||
)
|
||||
querycoords = np.vstack(
|
||||
[new_links[["x1", "y1", "x2", "y2"]], new_links[["x2", "y2", "x1", "y1"]]]
|
||||
)
|
||||
tree = spatial.KDTree(treecoords)
|
||||
dist, ind = tree.query(querycoords, distance_upper_bound=distance_upper_bound)
|
||||
found_b = ind < len(links)
|
||||
found_i = np.arange(len(new_links)*2)[found_b] % len(new_links)
|
||||
return pd.DataFrame(dict(D=dist[found_b],
|
||||
i=links.index[ind[found_b] % len(links)]),
|
||||
index=new_links.index[found_i]).sort_values(by='D')\
|
||||
[lambda ds: ~ds.index.duplicated(keep='first')]\
|
||||
.sort_index()['i']
|
||||
found_i = np.arange(len(new_links) * 2)[found_b] % len(new_links)
|
||||
return (
|
||||
pd.DataFrame(
|
||||
dict(D=dist[found_b], i=links.index[ind[found_b] % len(links)]),
|
||||
index=new_links.index[found_i],
|
||||
)
|
||||
.sort_values(by="D")[lambda ds: ~ds.index.duplicated(keep="first")]
|
||||
.sort_index()["i"]
|
||||
)
|
||||
|
||||
|
||||
def _load_buses_from_eg(eg_buses, europe_shape, config_elec):
|
||||
buses = (pd.read_csv(eg_buses, quotechar="'",
|
||||
true_values=['t'], false_values=['f'],
|
||||
dtype=dict(bus_id="str"))
|
||||
.set_index("bus_id")
|
||||
.drop(['station_id'], axis=1)
|
||||
.rename(columns=dict(voltage='v_nom')))
|
||||
buses = (
|
||||
pd.read_csv(
|
||||
eg_buses,
|
||||
quotechar="'",
|
||||
true_values=["t"],
|
||||
false_values=["f"],
|
||||
dtype=dict(bus_id="str"),
|
||||
)
|
||||
.set_index("bus_id")
|
||||
.drop(["station_id"], axis=1)
|
||||
.rename(columns=dict(voltage="v_nom"))
|
||||
)
|
||||
|
||||
buses['carrier'] = buses.pop('dc').map({True: 'DC', False: 'AC'})
|
||||
buses['under_construction'] = buses['under_construction'].fillna(False).astype(bool)
|
||||
buses["carrier"] = buses.pop("dc").map({True: "DC", False: "AC"})
|
||||
buses["under_construction"] = buses["under_construction"].fillna(False).astype(bool)
|
||||
|
||||
# remove all buses outside of all countries including exclusive economic zones (offshore)
|
||||
europe_shape = gpd.read_file(europe_shape).loc[0, 'geometry']
|
||||
europe_shape = gpd.read_file(europe_shape).loc[0, "geometry"]
|
||||
europe_shape_prepped = shapely.prepared.prep(europe_shape)
|
||||
buses_in_europe_b = buses[['x', 'y']].apply(lambda p: europe_shape_prepped.contains(Point(p)), axis=1)
|
||||
buses_in_europe_b = buses[["x", "y"]].apply(
|
||||
lambda p: europe_shape_prepped.contains(Point(p)), axis=1
|
||||
)
|
||||
|
||||
buses_with_v_nom_to_keep_b = buses.v_nom.isin(config_elec['voltages']) | buses.v_nom.isnull()
|
||||
logger.info("Removing buses with voltages {}".format(pd.Index(buses.v_nom.unique()).dropna().difference(config_elec['voltages'])))
|
||||
buses_with_v_nom_to_keep_b = (
|
||||
buses.v_nom.isin(config_elec["voltages"]) | buses.v_nom.isnull()
|
||||
)
|
||||
logger.info(
|
||||
"Removing buses with voltages {}".format(
|
||||
pd.Index(buses.v_nom.unique()).dropna().difference(config_elec["voltages"])
|
||||
)
|
||||
)
|
||||
|
||||
return pd.DataFrame(buses.loc[buses_in_europe_b & buses_with_v_nom_to_keep_b])
|
||||
|
||||
|
||||
def _load_transformers_from_eg(buses, eg_transformers):
|
||||
transformers = (pd.read_csv(eg_transformers, quotechar="'",
|
||||
true_values=['t'], false_values=['f'],
|
||||
dtype=dict(transformer_id='str', bus0='str', bus1='str'))
|
||||
.set_index('transformer_id'))
|
||||
transformers = pd.read_csv(
|
||||
eg_transformers,
|
||||
quotechar="'",
|
||||
true_values=["t"],
|
||||
false_values=["f"],
|
||||
dtype=dict(transformer_id="str", bus0="str", bus1="str"),
|
||||
).set_index("transformer_id")
|
||||
|
||||
transformers = _remove_dangling_branches(transformers, buses)
|
||||
|
||||
@ -146,33 +173,40 @@ def _load_transformers_from_eg(buses, eg_transformers):
|
||||
|
||||
|
||||
def _load_converters_from_eg(buses, eg_converters):
|
||||
converters = (pd.read_csv(eg_converters, quotechar="'",
|
||||
true_values=['t'], false_values=['f'],
|
||||
dtype=dict(converter_id='str', bus0='str', bus1='str'))
|
||||
.set_index('converter_id'))
|
||||
converters = pd.read_csv(
|
||||
eg_converters,
|
||||
quotechar="'",
|
||||
true_values=["t"],
|
||||
false_values=["f"],
|
||||
dtype=dict(converter_id="str", bus0="str", bus1="str"),
|
||||
).set_index("converter_id")
|
||||
|
||||
converters = _remove_dangling_branches(converters, buses)
|
||||
|
||||
converters['carrier'] = 'B2B'
|
||||
converters["carrier"] = "B2B"
|
||||
|
||||
return converters
|
||||
|
||||
|
||||
def _load_links_from_eg(buses, eg_links):
|
||||
links = (pd.read_csv(eg_links, quotechar="'", true_values=['t'], false_values=['f'],
|
||||
dtype=dict(link_id='str', bus0='str', bus1='str', under_construction="bool"))
|
||||
.set_index('link_id'))
|
||||
links = pd.read_csv(
|
||||
eg_links,
|
||||
quotechar="'",
|
||||
true_values=["t"],
|
||||
false_values=["f"],
|
||||
dtype=dict(link_id="str", bus0="str", bus1="str", under_construction="bool"),
|
||||
).set_index("link_id")
|
||||
|
||||
links['length'] /= 1e3
|
||||
links["length"] /= 1e3
|
||||
|
||||
# Skagerrak Link is connected to 132kV bus which is removed in _load_buses_from_eg.
|
||||
# Connect to neighboring 380kV bus
|
||||
links.loc[links.bus1=='6396', 'bus1'] = '6398'
|
||||
links.loc[links.bus1 == "6396", "bus1"] = "6398"
|
||||
|
||||
links = _remove_dangling_branches(links, buses)
|
||||
|
||||
# Add DC line parameters
|
||||
links['carrier'] = 'DC'
|
||||
links["carrier"] = "DC"
|
||||
|
||||
return links
|
||||
|
||||
@ -181,15 +215,21 @@ def _add_links_from_tyndp(buses, links, links_tyndp, europe_shape):
|
||||
links_tyndp = pd.read_csv(links_tyndp)
|
||||
|
||||
# remove all links from list which lie outside all of the desired countries
|
||||
europe_shape = gpd.read_file(europe_shape).loc[0, 'geometry']
|
||||
europe_shape = gpd.read_file(europe_shape).loc[0, "geometry"]
|
||||
europe_shape_prepped = shapely.prepared.prep(europe_shape)
|
||||
x1y1_in_europe_b = links_tyndp[['x1', 'y1']].apply(lambda p: europe_shape_prepped.contains(Point(p)), axis=1)
|
||||
x2y2_in_europe_b = links_tyndp[['x2', 'y2']].apply(lambda p: europe_shape_prepped.contains(Point(p)), axis=1)
|
||||
x1y1_in_europe_b = links_tyndp[["x1", "y1"]].apply(
|
||||
lambda p: europe_shape_prepped.contains(Point(p)), axis=1
|
||||
)
|
||||
x2y2_in_europe_b = links_tyndp[["x2", "y2"]].apply(
|
||||
lambda p: europe_shape_prepped.contains(Point(p)), axis=1
|
||||
)
|
||||
is_within_covered_countries_b = x1y1_in_europe_b & x2y2_in_europe_b
|
||||
|
||||
if not is_within_covered_countries_b.all():
|
||||
logger.info("TYNDP links outside of the covered area (skipping): " +
|
||||
", ".join(links_tyndp.loc[~ is_within_covered_countries_b, "Name"]))
|
||||
logger.info(
|
||||
"TYNDP links outside of the covered area (skipping): "
|
||||
+ ", ".join(links_tyndp.loc[~is_within_covered_countries_b, "Name"])
|
||||
)
|
||||
|
||||
links_tyndp = links_tyndp.loc[is_within_covered_countries_b]
|
||||
if links_tyndp.empty:
|
||||
@ -197,25 +237,32 @@ def _add_links_from_tyndp(buses, links, links_tyndp, europe_shape):
|
||||
|
||||
has_replaces_b = links_tyndp.replaces.notnull()
|
||||
oids = dict(Bus=_get_oid(buses), Link=_get_oid(links))
|
||||
keep_b = dict(Bus=pd.Series(True, index=buses.index),
|
||||
Link=pd.Series(True, index=links.index))
|
||||
for reps in links_tyndp.loc[has_replaces_b, 'replaces']:
|
||||
for comps in reps.split(':'):
|
||||
oids_to_remove = comps.split('.')
|
||||
keep_b = dict(
|
||||
Bus=pd.Series(True, index=buses.index), Link=pd.Series(True, index=links.index)
|
||||
)
|
||||
for reps in links_tyndp.loc[has_replaces_b, "replaces"]:
|
||||
for comps in reps.split(":"):
|
||||
oids_to_remove = comps.split(".")
|
||||
c = oids_to_remove.pop(0)
|
||||
keep_b[c] &= ~oids[c].isin(oids_to_remove)
|
||||
buses = buses.loc[keep_b['Bus']]
|
||||
links = links.loc[keep_b['Link']]
|
||||
buses = buses.loc[keep_b["Bus"]]
|
||||
links = links.loc[keep_b["Link"]]
|
||||
|
||||
links_tyndp["j"] = _find_closest_links(links, links_tyndp, distance_upper_bound=0.20)
|
||||
links_tyndp["j"] = _find_closest_links(
|
||||
links, links_tyndp, distance_upper_bound=0.20
|
||||
)
|
||||
# Corresponds approximately to 20km tolerances
|
||||
|
||||
if links_tyndp["j"].notnull().any():
|
||||
logger.info("TYNDP links already in the dataset (skipping): " + ", ".join(links_tyndp.loc[links_tyndp["j"].notnull(), "Name"]))
|
||||
logger.info(
|
||||
"TYNDP links already in the dataset (skipping): "
|
||||
+ ", ".join(links_tyndp.loc[links_tyndp["j"].notnull(), "Name"])
|
||||
)
|
||||
links_tyndp = links_tyndp.loc[links_tyndp["j"].isnull()]
|
||||
if links_tyndp.empty: return buses, links
|
||||
if links_tyndp.empty:
|
||||
return buses, links
|
||||
|
||||
tree = spatial.KDTree(buses[['x', 'y']])
|
||||
tree = spatial.KDTree(buses[["x", "y"]])
|
||||
_, ind0 = tree.query(links_tyndp[["x1", "y1"]])
|
||||
ind0_b = ind0 < len(buses)
|
||||
links_tyndp.loc[ind0_b, "bus0"] = buses.index[ind0[ind0_b]]
|
||||
@ -224,24 +271,42 @@ def _add_links_from_tyndp(buses, links, links_tyndp, europe_shape):
|
||||
ind1_b = ind1 < len(buses)
|
||||
links_tyndp.loc[ind1_b, "bus1"] = buses.index[ind1[ind1_b]]
|
||||
|
||||
links_tyndp_located_b = links_tyndp["bus0"].notnull() & links_tyndp["bus1"].notnull()
|
||||
links_tyndp_located_b = (
|
||||
links_tyndp["bus0"].notnull() & links_tyndp["bus1"].notnull()
|
||||
)
|
||||
if not links_tyndp_located_b.all():
|
||||
logger.warning("Did not find connected buses for TYNDP links (skipping): " + ", ".join(links_tyndp.loc[~links_tyndp_located_b, "Name"]))
|
||||
logger.warning(
|
||||
"Did not find connected buses for TYNDP links (skipping): "
|
||||
+ ", ".join(links_tyndp.loc[~links_tyndp_located_b, "Name"])
|
||||
)
|
||||
links_tyndp = links_tyndp.loc[links_tyndp_located_b]
|
||||
|
||||
logger.info("Adding the following TYNDP links: " + ", ".join(links_tyndp["Name"]))
|
||||
|
||||
links_tyndp = links_tyndp[["bus0", "bus1"]].assign(
|
||||
carrier='DC',
|
||||
carrier="DC",
|
||||
p_nom=links_tyndp["Power (MW)"],
|
||||
length=links_tyndp["Length (given) (km)"].fillna(links_tyndp["Length (distance*1.2) (km)"]),
|
||||
length=links_tyndp["Length (given) (km)"].fillna(
|
||||
links_tyndp["Length (distance*1.2) (km)"]
|
||||
),
|
||||
under_construction=True,
|
||||
underground=False,
|
||||
geometry=(links_tyndp[["x1", "y1", "x2", "y2"]]
|
||||
.apply(lambda s: str(LineString([[s.x1, s.y1], [s.x2, s.y2]])), axis=1)),
|
||||
tags=('"name"=>"' + links_tyndp["Name"] + '", ' +
|
||||
'"ref"=>"' + links_tyndp["Ref"] + '", ' +
|
||||
'"status"=>"' + links_tyndp["status"] + '"')
|
||||
geometry=(
|
||||
links_tyndp[["x1", "y1", "x2", "y2"]].apply(
|
||||
lambda s: str(LineString([[s.x1, s.y1], [s.x2, s.y2]])), axis=1
|
||||
)
|
||||
),
|
||||
tags=(
|
||||
'"name"=>"'
|
||||
+ links_tyndp["Name"]
|
||||
+ '", '
|
||||
+ '"ref"=>"'
|
||||
+ links_tyndp["Ref"]
|
||||
+ '", '
|
||||
+ '"status"=>"'
|
||||
+ links_tyndp["status"]
|
||||
+ '"'
|
||||
),
|
||||
)
|
||||
|
||||
links_tyndp.index = "T" + links_tyndp.index.astype(str)
|
||||
@ -252,13 +317,25 @@ def _add_links_from_tyndp(buses, links, links_tyndp, europe_shape):
|
||||
|
||||
|
||||
def _load_lines_from_eg(buses, eg_lines):
|
||||
lines = (pd.read_csv(eg_lines, quotechar="'", true_values=['t'], false_values=['f'],
|
||||
dtype=dict(line_id='str', bus0='str', bus1='str',
|
||||
underground="bool", under_construction="bool"))
|
||||
.set_index('line_id')
|
||||
.rename(columns=dict(voltage='v_nom', circuits='num_parallel')))
|
||||
lines = (
|
||||
pd.read_csv(
|
||||
eg_lines,
|
||||
quotechar="'",
|
||||
true_values=["t"],
|
||||
false_values=["f"],
|
||||
dtype=dict(
|
||||
line_id="str",
|
||||
bus0="str",
|
||||
bus1="str",
|
||||
underground="bool",
|
||||
under_construction="bool",
|
||||
),
|
||||
)
|
||||
.set_index("line_id")
|
||||
.rename(columns=dict(voltage="v_nom", circuits="num_parallel"))
|
||||
)
|
||||
|
||||
lines['length'] /= 1e3
|
||||
lines["length"] /= 1e3
|
||||
|
||||
lines = _remove_dangling_branches(lines, buses)
|
||||
|
||||
@ -269,18 +346,20 @@ def _apply_parameter_corrections(n, parameter_corrections):
|
||||
with open(parameter_corrections) as f:
|
||||
corrections = yaml.safe_load(f)
|
||||
|
||||
if corrections is None: return
|
||||
if corrections is None:
|
||||
return
|
||||
|
||||
for component, attrs in corrections.items():
|
||||
df = n.df(component)
|
||||
oid = _get_oid(df)
|
||||
if attrs is None: continue
|
||||
if attrs is None:
|
||||
continue
|
||||
|
||||
for attr, repls in attrs.items():
|
||||
for i, r in repls.items():
|
||||
if i == 'oid':
|
||||
if i == "oid":
|
||||
r = oid.map(repls["oid"]).dropna()
|
||||
elif i == 'index':
|
||||
elif i == "index":
|
||||
r = pd.Series(repls["index"])
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
@ -289,78 +368,87 @@ def _apply_parameter_corrections(n, parameter_corrections):
|
||||
|
||||
|
||||
def _set_electrical_parameters_lines(lines, config):
|
||||
v_noms = config['electricity']['voltages']
|
||||
linetypes = config['lines']['types']
|
||||
v_noms = config["electricity"]["voltages"]
|
||||
linetypes = config["lines"]["types"]
|
||||
|
||||
for v_nom in v_noms:
|
||||
lines.loc[lines["v_nom"] == v_nom, 'type'] = linetypes[v_nom]
|
||||
lines.loc[lines["v_nom"] == v_nom, "type"] = linetypes[v_nom]
|
||||
|
||||
lines['s_max_pu'] = config['lines']['s_max_pu']
|
||||
lines["s_max_pu"] = config["lines"]["s_max_pu"]
|
||||
|
||||
return lines
|
||||
|
||||
|
||||
def _set_lines_s_nom_from_linetypes(n):
|
||||
n.lines['s_nom'] = (
|
||||
np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) *
|
||||
n.lines['v_nom'] * n.lines.num_parallel
|
||||
n.lines["s_nom"] = (
|
||||
np.sqrt(3)
|
||||
* n.lines["type"].map(n.line_types.i_nom)
|
||||
* n.lines["v_nom"]
|
||||
* n.lines.num_parallel
|
||||
)
|
||||
|
||||
|
||||
def _set_electrical_parameters_links(links, config, links_p_nom):
|
||||
if links.empty: return links
|
||||
if links.empty:
|
||||
return links
|
||||
|
||||
p_max_pu = config['links'].get('p_max_pu', 1.)
|
||||
links['p_max_pu'] = p_max_pu
|
||||
links['p_min_pu'] = -p_max_pu
|
||||
p_max_pu = config["links"].get("p_max_pu", 1.0)
|
||||
links["p_max_pu"] = p_max_pu
|
||||
links["p_min_pu"] = -p_max_pu
|
||||
|
||||
links_p_nom = pd.read_csv(links_p_nom)
|
||||
|
||||
# filter links that are not in operation anymore
|
||||
removed_b = links_p_nom.Remarks.str.contains('Shut down|Replaced', na=False)
|
||||
removed_b = links_p_nom.Remarks.str.contains("Shut down|Replaced", na=False)
|
||||
links_p_nom = links_p_nom[~removed_b]
|
||||
|
||||
# find closest link for all links in links_p_nom
|
||||
links_p_nom['j'] = _find_closest_links(links, links_p_nom)
|
||||
links_p_nom["j"] = _find_closest_links(links, links_p_nom)
|
||||
|
||||
links_p_nom = links_p_nom.groupby(['j'],as_index=False).agg({'Power (MW)': 'sum'})
|
||||
links_p_nom = links_p_nom.groupby(["j"], as_index=False).agg({"Power (MW)": "sum"})
|
||||
|
||||
p_nom = links_p_nom.dropna(subset=["j"]).set_index("j")["Power (MW)"]
|
||||
|
||||
# Don't update p_nom if it's already set
|
||||
p_nom_unset = p_nom.drop(links.index[links.p_nom.notnull()], errors='ignore') if "p_nom" in links else p_nom
|
||||
p_nom_unset = (
|
||||
p_nom.drop(links.index[links.p_nom.notnull()], errors="ignore")
|
||||
if "p_nom" in links
|
||||
else p_nom
|
||||
)
|
||||
links.loc[p_nom_unset.index, "p_nom"] = p_nom_unset
|
||||
|
||||
return links
|
||||
|
||||
|
||||
def _set_electrical_parameters_converters(converters, config):
|
||||
p_max_pu = config['links'].get('p_max_pu', 1.)
|
||||
converters['p_max_pu'] = p_max_pu
|
||||
converters['p_min_pu'] = -p_max_pu
|
||||
p_max_pu = config["links"].get("p_max_pu", 1.0)
|
||||
converters["p_max_pu"] = p_max_pu
|
||||
converters["p_min_pu"] = -p_max_pu
|
||||
|
||||
converters['p_nom'] = 2000
|
||||
converters["p_nom"] = 2000
|
||||
|
||||
# Converters are combined with links
|
||||
converters['under_construction'] = False
|
||||
converters['underground'] = False
|
||||
converters["under_construction"] = False
|
||||
converters["underground"] = False
|
||||
|
||||
return converters
|
||||
|
||||
|
||||
def _set_electrical_parameters_transformers(transformers, config):
|
||||
config = config['transformers']
|
||||
config = config["transformers"]
|
||||
|
||||
## Add transformer parameters
|
||||
transformers["x"] = config.get('x', 0.1)
|
||||
transformers["s_nom"] = config.get('s_nom', 2000)
|
||||
transformers['type'] = config.get('type', '')
|
||||
transformers["x"] = config.get("x", 0.1)
|
||||
transformers["s_nom"] = config.get("s_nom", 2000)
|
||||
transformers["type"] = config.get("type", "")
|
||||
|
||||
return transformers
|
||||
|
||||
|
||||
def _remove_dangling_branches(branches, buses):
|
||||
return pd.DataFrame(branches.loc[branches.bus0.isin(buses.index) & branches.bus1.isin(buses.index)])
|
||||
return pd.DataFrame(
|
||||
branches.loc[branches.bus0.isin(buses.index) & branches.bus1.isin(buses.index)]
|
||||
)
|
||||
|
||||
|
||||
def _remove_unconnected_components(network):
|
||||
@ -370,46 +458,62 @@ def _remove_unconnected_components(network):
|
||||
component_sizes = component.value_counts()
|
||||
components_to_remove = component_sizes.iloc[1:]
|
||||
|
||||
logger.info("Removing {} unconnected network components with less than {} buses. In total {} buses."
|
||||
.format(len(components_to_remove), components_to_remove.max(), components_to_remove.sum()))
|
||||
logger.info(
|
||||
"Removing {} unconnected network components with less than {} buses. In total {} buses.".format(
|
||||
len(components_to_remove),
|
||||
components_to_remove.max(),
|
||||
components_to_remove.sum(),
|
||||
)
|
||||
)
|
||||
|
||||
return network[component == component_sizes.index[0]]
|
||||
|
||||
|
||||
def _set_countries_and_substations(n, config, country_shapes, offshore_shapes):
|
||||
|
||||
buses = n.buses
|
||||
|
||||
def buses_in_shape(shape):
|
||||
shape = shapely.prepared.prep(shape)
|
||||
return pd.Series(
|
||||
np.fromiter((shape.contains(Point(x, y))
|
||||
for x, y in buses.loc[:,["x", "y"]].values),
|
||||
dtype=bool, count=len(buses)),
|
||||
index=buses.index
|
||||
np.fromiter(
|
||||
(
|
||||
shape.contains(Point(x, y))
|
||||
for x, y in buses.loc[:, ["x", "y"]].values
|
||||
),
|
||||
dtype=bool,
|
||||
count=len(buses),
|
||||
),
|
||||
index=buses.index,
|
||||
)
|
||||
|
||||
countries = config['countries']
|
||||
country_shapes = gpd.read_file(country_shapes).set_index('name')['geometry']
|
||||
countries = config["countries"]
|
||||
country_shapes = gpd.read_file(country_shapes).set_index("name")["geometry"]
|
||||
# reindexing necessary for supporting empty geo-dataframes
|
||||
offshore_shapes = gpd.read_file(offshore_shapes)
|
||||
offshore_shapes = offshore_shapes.reindex(columns=['name', 'geometry']).set_index('name')['geometry']
|
||||
substation_b = buses['symbol'].str.contains('substation|converter station', case=False)
|
||||
offshore_shapes = offshore_shapes.reindex(columns=["name", "geometry"]).set_index(
|
||||
"name"
|
||||
)["geometry"]
|
||||
substation_b = buses["symbol"].str.contains(
|
||||
"substation|converter station", case=False
|
||||
)
|
||||
|
||||
def prefer_voltage(x, which):
|
||||
index = x.index
|
||||
if len(index) == 1:
|
||||
return pd.Series(index, index)
|
||||
key = (x.index[0]
|
||||
if x['v_nom'].isnull().all()
|
||||
else getattr(x['v_nom'], 'idx' + which)())
|
||||
key = (
|
||||
x.index[0]
|
||||
if x["v_nom"].isnull().all()
|
||||
else getattr(x["v_nom"], "idx" + which)()
|
||||
)
|
||||
return pd.Series(key, index)
|
||||
|
||||
gb = buses.loc[substation_b].groupby(['x', 'y'], as_index=False,
|
||||
group_keys=False, sort=False)
|
||||
bus_map_low = gb.apply(prefer_voltage, 'min')
|
||||
gb = buses.loc[substation_b].groupby(
|
||||
["x", "y"], as_index=False, group_keys=False, sort=False
|
||||
)
|
||||
bus_map_low = gb.apply(prefer_voltage, "min")
|
||||
lv_b = (bus_map_low == bus_map_low.index).reindex(buses.index, fill_value=False)
|
||||
bus_map_high = gb.apply(prefer_voltage, 'max')
|
||||
bus_map_high = gb.apply(prefer_voltage, "max")
|
||||
hv_b = (bus_map_high == bus_map_high.index).reindex(buses.index, fill_value=False)
|
||||
|
||||
onshore_b = pd.Series(False, buses.index)
|
||||
@ -420,47 +524,66 @@ def _set_countries_and_substations(n, config, country_shapes, offshore_shapes):
|
||||
onshore_country_b = buses_in_shape(onshore_shape)
|
||||
onshore_b |= onshore_country_b
|
||||
|
||||
buses.loc[onshore_country_b, 'country'] = country
|
||||
buses.loc[onshore_country_b, "country"] = country
|
||||
|
||||
if country not in offshore_shapes.index: continue
|
||||
if country not in offshore_shapes.index:
|
||||
continue
|
||||
offshore_country_b = buses_in_shape(offshore_shapes[country])
|
||||
offshore_b |= offshore_country_b
|
||||
|
||||
buses.loc[offshore_country_b, 'country'] = country
|
||||
buses.loc[offshore_country_b, "country"] = country
|
||||
|
||||
# Only accept buses as low-voltage substations (where load is attached), if
|
||||
# they have at least one connection which is not under_construction
|
||||
has_connections_b = pd.Series(False, index=buses.index)
|
||||
for b, df in product(('bus0', 'bus1'), (n.lines, n.links)):
|
||||
has_connections_b |= ~ df.groupby(b).under_construction.min()
|
||||
for b, df in product(("bus0", "bus1"), (n.lines, n.links)):
|
||||
has_connections_b |= ~df.groupby(b).under_construction.min()
|
||||
|
||||
buses['substation_lv'] = lv_b & onshore_b & (~ buses['under_construction']) & has_connections_b
|
||||
buses['substation_off'] = (offshore_b | (hv_b & onshore_b)) & (~ buses['under_construction'])
|
||||
buses["substation_lv"] = (
|
||||
lv_b & onshore_b & (~buses["under_construction"]) & has_connections_b
|
||||
)
|
||||
buses["substation_off"] = (offshore_b | (hv_b & onshore_b)) & (
|
||||
~buses["under_construction"]
|
||||
)
|
||||
|
||||
c_nan_b = buses.country.isnull()
|
||||
if c_nan_b.sum() > 0:
|
||||
c_tag = _get_country(buses.loc[c_nan_b])
|
||||
c_tag.loc[~c_tag.isin(countries)] = np.nan
|
||||
n.buses.loc[c_nan_b, 'country'] = c_tag
|
||||
n.buses.loc[c_nan_b, "country"] = c_tag
|
||||
|
||||
c_tag_nan_b = n.buses.country.isnull()
|
||||
|
||||
# Nearest country in path length defines country of still homeless buses
|
||||
# Work-around until commit 705119 lands in pypsa release
|
||||
n.transformers['length'] = 0.
|
||||
graph = n.graph(weight='length')
|
||||
n.transformers.drop('length', axis=1, inplace=True)
|
||||
n.transformers["length"] = 0.0
|
||||
graph = n.graph(weight="length")
|
||||
n.transformers.drop("length", axis=1, inplace=True)
|
||||
|
||||
for b in n.buses.index[c_tag_nan_b]:
|
||||
df = (pd.DataFrame(dict(pathlength=nx.single_source_dijkstra_path_length(graph, b, cutoff=200)))
|
||||
.join(n.buses.country).dropna())
|
||||
assert not df.empty, "No buses with defined country within 200km of bus `{}`".format(b)
|
||||
n.buses.at[b, 'country'] = df.loc[df.pathlength.idxmin(), 'country']
|
||||
df = (
|
||||
pd.DataFrame(
|
||||
dict(
|
||||
pathlength=nx.single_source_dijkstra_path_length(
|
||||
graph, b, cutoff=200
|
||||
)
|
||||
)
|
||||
)
|
||||
.join(n.buses.country)
|
||||
.dropna()
|
||||
)
|
||||
assert (
|
||||
not df.empty
|
||||
), "No buses with defined country within 200km of bus `{}`".format(b)
|
||||
n.buses.at[b, "country"] = df.loc[df.pathlength.idxmin(), "country"]
|
||||
|
||||
logger.warning("{} buses are not in any country or offshore shape,"
|
||||
" {} have been assigned from the tag of the entsoe map,"
|
||||
" the rest from the next bus in terms of pathlength."
|
||||
.format(c_nan_b.sum(), c_nan_b.sum() - c_tag_nan_b.sum()))
|
||||
logger.warning(
|
||||
"{} buses are not in any country or offshore shape,"
|
||||
" {} have been assigned from the tag of the entsoe map,"
|
||||
" the rest from the next bus in terms of pathlength.".format(
|
||||
c_nan_b.sum(), c_nan_b.sum() - c_tag_nan_b.sum()
|
||||
)
|
||||
)
|
||||
|
||||
return buses
|
||||
|
||||
@ -469,11 +592,13 @@ def _replace_b2b_converter_at_country_border_by_link(n):
|
||||
# Affects only the B2B converter in Lithuania at the Polish border at the moment
|
||||
buscntry = n.buses.country
|
||||
linkcntry = n.links.bus0.map(buscntry)
|
||||
converters_i = n.links.index[(n.links.carrier == 'B2B') & (linkcntry == n.links.bus1.map(buscntry))]
|
||||
converters_i = n.links.index[
|
||||
(n.links.carrier == "B2B") & (linkcntry == n.links.bus1.map(buscntry))
|
||||
]
|
||||
|
||||
def findforeignbus(G, i):
|
||||
cntry = linkcntry.at[i]
|
||||
for busattr in ('bus0', 'bus1'):
|
||||
for busattr in ("bus0", "bus1"):
|
||||
b0 = n.links.at[i, busattr]
|
||||
for b1 in G[b0]:
|
||||
if buscntry[b1] != cntry:
|
||||
@ -486,67 +611,93 @@ def _replace_b2b_converter_at_country_border_by_link(n):
|
||||
if busattr is not None:
|
||||
comp, line = next(iter(G[b0][b1]))
|
||||
if comp != "Line":
|
||||
logger.warning("Unable to replace B2B `{}` expected a Line, but found a {}"
|
||||
.format(i, comp))
|
||||
logger.warning(
|
||||
"Unable to replace B2B `{}` expected a Line, but found a {}".format(
|
||||
i, comp
|
||||
)
|
||||
)
|
||||
continue
|
||||
|
||||
n.links.at[i, busattr] = b1
|
||||
n.links.at[i, 'p_nom'] = min(n.links.at[i, 'p_nom'], n.lines.at[line, 's_nom'])
|
||||
n.links.at[i, 'carrier'] = 'DC'
|
||||
n.links.at[i, 'underwater_fraction'] = 0.
|
||||
n.links.at[i, 'length'] = n.lines.at[line, 'length']
|
||||
n.links.at[i, "p_nom"] = min(
|
||||
n.links.at[i, "p_nom"], n.lines.at[line, "s_nom"]
|
||||
)
|
||||
n.links.at[i, "carrier"] = "DC"
|
||||
n.links.at[i, "underwater_fraction"] = 0.0
|
||||
n.links.at[i, "length"] = n.lines.at[line, "length"]
|
||||
|
||||
n.remove("Line", line)
|
||||
n.remove("Bus", b0)
|
||||
|
||||
logger.info("Replacing B2B converter `{}` together with bus `{}` and line `{}` by an HVDC tie-line {}-{}"
|
||||
.format(i, b0, line, linkcntry.at[i], buscntry.at[b1]))
|
||||
logger.info(
|
||||
"Replacing B2B converter `{}` together with bus `{}` and line `{}` by an HVDC tie-line {}-{}".format(
|
||||
i, b0, line, linkcntry.at[i], buscntry.at[b1]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def _set_links_underwater_fraction(n, offshore_shapes):
|
||||
if n.links.empty: return
|
||||
if n.links.empty:
|
||||
return
|
||||
|
||||
if not hasattr(n.links, 'geometry'):
|
||||
n.links['underwater_fraction'] = 0.
|
||||
if not hasattr(n.links, "geometry"):
|
||||
n.links["underwater_fraction"] = 0.0
|
||||
else:
|
||||
offshore_shape = gpd.read_file(offshore_shapes).unary_union
|
||||
links = gpd.GeoSeries(n.links.geometry.dropna().map(shapely.wkt.loads))
|
||||
n.links['underwater_fraction'] = links.intersection(offshore_shape).length / links.length
|
||||
n.links["underwater_fraction"] = (
|
||||
links.intersection(offshore_shape).length / links.length
|
||||
)
|
||||
|
||||
|
||||
def _adjust_capacities_of_under_construction_branches(n, config):
|
||||
lines_mode = config['lines'].get('under_construction', 'undef')
|
||||
if lines_mode == 'zero':
|
||||
n.lines.loc[n.lines.under_construction, 'num_parallel'] = 0.
|
||||
n.lines.loc[n.lines.under_construction, 's_nom'] = 0.
|
||||
elif lines_mode == 'remove':
|
||||
lines_mode = config["lines"].get("under_construction", "undef")
|
||||
if lines_mode == "zero":
|
||||
n.lines.loc[n.lines.under_construction, "num_parallel"] = 0.0
|
||||
n.lines.loc[n.lines.under_construction, "s_nom"] = 0.0
|
||||
elif lines_mode == "remove":
|
||||
n.mremove("Line", n.lines.index[n.lines.under_construction])
|
||||
elif lines_mode != 'keep':
|
||||
logger.warning("Unrecognized configuration for `lines: under_construction` = `{}`. Keeping under construction lines.")
|
||||
elif lines_mode != "keep":
|
||||
logger.warning(
|
||||
"Unrecognized configuration for `lines: under_construction` = `{}`. Keeping under construction lines."
|
||||
)
|
||||
|
||||
links_mode = config['links'].get('under_construction', 'undef')
|
||||
if links_mode == 'zero':
|
||||
n.links.loc[n.links.under_construction, "p_nom"] = 0.
|
||||
elif links_mode == 'remove':
|
||||
links_mode = config["links"].get("under_construction", "undef")
|
||||
if links_mode == "zero":
|
||||
n.links.loc[n.links.under_construction, "p_nom"] = 0.0
|
||||
elif links_mode == "remove":
|
||||
n.mremove("Link", n.links.index[n.links.under_construction])
|
||||
elif links_mode != 'keep':
|
||||
logger.warning("Unrecognized configuration for `links: under_construction` = `{}`. Keeping under construction links.")
|
||||
elif links_mode != "keep":
|
||||
logger.warning(
|
||||
"Unrecognized configuration for `links: under_construction` = `{}`. Keeping under construction links."
|
||||
)
|
||||
|
||||
if lines_mode == 'remove' or links_mode == 'remove':
|
||||
if lines_mode == "remove" or links_mode == "remove":
|
||||
# We might need to remove further unconnected components
|
||||
n = _remove_unconnected_components(n)
|
||||
|
||||
return n
|
||||
|
||||
|
||||
def base_network(eg_buses, eg_converters, eg_transformers, eg_lines, eg_links,
|
||||
links_p_nom, links_tyndp, europe_shape, country_shapes, offshore_shapes,
|
||||
parameter_corrections, config):
|
||||
def base_network(
|
||||
eg_buses,
|
||||
eg_converters,
|
||||
eg_transformers,
|
||||
eg_lines,
|
||||
eg_links,
|
||||
links_p_nom,
|
||||
links_tyndp,
|
||||
europe_shape,
|
||||
country_shapes,
|
||||
offshore_shapes,
|
||||
parameter_corrections,
|
||||
config,
|
||||
):
|
||||
|
||||
buses = _load_buses_from_eg(eg_buses, europe_shape, config['electricity'])
|
||||
buses = _load_buses_from_eg(eg_buses, europe_shape, config["electricity"])
|
||||
|
||||
links = _load_links_from_eg(buses, eg_links)
|
||||
if config['links'].get('include_tyndp'):
|
||||
if config["links"].get("include_tyndp"):
|
||||
buses, links = _add_links_from_tyndp(buses, links, links_tyndp, europe_shape)
|
||||
|
||||
converters = _load_converters_from_eg(buses, eg_converters)
|
||||
@ -560,9 +711,9 @@ def base_network(eg_buses, eg_converters, eg_transformers, eg_lines, eg_links,
|
||||
converters = _set_electrical_parameters_converters(converters, config)
|
||||
|
||||
n = pypsa.Network()
|
||||
n.name = 'PyPSA-Eur'
|
||||
n.name = "PyPSA-Eur"
|
||||
|
||||
n.set_snapshots(pd.date_range(freq='h', **config['snapshots']))
|
||||
n.set_snapshots(pd.date_range(freq="h", **config["snapshots"]))
|
||||
|
||||
n.import_components_from_dataframe(buses, "Bus")
|
||||
n.import_components_from_dataframe(lines, "Line")
|
||||
@ -586,15 +737,28 @@ def base_network(eg_buses, eg_converters, eg_transformers, eg_lines, eg_links,
|
||||
|
||||
return n
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('base_network')
|
||||
|
||||
snakemake = mock_snakemake("base_network")
|
||||
configure_logging(snakemake)
|
||||
|
||||
n = base_network(snakemake.input.eg_buses, snakemake.input.eg_converters, snakemake.input.eg_transformers, snakemake.input.eg_lines, snakemake.input.eg_links,
|
||||
snakemake.input.links_p_nom, snakemake.input.links_tyndp, snakemake.input.europe_shape, snakemake.input.country_shapes, snakemake.input.offshore_shapes,
|
||||
snakemake.input.parameter_corrections, snakemake.config)
|
||||
n = base_network(
|
||||
snakemake.input.eg_buses,
|
||||
snakemake.input.eg_converters,
|
||||
snakemake.input.eg_transformers,
|
||||
snakemake.input.eg_lines,
|
||||
snakemake.input.eg_links,
|
||||
snakemake.input.links_p_nom,
|
||||
snakemake.input.links_tyndp,
|
||||
snakemake.input.europe_shape,
|
||||
snakemake.input.country_shapes,
|
||||
snakemake.input.offshore_shapes,
|
||||
snakemake.input.parameter_corrections,
|
||||
snakemake.config,
|
||||
)
|
||||
|
||||
n.meta = snakemake.config
|
||||
n.export_to_netcdf(snakemake.output[0])
|
||||
|
@ -1,9 +1,11 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
"""
|
||||
Creates Voronoi shapes for each bus representing both onshore and offshore regions.
|
||||
Creates Voronoi shapes for each bus representing both onshore and offshore
|
||||
regions.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -38,19 +40,18 @@ Outputs
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging, REGION_COLS
|
||||
|
||||
import pypsa
|
||||
import os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
import geopandas as gpd
|
||||
from shapely.geometry import Polygon
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
from _helpers import REGION_COLS, configure_logging
|
||||
from scipy.spatial import Voronoi
|
||||
from shapely.geometry import Polygon
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -81,11 +82,19 @@ def voronoi_partition_pts(points, outline):
|
||||
|
||||
# to avoid any network positions outside all Voronoi cells, append
|
||||
# the corners of a rectangle framing these points
|
||||
vor = Voronoi(np.vstack((points,
|
||||
[[xmin-3.*xspan, ymin-3.*yspan],
|
||||
[xmin-3.*xspan, ymax+3.*yspan],
|
||||
[xmax+3.*xspan, ymin-3.*yspan],
|
||||
[xmax+3.*xspan, ymax+3.*yspan]])))
|
||||
vor = Voronoi(
|
||||
np.vstack(
|
||||
(
|
||||
points,
|
||||
[
|
||||
[xmin - 3.0 * xspan, ymin - 3.0 * yspan],
|
||||
[xmin - 3.0 * xspan, ymax + 3.0 * yspan],
|
||||
[xmax + 3.0 * xspan, ymin - 3.0 * yspan],
|
||||
[xmax + 3.0 * xspan, ymax + 3.0 * yspan],
|
||||
],
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
polygons = []
|
||||
for i in range(len(points)):
|
||||
@ -98,23 +107,27 @@ def voronoi_partition_pts(points, outline):
|
||||
|
||||
polygons.append(poly)
|
||||
|
||||
|
||||
return np.array(polygons, dtype=object)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('build_bus_regions')
|
||||
|
||||
snakemake = mock_snakemake("build_bus_regions")
|
||||
configure_logging(snakemake)
|
||||
|
||||
countries = snakemake.config['countries']
|
||||
countries = snakemake.config["countries"]
|
||||
|
||||
n = pypsa.Network(snakemake.input.base_network)
|
||||
|
||||
country_shapes = gpd.read_file(snakemake.input.country_shapes).set_index('name')['geometry']
|
||||
country_shapes = gpd.read_file(snakemake.input.country_shapes).set_index("name")[
|
||||
"geometry"
|
||||
]
|
||||
offshore_shapes = gpd.read_file(snakemake.input.offshore_shapes)
|
||||
offshore_shapes = offshore_shapes.reindex(columns=REGION_COLS).set_index('name')['geometry']
|
||||
offshore_shapes = offshore_shapes.reindex(columns=REGION_COLS).set_index("name")[
|
||||
"geometry"
|
||||
]
|
||||
|
||||
onshore_regions = []
|
||||
offshore_regions = []
|
||||
@ -124,29 +137,42 @@ if __name__ == "__main__":
|
||||
|
||||
onshore_shape = country_shapes[country]
|
||||
onshore_locs = n.buses.loc[c_b & n.buses.substation_lv, ["x", "y"]]
|
||||
onshore_regions.append(gpd.GeoDataFrame({
|
||||
'name': onshore_locs.index,
|
||||
'x': onshore_locs['x'],
|
||||
'y': onshore_locs['y'],
|
||||
'geometry': voronoi_partition_pts(onshore_locs.values, onshore_shape),
|
||||
'country': country
|
||||
}))
|
||||
onshore_regions.append(
|
||||
gpd.GeoDataFrame(
|
||||
{
|
||||
"name": onshore_locs.index,
|
||||
"x": onshore_locs["x"],
|
||||
"y": onshore_locs["y"],
|
||||
"geometry": voronoi_partition_pts(
|
||||
onshore_locs.values, onshore_shape
|
||||
),
|
||||
"country": country,
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
if country not in offshore_shapes.index: continue
|
||||
if country not in offshore_shapes.index:
|
||||
continue
|
||||
offshore_shape = offshore_shapes[country]
|
||||
offshore_locs = n.buses.loc[c_b & n.buses.substation_off, ["x", "y"]]
|
||||
offshore_regions_c = gpd.GeoDataFrame({
|
||||
'name': offshore_locs.index,
|
||||
'x': offshore_locs['x'],
|
||||
'y': offshore_locs['y'],
|
||||
'geometry': voronoi_partition_pts(offshore_locs.values, offshore_shape),
|
||||
'country': country
|
||||
})
|
||||
offshore_regions_c = gpd.GeoDataFrame(
|
||||
{
|
||||
"name": offshore_locs.index,
|
||||
"x": offshore_locs["x"],
|
||||
"y": offshore_locs["y"],
|
||||
"geometry": voronoi_partition_pts(offshore_locs.values, offshore_shape),
|
||||
"country": country,
|
||||
}
|
||||
)
|
||||
offshore_regions_c = offshore_regions_c.loc[offshore_regions_c.area > 1e-2]
|
||||
offshore_regions.append(offshore_regions_c)
|
||||
|
||||
pd.concat(onshore_regions, ignore_index=True).to_file(snakemake.output.regions_onshore)
|
||||
pd.concat(onshore_regions, ignore_index=True).to_file(
|
||||
snakemake.output.regions_onshore
|
||||
)
|
||||
if offshore_regions:
|
||||
pd.concat(offshore_regions, ignore_index=True).to_file(snakemake.output.regions_offshore)
|
||||
pd.concat(offshore_regions, ignore_index=True).to_file(
|
||||
snakemake.output.regions_offshore
|
||||
)
|
||||
else:
|
||||
offshore_shapes.to_frame().to_file(snakemake.output.regions_offshore)
|
||||
offshore_shapes.to_frame().to_file(snakemake.output.regions_offshore)
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
@ -88,43 +89,42 @@ A **SARAH-2 cutout** can be used to amend the fields ``temperature``, ``influx_t
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import atlite
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
from _helpers import configure_logging
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('build_cutout', cutout='europe-2013-era5')
|
||||
|
||||
snakemake = mock_snakemake("build_cutout", cutout="europe-2013-era5")
|
||||
configure_logging(snakemake)
|
||||
|
||||
cutout_params = snakemake.config['atlite']['cutouts'][snakemake.wildcards.cutout]
|
||||
cutout_params = snakemake.config["atlite"]["cutouts"][snakemake.wildcards.cutout]
|
||||
|
||||
snapshots = pd.date_range(freq='h', **snakemake.config['snapshots'])
|
||||
snapshots = pd.date_range(freq="h", **snakemake.config["snapshots"])
|
||||
time = [snapshots[0], snapshots[-1]]
|
||||
cutout_params['time'] = slice(*cutout_params.get('time', time))
|
||||
cutout_params["time"] = slice(*cutout_params.get("time", time))
|
||||
|
||||
if {'x', 'y', 'bounds'}.isdisjoint(cutout_params):
|
||||
if {"x", "y", "bounds"}.isdisjoint(cutout_params):
|
||||
# Determine the bounds from bus regions with a buffer of two grid cells
|
||||
onshore = gpd.read_file(snakemake.input.regions_onshore)
|
||||
offshore = gpd.read_file(snakemake.input.regions_offshore)
|
||||
regions = pd.concat([onshore, offshore])
|
||||
d = max(cutout_params.get('dx', 0.25), cutout_params.get('dy', 0.25))*2
|
||||
cutout_params['bounds'] = regions.total_bounds + [-d, -d, d, d]
|
||||
elif {'x', 'y'}.issubset(cutout_params):
|
||||
cutout_params['x'] = slice(*cutout_params['x'])
|
||||
cutout_params['y'] = slice(*cutout_params['y'])
|
||||
|
||||
regions = pd.concat([onshore, offshore])
|
||||
d = max(cutout_params.get("dx", 0.25), cutout_params.get("dy", 0.25)) * 2
|
||||
cutout_params["bounds"] = regions.total_bounds + [-d, -d, d, d]
|
||||
elif {"x", "y"}.issubset(cutout_params):
|
||||
cutout_params["x"] = slice(*cutout_params["x"])
|
||||
cutout_params["y"] = slice(*cutout_params["y"])
|
||||
|
||||
logging.info(f"Preparing cutout with parameters {cutout_params}.")
|
||||
features = cutout_params.pop('features', None)
|
||||
features = cutout_params.pop("features", None)
|
||||
cutout = atlite.Cutout(snakemake.output[0], **cutout_params)
|
||||
cutout.prepare(features=features)
|
||||
|
@ -1,4 +1,5 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
@ -60,51 +61,61 @@ Description
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
|
||||
import atlite
|
||||
import country_converter as coco
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
from _helpers import configure_logging
|
||||
|
||||
import country_converter as coco
|
||||
cc = coco.CountryConverter()
|
||||
|
||||
|
||||
def get_eia_annual_hydro_generation(fn, countries):
|
||||
|
||||
# in billion kWh/a = TWh/a
|
||||
df = pd.read_csv(fn, skiprows=2, index_col=1, na_values=[u' ','--']).iloc[1:, 1:]
|
||||
df = pd.read_csv(fn, skiprows=2, index_col=1, na_values=[" ", "--"]).iloc[1:, 1:]
|
||||
df.index = df.index.str.strip()
|
||||
|
||||
former_countries = {
|
||||
"Former Czechoslovakia": dict(
|
||||
countries=["Czech Republic", "Slovakia"],
|
||||
start=1980, end=1992),
|
||||
countries=["Czech Republic", "Slovakia"], start=1980, end=1992
|
||||
),
|
||||
"Former Serbia and Montenegro": dict(
|
||||
countries=["Serbia", "Montenegro"],
|
||||
start=1992, end=2005),
|
||||
countries=["Serbia", "Montenegro"], start=1992, end=2005
|
||||
),
|
||||
"Former Yugoslavia": dict(
|
||||
countries=["Slovenia", "Croatia", "Bosnia and Herzegovina", "Serbia", "Montenegro", "North Macedonia"],
|
||||
start=1980, end=1991),
|
||||
countries=[
|
||||
"Slovenia",
|
||||
"Croatia",
|
||||
"Bosnia and Herzegovina",
|
||||
"Serbia",
|
||||
"Montenegro",
|
||||
"North Macedonia",
|
||||
],
|
||||
start=1980,
|
||||
end=1991,
|
||||
),
|
||||
}
|
||||
|
||||
for k, v in former_countries.items():
|
||||
period = [str(i) for i in range(v["start"], v["end"]+1)]
|
||||
ratio = df.loc[v['countries']].T.dropna().sum()
|
||||
period = [str(i) for i in range(v["start"], v["end"] + 1)]
|
||||
ratio = df.loc[v["countries"]].T.dropna().sum()
|
||||
ratio /= ratio.sum()
|
||||
for country in v['countries']:
|
||||
for country in v["countries"]:
|
||||
df.loc[country, period] = df.loc[k, period] * ratio[country]
|
||||
|
||||
baltic_states = ["Latvia", "Estonia", "Lithuania"]
|
||||
df.loc[baltic_states] = df.loc[baltic_states].T.fillna(df.loc[baltic_states].mean(axis=1)).T
|
||||
df.loc[baltic_states] = (
|
||||
df.loc[baltic_states].T.fillna(df.loc[baltic_states].mean(axis=1)).T
|
||||
)
|
||||
|
||||
df.loc["Germany"] = df.filter(like='Germany', axis=0).sum()
|
||||
df.loc["Serbia"] += df.loc["Kosovo"].fillna(0.)
|
||||
df = df.loc[~df.index.str.contains('Former')]
|
||||
df.loc["Germany"] = df.filter(like="Germany", axis=0).sum()
|
||||
df.loc["Serbia"] += df.loc["Kosovo"].fillna(0.0)
|
||||
df = df.loc[~df.index.str.contains("Former")]
|
||||
df.drop(["Europe", "Germany, West", "Germany, East", "Kosovo"], inplace=True)
|
||||
|
||||
df.index = cc.convert(df.index, to='iso2')
|
||||
df.index.name = 'countries'
|
||||
df.index = cc.convert(df.index, to="iso2")
|
||||
df.index.name = "countries"
|
||||
|
||||
df = df.T[countries] * 1e6 # in MWh/a
|
||||
|
||||
@ -114,28 +125,34 @@ def get_eia_annual_hydro_generation(fn, countries):
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('build_hydro_profile')
|
||||
|
||||
snakemake = mock_snakemake("build_hydro_profile")
|
||||
configure_logging(snakemake)
|
||||
|
||||
config_hydro = snakemake.config['renewable']['hydro']
|
||||
config_hydro = snakemake.config["renewable"]["hydro"]
|
||||
cutout = atlite.Cutout(snakemake.input.cutout)
|
||||
|
||||
countries = snakemake.config['countries']
|
||||
country_shapes = (gpd.read_file(snakemake.input.country_shapes)
|
||||
.set_index('name')['geometry'].reindex(countries))
|
||||
country_shapes.index.name = 'countries'
|
||||
countries = snakemake.config["countries"]
|
||||
country_shapes = (
|
||||
gpd.read_file(snakemake.input.country_shapes)
|
||||
.set_index("name")["geometry"]
|
||||
.reindex(countries)
|
||||
)
|
||||
country_shapes.index.name = "countries"
|
||||
|
||||
fn = snakemake.input.eia_hydro_generation
|
||||
eia_stats = get_eia_annual_hydro_generation(fn, countries)
|
||||
|
||||
inflow = cutout.runoff(shapes=country_shapes,
|
||||
smooth=True,
|
||||
lower_threshold_quantile=True,
|
||||
normalize_using_yearly=eia_stats)
|
||||
|
||||
if 'clip_min_inflow' in config_hydro:
|
||||
inflow = inflow.where(inflow > config_hydro['clip_min_inflow'], 0)
|
||||
inflow = cutout.runoff(
|
||||
shapes=country_shapes,
|
||||
smooth=True,
|
||||
lower_threshold_quantile=True,
|
||||
normalize_using_yearly=eia_stats,
|
||||
)
|
||||
|
||||
if "clip_min_inflow" in config_hydro:
|
||||
inflow = inflow.where(inflow > config_hydro["clip_min_inflow"], 0)
|
||||
|
||||
inflow.to_netcdf(snakemake.output[0])
|
||||
|
@ -1,10 +1,15 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2020 @JanFrederickUnnewehr, The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
"""
|
||||
|
||||
This rule downloads the load data from `Open Power System Data Time series <https://data.open-power-system-data.org/time_series/>`_. For all countries in the network, the per country load timeseries with suffix ``_load_actual_entsoe_transparency`` are extracted from the dataset. After filling small gaps linearly and large gaps by copying time-slice of a given period, the load data is exported to a ``.csv`` file.
|
||||
This rule downloads the load data from `Open Power System Data Time series
|
||||
<https://data.open-power-system-data.org/time_series/>`_. For all countries in
|
||||
the network, the per country load timeseries with suffix
|
||||
``_load_actual_entsoe_transparency`` are extracted from the dataset. After
|
||||
filling small gaps linearly and large gaps by copying time-slice of a given
|
||||
period, the load data is exported to a ``.csv`` file.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -32,17 +37,15 @@ Outputs
|
||||
-------
|
||||
|
||||
- ``resources/load.csv``:
|
||||
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
from _helpers import configure_logging
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
logger = logging.getLogger(__name__)
|
||||
import dateutil
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from _helpers import configure_logging
|
||||
from pandas import Timedelta as Delta
|
||||
|
||||
|
||||
@ -71,23 +74,29 @@ def load_timeseries(fn, years, countries, powerstatistics=True):
|
||||
"""
|
||||
logger.info(f"Retrieving load data from '{fn}'.")
|
||||
|
||||
pattern = 'power_statistics' if powerstatistics else 'transparency'
|
||||
pattern = f'_load_actual_entsoe_{pattern}'
|
||||
rename = lambda s: s[:-len(pattern)]
|
||||
pattern = "power_statistics" if powerstatistics else "transparency"
|
||||
pattern = f"_load_actual_entsoe_{pattern}"
|
||||
rename = lambda s: s[: -len(pattern)]
|
||||
date_parser = lambda x: dateutil.parser.parse(x, ignoretz=True)
|
||||
return (pd.read_csv(fn, index_col=0, parse_dates=[0], date_parser=date_parser)
|
||||
.filter(like=pattern)
|
||||
.rename(columns=rename)
|
||||
.dropna(how="all", axis=0)
|
||||
.rename(columns={'GB_UKM' : 'GB'})
|
||||
.filter(items=countries)
|
||||
.loc[years])
|
||||
return (
|
||||
pd.read_csv(fn, index_col=0, parse_dates=[0], date_parser=date_parser)
|
||||
.filter(like=pattern)
|
||||
.rename(columns=rename)
|
||||
.dropna(how="all", axis=0)
|
||||
.rename(columns={"GB_UKM": "GB"})
|
||||
.filter(items=countries)
|
||||
.loc[years]
|
||||
)
|
||||
|
||||
|
||||
def consecutive_nans(ds):
|
||||
return (ds.isnull().astype(int)
|
||||
.groupby(ds.notnull().astype(int).cumsum()[ds.isnull()])
|
||||
.transform('sum').fillna(0))
|
||||
return (
|
||||
ds.isnull()
|
||||
.astype(int)
|
||||
.groupby(ds.notnull().astype(int).cumsum()[ds.isnull()])
|
||||
.transform("sum")
|
||||
.fillna(0)
|
||||
)
|
||||
|
||||
|
||||
def fill_large_gaps(ds, shift):
|
||||
@ -97,140 +106,200 @@ def fill_large_gaps(ds, shift):
|
||||
This function fills gaps ragning from 3 to 168 hours (one week).
|
||||
"""
|
||||
shift = Delta(shift)
|
||||
nhours = shift / np.timedelta64(1, 'h')
|
||||
nhours = shift / np.timedelta64(1, "h")
|
||||
if (consecutive_nans(ds) > nhours).any():
|
||||
logger.warning('There exist gaps larger then the time shift used for '
|
||||
'copying time slices.')
|
||||
logger.warning(
|
||||
"There exist gaps larger then the time shift used for "
|
||||
"copying time slices."
|
||||
)
|
||||
time_shift = pd.Series(ds.values, ds.index + shift)
|
||||
return ds.where(ds.notnull(), time_shift.reindex_like(ds))
|
||||
|
||||
|
||||
def nan_statistics(df):
|
||||
def max_consecutive_nans(ds):
|
||||
return (ds.isnull().astype(int)
|
||||
.groupby(ds.notnull().astype(int).cumsum())
|
||||
.sum().max())
|
||||
return (
|
||||
ds.isnull()
|
||||
.astype(int)
|
||||
.groupby(ds.notnull().astype(int).cumsum())
|
||||
.sum()
|
||||
.max()
|
||||
)
|
||||
|
||||
consecutive = df.apply(max_consecutive_nans)
|
||||
total = df.isnull().sum()
|
||||
max_total_per_month = df.isnull().resample('m').sum().max()
|
||||
return pd.concat([total, consecutive, max_total_per_month],
|
||||
keys=['total', 'consecutive', 'max_total_per_month'], axis=1)
|
||||
max_total_per_month = df.isnull().resample("m").sum().max()
|
||||
return pd.concat(
|
||||
[total, consecutive, max_total_per_month],
|
||||
keys=["total", "consecutive", "max_total_per_month"],
|
||||
axis=1,
|
||||
)
|
||||
|
||||
|
||||
def copy_timeslice(load, cntry, start, stop, delta, fn_load=None):
|
||||
start = pd.Timestamp(start)
|
||||
stop = pd.Timestamp(stop)
|
||||
if (start in load.index and stop in load.index):
|
||||
if start-delta in load.index and stop-delta in load.index and cntry in load:
|
||||
load.loc[start:stop, cntry] = load.loc[start-delta:stop-delta, cntry].values
|
||||
if start in load.index and stop in load.index:
|
||||
if start - delta in load.index and stop - delta in load.index and cntry in load:
|
||||
load.loc[start:stop, cntry] = load.loc[
|
||||
start - delta : stop - delta, cntry
|
||||
].values
|
||||
elif fn_load is not None:
|
||||
duration = pd.date_range(freq='h', start=start-delta, end=stop-delta)
|
||||
duration = pd.date_range(freq="h", start=start - delta, end=stop - delta)
|
||||
load_raw = load_timeseries(fn_load, duration, [cntry], powerstatistics)
|
||||
load.loc[start:stop, cntry] = load_raw.loc[start-delta:stop-delta, cntry].values
|
||||
load.loc[start:stop, cntry] = load_raw.loc[
|
||||
start - delta : stop - delta, cntry
|
||||
].values
|
||||
|
||||
|
||||
def manual_adjustment(load, fn_load, powerstatistics):
|
||||
"""
|
||||
Adjust gaps manual for load data from OPSD time-series package.
|
||||
|
||||
1. For the ENTSOE power statistics load data (if powerstatistics is True)
|
||||
1. For the ENTSOE power statistics load data (if powerstatistics is True)
|
||||
|
||||
Kosovo (KV) and Albania (AL) do not exist in the data set. Kosovo gets the
|
||||
same load curve as Serbia and Albania the same as Macdedonia, both scaled
|
||||
by the corresponding ratio of total energy consumptions reported by
|
||||
IEA Data browser [0] for the year 2013.
|
||||
Kosovo (KV) and Albania (AL) do not exist in the data set. Kosovo gets the
|
||||
same load curve as Serbia and Albania the same as Macdedonia, both scaled
|
||||
by the corresponding ratio of total energy consumptions reported by
|
||||
IEA Data browser [0] for the year 2013.
|
||||
|
||||
2. For the ENTSOE transparency load data (if powerstatistics is False)
|
||||
2. For the ENTSOE transparency load data (if powerstatistics is False)
|
||||
|
||||
Albania (AL) and Macedonia (MK) do not exist in the data set. Both get the
|
||||
same load curve as Montenegro, scaled by the corresponding ratio of total energy
|
||||
consumptions reported by IEA Data browser [0] for the year 2016.
|
||||
Albania (AL) and Macedonia (MK) do not exist in the data set. Both get the
|
||||
same load curve as Montenegro, scaled by the corresponding ratio of total energy
|
||||
consumptions reported by IEA Data browser [0] for the year 2016.
|
||||
|
||||
[0] https://www.iea.org/data-and-statistics?country=WORLD&fuel=Electricity%20and%20heat&indicator=TotElecCons
|
||||
[0] https://www.iea.org/data-and-statistics?country=WORLD&fuel=Electricity%20and%20heat&indicator=TotElecCons
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
load : pd.DataFrame
|
||||
Load time-series with UTC timestamps x ISO-2 countries
|
||||
powerstatistics: bool
|
||||
Whether argument load comprises the electricity consumption data of
|
||||
the ENTSOE power statistics or of the ENTSOE transparency map
|
||||
load_fn: str
|
||||
File name or url location (file format .csv)
|
||||
Parameters
|
||||
----------
|
||||
load : pd.DataFrame
|
||||
Load time-series with UTC timestamps x ISO-2 countries
|
||||
powerstatistics: bool
|
||||
Whether argument load comprises the electricity consumption data of
|
||||
the ENTSOE power statistics or of the ENTSOE transparency map
|
||||
load_fn: str
|
||||
File name or url location (file format .csv)
|
||||
|
||||
Returns
|
||||
-------
|
||||
load : pd.DataFrame
|
||||
Manual adjusted and interpolated load time-series with UTC
|
||||
timestamps x ISO-2 countries
|
||||
Returns
|
||||
-------
|
||||
load : pd.DataFrame
|
||||
Manual adjusted and interpolated load time-series with UTC
|
||||
timestamps x ISO-2 countries
|
||||
"""
|
||||
|
||||
if powerstatistics:
|
||||
if 'MK' in load.columns:
|
||||
if 'AL' not in load.columns or load.AL.isnull().values.all():
|
||||
load['AL'] = load['MK'] * (4.1 / 7.4)
|
||||
if 'RS' in load.columns:
|
||||
if 'KV' not in load.columns or load.KV.isnull().values.all():
|
||||
load['KV'] = load['RS'] * (4.8 / 27.)
|
||||
if "MK" in load.columns:
|
||||
if "AL" not in load.columns or load.AL.isnull().values.all():
|
||||
load["AL"] = load["MK"] * (4.1 / 7.4)
|
||||
if "RS" in load.columns:
|
||||
if "KV" not in load.columns or load.KV.isnull().values.all():
|
||||
load["KV"] = load["RS"] * (4.8 / 27.0)
|
||||
|
||||
copy_timeslice(load, 'GR', '2015-08-11 21:00', '2015-08-15 20:00', Delta(weeks=1))
|
||||
copy_timeslice(load, 'AT', '2018-12-31 22:00', '2019-01-01 22:00', Delta(days=2))
|
||||
copy_timeslice(load, 'CH', '2010-01-19 07:00', '2010-01-19 22:00', Delta(days=1))
|
||||
copy_timeslice(load, 'CH', '2010-03-28 00:00', '2010-03-28 21:00', Delta(days=1))
|
||||
copy_timeslice(
|
||||
load, "GR", "2015-08-11 21:00", "2015-08-15 20:00", Delta(weeks=1)
|
||||
)
|
||||
copy_timeslice(
|
||||
load, "AT", "2018-12-31 22:00", "2019-01-01 22:00", Delta(days=2)
|
||||
)
|
||||
copy_timeslice(
|
||||
load, "CH", "2010-01-19 07:00", "2010-01-19 22:00", Delta(days=1)
|
||||
)
|
||||
copy_timeslice(
|
||||
load, "CH", "2010-03-28 00:00", "2010-03-28 21:00", Delta(days=1)
|
||||
)
|
||||
# is a WE, so take WE before
|
||||
copy_timeslice(load, 'CH', '2010-10-08 13:00', '2010-10-10 21:00', Delta(weeks=1))
|
||||
copy_timeslice(load, 'CH', '2010-11-04 04:00', '2010-11-04 22:00', Delta(days=1))
|
||||
copy_timeslice(load, 'NO', '2010-12-09 11:00', '2010-12-09 18:00', Delta(days=1))
|
||||
copy_timeslice(
|
||||
load, "CH", "2010-10-08 13:00", "2010-10-10 21:00", Delta(weeks=1)
|
||||
)
|
||||
copy_timeslice(
|
||||
load, "CH", "2010-11-04 04:00", "2010-11-04 22:00", Delta(days=1)
|
||||
)
|
||||
copy_timeslice(
|
||||
load, "NO", "2010-12-09 11:00", "2010-12-09 18:00", Delta(days=1)
|
||||
)
|
||||
# whole january missing
|
||||
copy_timeslice(load, 'GB', '2010-01-01 00:00', '2010-01-31 23:00', Delta(days=-365), fn_load)
|
||||
copy_timeslice(
|
||||
load,
|
||||
"GB",
|
||||
"2010-01-01 00:00",
|
||||
"2010-01-31 23:00",
|
||||
Delta(days=-365),
|
||||
fn_load,
|
||||
)
|
||||
# 1.1. at midnight gets special treatment
|
||||
copy_timeslice(load, 'IE', '2016-01-01 00:00', '2016-01-01 01:00', Delta(days=-366), fn_load)
|
||||
copy_timeslice(load, 'PT', '2016-01-01 00:00', '2016-01-01 01:00', Delta(days=-366), fn_load)
|
||||
copy_timeslice(load, 'GB', '2016-01-01 00:00', '2016-01-01 01:00', Delta(days=-366), fn_load)
|
||||
copy_timeslice(
|
||||
load,
|
||||
"IE",
|
||||
"2016-01-01 00:00",
|
||||
"2016-01-01 01:00",
|
||||
Delta(days=-366),
|
||||
fn_load,
|
||||
)
|
||||
copy_timeslice(
|
||||
load,
|
||||
"PT",
|
||||
"2016-01-01 00:00",
|
||||
"2016-01-01 01:00",
|
||||
Delta(days=-366),
|
||||
fn_load,
|
||||
)
|
||||
copy_timeslice(
|
||||
load,
|
||||
"GB",
|
||||
"2016-01-01 00:00",
|
||||
"2016-01-01 01:00",
|
||||
Delta(days=-366),
|
||||
fn_load,
|
||||
)
|
||||
|
||||
else:
|
||||
if 'ME' in load:
|
||||
if 'AL' not in load and 'AL' in countries:
|
||||
load['AL'] = load.ME * (5.7/2.9)
|
||||
if 'MK' not in load and 'MK' in countries:
|
||||
load['MK'] = load.ME * (6.7/2.9)
|
||||
copy_timeslice(load, 'BG', '2018-10-27 21:00', '2018-10-28 22:00', Delta(weeks=1))
|
||||
if "ME" in load:
|
||||
if "AL" not in load and "AL" in countries:
|
||||
load["AL"] = load.ME * (5.7 / 2.9)
|
||||
if "MK" not in load and "MK" in countries:
|
||||
load["MK"] = load.ME * (6.7 / 2.9)
|
||||
copy_timeslice(
|
||||
load, "BG", "2018-10-27 21:00", "2018-10-28 22:00", Delta(weeks=1)
|
||||
)
|
||||
|
||||
return load
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('build_load_data')
|
||||
|
||||
snakemake = mock_snakemake("build_load_data")
|
||||
|
||||
configure_logging(snakemake)
|
||||
|
||||
powerstatistics = snakemake.config['load']['power_statistics']
|
||||
interpolate_limit = snakemake.config['load']['interpolate_limit']
|
||||
countries = snakemake.config['countries']
|
||||
snapshots = pd.date_range(freq='h', **snakemake.config['snapshots'])
|
||||
powerstatistics = snakemake.config["load"]["power_statistics"]
|
||||
interpolate_limit = snakemake.config["load"]["interpolate_limit"]
|
||||
countries = snakemake.config["countries"]
|
||||
snapshots = pd.date_range(freq="h", **snakemake.config["snapshots"])
|
||||
years = slice(snapshots[0], snapshots[-1])
|
||||
time_shift = snakemake.config['load']['time_shift_for_large_gaps']
|
||||
time_shift = snakemake.config["load"]["time_shift_for_large_gaps"]
|
||||
|
||||
load = load_timeseries(snakemake.input[0], years, countries, powerstatistics)
|
||||
|
||||
if snakemake.config['load']['manual_adjustments']:
|
||||
if snakemake.config["load"]["manual_adjustments"]:
|
||||
load = manual_adjustment(load, snakemake.input[0], powerstatistics)
|
||||
|
||||
logger.info(f"Linearly interpolate gaps of size {interpolate_limit} and less.")
|
||||
load = load.interpolate(method='linear', limit=interpolate_limit)
|
||||
load = load.interpolate(method="linear", limit=interpolate_limit)
|
||||
|
||||
logger.info("Filling larger gaps by copying time-slices of period "
|
||||
f"'{time_shift}'.")
|
||||
logger.info(
|
||||
"Filling larger gaps by copying time-slices of period " f"'{time_shift}'."
|
||||
)
|
||||
load = load.apply(fill_large_gaps, shift=time_shift)
|
||||
|
||||
assert not load.isna().any().any(), (
|
||||
'Load data contains nans. Adjust the parameters '
|
||||
'`time_shift_for_large_gaps` or modify the `manual_adjustment` function '
|
||||
'for implementing the needed load data modifications.')
|
||||
"Load data contains nans. Adjust the parameters "
|
||||
"`time_shift_for_large_gaps` or modify the `manual_adjustment` function "
|
||||
"for implementing the needed load data modifications."
|
||||
)
|
||||
|
||||
load.to_csv(snakemake.output[0])
|
||||
|
||||
|
@ -1,9 +1,12 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
"""
|
||||
Rasters the vector data of the `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas onto all cutout regions.
|
||||
Rasters the vector data of the `Natura 2000
|
||||
<https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas onto all
|
||||
cutout regions.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -36,15 +39,14 @@ Outputs
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
|
||||
import atlite
|
||||
import geopandas as gpd
|
||||
import rasterio as rio
|
||||
from _helpers import configure_logging
|
||||
from rasterio.features import geometry_mask
|
||||
from rasterio.warp import transform_bounds
|
||||
|
||||
@ -56,11 +58,11 @@ def determine_cutout_xXyY(cutout_name):
|
||||
assert cutout.crs.to_epsg() == 4326
|
||||
x, X, y, Y = cutout.extent
|
||||
dx, dy = cutout.dx, cutout.dy
|
||||
return [x - dx/2., X + dx/2., y - dy/2., Y + dy/2.]
|
||||
return [x - dx / 2.0, X + dx / 2.0, y - dy / 2.0, Y + dy / 2.0]
|
||||
|
||||
|
||||
def get_transform_and_shape(bounds, res):
|
||||
left, bottom = [(b // res)* res for b in bounds[:2]]
|
||||
left, bottom = [(b // res) * res for b in bounds[:2]]
|
||||
right, top = [(b // res + 1) * res for b in bounds[2:]]
|
||||
shape = int((top - bottom) // res), int((right - left) / res)
|
||||
transform = rio.Affine(res, 0, left, 0, -res, top)
|
||||
@ -68,9 +70,10 @@ def get_transform_and_shape(bounds, res):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('build_natura_raster')
|
||||
|
||||
snakemake = mock_snakemake("build_natura_raster")
|
||||
configure_logging(snakemake)
|
||||
|
||||
cutouts = snakemake.input.cutouts
|
||||
@ -83,7 +86,16 @@ if __name__ == "__main__":
|
||||
raster = ~geometry_mask(shapes.geometry, out_shape[::-1], transform)
|
||||
raster = raster.astype(rio.uint8)
|
||||
|
||||
with rio.open(snakemake.output[0], 'w', driver='GTiff', dtype=rio.uint8,
|
||||
count=1, transform=transform, crs=3035, compress='lzw',
|
||||
width=raster.shape[1], height=raster.shape[0]) as dst:
|
||||
with rio.open(
|
||||
snakemake.output[0],
|
||||
"w",
|
||||
driver="GTiff",
|
||||
dtype=rio.uint8,
|
||||
count=1,
|
||||
transform=transform,
|
||||
crs=3035,
|
||||
compress="lzw",
|
||||
width=raster.shape[1],
|
||||
height=raster.shape[0],
|
||||
) as dst:
|
||||
dst.write(raster, indexes=1)
|
||||
|
@ -1,10 +1,15 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# coding: utf-8
|
||||
"""
|
||||
Retrieves conventional powerplant capacities and locations from `powerplantmatching <https://github.com/FRESNA/powerplantmatching>`_, assigns these to buses and creates a ``.csv`` file. It is possible to amend the powerplant database with custom entries provided in ``data/custom_powerplants.csv``.
|
||||
Retrieves conventional powerplant capacities and locations from
|
||||
`powerplantmatching <https://github.com/FRESNA/powerplantmatching>`_, assigns
|
||||
these to buses and creates a ``.csv`` file. It is possible to amend the
|
||||
powerplant database with custom entries provided in
|
||||
``data/custom_powerplants.csv``.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -68,16 +73,14 @@ The configuration options ``electricity: powerplants_filter`` and ``electricity:
|
||||
|
||||
powerplants_filter: Country not in ['Germany'] and YearCommissioned <= 2015
|
||||
custom_powerplants: YearCommissioned <= 2015
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
|
||||
import pypsa
|
||||
import powerplantmatching as pm
|
||||
import pandas as pd
|
||||
|
||||
import powerplantmatching as pm
|
||||
import pypsa
|
||||
from _helpers import configure_logging
|
||||
from powerplantmatching.export import map_country_bus
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -86,70 +89,78 @@ logger = logging.getLogger(__name__)
|
||||
def add_custom_powerplants(ppl, custom_powerplants, custom_ppl_query=False):
|
||||
if not custom_ppl_query:
|
||||
return ppl
|
||||
add_ppls = pd.read_csv(custom_powerplants, index_col=0, dtype={'bus': 'str'})
|
||||
add_ppls = pd.read_csv(custom_powerplants, index_col=0, dtype={"bus": "str"})
|
||||
if isinstance(custom_ppl_query, str):
|
||||
add_ppls.query(custom_ppl_query, inplace=True)
|
||||
return pd.concat([ppl, add_ppls], sort=False, ignore_index=True, verify_integrity=True)
|
||||
return pd.concat(
|
||||
[ppl, add_ppls], sort=False, ignore_index=True, verify_integrity=True
|
||||
)
|
||||
|
||||
|
||||
def replace_natural_gas_technology(df):
|
||||
mapping = {'Steam Turbine': 'OCGT', "Combustion Engine": "OCGT"}
|
||||
tech = df.Technology.replace(mapping).fillna('OCGT')
|
||||
return df.Technology.where(df.Fueltype != 'Natural Gas', tech)
|
||||
mapping = {"Steam Turbine": "OCGT", "Combustion Engine": "OCGT"}
|
||||
tech = df.Technology.replace(mapping).fillna("OCGT")
|
||||
return df.Technology.where(df.Fueltype != "Natural Gas", tech)
|
||||
|
||||
|
||||
def replace_natural_gas_fueltype(df):
|
||||
return df.Fueltype.where(df.Fueltype != 'Natural Gas', df.Technology)
|
||||
|
||||
def replace_natural_gas_fueltype(df):
|
||||
return df.Fueltype.where(df.Fueltype != "Natural Gas", df.Technology)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('build_powerplants')
|
||||
|
||||
snakemake = mock_snakemake("build_powerplants")
|
||||
configure_logging(snakemake)
|
||||
|
||||
n = pypsa.Network(snakemake.input.base_network)
|
||||
countries = n.buses.country.unique()
|
||||
|
||||
|
||||
ppl = (pm.powerplants(from_url=True)
|
||||
.powerplant.fill_missing_decommissioning_years()
|
||||
.powerplant.convert_country_to_alpha2()
|
||||
.query('Fueltype not in ["Solar", "Wind"] and Country in @countries')
|
||||
.assign(Technology=replace_natural_gas_technology)
|
||||
.assign(Fueltype=replace_natural_gas_fueltype))
|
||||
ppl = (
|
||||
pm.powerplants(from_url=True)
|
||||
.powerplant.fill_missing_decommissioning_years()
|
||||
.powerplant.convert_country_to_alpha2()
|
||||
.query('Fueltype not in ["Solar", "Wind"] and Country in @countries')
|
||||
.assign(Technology=replace_natural_gas_technology)
|
||||
.assign(Fueltype=replace_natural_gas_fueltype)
|
||||
)
|
||||
|
||||
# Correct bioenergy for countries where possible
|
||||
opsd = pm.data.OPSD_VRE().powerplant.convert_country_to_alpha2()
|
||||
opsd = opsd.query('Country in @countries and Fueltype == "Bioenergy"')
|
||||
opsd['Name'] = "Biomass"
|
||||
opsd["Name"] = "Biomass"
|
||||
available_countries = opsd.Country.unique()
|
||||
ppl = ppl.query('not (Country in @available_countries and Fueltype == "Bioenergy")')
|
||||
ppl = ppl.query('not (Country in @available_countries and Fueltype == "Bioenergy")')
|
||||
ppl = pd.concat([ppl, opsd])
|
||||
|
||||
ppl_query = snakemake.config['electricity']['powerplants_filter']
|
||||
|
||||
ppl_query = snakemake.config["electricity"]["powerplants_filter"]
|
||||
if isinstance(ppl_query, str):
|
||||
ppl.query(ppl_query, inplace=True)
|
||||
|
||||
# add carriers from own powerplant files:
|
||||
custom_ppl_query = snakemake.config['electricity']['custom_powerplants']
|
||||
ppl = add_custom_powerplants(ppl, snakemake.input.custom_powerplants, custom_ppl_query)
|
||||
custom_ppl_query = snakemake.config["electricity"]["custom_powerplants"]
|
||||
ppl = add_custom_powerplants(
|
||||
ppl, snakemake.input.custom_powerplants, custom_ppl_query
|
||||
)
|
||||
|
||||
countries_wo_ppl = set(countries)-set(ppl.Country.unique())
|
||||
countries_wo_ppl = set(countries) - set(ppl.Country.unique())
|
||||
if countries_wo_ppl:
|
||||
logging.warning(f"No powerplants known in: {', '.join(countries_wo_ppl)}")
|
||||
|
||||
substations = n.buses.query('substation_lv')
|
||||
substations = n.buses.query("substation_lv")
|
||||
ppl = map_country_bus(ppl, substations)
|
||||
|
||||
bus_null_b = ppl["bus"].isnull()
|
||||
if bus_null_b.any():
|
||||
logging.warning(f"Couldn't find close bus for {bus_null_b.sum()} powerplants. "
|
||||
"Removing them from the powerplants list.")
|
||||
logging.warning(
|
||||
f"Couldn't find close bus for {bus_null_b.sum()} powerplants. "
|
||||
"Removing them from the powerplants list."
|
||||
)
|
||||
ppl = ppl[~bus_null_b]
|
||||
|
||||
# TODO: This has to fixed in PPM, some powerplants are still duplicated
|
||||
cumcount = ppl.groupby(['bus', 'Fueltype']).cumcount() + 1
|
||||
# TODO: This has to fixed in PPM, some powerplants are still duplicated
|
||||
cumcount = ppl.groupby(["bus", "Fueltype"]).cumcount() + 1
|
||||
ppl.Name = ppl.Name.where(cumcount == 1, ppl.Name + " " + cumcount.astype(str))
|
||||
|
||||
ppl.reset_index(drop=True).to_csv(snakemake.output[0])
|
||||
|
@ -1,15 +1,17 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
"""Calculates for each network node the
|
||||
(i) installable capacity (based on land-use), (ii) the available generation time
|
||||
series (based on weather data), and (iii) the average distance from the node for
|
||||
onshore wind, AC-connected offshore wind, DC-connected offshore wind and solar
|
||||
PV generators. In addition for offshore wind it calculates the fraction of the
|
||||
grid connection which is under water.
|
||||
"""
|
||||
Calculates for each network node the (i) installable capacity (based on land-
|
||||
use), (ii) the available generation time series (based on weather data), and
|
||||
(iii) the average distance from the node for onshore wind, AC-connected
|
||||
offshore wind, DC-connected offshore wind and solar PV generators. In addition
|
||||
for offshore wind it calculates the fraction of the grid connection which is
|
||||
under water.
|
||||
|
||||
.. note:: Hydroelectric profiles are built in script :mod:`build_hydro_profiles`.
|
||||
|
||||
@ -177,132 +179,148 @@ node (`p_nom_max`): ``simple`` and ``conservative``:
|
||||
- ``conservative`` assertains the nodal limit by increasing capacities
|
||||
proportional to the layout until the limit of an individual grid cell is
|
||||
reached.
|
||||
|
||||
"""
|
||||
import progressbar as pgb
|
||||
import geopandas as gpd
|
||||
import xarray as xr
|
||||
import numpy as np
|
||||
import functools
|
||||
import atlite
|
||||
import logging
|
||||
import time
|
||||
|
||||
import atlite
|
||||
import geopandas as gpd
|
||||
import numpy as np
|
||||
import progressbar as pgb
|
||||
import xarray as xr
|
||||
from _helpers import configure_logging
|
||||
from dask.distributed import Client, LocalCluster
|
||||
from pypsa.geo import haversine
|
||||
from shapely.geometry import LineString
|
||||
import time
|
||||
from dask.distributed import Client, LocalCluster
|
||||
|
||||
from _helpers import configure_logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('build_renewable_profiles', technology='solar')
|
||||
|
||||
snakemake = mock_snakemake("build_renewable_profiles", technology="solar")
|
||||
configure_logging(snakemake)
|
||||
pgb.streams.wrap_stderr()
|
||||
|
||||
nprocesses = int(snakemake.threads)
|
||||
noprogress = not snakemake.config['atlite'].get('show_progress', False)
|
||||
config = snakemake.config['renewable'][snakemake.wildcards.technology]
|
||||
resource = config['resource'] # pv panel config / wind turbine config
|
||||
correction_factor = config.get('correction_factor', 1.)
|
||||
capacity_per_sqkm = config['capacity_per_sqkm']
|
||||
p_nom_max_meth = config.get('potential', 'conservative')
|
||||
noprogress = not snakemake.config["atlite"].get("show_progress", False)
|
||||
config = snakemake.config["renewable"][snakemake.wildcards.technology]
|
||||
resource = config["resource"] # pv panel config / wind turbine config
|
||||
correction_factor = config.get("correction_factor", 1.0)
|
||||
capacity_per_sqkm = config["capacity_per_sqkm"]
|
||||
p_nom_max_meth = config.get("potential", "conservative")
|
||||
|
||||
if isinstance(config.get("corine", {}), list):
|
||||
config['corine'] = {'grid_codes': config['corine']}
|
||||
config["corine"] = {"grid_codes": config["corine"]}
|
||||
|
||||
if correction_factor != 1.:
|
||||
logger.info(f'correction_factor is set as {correction_factor}')
|
||||
if correction_factor != 1.0:
|
||||
logger.info(f"correction_factor is set as {correction_factor}")
|
||||
|
||||
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
|
||||
client = Client(cluster, asynchronous=True)
|
||||
|
||||
cutout = atlite.Cutout(snakemake.input['cutout'])
|
||||
|
||||
cutout = atlite.Cutout(snakemake.input["cutout"])
|
||||
regions = gpd.read_file(snakemake.input.regions)
|
||||
assert not regions.empty, (f"List of regions in {snakemake.input.regions} is empty, please "
|
||||
"disable the corresponding renewable technology")
|
||||
assert not regions.empty, (
|
||||
f"List of regions in {snakemake.input.regions} is empty, please "
|
||||
"disable the corresponding renewable technology"
|
||||
)
|
||||
# do not pull up, set_index does not work if geo dataframe is empty
|
||||
regions = regions.set_index('name').rename_axis('bus')
|
||||
regions = regions.set_index("name").rename_axis("bus")
|
||||
buses = regions.index
|
||||
|
||||
res = config.get("excluder_resolution", 100)
|
||||
excluder = atlite.ExclusionContainer(crs=3035, res=res)
|
||||
|
||||
if config['natura']:
|
||||
if config["natura"]:
|
||||
excluder.add_raster(snakemake.input.natura, nodata=0, allow_no_overlap=True)
|
||||
|
||||
corine = config.get("corine", {})
|
||||
if "grid_codes" in corine:
|
||||
codes = corine["grid_codes"]
|
||||
excluder.add_raster(snakemake.input.corine, codes=codes, invert=True, crs=3035)
|
||||
if corine.get("distance", 0.) > 0.:
|
||||
if corine.get("distance", 0.0) > 0.0:
|
||||
codes = corine["distance_grid_codes"]
|
||||
buffer = corine["distance"]
|
||||
excluder.add_raster(snakemake.input.corine, codes=codes, buffer=buffer, crs=3035)
|
||||
|
||||
excluder.add_raster(
|
||||
snakemake.input.corine, codes=codes, buffer=buffer, crs=3035
|
||||
)
|
||||
|
||||
if "ship_threshold" in config:
|
||||
shipping_threshold=config["ship_threshold"] * 8760 * 6 # approximation because 6 years of data which is hourly collected
|
||||
shipping_threshold = (
|
||||
config["ship_threshold"] * 8760 * 6
|
||||
) # approximation because 6 years of data which is hourly collected
|
||||
func = functools.partial(np.less, shipping_threshold)
|
||||
excluder.add_raster(snakemake.input.ship_density, codes=func, crs=4326, allow_no_overlap=True)
|
||||
excluder.add_raster(
|
||||
snakemake.input.ship_density, codes=func, crs=4326, allow_no_overlap=True
|
||||
)
|
||||
|
||||
if "max_depth" in config:
|
||||
# lambda not supported for atlite + multiprocessing
|
||||
# use named function np.greater with partially frozen argument instead
|
||||
# and exclude areas where: -max_depth > grid cell depth
|
||||
func = functools.partial(np.greater,-config['max_depth'])
|
||||
func = functools.partial(np.greater, -config["max_depth"])
|
||||
excluder.add_raster(snakemake.input.gebco, codes=func, crs=4326, nodata=-1000)
|
||||
|
||||
if 'min_shore_distance' in config:
|
||||
buffer = config['min_shore_distance']
|
||||
if "min_shore_distance" in config:
|
||||
buffer = config["min_shore_distance"]
|
||||
excluder.add_geometry(snakemake.input.country_shapes, buffer=buffer)
|
||||
|
||||
if 'max_shore_distance' in config:
|
||||
buffer = config['max_shore_distance']
|
||||
excluder.add_geometry(snakemake.input.country_shapes, buffer=buffer, invert=True)
|
||||
if "max_shore_distance" in config:
|
||||
buffer = config["max_shore_distance"]
|
||||
excluder.add_geometry(
|
||||
snakemake.input.country_shapes, buffer=buffer, invert=True
|
||||
)
|
||||
|
||||
kwargs = dict(nprocesses=nprocesses, disable_progressbar=noprogress)
|
||||
if noprogress:
|
||||
logger.info('Calculate landuse availabilities...')
|
||||
logger.info("Calculate landuse availabilities...")
|
||||
start = time.time()
|
||||
availability = cutout.availabilitymatrix(regions, excluder, **kwargs)
|
||||
duration = time.time() - start
|
||||
logger.info(f'Completed availability calculation ({duration:2.2f}s)')
|
||||
logger.info(f"Completed availability calculation ({duration:2.2f}s)")
|
||||
else:
|
||||
availability = cutout.availabilitymatrix(regions, excluder, **kwargs)
|
||||
|
||||
area = cutout.grid.to_crs(3035).area / 1e6
|
||||
area = xr.DataArray(area.values.reshape(cutout.shape),
|
||||
[cutout.coords['y'], cutout.coords['x']])
|
||||
area = xr.DataArray(
|
||||
area.values.reshape(cutout.shape), [cutout.coords["y"], cutout.coords["x"]]
|
||||
)
|
||||
|
||||
potential = capacity_per_sqkm * availability.sum('bus') * area
|
||||
func = getattr(cutout, resource.pop('method'))
|
||||
resource['dask_kwargs'] = {"scheduler": client}
|
||||
potential = capacity_per_sqkm * availability.sum("bus") * area
|
||||
func = getattr(cutout, resource.pop("method"))
|
||||
resource["dask_kwargs"] = {"scheduler": client}
|
||||
capacity_factor = correction_factor * func(capacity_factor=True, **resource)
|
||||
layout = capacity_factor * area * capacity_per_sqkm
|
||||
profile, capacities = func(matrix=availability.stack(spatial=['y','x']),
|
||||
layout=layout, index=buses,
|
||||
per_unit=True, return_capacity=True, **resource)
|
||||
profile, capacities = func(
|
||||
matrix=availability.stack(spatial=["y", "x"]),
|
||||
layout=layout,
|
||||
index=buses,
|
||||
per_unit=True,
|
||||
return_capacity=True,
|
||||
**resource,
|
||||
)
|
||||
|
||||
logger.info(f"Calculating maximal capacity per bus (method '{p_nom_max_meth}')")
|
||||
if p_nom_max_meth == 'simple':
|
||||
if p_nom_max_meth == "simple":
|
||||
p_nom_max = capacity_per_sqkm * availability @ area
|
||||
elif p_nom_max_meth == 'conservative':
|
||||
max_cap_factor = capacity_factor.where(availability!=0).max(['x', 'y'])
|
||||
elif p_nom_max_meth == "conservative":
|
||||
max_cap_factor = capacity_factor.where(availability != 0).max(["x", "y"])
|
||||
p_nom_max = capacities / max_cap_factor
|
||||
else:
|
||||
raise AssertionError('Config key `potential` should be one of "simple" '
|
||||
f'(default) or "conservative", not "{p_nom_max_meth}"')
|
||||
raise AssertionError(
|
||||
'Config key `potential` should be one of "simple" '
|
||||
f'(default) or "conservative", not "{p_nom_max_meth}"'
|
||||
)
|
||||
|
||||
logger.info("Calculate average distances.")
|
||||
layoutmatrix = (layout * availability).stack(spatial=["y", "x"])
|
||||
|
||||
|
||||
logger.info('Calculate average distances.')
|
||||
layoutmatrix = (layout * availability).stack(spatial=['y','x'])
|
||||
|
||||
coords = cutout.grid[['x', 'y']]
|
||||
bus_coords = regions[['x', 'y']]
|
||||
coords = cutout.grid[["x", "y"]]
|
||||
bus_coords = regions[["x", "y"]]
|
||||
|
||||
average_distance = []
|
||||
centre_of_mass = []
|
||||
@ -311,39 +329,45 @@ if __name__ == '__main__':
|
||||
nz_b = row != 0
|
||||
row = row[nz_b]
|
||||
co = coords[nz_b]
|
||||
distances = haversine(bus_coords.loc[bus], co)
|
||||
distances = haversine(bus_coords.loc[bus], co)
|
||||
average_distance.append((distances * (row / row.sum())).sum())
|
||||
centre_of_mass.append(co.values.T @ (row / row.sum()))
|
||||
|
||||
average_distance = xr.DataArray(average_distance, [buses])
|
||||
centre_of_mass = xr.DataArray(centre_of_mass, [buses, ('spatial', ['x', 'y'])])
|
||||
|
||||
|
||||
ds = xr.merge([(correction_factor * profile).rename('profile'),
|
||||
capacities.rename('weight'),
|
||||
p_nom_max.rename('p_nom_max'),
|
||||
potential.rename('potential'),
|
||||
average_distance.rename('average_distance')])
|
||||
centre_of_mass = xr.DataArray(centre_of_mass, [buses, ("spatial", ["x", "y"])])
|
||||
|
||||
ds = xr.merge(
|
||||
[
|
||||
(correction_factor * profile).rename("profile"),
|
||||
capacities.rename("weight"),
|
||||
p_nom_max.rename("p_nom_max"),
|
||||
potential.rename("potential"),
|
||||
average_distance.rename("average_distance"),
|
||||
]
|
||||
)
|
||||
|
||||
if snakemake.wildcards.technology.startswith("offwind"):
|
||||
logger.info('Calculate underwater fraction of connections.')
|
||||
offshore_shape = gpd.read_file(snakemake.input['offshore_shapes']).unary_union
|
||||
logger.info("Calculate underwater fraction of connections.")
|
||||
offshore_shape = gpd.read_file(snakemake.input["offshore_shapes"]).unary_union
|
||||
underwater_fraction = []
|
||||
for bus in buses:
|
||||
p = centre_of_mass.sel(bus=bus).data
|
||||
line = LineString([p, regions.loc[bus, ['x', 'y']]])
|
||||
frac = line.intersection(offshore_shape).length/line.length
|
||||
line = LineString([p, regions.loc[bus, ["x", "y"]]])
|
||||
frac = line.intersection(offshore_shape).length / line.length
|
||||
underwater_fraction.append(frac)
|
||||
|
||||
ds['underwater_fraction'] = xr.DataArray(underwater_fraction, [buses])
|
||||
ds["underwater_fraction"] = xr.DataArray(underwater_fraction, [buses])
|
||||
|
||||
# select only buses with some capacity and minimal capacity factor
|
||||
ds = ds.sel(bus=((ds['profile'].mean('time') > config.get('min_p_max_pu', 0.)) &
|
||||
(ds['p_nom_max'] > config.get('min_p_nom_max', 0.))))
|
||||
ds = ds.sel(
|
||||
bus=(
|
||||
(ds["profile"].mean("time") > config.get("min_p_max_pu", 0.0))
|
||||
& (ds["p_nom_max"] > config.get("min_p_nom_max", 0.0))
|
||||
)
|
||||
)
|
||||
|
||||
if 'clip_p_max_pu' in config:
|
||||
min_p_max_pu = config['clip_p_max_pu']
|
||||
ds['profile'] = ds['profile'].where(ds['profile'] >= min_p_max_pu, 0)
|
||||
if "clip_p_max_pu" in config:
|
||||
min_p_max_pu = config["clip_p_max_pu"]
|
||||
ds["profile"] = ds["profile"].where(ds["profile"] >= min_p_max_pu, 0)
|
||||
|
||||
ds.to_netcdf(snakemake.output.profile)
|
||||
|
@ -1,9 +1,12 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
"""
|
||||
Creates GIS shape files of the countries, exclusive economic zones and `NUTS3 <https://en.wikipedia.org/wiki/Nomenclature_of_Territorial_Units_for_Statistics>`_ areas.
|
||||
Creates GIS shape files of the countries, exclusive economic zones and `NUTS3 <
|
||||
https://en.wikipedia.org/wiki/Nomenclature_of_Territorial_Units_for_Statistics>
|
||||
`_ areas.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -64,22 +67,20 @@ Outputs
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
|
||||
import numpy as np
|
||||
from operator import attrgetter
|
||||
from functools import reduce
|
||||
from itertools import takewhile
|
||||
from operator import attrgetter
|
||||
|
||||
import pandas as pd
|
||||
import geopandas as gpd
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pycountry as pyc
|
||||
from _helpers import configure_logging
|
||||
from shapely.geometry import MultiPolygon, Polygon
|
||||
from shapely.ops import unary_union
|
||||
import pycountry as pyc
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -94,40 +95,58 @@ def _get_country(target, **keys):
|
||||
|
||||
def _simplify_polys(polys, minarea=0.1, tolerance=0.01, filterremote=True):
|
||||
if isinstance(polys, MultiPolygon):
|
||||
polys = sorted(polys.geoms, key=attrgetter('area'), reverse=True)
|
||||
polys = sorted(polys.geoms, key=attrgetter("area"), reverse=True)
|
||||
mainpoly = polys[0]
|
||||
mainlength = np.sqrt(mainpoly.area/(2.*np.pi))
|
||||
mainlength = np.sqrt(mainpoly.area / (2.0 * np.pi))
|
||||
if mainpoly.area > minarea:
|
||||
polys = MultiPolygon([p
|
||||
for p in takewhile(lambda p: p.area > minarea, polys)
|
||||
if not filterremote or (mainpoly.distance(p) < mainlength)])
|
||||
polys = MultiPolygon(
|
||||
[
|
||||
p
|
||||
for p in takewhile(lambda p: p.area > minarea, polys)
|
||||
if not filterremote or (mainpoly.distance(p) < mainlength)
|
||||
]
|
||||
)
|
||||
else:
|
||||
polys = mainpoly
|
||||
return polys.simplify(tolerance=tolerance)
|
||||
|
||||
|
||||
def countries(naturalearth, country_list):
|
||||
if 'RS' in country_list: country_list.append('KV')
|
||||
if "RS" in country_list:
|
||||
country_list.append("KV")
|
||||
|
||||
df = gpd.read_file(naturalearth)
|
||||
|
||||
# Names are a hassle in naturalearth, try several fields
|
||||
fieldnames = (df[x].where(lambda s: s!='-99') for x in ('ISO_A2', 'WB_A2', 'ADM0_A3'))
|
||||
df['name'] = reduce(lambda x,y: x.fillna(y), fieldnames, next(fieldnames)).str[0:2]
|
||||
fieldnames = (
|
||||
df[x].where(lambda s: s != "-99") for x in ("ISO_A2", "WB_A2", "ADM0_A3")
|
||||
)
|
||||
df["name"] = reduce(lambda x, y: x.fillna(y), fieldnames, next(fieldnames)).str[0:2]
|
||||
|
||||
df = df.loc[df.name.isin(country_list) & ((df['scalerank'] == 0) | (df['scalerank'] == 5))]
|
||||
s = df.set_index('name')['geometry'].map(_simplify_polys)
|
||||
if 'RS' in country_list: s['RS'] = s['RS'].union(s.pop('KV'))
|
||||
df = df.loc[
|
||||
df.name.isin(country_list) & ((df["scalerank"] == 0) | (df["scalerank"] == 5))
|
||||
]
|
||||
s = df.set_index("name")["geometry"].map(_simplify_polys)
|
||||
if "RS" in country_list:
|
||||
s["RS"] = s["RS"].union(s.pop("KV"))
|
||||
|
||||
return s
|
||||
|
||||
|
||||
def eez(country_shapes, eez, country_list):
|
||||
df = gpd.read_file(eez)
|
||||
df = df.loc[df['ISO_3digit'].isin([_get_country('alpha_3', alpha_2=c) for c in country_list])]
|
||||
df['name'] = df['ISO_3digit'].map(lambda c: _get_country('alpha_2', alpha_3=c))
|
||||
s = df.set_index('name').geometry.map(lambda s: _simplify_polys(s, filterremote=False))
|
||||
s = gpd.GeoSeries({k:v for k,v in s.iteritems() if v.distance(country_shapes[k]) < 1e-3})
|
||||
df = df.loc[
|
||||
df["ISO_3digit"].isin(
|
||||
[_get_country("alpha_3", alpha_2=c) for c in country_list]
|
||||
)
|
||||
]
|
||||
df["name"] = df["ISO_3digit"].map(lambda c: _get_country("alpha_2", alpha_3=c))
|
||||
s = df.set_index("name").geometry.map(
|
||||
lambda s: _simplify_polys(s, filterremote=False)
|
||||
)
|
||||
s = gpd.GeoSeries(
|
||||
{k: v for k, v in s.iteritems() if v.distance(country_shapes[k]) < 1e-3}
|
||||
)
|
||||
s = s.to_frame("geometry")
|
||||
s.index.name = "name"
|
||||
return s
|
||||
@ -140,84 +159,121 @@ def country_cover(country_shapes, eez_shapes=None):
|
||||
|
||||
europe_shape = unary_union(shapes)
|
||||
if isinstance(europe_shape, MultiPolygon):
|
||||
europe_shape = max(europe_shape, key=attrgetter('area'))
|
||||
europe_shape = max(europe_shape, key=attrgetter("area"))
|
||||
return Polygon(shell=europe_shape.exterior)
|
||||
|
||||
|
||||
def nuts3(country_shapes, nuts3, nuts3pop, nuts3gdp, ch_cantons, ch_popgdp):
|
||||
df = gpd.read_file(nuts3)
|
||||
df = df.loc[df['STAT_LEVL_'] == 3]
|
||||
df['geometry'] = df['geometry'].map(_simplify_polys)
|
||||
df = df.rename(columns={'NUTS_ID': 'id'})[['id', 'geometry']].set_index('id')
|
||||
df = df.loc[df["STAT_LEVL_"] == 3]
|
||||
df["geometry"] = df["geometry"].map(_simplify_polys)
|
||||
df = df.rename(columns={"NUTS_ID": "id"})[["id", "geometry"]].set_index("id")
|
||||
|
||||
pop = pd.read_table(nuts3pop, na_values=[':'], delimiter=' ?\t', engine='python')
|
||||
pop = (pop
|
||||
.set_index(pd.MultiIndex.from_tuples(pop.pop('unit,geo\\time').str.split(','))).loc['THS']
|
||||
.applymap(lambda x: pd.to_numeric(x, errors='coerce'))
|
||||
.fillna(method='bfill', axis=1))['2014']
|
||||
pop = pd.read_table(nuts3pop, na_values=[":"], delimiter=" ?\t", engine="python")
|
||||
pop = (
|
||||
pop.set_index(
|
||||
pd.MultiIndex.from_tuples(pop.pop("unit,geo\\time").str.split(","))
|
||||
)
|
||||
.loc["THS"]
|
||||
.applymap(lambda x: pd.to_numeric(x, errors="coerce"))
|
||||
.fillna(method="bfill", axis=1)
|
||||
)["2014"]
|
||||
|
||||
gdp = pd.read_table(nuts3gdp, na_values=[':'], delimiter=' ?\t', engine='python')
|
||||
gdp = (gdp
|
||||
.set_index(pd.MultiIndex.from_tuples(gdp.pop('unit,geo\\time').str.split(','))).loc['EUR_HAB']
|
||||
.applymap(lambda x: pd.to_numeric(x, errors='coerce'))
|
||||
.fillna(method='bfill', axis=1))['2014']
|
||||
gdp = pd.read_table(nuts3gdp, na_values=[":"], delimiter=" ?\t", engine="python")
|
||||
gdp = (
|
||||
gdp.set_index(
|
||||
pd.MultiIndex.from_tuples(gdp.pop("unit,geo\\time").str.split(","))
|
||||
)
|
||||
.loc["EUR_HAB"]
|
||||
.applymap(lambda x: pd.to_numeric(x, errors="coerce"))
|
||||
.fillna(method="bfill", axis=1)
|
||||
)["2014"]
|
||||
|
||||
cantons = pd.read_csv(ch_cantons)
|
||||
cantons = cantons.set_index(cantons['HASC'].str[3:])['NUTS']
|
||||
cantons = cantons.str.pad(5, side='right', fillchar='0')
|
||||
cantons = cantons.set_index(cantons["HASC"].str[3:])["NUTS"]
|
||||
cantons = cantons.str.pad(5, side="right", fillchar="0")
|
||||
|
||||
swiss = pd.read_excel(ch_popgdp, skiprows=3, index_col=0)
|
||||
swiss.columns = swiss.columns.to_series().map(cantons)
|
||||
|
||||
swiss_pop = pd.to_numeric(swiss.loc['Residents in 1000', 'CH040':])
|
||||
swiss_pop = pd.to_numeric(swiss.loc["Residents in 1000", "CH040":])
|
||||
pop = pd.concat([pop, swiss_pop])
|
||||
swiss_gdp = pd.to_numeric(swiss.loc['Gross domestic product per capita in Swiss francs', 'CH040':])
|
||||
swiss_gdp = pd.to_numeric(
|
||||
swiss.loc["Gross domestic product per capita in Swiss francs", "CH040":]
|
||||
)
|
||||
gdp = pd.concat([gdp, swiss_gdp])
|
||||
|
||||
df = df.join(pd.DataFrame(dict(pop=pop, gdp=gdp)))
|
||||
|
||||
df['country'] = df.index.to_series().str[:2].replace(dict(UK='GB', EL='GR'))
|
||||
df["country"] = df.index.to_series().str[:2].replace(dict(UK="GB", EL="GR"))
|
||||
|
||||
excludenuts = pd.Index(('FRA10', 'FRA20', 'FRA30', 'FRA40', 'FRA50',
|
||||
'PT200', 'PT300',
|
||||
'ES707', 'ES703', 'ES704','ES705', 'ES706', 'ES708', 'ES709',
|
||||
'FI2', 'FR9'))
|
||||
excludecountry = pd.Index(('MT', 'TR', 'LI', 'IS', 'CY', 'KV'))
|
||||
excludenuts = pd.Index(
|
||||
(
|
||||
"FRA10",
|
||||
"FRA20",
|
||||
"FRA30",
|
||||
"FRA40",
|
||||
"FRA50",
|
||||
"PT200",
|
||||
"PT300",
|
||||
"ES707",
|
||||
"ES703",
|
||||
"ES704",
|
||||
"ES705",
|
||||
"ES706",
|
||||
"ES708",
|
||||
"ES709",
|
||||
"FI2",
|
||||
"FR9",
|
||||
)
|
||||
)
|
||||
excludecountry = pd.Index(("MT", "TR", "LI", "IS", "CY", "KV"))
|
||||
|
||||
df = df.loc[df.index.difference(excludenuts)]
|
||||
df = df.loc[~df.country.isin(excludecountry)]
|
||||
|
||||
manual = gpd.GeoDataFrame(
|
||||
[['BA1', 'BA', 3871.],
|
||||
['RS1', 'RS', 7210.],
|
||||
['AL1', 'AL', 2893.]],
|
||||
columns=['NUTS_ID', 'country', 'pop']
|
||||
).set_index('NUTS_ID')
|
||||
manual['geometry'] = manual['country'].map(country_shapes)
|
||||
[["BA1", "BA", 3871.0], ["RS1", "RS", 7210.0], ["AL1", "AL", 2893.0]],
|
||||
columns=["NUTS_ID", "country", "pop"],
|
||||
).set_index("NUTS_ID")
|
||||
manual["geometry"] = manual["country"].map(country_shapes)
|
||||
manual = manual.dropna()
|
||||
|
||||
df = pd.concat([df, manual], sort=False)
|
||||
|
||||
df.loc['ME000', 'pop'] = 650.
|
||||
df.loc["ME000", "pop"] = 650.0
|
||||
|
||||
return df
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('build_shapes')
|
||||
|
||||
snakemake = mock_snakemake("build_shapes")
|
||||
configure_logging(snakemake)
|
||||
|
||||
country_shapes = countries(snakemake.input.naturalearth, snakemake.config['countries'])
|
||||
country_shapes = countries(
|
||||
snakemake.input.naturalearth, snakemake.config["countries"]
|
||||
)
|
||||
country_shapes.reset_index().to_file(snakemake.output.country_shapes)
|
||||
|
||||
offshore_shapes = eez(country_shapes, snakemake.input.eez, snakemake.config['countries'])
|
||||
offshore_shapes = eez(
|
||||
country_shapes, snakemake.input.eez, snakemake.config["countries"]
|
||||
)
|
||||
offshore_shapes.reset_index().to_file(snakemake.output.offshore_shapes)
|
||||
|
||||
europe_shape = gpd.GeoDataFrame(geometry=[country_cover(country_shapes, offshore_shapes.geometry)])
|
||||
europe_shape = gpd.GeoDataFrame(
|
||||
geometry=[country_cover(country_shapes, offshore_shapes.geometry)]
|
||||
)
|
||||
europe_shape.reset_index().to_file(snakemake.output.europe_shape)
|
||||
|
||||
nuts3_shapes = nuts3(country_shapes, snakemake.input.nuts3, snakemake.input.nuts3pop,
|
||||
snakemake.input.nuts3gdp, snakemake.input.ch_cantons, snakemake.input.ch_popgdp)
|
||||
nuts3_shapes = nuts3(
|
||||
country_shapes,
|
||||
snakemake.input.nuts3,
|
||||
snakemake.input.nuts3pop,
|
||||
snakemake.input.nuts3gdp,
|
||||
snakemake.input.ch_cantons,
|
||||
snakemake.input.ch_popgdp,
|
||||
)
|
||||
nuts3_shapes.reset_index().to_file(snakemake.output.nuts3_shapes)
|
||||
|
@ -1,9 +1,14 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
"""
|
||||
Transforms the global ship density data from https://datacatalog.worldbank.org/search/dataset/0037580/Global-Shipping-Traffic-Density to the size of the considered cutout. The global ship density raster is later used for the exclusion when calculating the offshore potentials.
|
||||
Transforms the global ship density data from
|
||||
https://datacatalog.worldbank.org/search/dataset/0037580/Global-Shipping-
|
||||
Traffic-Density to the size of the considered cutout. The global ship density
|
||||
raster is later used for the exclusion when calculating the offshore
|
||||
potentials.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -30,23 +35,23 @@ Outputs
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
import os
|
||||
import zipfile
|
||||
|
||||
import xarray as xr
|
||||
from _helpers import configure_logging
|
||||
from build_natura_raster import determine_cutout_xXyY
|
||||
|
||||
import zipfile
|
||||
import xarray as xr
|
||||
import os
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('build_ship_raster')
|
||||
|
||||
snakemake = mock_snakemake("build_ship_raster")
|
||||
configure_logging(snakemake)
|
||||
|
||||
cutouts = snakemake.input.cutouts
|
||||
@ -55,7 +60,9 @@ if __name__ == "__main__":
|
||||
with zipfile.ZipFile(snakemake.input.ship_density) as zip_f:
|
||||
zip_f.extract("shipdensity_global.tif")
|
||||
with xr.open_rasterio("shipdensity_global.tif") as ship_density:
|
||||
ship_density = ship_density.drop(["band"]).sel(x=slice(min(xs),max(Xs)), y=slice(max(Ys),min(ys)))
|
||||
ship_density = ship_density.drop(["band"]).sel(
|
||||
x=slice(min(xs), max(Xs)), y=slice(max(Ys), min(ys))
|
||||
)
|
||||
ship_density.to_netcdf(snakemake.output[0])
|
||||
|
||||
os.remove("shipdensity_global.tif")
|
||||
|
||||
os.remove("shipdensity_global.tif")
|
||||
|
@ -1,10 +1,12 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# coding: utf-8
|
||||
"""
|
||||
Creates networks clustered to ``{cluster}`` number of zones with aggregated buses, generators and transmission corridors.
|
||||
Creates networks clustered to ``{cluster}`` number of zones with aggregated
|
||||
buses, generators and transmission corridors.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -118,28 +120,28 @@ Exemplary unsolved network clustered to 37 nodes:
|
||||
.. image:: ../img/elec_s_37.png
|
||||
:scale: 40 %
|
||||
:align: center
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging, update_p_nom_max, get_aggregation_strategies
|
||||
|
||||
import pypsa
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import geopandas as gpd
|
||||
import pyomo.environ as po
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
|
||||
import warnings
|
||||
from functools import reduce
|
||||
|
||||
from pypsa.networkclustering import (busmap_by_kmeans, busmap_by_hac,
|
||||
busmap_by_greedy_modularity, get_clustering_from_busmap)
|
||||
import geopandas as gpd
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyomo.environ as po
|
||||
import pypsa
|
||||
import seaborn as sns
|
||||
from _helpers import configure_logging, get_aggregation_strategies, update_p_nom_max
|
||||
from pypsa.networkclustering import (
|
||||
busmap_by_greedy_modularity,
|
||||
busmap_by_hac,
|
||||
busmap_by_kmeans,
|
||||
get_clustering_from_busmap,
|
||||
)
|
||||
|
||||
import warnings
|
||||
warnings.filterwarnings(action='ignore', category=UserWarning)
|
||||
warnings.filterwarnings(action="ignore", category=UserWarning)
|
||||
|
||||
from add_electricity import load_costs
|
||||
|
||||
@ -148,19 +150,21 @@ idx = pd.IndexSlice
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def normed(x): return (x/x.sum()).fillna(0.)
|
||||
def normed(x):
|
||||
return (x / x.sum()).fillna(0.0)
|
||||
|
||||
|
||||
def weighting_for_country(n, x):
|
||||
conv_carriers = {'OCGT','CCGT','PHS', 'hydro'}
|
||||
gen = (n
|
||||
.generators.loc[n.generators.carrier.isin(conv_carriers)]
|
||||
.groupby('bus').p_nom.sum()
|
||||
.reindex(n.buses.index, fill_value=0.) +
|
||||
n
|
||||
.storage_units.loc[n.storage_units.carrier.isin(conv_carriers)]
|
||||
.groupby('bus').p_nom.sum()
|
||||
.reindex(n.buses.index, fill_value=0.))
|
||||
conv_carriers = {"OCGT", "CCGT", "PHS", "hydro"}
|
||||
gen = n.generators.loc[n.generators.carrier.isin(conv_carriers)].groupby(
|
||||
"bus"
|
||||
).p_nom.sum().reindex(n.buses.index, fill_value=0.0) + n.storage_units.loc[
|
||||
n.storage_units.carrier.isin(conv_carriers)
|
||||
].groupby(
|
||||
"bus"
|
||||
).p_nom.sum().reindex(
|
||||
n.buses.index, fill_value=0.0
|
||||
)
|
||||
load = n.loads_t.p_set.mean().groupby(n.loads.bus).sum()
|
||||
|
||||
b_i = x.index
|
||||
@ -168,34 +172,41 @@ def weighting_for_country(n, x):
|
||||
l = normed(load.reindex(b_i, fill_value=0))
|
||||
|
||||
w = g + l
|
||||
return (w * (100. / w.max())).clip(lower=1.).astype(int)
|
||||
return (w * (100.0 / w.max())).clip(lower=1.0).astype(int)
|
||||
|
||||
|
||||
def get_feature_for_hac(n, buses_i=None, feature=None):
|
||||
|
||||
if buses_i is None:
|
||||
buses_i = n.buses.index
|
||||
|
||||
if feature is None:
|
||||
feature = "solar+onwind-time"
|
||||
|
||||
carriers = feature.split('-')[0].split('+')
|
||||
carriers = feature.split("-")[0].split("+")
|
||||
if "offwind" in carriers:
|
||||
carriers.remove("offwind")
|
||||
carriers = np.append(carriers, network.generators.carrier.filter(like='offwind').unique())
|
||||
carriers = np.append(
|
||||
carriers, network.generators.carrier.filter(like="offwind").unique()
|
||||
)
|
||||
|
||||
if feature.split('-')[1] == 'cap':
|
||||
if feature.split("-")[1] == "cap":
|
||||
feature_data = pd.DataFrame(index=buses_i, columns=carriers)
|
||||
for carrier in carriers:
|
||||
gen_i = n.generators.query("carrier == @carrier").index
|
||||
attach = n.generators_t.p_max_pu[gen_i].mean().rename(index = n.generators.loc[gen_i].bus)
|
||||
attach = (
|
||||
n.generators_t.p_max_pu[gen_i]
|
||||
.mean()
|
||||
.rename(index=n.generators.loc[gen_i].bus)
|
||||
)
|
||||
feature_data[carrier] = attach
|
||||
|
||||
if feature.split('-')[1] == 'time':
|
||||
if feature.split("-")[1] == "time":
|
||||
feature_data = pd.DataFrame(columns=buses_i)
|
||||
for carrier in carriers:
|
||||
gen_i = n.generators.query("carrier == @carrier").index
|
||||
attach = n.generators_t.p_max_pu[gen_i].rename(columns = n.generators.loc[gen_i].bus)
|
||||
attach = n.generators_t.p_max_pu[gen_i].rename(
|
||||
columns=n.generators.loc[gen_i].bus
|
||||
)
|
||||
feature_data = pd.concat([feature_data, attach], axis=0)[buses_i]
|
||||
|
||||
feature_data = feature_data.T
|
||||
@ -208,80 +219,114 @@ def get_feature_for_hac(n, buses_i=None, feature=None):
|
||||
|
||||
|
||||
def distribute_clusters(n, n_clusters, focus_weights=None, solver_name="cbc"):
|
||||
"""Determine the number of clusters per country"""
|
||||
"""
|
||||
Determine the number of clusters per country.
|
||||
"""
|
||||
|
||||
L = (n.loads_t.p_set.mean()
|
||||
.groupby(n.loads.bus).sum()
|
||||
.groupby([n.buses.country, n.buses.sub_network]).sum()
|
||||
.pipe(normed))
|
||||
L = (
|
||||
n.loads_t.p_set.mean()
|
||||
.groupby(n.loads.bus)
|
||||
.sum()
|
||||
.groupby([n.buses.country, n.buses.sub_network])
|
||||
.sum()
|
||||
.pipe(normed)
|
||||
)
|
||||
|
||||
N = n.buses.groupby(['country', 'sub_network']).size()
|
||||
N = n.buses.groupby(["country", "sub_network"]).size()
|
||||
|
||||
assert n_clusters >= len(N) and n_clusters <= N.sum(), \
|
||||
f"Number of clusters must be {len(N)} <= n_clusters <= {N.sum()} for this selection of countries."
|
||||
assert (
|
||||
n_clusters >= len(N) and n_clusters <= N.sum()
|
||||
), f"Number of clusters must be {len(N)} <= n_clusters <= {N.sum()} for this selection of countries."
|
||||
|
||||
if focus_weights is not None:
|
||||
|
||||
total_focus = sum(list(focus_weights.values()))
|
||||
|
||||
assert total_focus <= 1.0, "The sum of focus weights must be less than or equal to 1."
|
||||
assert (
|
||||
total_focus <= 1.0
|
||||
), "The sum of focus weights must be less than or equal to 1."
|
||||
|
||||
for country, weight in focus_weights.items():
|
||||
L[country] = weight / len(L[country])
|
||||
|
||||
remainder = [c not in focus_weights.keys() for c in L.index.get_level_values('country')]
|
||||
remainder = [
|
||||
c not in focus_weights.keys() for c in L.index.get_level_values("country")
|
||||
]
|
||||
L[remainder] = L.loc[remainder].pipe(normed) * (1 - total_focus)
|
||||
|
||||
logger.warning('Using custom focus weights for determining number of clusters.')
|
||||
logger.warning("Using custom focus weights for determining number of clusters.")
|
||||
|
||||
assert np.isclose(L.sum(), 1.0, rtol=1e-3), f"Country weights L must sum up to 1.0 when distributing clusters. Is {L.sum()}."
|
||||
assert np.isclose(
|
||||
L.sum(), 1.0, rtol=1e-3
|
||||
), f"Country weights L must sum up to 1.0 when distributing clusters. Is {L.sum()}."
|
||||
|
||||
m = po.ConcreteModel()
|
||||
|
||||
def n_bounds(model, *n_id):
|
||||
return (1, N[n_id])
|
||||
|
||||
m.n = po.Var(list(L.index), bounds=n_bounds, domain=po.Integers)
|
||||
m.tot = po.Constraint(expr=(po.summation(m.n) == n_clusters))
|
||||
m.objective = po.Objective(expr=sum((m.n[i] - L.loc[i]*n_clusters)**2 for i in L.index),
|
||||
sense=po.minimize)
|
||||
m.objective = po.Objective(
|
||||
expr=sum((m.n[i] - L.loc[i] * n_clusters) ** 2 for i in L.index),
|
||||
sense=po.minimize,
|
||||
)
|
||||
|
||||
opt = po.SolverFactory(solver_name)
|
||||
if not opt.has_capability('quadratic_objective'):
|
||||
logger.warning(f'The configured solver `{solver_name}` does not support quadratic objectives. Falling back to `ipopt`.')
|
||||
opt = po.SolverFactory('ipopt')
|
||||
if not opt.has_capability("quadratic_objective"):
|
||||
logger.warning(
|
||||
f"The configured solver `{solver_name}` does not support quadratic objectives. Falling back to `ipopt`."
|
||||
)
|
||||
opt = po.SolverFactory("ipopt")
|
||||
|
||||
results = opt.solve(m)
|
||||
assert results['Solver'][0]['Status'] == 'ok', f"Solver returned non-optimally: {results}"
|
||||
assert (
|
||||
results["Solver"][0]["Status"] == "ok"
|
||||
), f"Solver returned non-optimally: {results}"
|
||||
|
||||
return pd.Series(m.n.get_values(), index=L.index).round().astype(int)
|
||||
|
||||
|
||||
def busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights=None, algorithm="kmeans", feature=None, **algorithm_kwds):
|
||||
def busmap_for_n_clusters(
|
||||
n,
|
||||
n_clusters,
|
||||
solver_name,
|
||||
focus_weights=None,
|
||||
algorithm="kmeans",
|
||||
feature=None,
|
||||
**algorithm_kwds,
|
||||
):
|
||||
if algorithm == "kmeans":
|
||||
algorithm_kwds.setdefault('n_init', 1000)
|
||||
algorithm_kwds.setdefault('max_iter', 30000)
|
||||
algorithm_kwds.setdefault('tol', 1e-6)
|
||||
algorithm_kwds.setdefault('random_state', 0)
|
||||
algorithm_kwds.setdefault("n_init", 1000)
|
||||
algorithm_kwds.setdefault("max_iter", 30000)
|
||||
algorithm_kwds.setdefault("tol", 1e-6)
|
||||
algorithm_kwds.setdefault("random_state", 0)
|
||||
|
||||
def fix_country_assignment_for_hac(n):
|
||||
from scipy.sparse import csgraph
|
||||
|
||||
# overwrite country of nodes that are disconnected from their country-topology
|
||||
for country in n.buses.country.unique():
|
||||
m = n[n.buses.country ==country].copy()
|
||||
m = n[n.buses.country == country].copy()
|
||||
|
||||
_, labels = csgraph.connected_components(m.adjacency_matrix(), directed=False)
|
||||
_, labels = csgraph.connected_components(
|
||||
m.adjacency_matrix(), directed=False
|
||||
)
|
||||
|
||||
component = pd.Series(labels, index=m.buses.index)
|
||||
component_sizes = component.value_counts()
|
||||
|
||||
if len(component_sizes)>1:
|
||||
disconnected_bus = component[component==component_sizes.index[-1]].index[0]
|
||||
if len(component_sizes) > 1:
|
||||
disconnected_bus = component[
|
||||
component == component_sizes.index[-1]
|
||||
].index[0]
|
||||
|
||||
neighbor_bus = (
|
||||
n.lines.query("bus0 == @disconnected_bus or bus1 == @disconnected_bus")
|
||||
.iloc[0][['bus0', 'bus1']]
|
||||
)
|
||||
new_country = list(set(n.buses.loc[neighbor_bus].country)-set([country]))[0]
|
||||
neighbor_bus = n.lines.query(
|
||||
"bus0 == @disconnected_bus or bus1 == @disconnected_bus"
|
||||
).iloc[0][["bus0", "bus1"]]
|
||||
new_country = list(
|
||||
set(n.buses.loc[neighbor_bus].country) - set([country])
|
||||
)[0]
|
||||
|
||||
logger.info(
|
||||
f"overwriting country `{country}` of bus `{disconnected_bus}` "
|
||||
@ -296,75 +341,107 @@ def busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights=None, algori
|
||||
n = fix_country_assignment_for_hac(n)
|
||||
|
||||
if (algorithm != "hac") and (feature is not None):
|
||||
logger.warning(f"Keyword argument feature is only valid for algorithm `hac`. "
|
||||
f"Given feature `{feature}` will be ignored.")
|
||||
logger.warning(
|
||||
f"Keyword argument feature is only valid for algorithm `hac`. "
|
||||
f"Given feature `{feature}` will be ignored."
|
||||
)
|
||||
|
||||
n.determine_network_topology()
|
||||
|
||||
n_clusters = distribute_clusters(n, n_clusters, focus_weights=focus_weights, solver_name=solver_name)
|
||||
n_clusters = distribute_clusters(
|
||||
n, n_clusters, focus_weights=focus_weights, solver_name=solver_name
|
||||
)
|
||||
|
||||
def busmap_for_country(x):
|
||||
prefix = x.name[0] + x.name[1] + ' '
|
||||
prefix = x.name[0] + x.name[1] + " "
|
||||
logger.debug(f"Determining busmap for country {prefix[:-1]}")
|
||||
if len(x) == 1:
|
||||
return pd.Series(prefix + '0', index=x.index)
|
||||
return pd.Series(prefix + "0", index=x.index)
|
||||
weight = weighting_for_country(n, x)
|
||||
|
||||
if algorithm == "kmeans":
|
||||
return prefix + busmap_by_kmeans(n, weight, n_clusters[x.name], buses_i=x.index, **algorithm_kwds)
|
||||
return prefix + busmap_by_kmeans(
|
||||
n, weight, n_clusters[x.name], buses_i=x.index, **algorithm_kwds
|
||||
)
|
||||
elif algorithm == "hac":
|
||||
return prefix + busmap_by_hac(n, n_clusters[x.name], buses_i=x.index, feature=feature.loc[x.index])
|
||||
return prefix + busmap_by_hac(
|
||||
n, n_clusters[x.name], buses_i=x.index, feature=feature.loc[x.index]
|
||||
)
|
||||
elif algorithm == "modularity":
|
||||
return prefix + busmap_by_greedy_modularity(n, n_clusters[x.name], buses_i=x.index)
|
||||
return prefix + busmap_by_greedy_modularity(
|
||||
n, n_clusters[x.name], buses_i=x.index
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"`algorithm` must be one of 'kmeans' or 'hac'. Is {algorithm}.")
|
||||
raise ValueError(
|
||||
f"`algorithm` must be one of 'kmeans' or 'hac'. Is {algorithm}."
|
||||
)
|
||||
|
||||
return (n.buses.groupby(['country', 'sub_network'], group_keys=False)
|
||||
.apply(busmap_for_country).squeeze().rename('busmap'))
|
||||
return (
|
||||
n.buses.groupby(["country", "sub_network"], group_keys=False)
|
||||
.apply(busmap_for_country)
|
||||
.squeeze()
|
||||
.rename("busmap")
|
||||
)
|
||||
|
||||
|
||||
def clustering_for_n_clusters(n, n_clusters, custom_busmap=False, aggregate_carriers=None,
|
||||
line_length_factor=1.25, aggregation_strategies=dict(), solver_name="cbc",
|
||||
algorithm="hac", feature=None, extended_link_costs=0, focus_weights=None):
|
||||
def clustering_for_n_clusters(
|
||||
n,
|
||||
n_clusters,
|
||||
custom_busmap=False,
|
||||
aggregate_carriers=None,
|
||||
line_length_factor=1.25,
|
||||
aggregation_strategies=dict(),
|
||||
solver_name="cbc",
|
||||
algorithm="hac",
|
||||
feature=None,
|
||||
extended_link_costs=0,
|
||||
focus_weights=None,
|
||||
):
|
||||
|
||||
bus_strategies, generator_strategies = get_aggregation_strategies(aggregation_strategies)
|
||||
bus_strategies, generator_strategies = get_aggregation_strategies(
|
||||
aggregation_strategies
|
||||
)
|
||||
|
||||
if not isinstance(custom_busmap, pd.Series):
|
||||
busmap = busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights, algorithm, feature)
|
||||
busmap = busmap_for_n_clusters(
|
||||
n, n_clusters, solver_name, focus_weights, algorithm, feature
|
||||
)
|
||||
else:
|
||||
busmap = custom_busmap
|
||||
|
||||
clustering = get_clustering_from_busmap(
|
||||
n, busmap,
|
||||
n,
|
||||
busmap,
|
||||
bus_strategies=bus_strategies,
|
||||
aggregate_generators_weighted=True,
|
||||
aggregate_generators_carriers=aggregate_carriers,
|
||||
aggregate_one_ports=["Load", "StorageUnit"],
|
||||
line_length_factor=line_length_factor,
|
||||
generator_strategies=generator_strategies,
|
||||
scale_link_capital_costs=False)
|
||||
scale_link_capital_costs=False,
|
||||
)
|
||||
|
||||
if not n.links.empty:
|
||||
nc = clustering.network
|
||||
nc.links['underwater_fraction'] = (n.links.eval('underwater_fraction * length')
|
||||
.div(nc.links.length).dropna())
|
||||
nc.links['capital_cost'] = (nc.links['capital_cost']
|
||||
.add((nc.links.length - n.links.length)
|
||||
.clip(lower=0).mul(extended_link_costs),
|
||||
fill_value=0))
|
||||
nc.links["underwater_fraction"] = (
|
||||
n.links.eval("underwater_fraction * length").div(nc.links.length).dropna()
|
||||
)
|
||||
nc.links["capital_cost"] = nc.links["capital_cost"].add(
|
||||
(nc.links.length - n.links.length).clip(lower=0).mul(extended_link_costs),
|
||||
fill_value=0,
|
||||
)
|
||||
|
||||
return clustering
|
||||
|
||||
|
||||
def cluster_regions(busmaps, input=None, output=None):
|
||||
|
||||
busmap = reduce(lambda x, y: x.map(y), busmaps[1:], busmaps[0])
|
||||
|
||||
for which in ('regions_onshore', 'regions_offshore'):
|
||||
for which in ("regions_onshore", "regions_offshore"):
|
||||
regions = gpd.read_file(getattr(input, which))
|
||||
regions = regions.reindex(columns=["name", "geometry"]).set_index('name')
|
||||
regions = regions.reindex(columns=["name", "geometry"]).set_index("name")
|
||||
regions_c = regions.dissolve(busmap)
|
||||
regions_c.index.name = 'name'
|
||||
regions_c.index.name = "name"
|
||||
regions_c = regions_c.reset_index()
|
||||
regions_c.to_file(getattr(output, which))
|
||||
|
||||
@ -375,78 +452,110 @@ def plot_busmap_for_n_clusters(n, n_clusters, fn=None):
|
||||
cr = sns.color_palette("hls", len(cs))
|
||||
n.plot(bus_colors=busmap.map(dict(zip(cs, cr))))
|
||||
if fn is not None:
|
||||
plt.savefig(fn, bbox_inches='tight')
|
||||
plt.savefig(fn, bbox_inches="tight")
|
||||
del cs, cr
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('cluster_network', simpl='', clusters='5')
|
||||
|
||||
snakemake = mock_snakemake("cluster_network", simpl="", clusters="5")
|
||||
configure_logging(snakemake)
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
|
||||
focus_weights = snakemake.config.get('focus_weights', None)
|
||||
focus_weights = snakemake.config.get("focus_weights", None)
|
||||
|
||||
renewable_carriers = pd.Index([tech
|
||||
for tech in n.generators.carrier.unique()
|
||||
if tech in snakemake.config['renewable']])
|
||||
renewable_carriers = pd.Index(
|
||||
[
|
||||
tech
|
||||
for tech in n.generators.carrier.unique()
|
||||
if tech in snakemake.config["renewable"]
|
||||
]
|
||||
)
|
||||
|
||||
if snakemake.wildcards.clusters.endswith('m'):
|
||||
if snakemake.wildcards.clusters.endswith("m"):
|
||||
n_clusters = int(snakemake.wildcards.clusters[:-1])
|
||||
aggregate_carriers = snakemake.config["electricity"].get("conventional_carriers")
|
||||
elif snakemake.wildcards.clusters == 'all':
|
||||
aggregate_carriers = snakemake.config["electricity"].get(
|
||||
"conventional_carriers"
|
||||
)
|
||||
elif snakemake.wildcards.clusters == "all":
|
||||
n_clusters = len(n.buses)
|
||||
aggregate_carriers = None # All
|
||||
aggregate_carriers = None # All
|
||||
else:
|
||||
n_clusters = int(snakemake.wildcards.clusters)
|
||||
aggregate_carriers = None # All
|
||||
aggregate_carriers = None # All
|
||||
|
||||
if n_clusters == len(n.buses):
|
||||
# Fast-path if no clustering is necessary
|
||||
busmap = n.buses.index.to_series()
|
||||
linemap = n.lines.index.to_series()
|
||||
clustering = pypsa.networkclustering.Clustering(n, busmap, linemap, linemap, pd.Series(dtype='O'))
|
||||
clustering = pypsa.networkclustering.Clustering(
|
||||
n, busmap, linemap, linemap, pd.Series(dtype="O")
|
||||
)
|
||||
else:
|
||||
line_length_factor = snakemake.config['lines']['length_factor']
|
||||
Nyears = n.snapshot_weightings.objective.sum()/8760
|
||||
line_length_factor = snakemake.config["lines"]["length_factor"]
|
||||
Nyears = n.snapshot_weightings.objective.sum() / 8760
|
||||
|
||||
hvac_overhead_cost = (load_costs(snakemake.input.tech_costs, snakemake.config['costs'], snakemake.config['electricity'], Nyears)
|
||||
.at['HVAC overhead', 'capital_cost'])
|
||||
hvac_overhead_cost = load_costs(
|
||||
snakemake.input.tech_costs,
|
||||
snakemake.config["costs"],
|
||||
snakemake.config["electricity"],
|
||||
Nyears,
|
||||
).at["HVAC overhead", "capital_cost"]
|
||||
|
||||
def consense(x):
|
||||
v = x.iat[0]
|
||||
assert ((x == v).all() or x.isnull().all()), (
|
||||
"The `potential` configuration option must agree for all renewable carriers, for now!"
|
||||
)
|
||||
assert (
|
||||
x == v
|
||||
).all() or x.isnull().all(), "The `potential` configuration option must agree for all renewable carriers, for now!"
|
||||
return v
|
||||
aggregation_strategies = snakemake.config["clustering"].get("aggregation_strategies", {})
|
||||
|
||||
aggregation_strategies = snakemake.config["clustering"].get(
|
||||
"aggregation_strategies", {}
|
||||
)
|
||||
# translate str entries of aggregation_strategies to pd.Series functions:
|
||||
aggregation_strategies = {
|
||||
p: {k: getattr(pd.Series, v) for k,v in aggregation_strategies[p].items()}
|
||||
p: {k: getattr(pd.Series, v) for k, v in aggregation_strategies[p].items()}
|
||||
for p in aggregation_strategies.keys()
|
||||
}
|
||||
|
||||
custom_busmap = snakemake.config["enable"].get("custom_busmap", False)
|
||||
if custom_busmap:
|
||||
custom_busmap = pd.read_csv(snakemake.input.custom_busmap, index_col=0, squeeze=True)
|
||||
custom_busmap = pd.read_csv(
|
||||
snakemake.input.custom_busmap, index_col=0, squeeze=True
|
||||
)
|
||||
custom_busmap.index = custom_busmap.index.astype(str)
|
||||
logger.info(f"Imported custom busmap from {snakemake.input.custom_busmap}")
|
||||
|
||||
cluster_config = snakemake.config.get('clustering', {}).get('cluster_network', {})
|
||||
clustering = clustering_for_n_clusters(n, n_clusters, custom_busmap, aggregate_carriers,
|
||||
line_length_factor, aggregation_strategies,
|
||||
snakemake.config['solving']['solver']['name'],
|
||||
cluster_config.get("algorithm", "hac"),
|
||||
cluster_config.get("feature", "solar+onwind-time"),
|
||||
hvac_overhead_cost, focus_weights)
|
||||
cluster_config = snakemake.config.get("clustering", {}).get(
|
||||
"cluster_network", {}
|
||||
)
|
||||
clustering = clustering_for_n_clusters(
|
||||
n,
|
||||
n_clusters,
|
||||
custom_busmap,
|
||||
aggregate_carriers,
|
||||
line_length_factor,
|
||||
aggregation_strategies,
|
||||
snakemake.config["solving"]["solver"]["name"],
|
||||
cluster_config.get("algorithm", "hac"),
|
||||
cluster_config.get("feature", "solar+onwind-time"),
|
||||
hvac_overhead_cost,
|
||||
focus_weights,
|
||||
)
|
||||
|
||||
update_p_nom_max(clustering.network)
|
||||
|
||||
clustering.network.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
||||
clustering.network.meta = dict(
|
||||
snakemake.config, **dict(wildcards=dict(snakemake.wildcards))
|
||||
)
|
||||
clustering.network.export_to_netcdf(snakemake.output.network)
|
||||
for attr in ('busmap', 'linemap'): #also available: linemap_positive, linemap_negative
|
||||
for attr in (
|
||||
"busmap",
|
||||
"linemap",
|
||||
): # also available: linemap_positive, linemap_negative
|
||||
getattr(clustering, attr).to_csv(snakemake.output[attr])
|
||||
|
||||
cluster_regions((clustering.busmap,), snakemake.input, snakemake.output)
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
@ -51,23 +52,21 @@ the line volume/cost cap field can be set to one of the following:
|
||||
* ``lcall`` for all line cost caps
|
||||
|
||||
Replacing '/summaries/' with '/plots/' creates nice colored maps of the results.
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
|
||||
import os
|
||||
import pypsa
|
||||
import pandas as pd
|
||||
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
from _helpers import configure_logging
|
||||
from add_electricity import load_costs, update_transmission_costs
|
||||
|
||||
idx = pd.IndexSlice
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
opt_name = {"Store": "e", "Line" : "s", "Transformer" : "s"}
|
||||
opt_name = {"Store": "e", "Line": "s", "Transformer": "s"}
|
||||
|
||||
|
||||
def _add_indexed_rows(df, raw_index):
|
||||
@ -79,105 +78,149 @@ def _add_indexed_rows(df, raw_index):
|
||||
|
||||
|
||||
def assign_carriers(n):
|
||||
|
||||
if "carrier" not in n.loads:
|
||||
n.loads["carrier"] = "electricity"
|
||||
for carrier in ["transport","heat","urban heat"]:
|
||||
n.loads.loc[n.loads.index.str.contains(carrier),"carrier"] = carrier
|
||||
for carrier in ["transport", "heat", "urban heat"]:
|
||||
n.loads.loc[n.loads.index.str.contains(carrier), "carrier"] = carrier
|
||||
|
||||
n.storage_units['carrier'].replace({'hydro': 'hydro+PHS', 'PHS': 'hydro+PHS'}, inplace=True)
|
||||
n.storage_units["carrier"].replace(
|
||||
{"hydro": "hydro+PHS", "PHS": "hydro+PHS"}, inplace=True
|
||||
)
|
||||
|
||||
if "carrier" not in n.lines:
|
||||
n.lines["carrier"] = "AC"
|
||||
|
||||
n.lines["carrier"].replace({"AC": "lines"}, inplace=True)
|
||||
|
||||
if n.links.empty: n.links["carrier"] = pd.Series(dtype=str)
|
||||
if n.links.empty:
|
||||
n.links["carrier"] = pd.Series(dtype=str)
|
||||
n.links["carrier"].replace({"DC": "lines"}, inplace=True)
|
||||
|
||||
if "EU gas store" in n.stores.index and n.stores.loc["EU gas Store","carrier"] == "":
|
||||
n.stores.loc["EU gas Store","carrier"] = "gas Store"
|
||||
if (
|
||||
"EU gas store" in n.stores.index
|
||||
and n.stores.loc["EU gas Store", "carrier"] == ""
|
||||
):
|
||||
n.stores.loc["EU gas Store", "carrier"] = "gas Store"
|
||||
|
||||
|
||||
def calculate_costs(n, label, costs):
|
||||
|
||||
for c in n.iterate_components(n.branch_components|n.controllable_one_port_components^{"Load"}):
|
||||
capital_costs = c.df.capital_cost*c.df[opt_name.get(c.name,"p") + "_nom_opt"]
|
||||
for c in n.iterate_components(
|
||||
n.branch_components | n.controllable_one_port_components ^ {"Load"}
|
||||
):
|
||||
capital_costs = c.df.capital_cost * c.df[opt_name.get(c.name, "p") + "_nom_opt"]
|
||||
capital_costs_grouped = capital_costs.groupby(c.df.carrier).sum()
|
||||
|
||||
# Index tuple(s) indicating the newly to-be-added row(s)
|
||||
raw_index = tuple([[c.list_name],["capital"],list(capital_costs_grouped.index)])
|
||||
raw_index = tuple(
|
||||
[[c.list_name], ["capital"], list(capital_costs_grouped.index)]
|
||||
)
|
||||
costs = _add_indexed_rows(costs, raw_index)
|
||||
|
||||
costs.loc[idx[raw_index],label] = capital_costs_grouped.values
|
||||
costs.loc[idx[raw_index], label] = capital_costs_grouped.values
|
||||
|
||||
if c.name == "Link":
|
||||
p = c.pnl.p0.multiply(n.snapshot_weightings.generators,axis=0).sum()
|
||||
p = c.pnl.p0.multiply(n.snapshot_weightings.generators, axis=0).sum()
|
||||
elif c.name == "Line":
|
||||
continue
|
||||
elif c.name == "StorageUnit":
|
||||
p_all = c.pnl.p.multiply(n.snapshot_weightings.generators,axis=0)
|
||||
p_all[p_all < 0.] = 0.
|
||||
p_all = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0)
|
||||
p_all[p_all < 0.0] = 0.0
|
||||
p = p_all.sum()
|
||||
else:
|
||||
p = c.pnl.p.multiply(n.snapshot_weightings.generators,axis=0).sum()
|
||||
p = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0).sum()
|
||||
|
||||
marginal_costs = p*c.df.marginal_cost
|
||||
marginal_costs = p * c.df.marginal_cost
|
||||
|
||||
marginal_costs_grouped = marginal_costs.groupby(c.df.carrier).sum()
|
||||
|
||||
costs = costs.reindex(costs.index.union(pd.MultiIndex.from_product([[c.list_name],["marginal"],marginal_costs_grouped.index])))
|
||||
costs = costs.reindex(
|
||||
costs.index.union(
|
||||
pd.MultiIndex.from_product(
|
||||
[[c.list_name], ["marginal"], marginal_costs_grouped.index]
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
costs.loc[idx[c.list_name,"marginal",list(marginal_costs_grouped.index)],label] = marginal_costs_grouped.values
|
||||
costs.loc[
|
||||
idx[c.list_name, "marginal", list(marginal_costs_grouped.index)], label
|
||||
] = marginal_costs_grouped.values
|
||||
|
||||
return costs
|
||||
|
||||
def calculate_curtailment(n, label, curtailment):
|
||||
|
||||
avail = n.generators_t.p_max_pu.multiply(n.generators.p_nom_opt).sum().groupby(n.generators.carrier).sum()
|
||||
def calculate_curtailment(n, label, curtailment):
|
||||
avail = (
|
||||
n.generators_t.p_max_pu.multiply(n.generators.p_nom_opt)
|
||||
.sum()
|
||||
.groupby(n.generators.carrier)
|
||||
.sum()
|
||||
)
|
||||
used = n.generators_t.p.sum().groupby(n.generators.carrier).sum()
|
||||
|
||||
curtailment[label] = (((avail - used)/avail)*100).round(3)
|
||||
curtailment[label] = (((avail - used) / avail) * 100).round(3)
|
||||
|
||||
return curtailment
|
||||
|
||||
|
||||
def calculate_energy(n, label, energy):
|
||||
for c in n.iterate_components(n.one_port_components | n.branch_components):
|
||||
|
||||
for c in n.iterate_components(n.one_port_components|n.branch_components):
|
||||
|
||||
if c.name in {'Generator', 'Load', 'ShuntImpedance'}:
|
||||
c_energies = c.pnl.p.multiply(n.snapshot_weightings.generators,axis=0).sum().multiply(c.df.sign).groupby(c.df.carrier).sum()
|
||||
elif c.name in {'StorageUnit', 'Store'}:
|
||||
c_energies = c.pnl.p.multiply(n.snapshot_weightings.stores,axis=0).sum().multiply(c.df.sign).groupby(c.df.carrier).sum()
|
||||
if c.name in {"Generator", "Load", "ShuntImpedance"}:
|
||||
c_energies = (
|
||||
c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0)
|
||||
.sum()
|
||||
.multiply(c.df.sign)
|
||||
.groupby(c.df.carrier)
|
||||
.sum()
|
||||
)
|
||||
elif c.name in {"StorageUnit", "Store"}:
|
||||
c_energies = (
|
||||
c.pnl.p.multiply(n.snapshot_weightings.stores, axis=0)
|
||||
.sum()
|
||||
.multiply(c.df.sign)
|
||||
.groupby(c.df.carrier)
|
||||
.sum()
|
||||
)
|
||||
else:
|
||||
c_energies = (-c.pnl.p1.multiply(n.snapshot_weightings.generators,axis=0).sum() - c.pnl.p0.multiply(n.snapshot_weightings.generators,axis=0).sum()).groupby(c.df.carrier).sum()
|
||||
c_energies = (
|
||||
(
|
||||
-c.pnl.p1.multiply(n.snapshot_weightings.generators, axis=0).sum()
|
||||
- c.pnl.p0.multiply(n.snapshot_weightings.generators, axis=0).sum()
|
||||
)
|
||||
.groupby(c.df.carrier)
|
||||
.sum()
|
||||
)
|
||||
|
||||
energy = include_in_summary(energy, [c.list_name], label, c_energies)
|
||||
|
||||
return energy
|
||||
|
||||
def include_in_summary(summary, multiindexprefix, label, item):
|
||||
|
||||
def include_in_summary(summary, multiindexprefix, label, item):
|
||||
# Index tuple(s) indicating the newly to-be-added row(s)
|
||||
raw_index = tuple([multiindexprefix,list(item.index)])
|
||||
raw_index = tuple([multiindexprefix, list(item.index)])
|
||||
summary = _add_indexed_rows(summary, raw_index)
|
||||
|
||||
summary.loc[idx[raw_index], label] = item.values
|
||||
|
||||
return summary
|
||||
|
||||
def calculate_capacity(n,label,capacity):
|
||||
|
||||
def calculate_capacity(n, label, capacity):
|
||||
for c in n.iterate_components(n.one_port_components):
|
||||
if 'p_nom_opt' in c.df.columns:
|
||||
c_capacities = abs(c.df.p_nom_opt.multiply(c.df.sign)).groupby(c.df.carrier).sum()
|
||||
if "p_nom_opt" in c.df.columns:
|
||||
c_capacities = (
|
||||
abs(c.df.p_nom_opt.multiply(c.df.sign)).groupby(c.df.carrier).sum()
|
||||
)
|
||||
capacity = include_in_summary(capacity, [c.list_name], label, c_capacities)
|
||||
elif 'e_nom_opt' in c.df.columns:
|
||||
c_capacities = abs(c.df.e_nom_opt.multiply(c.df.sign)).groupby(c.df.carrier).sum()
|
||||
elif "e_nom_opt" in c.df.columns:
|
||||
c_capacities = (
|
||||
abs(c.df.e_nom_opt.multiply(c.df.sign)).groupby(c.df.carrier).sum()
|
||||
)
|
||||
capacity = include_in_summary(capacity, [c.list_name], label, c_capacities)
|
||||
|
||||
for c in n.iterate_components(n.passive_branch_components):
|
||||
c_capacities = c.df['s_nom_opt'].groupby(c.df.carrier).sum()
|
||||
c_capacities = c.df["s_nom_opt"].groupby(c.df.carrier).sum()
|
||||
capacity = include_in_summary(capacity, [c.list_name], label, c_capacities)
|
||||
|
||||
for c in n.iterate_components(n.controllable_branch_components):
|
||||
@ -186,8 +229,12 @@ def calculate_capacity(n,label,capacity):
|
||||
|
||||
return capacity
|
||||
|
||||
|
||||
def calculate_supply(n, label, supply):
|
||||
"""calculate the max dispatch of each component at the buses where the loads are attached"""
|
||||
"""
|
||||
calculate the max dispatch of each component at the buses where the loads
|
||||
are attached.
|
||||
"""
|
||||
|
||||
load_types = n.buses.carrier.unique()
|
||||
|
||||
@ -195,7 +242,7 @@ def calculate_supply(n, label, supply):
|
||||
|
||||
buses = n.buses.query("carrier == @i").index
|
||||
|
||||
bus_map = pd.Series(False,index=n.buses.index)
|
||||
bus_map = pd.Series(False, index=n.buses.index)
|
||||
|
||||
bus_map.loc[buses] = True
|
||||
|
||||
@ -206,35 +253,49 @@ def calculate_supply(n, label, supply):
|
||||
if len(items) == 0 or c.pnl.p.empty:
|
||||
continue
|
||||
|
||||
s = c.pnl.p[items].max().multiply(c.df.loc[items,'sign']).groupby(c.df.loc[items,'carrier']).sum()
|
||||
s = (
|
||||
c.pnl.p[items]
|
||||
.max()
|
||||
.multiply(c.df.loc[items, "sign"])
|
||||
.groupby(c.df.loc[items, "carrier"])
|
||||
.sum()
|
||||
)
|
||||
|
||||
# Index tuple(s) indicating the newly to-be-added row(s)
|
||||
raw_index = tuple([[i],[c.list_name],list(s.index)])
|
||||
raw_index = tuple([[i], [c.list_name], list(s.index)])
|
||||
supply = _add_indexed_rows(supply, raw_index)
|
||||
|
||||
supply.loc[idx[raw_index],label] = s.values
|
||||
|
||||
supply.loc[idx[raw_index], label] = s.values
|
||||
|
||||
for c in n.iterate_components(n.branch_components):
|
||||
|
||||
for end in ["0","1"]:
|
||||
for end in ["0", "1"]:
|
||||
|
||||
items = c.df.index[c.df["bus" + end].map(bus_map)]
|
||||
|
||||
if len(items) == 0 or c.pnl["p"+end].empty:
|
||||
if len(items) == 0 or c.pnl["p" + end].empty:
|
||||
continue
|
||||
|
||||
#lots of sign compensation for direction and to do maximums
|
||||
s = (-1)**(1-int(end))*((-1)**int(end)*c.pnl["p"+end][items]).max().groupby(c.df.loc[items,'carrier']).sum()
|
||||
# lots of sign compensation for direction and to do maximums
|
||||
s = (-1) ** (1 - int(end)) * (
|
||||
(-1) ** int(end) * c.pnl["p" + end][items]
|
||||
).max().groupby(c.df.loc[items, "carrier"]).sum()
|
||||
|
||||
supply = supply.reindex(supply.index.union(pd.MultiIndex.from_product([[i],[c.list_name],s.index])))
|
||||
supply.loc[idx[i,c.list_name,list(s.index)],label] = s.values
|
||||
supply = supply.reindex(
|
||||
supply.index.union(
|
||||
pd.MultiIndex.from_product([[i], [c.list_name], s.index])
|
||||
)
|
||||
)
|
||||
supply.loc[idx[i, c.list_name, list(s.index)], label] = s.values
|
||||
|
||||
return supply
|
||||
|
||||
|
||||
def calculate_supply_energy(n, label, supply_energy):
|
||||
"""calculate the total dispatch of each component at the buses where the loads are attached"""
|
||||
"""
|
||||
calculate the total dispatch of each component at the buses where the loads
|
||||
are attached.
|
||||
"""
|
||||
|
||||
load_types = n.buses.carrier.unique()
|
||||
|
||||
@ -242,7 +303,7 @@ def calculate_supply_energy(n, label, supply_energy):
|
||||
|
||||
buses = n.buses.query("carrier == @i").index
|
||||
|
||||
bus_map = pd.Series(False,index=n.buses.index)
|
||||
bus_map = pd.Series(False, index=n.buses.index)
|
||||
|
||||
bus_map.loc[buses] = True
|
||||
|
||||
@ -253,55 +314,83 @@ def calculate_supply_energy(n, label, supply_energy):
|
||||
if len(items) == 0 or c.pnl.p.empty:
|
||||
continue
|
||||
|
||||
s = c.pnl.p[items].sum().multiply(c.df.loc[items,'sign']).groupby(c.df.loc[items,'carrier']).sum()
|
||||
s = (
|
||||
c.pnl.p[items]
|
||||
.sum()
|
||||
.multiply(c.df.loc[items, "sign"])
|
||||
.groupby(c.df.loc[items, "carrier"])
|
||||
.sum()
|
||||
)
|
||||
|
||||
# Index tuple(s) indicating the newly to-be-added row(s)
|
||||
raw_index = tuple([[i],[c.list_name],list(s.index)])
|
||||
raw_index = tuple([[i], [c.list_name], list(s.index)])
|
||||
supply_energy = _add_indexed_rows(supply_energy, raw_index)
|
||||
|
||||
supply_energy.loc[idx[raw_index],label] = s.values
|
||||
|
||||
supply_energy.loc[idx[raw_index], label] = s.values
|
||||
|
||||
for c in n.iterate_components(n.branch_components):
|
||||
|
||||
for end in ["0","1"]:
|
||||
for end in ["0", "1"]:
|
||||
|
||||
items = c.df.index[c.df["bus" + end].map(bus_map)]
|
||||
|
||||
if len(items) == 0 or c.pnl['p' + end].empty:
|
||||
if len(items) == 0 or c.pnl["p" + end].empty:
|
||||
continue
|
||||
|
||||
s = (-1)*c.pnl["p"+end][items].sum().groupby(c.df.loc[items,'carrier']).sum()
|
||||
s = (-1) * c.pnl["p" + end][items].sum().groupby(
|
||||
c.df.loc[items, "carrier"]
|
||||
).sum()
|
||||
|
||||
supply_energy = supply_energy.reindex(supply_energy.index.union(pd.MultiIndex.from_product([[i],[c.list_name],s.index])))
|
||||
supply_energy.loc[idx[i,c.list_name,list(s.index)],label] = s.values
|
||||
supply_energy = supply_energy.reindex(
|
||||
supply_energy.index.union(
|
||||
pd.MultiIndex.from_product([[i], [c.list_name], s.index])
|
||||
)
|
||||
)
|
||||
supply_energy.loc[idx[i, c.list_name, list(s.index)], label] = s.values
|
||||
|
||||
return supply_energy
|
||||
|
||||
|
||||
def calculate_metrics(n,label,metrics):
|
||||
def calculate_metrics(n, label, metrics):
|
||||
metrics = metrics.reindex(
|
||||
metrics.index.union(
|
||||
pd.Index(
|
||||
[
|
||||
"line_volume",
|
||||
"line_volume_limit",
|
||||
"line_volume_AC",
|
||||
"line_volume_DC",
|
||||
"line_volume_shadow",
|
||||
"co2_shadow",
|
||||
]
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
metrics = metrics.reindex(metrics.index.union(pd.Index(["line_volume","line_volume_limit","line_volume_AC","line_volume_DC","line_volume_shadow","co2_shadow"])))
|
||||
metrics.at["line_volume_DC", label] = (n.links.length * n.links.p_nom_opt)[
|
||||
n.links.carrier == "DC"
|
||||
].sum()
|
||||
metrics.at["line_volume_AC", label] = (n.lines.length * n.lines.s_nom_opt).sum()
|
||||
metrics.at["line_volume", label] = metrics.loc[
|
||||
["line_volume_AC", "line_volume_DC"], label
|
||||
].sum()
|
||||
|
||||
metrics.at["line_volume_DC",label] = (n.links.length*n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
|
||||
metrics.at["line_volume_AC",label] = (n.lines.length*n.lines.s_nom_opt).sum()
|
||||
metrics.at["line_volume",label] = metrics.loc[["line_volume_AC","line_volume_DC"],label].sum()
|
||||
if hasattr(n, "line_volume_limit"):
|
||||
metrics.at["line_volume_limit", label] = n.line_volume_limit
|
||||
|
||||
if hasattr(n,"line_volume_limit"):
|
||||
metrics.at["line_volume_limit",label] = n.line_volume_limit
|
||||
|
||||
if hasattr(n,"line_volume_limit_dual"):
|
||||
metrics.at["line_volume_shadow",label] = n.line_volume_limit_dual
|
||||
if hasattr(n, "line_volume_limit_dual"):
|
||||
metrics.at["line_volume_shadow", label] = n.line_volume_limit_dual
|
||||
|
||||
if "CO2Limit" in n.global_constraints.index:
|
||||
metrics.at["co2_shadow",label] = n.global_constraints.at["CO2Limit","mu"]
|
||||
metrics.at["co2_shadow", label] = n.global_constraints.at["CO2Limit", "mu"]
|
||||
|
||||
return metrics
|
||||
|
||||
|
||||
def calculate_prices(n,label,prices):
|
||||
|
||||
bus_type = pd.Series(n.buses.index.str[3:],n.buses.index).replace("","electricity")
|
||||
def calculate_prices(n, label, prices):
|
||||
bus_type = pd.Series(n.buses.index.str[3:], n.buses.index).replace(
|
||||
"", "electricity"
|
||||
)
|
||||
|
||||
prices = prices.reindex(prices.index.union(bus_type.value_counts().index))
|
||||
|
||||
@ -311,19 +400,37 @@ def calculate_prices(n,label,prices):
|
||||
return prices
|
||||
|
||||
|
||||
def calculate_weighted_prices(n,label,weighted_prices):
|
||||
|
||||
def calculate_weighted_prices(n, label, weighted_prices):
|
||||
logger.warning("Weighted prices don't include storage units as loads")
|
||||
|
||||
weighted_prices = weighted_prices.reindex(pd.Index(["electricity","heat","space heat","urban heat","space urban heat","gas","H2"]))
|
||||
weighted_prices = weighted_prices.reindex(
|
||||
pd.Index(
|
||||
[
|
||||
"electricity",
|
||||
"heat",
|
||||
"space heat",
|
||||
"urban heat",
|
||||
"space urban heat",
|
||||
"gas",
|
||||
"H2",
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
link_loads = {"electricity" : ["heat pump", "resistive heater", "battery charger", "H2 Electrolysis"],
|
||||
"heat" : ["water tanks charger"],
|
||||
"urban heat" : ["water tanks charger"],
|
||||
"space heat" : [],
|
||||
"space urban heat" : [],
|
||||
"gas" : ["OCGT","gas boiler","CHP electric","CHP heat"],
|
||||
"H2" : ["Sabatier", "H2 Fuel Cell"]}
|
||||
link_loads = {
|
||||
"electricity": [
|
||||
"heat pump",
|
||||
"resistive heater",
|
||||
"battery charger",
|
||||
"H2 Electrolysis",
|
||||
],
|
||||
"heat": ["water tanks charger"],
|
||||
"urban heat": ["water tanks charger"],
|
||||
"space heat": [],
|
||||
"space urban heat": [],
|
||||
"gas": ["OCGT", "gas boiler", "CHP electric", "CHP heat"],
|
||||
"H2": ["Sabatier", "H2 Fuel Cell"],
|
||||
}
|
||||
|
||||
for carrier in link_loads:
|
||||
|
||||
@ -332,64 +439,77 @@ def calculate_weighted_prices(n,label,weighted_prices):
|
||||
elif carrier[:5] == "space":
|
||||
suffix = carrier[5:]
|
||||
else:
|
||||
suffix = " " + carrier
|
||||
suffix = " " + carrier
|
||||
|
||||
buses = n.buses.index[n.buses.index.str[2:] == suffix]
|
||||
|
||||
if buses.empty:
|
||||
continue
|
||||
|
||||
if carrier in ["H2","gas"]:
|
||||
load = pd.DataFrame(index=n.snapshots,columns=buses,data=0.)
|
||||
if carrier in ["H2", "gas"]:
|
||||
load = pd.DataFrame(index=n.snapshots, columns=buses, data=0.0)
|
||||
elif carrier[:5] == "space":
|
||||
load = heat_demand_df[buses.str[:2]].rename(columns=lambda i: str(i)+suffix)
|
||||
load = heat_demand_df[buses.str[:2]].rename(
|
||||
columns=lambda i: str(i) + suffix
|
||||
)
|
||||
else:
|
||||
load = n.loads_t.p_set[buses]
|
||||
|
||||
|
||||
for tech in link_loads[carrier]:
|
||||
|
||||
names = n.links.index[n.links.index.to_series().str[-len(tech):] == tech]
|
||||
names = n.links.index[n.links.index.to_series().str[-len(tech) :] == tech]
|
||||
|
||||
if names.empty:
|
||||
continue
|
||||
|
||||
load += n.links_t.p0[names].groupby(n.links.loc[names,"bus0"],axis=1).sum(axis=1)
|
||||
load += (
|
||||
n.links_t.p0[names]
|
||||
.groupby(n.links.loc[names, "bus0"], axis=1)
|
||||
.sum(axis=1)
|
||||
)
|
||||
|
||||
# Add H2 Store when charging
|
||||
if carrier == "H2":
|
||||
stores = n.stores_t.p[buses+ " Store"].groupby(n.stores.loc[buses+ " Store","bus"],axis=1).sum(axis=1)
|
||||
stores[stores > 0.] = 0.
|
||||
stores = (
|
||||
n.stores_t.p[buses + " Store"]
|
||||
.groupby(n.stores.loc[buses + " Store", "bus"], axis=1)
|
||||
.sum(axis=1)
|
||||
)
|
||||
stores[stores > 0.0] = 0.0
|
||||
load += -stores
|
||||
|
||||
weighted_prices.loc[carrier,label] = (load*n.buses_t.marginal_price[buses]).sum().sum()/load.sum().sum()
|
||||
weighted_prices.loc[carrier, label] = (
|
||||
load * n.buses_t.marginal_price[buses]
|
||||
).sum().sum() / load.sum().sum()
|
||||
|
||||
if carrier[:5] == "space":
|
||||
print(load*n.buses_t.marginal_price[buses])
|
||||
print(load * n.buses_t.marginal_price[buses])
|
||||
|
||||
return weighted_prices
|
||||
|
||||
|
||||
outputs = ["costs",
|
||||
"curtailment",
|
||||
"energy",
|
||||
"capacity",
|
||||
"supply",
|
||||
"supply_energy",
|
||||
"prices",
|
||||
"weighted_prices",
|
||||
"metrics",
|
||||
]
|
||||
outputs = [
|
||||
"costs",
|
||||
"curtailment",
|
||||
"energy",
|
||||
"capacity",
|
||||
"supply",
|
||||
"supply_energy",
|
||||
"prices",
|
||||
"weighted_prices",
|
||||
"metrics",
|
||||
]
|
||||
|
||||
|
||||
def make_summaries(networks_dict, paths, config, country='all'):
|
||||
|
||||
columns = pd.MultiIndex.from_tuples(networks_dict.keys(),names=["simpl","clusters","ll","opts"])
|
||||
def make_summaries(networks_dict, paths, config, country="all"):
|
||||
columns = pd.MultiIndex.from_tuples(
|
||||
networks_dict.keys(), names=["simpl", "clusters", "ll", "opts"]
|
||||
)
|
||||
|
||||
dfs = {}
|
||||
|
||||
for output in outputs:
|
||||
dfs[output] = pd.DataFrame(columns=columns,dtype=float)
|
||||
dfs[output] = pd.DataFrame(columns=columns, dtype=float)
|
||||
|
||||
for label, filename in networks_dict.items():
|
||||
print(label, filename)
|
||||
@ -403,11 +523,11 @@ def make_summaries(networks_dict, paths, config, country='all'):
|
||||
logger.warning("Skipping {filename}".format(filename=filename))
|
||||
continue
|
||||
|
||||
if country != 'all':
|
||||
if country != "all":
|
||||
n = n[n.buses.country == country]
|
||||
|
||||
Nyears = n.snapshot_weightings.objective.sum() / 8760.
|
||||
costs = load_costs(paths[0], config['costs'], config['electricity'], Nyears)
|
||||
Nyears = n.snapshot_weightings.objective.sum() / 8760.0
|
||||
costs = load_costs(paths[0], config["costs"], config["electricity"], Nyears)
|
||||
update_transmission_costs(n, costs)
|
||||
|
||||
assign_carriers(n)
|
||||
@ -425,13 +545,20 @@ def to_csv(dfs, dir):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('make_summary', simpl='',
|
||||
clusters='5', ll='copt', opts='Co2L-24H', country='all')
|
||||
network_dir = os.path.join('..', 'results', 'networks')
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"make_summary",
|
||||
simpl="",
|
||||
clusters="5",
|
||||
ll="copt",
|
||||
opts="Co2L-24H",
|
||||
country="all",
|
||||
)
|
||||
network_dir = os.path.join("..", "results", "networks")
|
||||
else:
|
||||
network_dir = os.path.join('results', 'networks')
|
||||
network_dir = os.path.join("results", "networks")
|
||||
configure_logging(snakemake)
|
||||
|
||||
config = snakemake.config
|
||||
@ -448,14 +575,18 @@ if __name__ == "__main__":
|
||||
else:
|
||||
ll = [wildcards.ll]
|
||||
|
||||
networks_dict = {(simpl,clusters,l,opts) :
|
||||
os.path.join(network_dir, f'elec_s{simpl}_'
|
||||
f'{clusters}_ec_l{l}_{opts}.nc')
|
||||
for simpl in expand_from_wildcard("simpl", config)
|
||||
for clusters in expand_from_wildcard("clusters", config)
|
||||
for l in ll
|
||||
for opts in expand_from_wildcard("opts", config)}
|
||||
networks_dict = {
|
||||
(simpl, clusters, l, opts): os.path.join(
|
||||
network_dir, f"elec_s{simpl}_" f"{clusters}_ec_l{l}_{opts}.nc"
|
||||
)
|
||||
for simpl in expand_from_wildcard("simpl", config)
|
||||
for clusters in expand_from_wildcard("clusters", config)
|
||||
for l in ll
|
||||
for opts in expand_from_wildcard("opts", config)
|
||||
}
|
||||
|
||||
dfs = make_summaries(networks_dict, snakemake.input, config, country=wildcards.country)
|
||||
dfs = make_summaries(
|
||||
networks_dict, snakemake.input, config, country=wildcards.country
|
||||
)
|
||||
|
||||
to_csv(dfs, snakemake.output[0])
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
@ -16,20 +17,24 @@ Outputs
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import (load_network_for_plots, aggregate_p, aggregate_costs, configure_logging)
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
import cartopy.crs as ccrs
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib as mpl
|
||||
from matplotlib.patches import Circle, Ellipse
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from _helpers import (
|
||||
aggregate_costs,
|
||||
aggregate_p,
|
||||
configure_logging,
|
||||
load_network_for_plots,
|
||||
)
|
||||
from matplotlib.legend_handler import HandlerPatch
|
||||
from matplotlib.patches import Circle, Ellipse
|
||||
|
||||
to_rgba = mpl.colors.colorConverter.to_rgba
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -37,240 +42,352 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
def make_handler_map_to_scale_circles_as_in(ax, dont_resize_actively=False):
|
||||
fig = ax.get_figure()
|
||||
|
||||
def axes2pt():
|
||||
return np.diff(ax.transData.transform([(0,0), (1,1)]), axis=0)[0] * (72./fig.dpi)
|
||||
return np.diff(ax.transData.transform([(0, 0), (1, 1)]), axis=0)[0] * (
|
||||
72.0 / fig.dpi
|
||||
)
|
||||
|
||||
ellipses = []
|
||||
if not dont_resize_actively:
|
||||
|
||||
def update_width_height(event):
|
||||
dist = axes2pt()
|
||||
for e, radius in ellipses: e.width, e.height = 2. * radius * dist
|
||||
fig.canvas.mpl_connect('resize_event', update_width_height)
|
||||
ax.callbacks.connect('xlim_changed', update_width_height)
|
||||
ax.callbacks.connect('ylim_changed', update_width_height)
|
||||
for e, radius in ellipses:
|
||||
e.width, e.height = 2.0 * radius * dist
|
||||
|
||||
def legend_circle_handler(legend, orig_handle, xdescent, ydescent,
|
||||
width, height, fontsize):
|
||||
w, h = 2. * orig_handle.get_radius() * axes2pt()
|
||||
e = Ellipse(xy=(0.5*width-0.5*xdescent, 0.5*height-0.5*ydescent), width=w, height=w)
|
||||
fig.canvas.mpl_connect("resize_event", update_width_height)
|
||||
ax.callbacks.connect("xlim_changed", update_width_height)
|
||||
ax.callbacks.connect("ylim_changed", update_width_height)
|
||||
|
||||
def legend_circle_handler(
|
||||
legend, orig_handle, xdescent, ydescent, width, height, fontsize
|
||||
):
|
||||
w, h = 2.0 * orig_handle.get_radius() * axes2pt()
|
||||
e = Ellipse(
|
||||
xy=(0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent),
|
||||
width=w,
|
||||
height=w,
|
||||
)
|
||||
ellipses.append((e, orig_handle.get_radius()))
|
||||
return e
|
||||
|
||||
return {Circle: HandlerPatch(patch_func=legend_circle_handler)}
|
||||
|
||||
|
||||
def make_legend_circles_for(sizes, scale=1.0, **kw):
|
||||
return [Circle((0,0), radius=(s/scale)**0.5, **kw) for s in sizes]
|
||||
return [Circle((0, 0), radius=(s / scale) ** 0.5, **kw) for s in sizes]
|
||||
|
||||
|
||||
def set_plot_style():
|
||||
plt.style.use(['classic', 'seaborn-white',
|
||||
{'axes.grid': False, 'grid.linestyle': '--', 'grid.color': u'0.6',
|
||||
'hatch.color': 'white',
|
||||
'patch.linewidth': 0.5,
|
||||
'font.size': 12,
|
||||
'legend.fontsize': 'medium',
|
||||
'lines.linewidth': 1.5,
|
||||
'pdf.fonttype': 42,
|
||||
}])
|
||||
plt.style.use(
|
||||
[
|
||||
"classic",
|
||||
"seaborn-white",
|
||||
{
|
||||
"axes.grid": False,
|
||||
"grid.linestyle": "--",
|
||||
"grid.color": "0.6",
|
||||
"hatch.color": "white",
|
||||
"patch.linewidth": 0.5,
|
||||
"font.size": 12,
|
||||
"legend.fontsize": "medium",
|
||||
"lines.linewidth": 1.5,
|
||||
"pdf.fonttype": 42,
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def plot_map(n, opts, ax=None, attribute='p_nom'):
|
||||
def plot_map(n, opts, ax=None, attribute="p_nom"):
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
|
||||
## DATA
|
||||
line_colors = {'cur': "purple",
|
||||
'exp': mpl.colors.rgb2hex(to_rgba("red", 0.7), True)}
|
||||
tech_colors = opts['tech_colors']
|
||||
line_colors = {
|
||||
"cur": "purple",
|
||||
"exp": mpl.colors.rgb2hex(to_rgba("red", 0.7), True),
|
||||
}
|
||||
tech_colors = opts["tech_colors"]
|
||||
|
||||
if attribute == 'p_nom':
|
||||
if attribute == "p_nom":
|
||||
# bus_sizes = n.generators_t.p.sum().loc[n.generators.carrier == "load"].groupby(n.generators.bus).sum()
|
||||
bus_sizes = pd.concat((n.generators.query('carrier != "load"').groupby(['bus', 'carrier']).p_nom_opt.sum(),
|
||||
n.storage_units.groupby(['bus', 'carrier']).p_nom_opt.sum()))
|
||||
bus_sizes = pd.concat(
|
||||
(
|
||||
n.generators.query('carrier != "load"')
|
||||
.groupby(["bus", "carrier"])
|
||||
.p_nom_opt.sum(),
|
||||
n.storage_units.groupby(["bus", "carrier"]).p_nom_opt.sum(),
|
||||
)
|
||||
)
|
||||
line_widths_exp = n.lines.s_nom_opt
|
||||
line_widths_cur = n.lines.s_nom_min
|
||||
link_widths_exp = n.links.p_nom_opt
|
||||
link_widths_cur = n.links.p_nom_min
|
||||
else:
|
||||
raise 'plotting of {} has not been implemented yet'.format(attribute)
|
||||
raise "plotting of {} has not been implemented yet".format(attribute)
|
||||
|
||||
|
||||
line_colors_with_alpha = \
|
||||
((line_widths_cur / n.lines.s_nom > 1e-3)
|
||||
.map({True: line_colors['cur'], False: to_rgba(line_colors['cur'], 0.)}))
|
||||
link_colors_with_alpha = \
|
||||
((link_widths_cur / n.links.p_nom > 1e-3)
|
||||
.map({True: line_colors['cur'], False: to_rgba(line_colors['cur'], 0.)}))
|
||||
|
||||
line_colors_with_alpha = (line_widths_cur / n.lines.s_nom > 1e-3).map(
|
||||
{True: line_colors["cur"], False: to_rgba(line_colors["cur"], 0.0)}
|
||||
)
|
||||
link_colors_with_alpha = (link_widths_cur / n.links.p_nom > 1e-3).map(
|
||||
{True: line_colors["cur"], False: to_rgba(line_colors["cur"], 0.0)}
|
||||
)
|
||||
|
||||
## FORMAT
|
||||
linewidth_factor = opts['map'][attribute]['linewidth_factor']
|
||||
bus_size_factor = opts['map'][attribute]['bus_size_factor']
|
||||
linewidth_factor = opts["map"][attribute]["linewidth_factor"]
|
||||
bus_size_factor = opts["map"][attribute]["bus_size_factor"]
|
||||
|
||||
## PLOT
|
||||
n.plot(line_widths=line_widths_exp/linewidth_factor,
|
||||
link_widths=link_widths_exp/linewidth_factor,
|
||||
line_colors=line_colors['exp'],
|
||||
link_colors=line_colors['exp'],
|
||||
bus_sizes=bus_sizes/bus_size_factor,
|
||||
bus_colors=tech_colors,
|
||||
boundaries=map_boundaries,
|
||||
color_geomap=True, geomap=True,
|
||||
ax=ax)
|
||||
n.plot(line_widths=line_widths_cur/linewidth_factor,
|
||||
link_widths=link_widths_cur/linewidth_factor,
|
||||
line_colors=line_colors_with_alpha,
|
||||
link_colors=link_colors_with_alpha,
|
||||
bus_sizes=0,
|
||||
boundaries=map_boundaries,
|
||||
color_geomap=True, geomap=True,
|
||||
ax=ax)
|
||||
ax.set_aspect('equal')
|
||||
ax.axis('off')
|
||||
n.plot(
|
||||
line_widths=line_widths_exp / linewidth_factor,
|
||||
link_widths=link_widths_exp / linewidth_factor,
|
||||
line_colors=line_colors["exp"],
|
||||
link_colors=line_colors["exp"],
|
||||
bus_sizes=bus_sizes / bus_size_factor,
|
||||
bus_colors=tech_colors,
|
||||
boundaries=map_boundaries,
|
||||
color_geomap=True,
|
||||
geomap=True,
|
||||
ax=ax,
|
||||
)
|
||||
n.plot(
|
||||
line_widths=line_widths_cur / linewidth_factor,
|
||||
link_widths=link_widths_cur / linewidth_factor,
|
||||
line_colors=line_colors_with_alpha,
|
||||
link_colors=link_colors_with_alpha,
|
||||
bus_sizes=0,
|
||||
boundaries=map_boundaries,
|
||||
color_geomap=True,
|
||||
geomap=True,
|
||||
ax=ax,
|
||||
)
|
||||
ax.set_aspect("equal")
|
||||
ax.axis("off")
|
||||
|
||||
# Rasterize basemap
|
||||
# TODO : Check if this also works with cartopy
|
||||
for c in ax.collections[:2]: c.set_rasterized(True)
|
||||
for c in ax.collections[:2]:
|
||||
c.set_rasterized(True)
|
||||
|
||||
# LEGEND
|
||||
handles = []
|
||||
labels = []
|
||||
|
||||
for s in (10, 1):
|
||||
handles.append(plt.Line2D([0],[0],color=line_colors['exp'],
|
||||
linewidth=s*1e3/linewidth_factor))
|
||||
handles.append(
|
||||
plt.Line2D(
|
||||
[0], [0], color=line_colors["exp"], linewidth=s * 1e3 / linewidth_factor
|
||||
)
|
||||
)
|
||||
labels.append("{} GW".format(s))
|
||||
l1_1 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.24, 1.01),
|
||||
frameon=False,
|
||||
labelspacing=0.8, handletextpad=1.5,
|
||||
title='Transmission Exp./Exist. ')
|
||||
l1_1 = ax.legend(
|
||||
handles,
|
||||
labels,
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.24, 1.01),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
handletextpad=1.5,
|
||||
title="Transmission Exp./Exist. ",
|
||||
)
|
||||
ax.add_artist(l1_1)
|
||||
|
||||
handles = []
|
||||
labels = []
|
||||
for s in (10, 5):
|
||||
handles.append(plt.Line2D([0],[0],color=line_colors['cur'],
|
||||
linewidth=s*1e3/linewidth_factor))
|
||||
handles.append(
|
||||
plt.Line2D(
|
||||
[0], [0], color=line_colors["cur"], linewidth=s * 1e3 / linewidth_factor
|
||||
)
|
||||
)
|
||||
labels.append("/")
|
||||
l1_2 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.26, 1.01),
|
||||
frameon=False,
|
||||
labelspacing=0.8, handletextpad=0.5,
|
||||
title=' ')
|
||||
l1_2 = ax.legend(
|
||||
handles,
|
||||
labels,
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.26, 1.01),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
handletextpad=0.5,
|
||||
title=" ",
|
||||
)
|
||||
ax.add_artist(l1_2)
|
||||
|
||||
handles = make_legend_circles_for([10e3, 5e3, 1e3], scale=bus_size_factor, facecolor="w")
|
||||
handles = make_legend_circles_for(
|
||||
[10e3, 5e3, 1e3], scale=bus_size_factor, facecolor="w"
|
||||
)
|
||||
labels = ["{} GW".format(s) for s in (10, 5, 3)]
|
||||
l2 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.01, 1.01),
|
||||
frameon=False, labelspacing=1.0,
|
||||
title='Generation',
|
||||
handler_map=make_handler_map_to_scale_circles_as_in(ax))
|
||||
l2 = ax.legend(
|
||||
handles,
|
||||
labels,
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.01, 1.01),
|
||||
frameon=False,
|
||||
labelspacing=1.0,
|
||||
title="Generation",
|
||||
handler_map=make_handler_map_to_scale_circles_as_in(ax),
|
||||
)
|
||||
ax.add_artist(l2)
|
||||
|
||||
techs = (bus_sizes.index.levels[1]).intersection(pd.Index(opts['vre_techs'] + opts['conv_techs'] + opts['storage_techs']))
|
||||
techs = (bus_sizes.index.levels[1]).intersection(
|
||||
pd.Index(opts["vre_techs"] + opts["conv_techs"] + opts["storage_techs"])
|
||||
)
|
||||
handles = []
|
||||
labels = []
|
||||
for t in techs:
|
||||
handles.append(plt.Line2D([0], [0], color=tech_colors[t], marker='o', markersize=8, linewidth=0))
|
||||
labels.append(opts['nice_names'].get(t, t))
|
||||
l3 = ax.legend(handles, labels, loc="upper center", bbox_to_anchor=(0.5, -0.), # bbox_to_anchor=(0.72, -0.05),
|
||||
handletextpad=0., columnspacing=0.5, ncol=4, title='Technology')
|
||||
handles.append(
|
||||
plt.Line2D(
|
||||
[0], [0], color=tech_colors[t], marker="o", markersize=8, linewidth=0
|
||||
)
|
||||
)
|
||||
labels.append(opts["nice_names"].get(t, t))
|
||||
l3 = ax.legend(
|
||||
handles,
|
||||
labels,
|
||||
loc="upper center",
|
||||
bbox_to_anchor=(0.5, -0.0), # bbox_to_anchor=(0.72, -0.05),
|
||||
handletextpad=0.0,
|
||||
columnspacing=0.5,
|
||||
ncol=4,
|
||||
title="Technology",
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def plot_total_energy_pie(n, opts, ax=None):
|
||||
if ax is None: ax = plt.gca()
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
|
||||
ax.set_title('Energy per technology', fontdict=dict(fontsize="medium"))
|
||||
ax.set_title("Energy per technology", fontdict=dict(fontsize="medium"))
|
||||
|
||||
e_primary = aggregate_p(n).drop('load', errors='ignore').loc[lambda s: s>0]
|
||||
e_primary = aggregate_p(n).drop("load", errors="ignore").loc[lambda s: s > 0]
|
||||
|
||||
patches, texts, autotexts = ax.pie(e_primary,
|
||||
patches, texts, autotexts = ax.pie(
|
||||
e_primary,
|
||||
startangle=90,
|
||||
labels = e_primary.rename(opts['nice_names']).index,
|
||||
autopct='%.0f%%',
|
||||
labels=e_primary.rename(opts["nice_names"]).index,
|
||||
autopct="%.0f%%",
|
||||
shadow=False,
|
||||
colors = [opts['tech_colors'][tech] for tech in e_primary.index])
|
||||
colors=[opts["tech_colors"][tech] for tech in e_primary.index],
|
||||
)
|
||||
for t1, t2, i in zip(texts, autotexts, e_primary.index):
|
||||
if e_primary.at[i] < 0.04 * e_primary.sum():
|
||||
t1.remove()
|
||||
t2.remove()
|
||||
|
||||
|
||||
def plot_total_cost_bar(n, opts, ax=None):
|
||||
if ax is None: ax = plt.gca()
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
|
||||
total_load = (n.snapshot_weightings.generators * n.loads_t.p.sum(axis=1)).sum()
|
||||
tech_colors = opts['tech_colors']
|
||||
tech_colors = opts["tech_colors"]
|
||||
|
||||
def split_costs(n):
|
||||
costs = aggregate_costs(n).reset_index(level=0, drop=True)
|
||||
costs_ex = aggregate_costs(n, existing_only=True).reset_index(level=0, drop=True)
|
||||
return (costs['capital'].add(costs['marginal'], fill_value=0.),
|
||||
costs_ex['capital'], costs['capital'] - costs_ex['capital'], costs['marginal'])
|
||||
costs_ex = aggregate_costs(n, existing_only=True).reset_index(
|
||||
level=0, drop=True
|
||||
)
|
||||
return (
|
||||
costs["capital"].add(costs["marginal"], fill_value=0.0),
|
||||
costs_ex["capital"],
|
||||
costs["capital"] - costs_ex["capital"],
|
||||
costs["marginal"],
|
||||
)
|
||||
|
||||
costs, costs_cap_ex, costs_cap_new, costs_marg = split_costs(n)
|
||||
|
||||
costs_graph = pd.DataFrame(dict(a=costs.drop('load', errors='ignore')),
|
||||
index=['AC-AC', 'AC line', 'onwind', 'offwind-ac',
|
||||
'offwind-dc', 'solar', 'OCGT','CCGT', 'battery', 'H2']).dropna()
|
||||
bottom = np.array([0., 0.])
|
||||
costs_graph = pd.DataFrame(
|
||||
dict(a=costs.drop("load", errors="ignore")),
|
||||
index=[
|
||||
"AC-AC",
|
||||
"AC line",
|
||||
"onwind",
|
||||
"offwind-ac",
|
||||
"offwind-dc",
|
||||
"solar",
|
||||
"OCGT",
|
||||
"CCGT",
|
||||
"battery",
|
||||
"H2",
|
||||
],
|
||||
).dropna()
|
||||
bottom = np.array([0.0, 0.0])
|
||||
texts = []
|
||||
|
||||
for i,ind in enumerate(costs_graph.index):
|
||||
data = np.asarray(costs_graph.loc[ind])/total_load
|
||||
ax.bar([0.5], data, bottom=bottom, color=tech_colors[ind],
|
||||
width=0.7, zorder=-1)
|
||||
for i, ind in enumerate(costs_graph.index):
|
||||
data = np.asarray(costs_graph.loc[ind]) / total_load
|
||||
ax.bar([0.5], data, bottom=bottom, color=tech_colors[ind], width=0.7, zorder=-1)
|
||||
bottom_sub = bottom
|
||||
bottom = bottom+data
|
||||
bottom = bottom + data
|
||||
|
||||
if ind in opts['conv_techs'] + ['AC line']:
|
||||
if ind in opts["conv_techs"] + ["AC line"]:
|
||||
for c in [costs_cap_ex, costs_marg]:
|
||||
if ind in c:
|
||||
data_sub = np.asarray([c.loc[ind]])/total_load
|
||||
ax.bar([0.5], data_sub, linewidth=0,
|
||||
bottom=bottom_sub, color=tech_colors[ind],
|
||||
width=0.7, zorder=-1, alpha=0.8)
|
||||
data_sub = np.asarray([c.loc[ind]]) / total_load
|
||||
ax.bar(
|
||||
[0.5],
|
||||
data_sub,
|
||||
linewidth=0,
|
||||
bottom=bottom_sub,
|
||||
color=tech_colors[ind],
|
||||
width=0.7,
|
||||
zorder=-1,
|
||||
alpha=0.8,
|
||||
)
|
||||
bottom_sub += data_sub
|
||||
|
||||
if abs(data[-1]) < 5:
|
||||
continue
|
||||
|
||||
text = ax.text(1.1,(bottom-0.5*data)[-1]-3,opts['nice_names'].get(ind,ind))
|
||||
text = ax.text(
|
||||
1.1, (bottom - 0.5 * data)[-1] - 3, opts["nice_names"].get(ind, ind)
|
||||
)
|
||||
texts.append(text)
|
||||
|
||||
ax.set_ylabel("Average system cost [Eur/MWh]")
|
||||
ax.set_ylim([0, opts.get('costs_max', 80)])
|
||||
ax.set_ylim([0, opts.get("costs_max", 80)])
|
||||
ax.set_xlim([0, 1])
|
||||
ax.set_xticklabels([])
|
||||
ax.grid(True, axis="y", color='k', linestyle='dotted')
|
||||
ax.grid(True, axis="y", color="k", linestyle="dotted")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('plot_network', simpl='',
|
||||
clusters='5', ll='copt', opts='Co2L-24H',
|
||||
attr='p_nom', ext="pdf")
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"plot_network",
|
||||
simpl="",
|
||||
clusters="5",
|
||||
ll="copt",
|
||||
opts="Co2L-24H",
|
||||
attr="p_nom",
|
||||
ext="pdf",
|
||||
)
|
||||
configure_logging(snakemake)
|
||||
|
||||
set_plot_style()
|
||||
|
||||
config, wildcards = snakemake.config, snakemake.wildcards
|
||||
|
||||
map_figsize = config["plotting"]['map']['figsize']
|
||||
map_boundaries = config["plotting"]['map']['boundaries']
|
||||
map_figsize = config["plotting"]["map"]["figsize"]
|
||||
map_boundaries = config["plotting"]["map"]["boundaries"]
|
||||
|
||||
n = load_network_for_plots(snakemake.input.network, snakemake.input.tech_costs, config)
|
||||
n = load_network_for_plots(
|
||||
snakemake.input.network, snakemake.input.tech_costs, config
|
||||
)
|
||||
|
||||
scenario_opts = wildcards.opts.split('-')
|
||||
scenario_opts = wildcards.opts.split("-")
|
||||
|
||||
fig, ax = plt.subplots(figsize=map_figsize, subplot_kw={"projection": ccrs.PlateCarree()})
|
||||
fig, ax = plt.subplots(
|
||||
figsize=map_figsize, subplot_kw={"projection": ccrs.PlateCarree()}
|
||||
)
|
||||
plot_map(n, config["plotting"], ax=ax, attribute=wildcards.attr)
|
||||
|
||||
fig.savefig(snakemake.output.only_map, dpi=150, bbox_inches='tight')
|
||||
fig.savefig(snakemake.output.only_map, dpi=150, bbox_inches="tight")
|
||||
|
||||
ax1 = fig.add_axes([-0.115, 0.625, 0.2, 0.2])
|
||||
plot_total_energy_pie(n, config["plotting"], ax=ax1)
|
||||
@ -281,9 +398,12 @@ if __name__ == "__main__":
|
||||
ll = wildcards.ll
|
||||
ll_type = ll[0]
|
||||
ll_factor = ll[1:]
|
||||
lbl = dict(c='line cost', v='line volume')[ll_type]
|
||||
amnt = '{ll} x today\'s'.format(ll=ll_factor) if ll_factor != 'opt' else 'optimal'
|
||||
fig.suptitle('Expansion to {amount} {label} at {clusters} clusters'
|
||||
.format(amount=amnt, label=lbl, clusters=wildcards.clusters))
|
||||
lbl = dict(c="line cost", v="line volume")[ll_type]
|
||||
amnt = "{ll} x today's".format(ll=ll_factor) if ll_factor != "opt" else "optimal"
|
||||
fig.suptitle(
|
||||
"Expansion to {amount} {label} at {clusters} clusters".format(
|
||||
amount=amnt, label=lbl, clusters=wildcards.clusters
|
||||
)
|
||||
)
|
||||
|
||||
fig.savefig(snakemake.output.ext, transparent=True, bbox_inches='tight')
|
||||
fig.savefig(snakemake.output.ext, transparent=True, bbox_inches="tight")
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
@ -16,14 +17,13 @@ Outputs
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
"""
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
|
||||
import pypsa
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
from _helpers import configure_logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -31,11 +31,13 @@ logger = logging.getLogger(__name__)
|
||||
def cum_p_nom_max(net, tech, country=None):
|
||||
carrier_b = net.generators.carrier == tech
|
||||
|
||||
generators = pd.DataFrame(dict(
|
||||
p_nom_max=net.generators.loc[carrier_b, 'p_nom_max'],
|
||||
p_max_pu=net.generators_t.p_max_pu.loc[:,carrier_b].mean(),
|
||||
country=net.generators.loc[carrier_b, 'bus'].map(net.buses.country)
|
||||
)).sort_values("p_max_pu", ascending=False)
|
||||
generators = pd.DataFrame(
|
||||
dict(
|
||||
p_nom_max=net.generators.loc[carrier_b, "p_nom_max"],
|
||||
p_max_pu=net.generators_t.p_max_pu.loc[:, carrier_b].mean(),
|
||||
country=net.generators.loc[carrier_b, "bus"].map(net.buses.country),
|
||||
)
|
||||
).sort_values("p_max_pu", ascending=False)
|
||||
|
||||
if country is not None:
|
||||
generators = generators.loc[generators.country == country]
|
||||
@ -46,22 +48,28 @@ def cum_p_nom_max(net, tech, country=None):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('plot_p_nom_max', simpl='',
|
||||
techs='solar,onwind,offwind-dc', ext='png',
|
||||
clusts= '5,full', country= 'all')
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"plot_p_nom_max",
|
||||
simpl="",
|
||||
techs="solar,onwind,offwind-dc",
|
||||
ext="png",
|
||||
clusts="5,full",
|
||||
country="all",
|
||||
)
|
||||
configure_logging(snakemake)
|
||||
|
||||
plot_kwds = dict(drawstyle="steps-post")
|
||||
|
||||
clusters = snakemake.wildcards.clusts.split(',')
|
||||
techs = snakemake.wildcards.techs.split(',')
|
||||
clusters = snakemake.wildcards.clusts.split(",")
|
||||
techs = snakemake.wildcards.techs.split(",")
|
||||
country = snakemake.wildcards.country
|
||||
if country == 'all':
|
||||
if country == "all":
|
||||
country = None
|
||||
else:
|
||||
plot_kwds['marker'] = 'x'
|
||||
plot_kwds["marker"] = "x"
|
||||
|
||||
fig, axes = plt.subplots(1, len(techs))
|
||||
|
||||
@ -69,8 +77,9 @@ if __name__ == "__main__":
|
||||
net = pypsa.Network(snakemake.input[j])
|
||||
|
||||
for i, tech in enumerate(techs):
|
||||
cum_p_nom_max(net, tech, country).plot(x="p_max_pu", y="cum_p_nom_max",
|
||||
label=cluster, ax=axes[i], **plot_kwds)
|
||||
cum_p_nom_max(net, tech, country).plot(
|
||||
x="p_max_pu", y="cum_p_nom_max", label=cluster, ax=axes[i], **plot_kwds
|
||||
)
|
||||
|
||||
for i, tech in enumerate(techs):
|
||||
ax = axes[i]
|
||||
@ -79,4 +88,4 @@ if __name__ == "__main__":
|
||||
|
||||
plt.legend(title="Cluster level")
|
||||
|
||||
fig.savefig(snakemake.output[0], transparent=True, bbox_inches='tight')
|
||||
fig.savefig(snakemake.output[0], transparent=True, bbox_inches="tight")
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
@ -16,15 +17,14 @@ Outputs
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
"""
|
||||
|
||||
import os
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
import os
|
||||
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from _helpers import configure_logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -52,22 +52,37 @@ def rename_techs(label):
|
||||
return label
|
||||
|
||||
|
||||
preferred_order = pd.Index(["transmission lines","hydroelectricity","hydro reservoir","run of river","pumped hydro storage","onshore wind","offshore wind ac", "offshore wind dc","solar PV","solar thermal","OCGT","hydrogen storage","battery storage"])
|
||||
preferred_order = pd.Index(
|
||||
[
|
||||
"transmission lines",
|
||||
"hydroelectricity",
|
||||
"hydro reservoir",
|
||||
"run of river",
|
||||
"pumped hydro storage",
|
||||
"onshore wind",
|
||||
"offshore wind ac",
|
||||
"offshore wind dc",
|
||||
"solar PV",
|
||||
"solar thermal",
|
||||
"OCGT",
|
||||
"hydrogen storage",
|
||||
"battery storage",
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def plot_costs(infn, config, fn=None):
|
||||
|
||||
## For now ignore the simpl header
|
||||
cost_df = pd.read_csv(infn,index_col=list(range(3)),header=[1,2,3])
|
||||
cost_df = pd.read_csv(infn, index_col=list(range(3)), header=[1, 2, 3])
|
||||
|
||||
df = cost_df.groupby(cost_df.index.get_level_values(2)).sum()
|
||||
|
||||
#convert to billions
|
||||
df = df/1e9
|
||||
# convert to billions
|
||||
df = df / 1e9
|
||||
|
||||
df = df.groupby(df.index.map(rename_techs)).sum()
|
||||
|
||||
to_drop = df.index[df.max(axis=1) < config['plotting']['costs_threshold']]
|
||||
to_drop = df.index[df.max(axis=1) < config["plotting"]["costs_threshold"]]
|
||||
|
||||
print("dropping")
|
||||
|
||||
@ -77,22 +92,28 @@ def plot_costs(infn, config, fn=None):
|
||||
|
||||
print(df.sum())
|
||||
|
||||
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
|
||||
new_index = (preferred_order & df.index).append(
|
||||
df.index.difference(preferred_order)
|
||||
)
|
||||
|
||||
new_columns = df.sum().sort_values().index
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
fig.set_size_inches((12,8))
|
||||
fig.set_size_inches((12, 8))
|
||||
|
||||
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[config['plotting']['tech_colors'][i] for i in new_index])
|
||||
df.loc[new_index, new_columns].T.plot(
|
||||
kind="bar",
|
||||
ax=ax,
|
||||
stacked=True,
|
||||
color=[config["plotting"]["tech_colors"][i] for i in new_index],
|
||||
)
|
||||
|
||||
|
||||
handles,labels = ax.get_legend_handles_labels()
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
|
||||
handles.reverse()
|
||||
labels.reverse()
|
||||
|
||||
ax.set_ylim([0,config['plotting']['costs_max']])
|
||||
ax.set_ylim([0, config["plotting"]["costs_max"]])
|
||||
|
||||
ax.set_ylabel("System Cost [EUR billion per year]")
|
||||
|
||||
@ -100,8 +121,7 @@ def plot_costs(infn, config, fn=None):
|
||||
|
||||
ax.grid(axis="y")
|
||||
|
||||
ax.legend(handles,labels,ncol=4,loc="upper left")
|
||||
|
||||
ax.legend(handles, labels, ncol=4, loc="upper left")
|
||||
|
||||
fig.tight_layout()
|
||||
|
||||
@ -110,17 +130,16 @@ def plot_costs(infn, config, fn=None):
|
||||
|
||||
|
||||
def plot_energy(infn, config, fn=None):
|
||||
|
||||
energy_df = pd.read_csv(infn, index_col=list(range(2)),header=[1,2,3])
|
||||
energy_df = pd.read_csv(infn, index_col=list(range(2)), header=[1, 2, 3])
|
||||
|
||||
df = energy_df.groupby(energy_df.index.get_level_values(1)).sum()
|
||||
|
||||
#convert MWh to TWh
|
||||
df = df/1e6
|
||||
# convert MWh to TWh
|
||||
df = df / 1e6
|
||||
|
||||
df = df.groupby(df.index.map(rename_techs)).sum()
|
||||
|
||||
to_drop = df.index[df.abs().max(axis=1) < config['plotting']['energy_threshold']]
|
||||
to_drop = df.index[df.abs().max(axis=1) < config["plotting"]["energy_threshold"]]
|
||||
|
||||
print("dropping")
|
||||
|
||||
@ -130,22 +149,28 @@ def plot_energy(infn, config, fn=None):
|
||||
|
||||
print(df.sum())
|
||||
|
||||
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
|
||||
new_index = (preferred_order & df.index).append(
|
||||
df.index.difference(preferred_order)
|
||||
)
|
||||
|
||||
new_columns = df.columns.sort_values()
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
fig.set_size_inches((12,8))
|
||||
fig.set_size_inches((12, 8))
|
||||
|
||||
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[config['plotting']['tech_colors'][i] for i in new_index])
|
||||
df.loc[new_index, new_columns].T.plot(
|
||||
kind="bar",
|
||||
ax=ax,
|
||||
stacked=True,
|
||||
color=[config["plotting"]["tech_colors"][i] for i in new_index],
|
||||
)
|
||||
|
||||
|
||||
handles,labels = ax.get_legend_handles_labels()
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
|
||||
handles.reverse()
|
||||
labels.reverse()
|
||||
|
||||
ax.set_ylim([config['plotting']['energy_min'], config['plotting']['energy_max']])
|
||||
ax.set_ylim([config["plotting"]["energy_min"], config["plotting"]["energy_max"]])
|
||||
|
||||
ax.set_ylabel("Energy [TWh/a]")
|
||||
|
||||
@ -153,8 +178,7 @@ def plot_energy(infn, config, fn=None):
|
||||
|
||||
ax.grid(axis="y")
|
||||
|
||||
ax.legend(handles,labels,ncol=4,loc="upper left")
|
||||
|
||||
ax.legend(handles, labels, ncol=4, loc="upper left")
|
||||
|
||||
fig.tight_layout()
|
||||
|
||||
@ -163,11 +187,20 @@ def plot_energy(infn, config, fn=None):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('plot_summary', summary='energy',
|
||||
simpl='', clusters=5, ll='copt', opts='Co2L-24H',
|
||||
attr='', ext='png', country='all')
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"plot_summary",
|
||||
summary="energy",
|
||||
simpl="",
|
||||
clusters=5,
|
||||
ll="copt",
|
||||
opts="Co2L-24H",
|
||||
attr="",
|
||||
ext="png",
|
||||
country="all",
|
||||
)
|
||||
configure_logging(snakemake)
|
||||
|
||||
config = snakemake.config
|
||||
@ -178,4 +211,6 @@ if __name__ == "__main__":
|
||||
except KeyError:
|
||||
raise RuntimeError(f"plotting function for {summary} has not been defined")
|
||||
|
||||
func(os.path.join(snakemake.input[0], f"{summary}.csv"), config, snakemake.output[0])
|
||||
func(
|
||||
os.path.join(snakemake.input[0], f"{summary}.csv"), config, snakemake.output[0]
|
||||
)
|
||||
|
@ -1,11 +1,13 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
"""
|
||||
Extracts capacities of HVDC links from `Wikipedia <https://en.wikipedia.org/wiki/List_of_HVDC_projects>`_.
|
||||
Extracts capacities of HVDC links from `Wikipedia
|
||||
<https://en.wikipedia.org/wiki/List_of_HVDC_projects>`_.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -33,13 +35,12 @@ Description
|
||||
-----------
|
||||
|
||||
*None*
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
|
||||
import pandas as pd
|
||||
from _helpers import configure_logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -49,29 +50,45 @@ def multiply(s):
|
||||
|
||||
|
||||
def extract_coordinates(s):
|
||||
regex = (r"(\d{1,2})°(\d{1,2})′(\d{1,2})″(N|S) "
|
||||
r"(\d{1,2})°(\d{1,2})′(\d{1,2})″(E|W)")
|
||||
regex = (
|
||||
r"(\d{1,2})°(\d{1,2})′(\d{1,2})″(N|S) " r"(\d{1,2})°(\d{1,2})′(\d{1,2})″(E|W)"
|
||||
)
|
||||
e = s.str.extract(regex, expand=True)
|
||||
lat = (e[0].astype(float) + (e[1].astype(float) + e[2].astype(float)/60.)/60.)*e[3].map({'N': +1., 'S': -1.})
|
||||
lon = (e[4].astype(float) + (e[5].astype(float) + e[6].astype(float)/60.)/60.)*e[7].map({'E': +1., 'W': -1.})
|
||||
lat = (
|
||||
e[0].astype(float) + (e[1].astype(float) + e[2].astype(float) / 60.0) / 60.0
|
||||
) * e[3].map({"N": +1.0, "S": -1.0})
|
||||
lon = (
|
||||
e[4].astype(float) + (e[5].astype(float) + e[6].astype(float) / 60.0) / 60.0
|
||||
) * e[7].map({"E": +1.0, "W": -1.0})
|
||||
return lon, lat
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
from _helpers import mock_snakemake #rule must be enabled in config
|
||||
snakemake = mock_snakemake('prepare_links_p_nom', simpl='')
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake # rule must be enabled in config
|
||||
|
||||
snakemake = mock_snakemake("prepare_links_p_nom", simpl="")
|
||||
configure_logging(snakemake)
|
||||
|
||||
links_p_nom = pd.read_html('https://en.wikipedia.org/wiki/List_of_HVDC_projects', header=0, match="SwePol")[0]
|
||||
links_p_nom = pd.read_html(
|
||||
"https://en.wikipedia.org/wiki/List_of_HVDC_projects", header=0, match="SwePol"
|
||||
)[0]
|
||||
|
||||
mw = "Power (MW)"
|
||||
m_b = links_p_nom[mw].str.contains('x').fillna(False)
|
||||
m_b = links_p_nom[mw].str.contains("x").fillna(False)
|
||||
|
||||
links_p_nom.loc[m_b, mw] = links_p_nom.loc[m_b, mw].str.split('x').pipe(multiply)
|
||||
links_p_nom[mw] = links_p_nom[mw].str.extract("[-/]?([\d.]+)", expand=False).astype(float)
|
||||
links_p_nom.loc[m_b, mw] = links_p_nom.loc[m_b, mw].str.split("x").pipe(multiply)
|
||||
links_p_nom[mw] = (
|
||||
links_p_nom[mw].str.extract("[-/]?([\d.]+)", expand=False).astype(float)
|
||||
)
|
||||
|
||||
links_p_nom['x1'], links_p_nom['y1'] = extract_coordinates(links_p_nom['Converterstation 1'])
|
||||
links_p_nom['x2'], links_p_nom['y2'] = extract_coordinates(links_p_nom['Converterstation 2'])
|
||||
links_p_nom["x1"], links_p_nom["y1"] = extract_coordinates(
|
||||
links_p_nom["Converterstation 1"]
|
||||
)
|
||||
links_p_nom["x2"], links_p_nom["y2"] = extract_coordinates(
|
||||
links_p_nom["Converterstation 2"]
|
||||
)
|
||||
|
||||
links_p_nom.dropna(subset=['x1', 'y1', 'x2', 'y2']).to_csv(snakemake.output[0], index=False)
|
||||
links_p_nom.dropna(subset=["x1", "y1", "x2", "y2"]).to_csv(
|
||||
snakemake.output[0], index=False
|
||||
)
|
||||
|
@ -1,10 +1,12 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# coding: utf-8
|
||||
"""
|
||||
Prepare PyPSA network for solving according to :ref:`opts` and :ref:`ll`, such as
|
||||
Prepare PyPSA network for solving according to :ref:`opts` and :ref:`ll`, such
|
||||
as.
|
||||
|
||||
- adding an annual **limit** of carbon-dioxide emissions,
|
||||
- adding an exogenous **price** per tonne emissions of carbon-dioxide (or other kinds),
|
||||
@ -53,17 +55,15 @@ Description
|
||||
The rule :mod:`prepare_all_networks` runs
|
||||
for all ``scenario`` s in the configuration file
|
||||
the rule :mod:`prepare_network`.
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
|
||||
import re
|
||||
import pypsa
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
import pypsa
|
||||
from _helpers import configure_logging
|
||||
from add_electricity import load_costs, update_transmission_costs
|
||||
|
||||
idx = pd.IndexSlice
|
||||
@ -71,65 +71,84 @@ idx = pd.IndexSlice
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def add_co2limit(n, co2limit, Nyears=1.):
|
||||
|
||||
n.add("GlobalConstraint", "CO2Limit",
|
||||
carrier_attribute="co2_emissions", sense="<=",
|
||||
constant=co2limit * Nyears)
|
||||
def add_co2limit(n, co2limit, Nyears=1.0):
|
||||
n.add(
|
||||
"GlobalConstraint",
|
||||
"CO2Limit",
|
||||
carrier_attribute="co2_emissions",
|
||||
sense="<=",
|
||||
constant=co2limit * Nyears,
|
||||
)
|
||||
|
||||
|
||||
def add_gaslimit(n, gaslimit, Nyears=1.):
|
||||
|
||||
def add_gaslimit(n, gaslimit, Nyears=1.0):
|
||||
sel = n.carriers.index.intersection(["OCGT", "CCGT", "CHP"])
|
||||
n.carriers.loc[sel, "gas_usage"] = 1.
|
||||
n.carriers.loc[sel, "gas_usage"] = 1.0
|
||||
|
||||
n.add("GlobalConstraint", "GasLimit",
|
||||
carrier_attribute="gas_usage", sense="<=",
|
||||
constant=gaslimit * Nyears)
|
||||
n.add(
|
||||
"GlobalConstraint",
|
||||
"GasLimit",
|
||||
carrier_attribute="gas_usage",
|
||||
sense="<=",
|
||||
constant=gaslimit * Nyears,
|
||||
)
|
||||
|
||||
|
||||
def add_emission_prices(n, emission_prices={'co2': 0.}, exclude_co2=False):
|
||||
if exclude_co2: emission_prices.pop('co2')
|
||||
ep = (pd.Series(emission_prices).rename(lambda x: x+'_emissions') *
|
||||
n.carriers.filter(like='_emissions')).sum(axis=1)
|
||||
def add_emission_prices(n, emission_prices={"co2": 0.0}, exclude_co2=False):
|
||||
if exclude_co2:
|
||||
emission_prices.pop("co2")
|
||||
ep = (
|
||||
pd.Series(emission_prices).rename(lambda x: x + "_emissions")
|
||||
* n.carriers.filter(like="_emissions")
|
||||
).sum(axis=1)
|
||||
gen_ep = n.generators.carrier.map(ep) / n.generators.efficiency
|
||||
n.generators['marginal_cost'] += gen_ep
|
||||
n.generators["marginal_cost"] += gen_ep
|
||||
su_ep = n.storage_units.carrier.map(ep) / n.storage_units.efficiency_dispatch
|
||||
n.storage_units['marginal_cost'] += su_ep
|
||||
n.storage_units["marginal_cost"] += su_ep
|
||||
|
||||
|
||||
def set_line_s_max_pu(n, s_max_pu = 0.7):
|
||||
n.lines['s_max_pu'] = s_max_pu
|
||||
def set_line_s_max_pu(n, s_max_pu=0.7):
|
||||
n.lines["s_max_pu"] = s_max_pu
|
||||
logger.info(f"N-1 security margin of lines set to {s_max_pu}")
|
||||
|
||||
|
||||
def set_transmission_limit(n, ll_type, factor, costs, Nyears=1):
|
||||
links_dc_b = n.links.carrier == 'DC' if not n.links.empty else pd.Series()
|
||||
links_dc_b = n.links.carrier == "DC" if not n.links.empty else pd.Series()
|
||||
|
||||
_lines_s_nom = (np.sqrt(3) * n.lines.type.map(n.line_types.i_nom) *
|
||||
n.lines.num_parallel * n.lines.bus0.map(n.buses.v_nom))
|
||||
lines_s_nom = n.lines.s_nom.where(n.lines.type == '', _lines_s_nom)
|
||||
_lines_s_nom = (
|
||||
np.sqrt(3)
|
||||
* n.lines.type.map(n.line_types.i_nom)
|
||||
* n.lines.num_parallel
|
||||
* n.lines.bus0.map(n.buses.v_nom)
|
||||
)
|
||||
lines_s_nom = n.lines.s_nom.where(n.lines.type == "", _lines_s_nom)
|
||||
|
||||
|
||||
col = 'capital_cost' if ll_type == 'c' else 'length'
|
||||
ref = (lines_s_nom @ n.lines[col] +
|
||||
n.links.loc[links_dc_b, "p_nom"] @ n.links.loc[links_dc_b, col])
|
||||
col = "capital_cost" if ll_type == "c" else "length"
|
||||
ref = (
|
||||
lines_s_nom @ n.lines[col]
|
||||
+ n.links.loc[links_dc_b, "p_nom"] @ n.links.loc[links_dc_b, col]
|
||||
)
|
||||
|
||||
update_transmission_costs(n, costs)
|
||||
|
||||
if factor == 'opt' or float(factor) > 1.0:
|
||||
n.lines['s_nom_min'] = lines_s_nom
|
||||
n.lines['s_nom_extendable'] = True
|
||||
if factor == "opt" or float(factor) > 1.0:
|
||||
n.lines["s_nom_min"] = lines_s_nom
|
||||
n.lines["s_nom_extendable"] = True
|
||||
|
||||
n.links.loc[links_dc_b, 'p_nom_min'] = n.links.loc[links_dc_b, 'p_nom']
|
||||
n.links.loc[links_dc_b, 'p_nom_extendable'] = True
|
||||
n.links.loc[links_dc_b, "p_nom_min"] = n.links.loc[links_dc_b, "p_nom"]
|
||||
n.links.loc[links_dc_b, "p_nom_extendable"] = True
|
||||
|
||||
if factor != 'opt':
|
||||
con_type = 'expansion_cost' if ll_type == 'c' else 'volume_expansion'
|
||||
if factor != "opt":
|
||||
con_type = "expansion_cost" if ll_type == "c" else "volume_expansion"
|
||||
rhs = float(factor) * ref
|
||||
n.add('GlobalConstraint', f'l{ll_type}_limit',
|
||||
type=f'transmission_{con_type}_limit',
|
||||
sense='<=', constant=rhs, carrier_attribute='AC, DC')
|
||||
n.add(
|
||||
"GlobalConstraint",
|
||||
f"l{ll_type}_limit",
|
||||
type=f"transmission_{con_type}_limit",
|
||||
sense="<=",
|
||||
constant=rhs,
|
||||
carrier_attribute="AC, DC",
|
||||
)
|
||||
|
||||
return n
|
||||
|
||||
@ -143,7 +162,7 @@ def average_every_nhours(n, offset):
|
||||
m.snapshot_weightings = snapshot_weightings
|
||||
|
||||
for c in n.iterate_components():
|
||||
pnl = getattr(m, c.list_name+"_t")
|
||||
pnl = getattr(m, c.list_name + "_t")
|
||||
for k, df in c.pnl.items():
|
||||
if not df.empty:
|
||||
pnl[k] = df.resample(offset).mean()
|
||||
@ -156,23 +175,29 @@ def apply_time_segmentation(n, segments, solver_name="cbc"):
|
||||
try:
|
||||
import tsam.timeseriesaggregation as tsam
|
||||
except:
|
||||
raise ModuleNotFoundError("Optional dependency 'tsam' not found."
|
||||
"Install via 'pip install tsam'")
|
||||
raise ModuleNotFoundError(
|
||||
"Optional dependency 'tsam' not found." "Install via 'pip install tsam'"
|
||||
)
|
||||
|
||||
p_max_pu_norm = n.generators_t.p_max_pu.max()
|
||||
p_max_pu = n.generators_t.p_max_pu / p_max_pu_norm
|
||||
|
||||
load_norm = n.loads_t.p_set.max()
|
||||
load = n.loads_t.p_set / load_norm
|
||||
|
||||
|
||||
inflow_norm = n.storage_units_t.inflow.max()
|
||||
inflow = n.storage_units_t.inflow / inflow_norm
|
||||
|
||||
raw = pd.concat([p_max_pu, load, inflow], axis=1, sort=False)
|
||||
|
||||
agg = tsam.TimeSeriesAggregation(raw, hoursPerPeriod=len(raw),
|
||||
noTypicalPeriods=1, noSegments=int(segments),
|
||||
segmentation=True, solver=solver_name)
|
||||
agg = tsam.TimeSeriesAggregation(
|
||||
raw,
|
||||
hoursPerPeriod=len(raw),
|
||||
noTypicalPeriods=1,
|
||||
noSegments=int(segments),
|
||||
segmentation=True,
|
||||
solver=solver_name,
|
||||
)
|
||||
|
||||
segmented = agg.createTypicalPeriods()
|
||||
|
||||
@ -180,9 +205,11 @@ def apply_time_segmentation(n, segments, solver_name="cbc"):
|
||||
offsets = np.insert(np.cumsum(weightings[:-1]), 0, 0)
|
||||
snapshots = [n.snapshots[0] + pd.Timedelta(f"{offset}h") for offset in offsets]
|
||||
|
||||
n.set_snapshots(pd.DatetimeIndex(snapshots, name='name'))
|
||||
n.snapshot_weightings = pd.Series(weightings, index=snapshots, name="weightings", dtype="float64")
|
||||
|
||||
n.set_snapshots(pd.DatetimeIndex(snapshots, name="name"))
|
||||
n.snapshot_weightings = pd.Series(
|
||||
weightings, index=snapshots, name="weightings", dtype="float64"
|
||||
)
|
||||
|
||||
segmented.index = snapshots
|
||||
n.generators_t.p_max_pu = segmented[n.generators_t.p_max_pu.columns] * p_max_pu_norm
|
||||
n.loads_t.p_set = segmented[n.loads_t.p_set.columns] * load_norm
|
||||
@ -190,49 +217,57 @@ def apply_time_segmentation(n, segments, solver_name="cbc"):
|
||||
|
||||
return n
|
||||
|
||||
|
||||
def enforce_autarky(n, only_crossborder=False):
|
||||
if only_crossborder:
|
||||
lines_rm = n.lines.loc[
|
||||
n.lines.bus0.map(n.buses.country) !=
|
||||
n.lines.bus1.map(n.buses.country)
|
||||
].index
|
||||
n.lines.bus0.map(n.buses.country) != n.lines.bus1.map(n.buses.country)
|
||||
].index
|
||||
links_rm = n.links.loc[
|
||||
n.links.bus0.map(n.buses.country) !=
|
||||
n.links.bus1.map(n.buses.country)
|
||||
].index
|
||||
n.links.bus0.map(n.buses.country) != n.links.bus1.map(n.buses.country)
|
||||
].index
|
||||
else:
|
||||
lines_rm = n.lines.index
|
||||
links_rm = n.links.loc[n.links.carrier=="DC"].index
|
||||
links_rm = n.links.loc[n.links.carrier == "DC"].index
|
||||
n.mremove("Line", lines_rm)
|
||||
n.mremove("Link", links_rm)
|
||||
|
||||
|
||||
def set_line_nom_max(n, s_nom_max_set=np.inf, p_nom_max_set=np.inf):
|
||||
n.lines.s_nom_max.clip(upper=s_nom_max_set, inplace=True)
|
||||
n.links.p_nom_max.clip(upper=p_nom_max_set, inplace=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('prepare_network', simpl='',
|
||||
clusters='40', ll='v0.3', opts='Co2L-24H')
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"prepare_network", simpl="", clusters="40", ll="v0.3", opts="Co2L-24H"
|
||||
)
|
||||
configure_logging(snakemake)
|
||||
|
||||
opts = snakemake.wildcards.opts.split('-')
|
||||
opts = snakemake.wildcards.opts.split("-")
|
||||
|
||||
n = pypsa.Network(snakemake.input[0])
|
||||
Nyears = n.snapshot_weightings.objective.sum() / 8760.
|
||||
costs = load_costs(snakemake.input.tech_costs, snakemake.config['costs'], snakemake.config['electricity'], Nyears)
|
||||
Nyears = n.snapshot_weightings.objective.sum() / 8760.0
|
||||
costs = load_costs(
|
||||
snakemake.input.tech_costs,
|
||||
snakemake.config["costs"],
|
||||
snakemake.config["electricity"],
|
||||
Nyears,
|
||||
)
|
||||
|
||||
set_line_s_max_pu(n, snakemake.config['lines']['s_max_pu'])
|
||||
set_line_s_max_pu(n, snakemake.config["lines"]["s_max_pu"])
|
||||
|
||||
for o in opts:
|
||||
m = re.match(r'^\d+h$', o, re.IGNORECASE)
|
||||
m = re.match(r"^\d+h$", o, re.IGNORECASE)
|
||||
if m is not None:
|
||||
n = average_every_nhours(n, m.group(0))
|
||||
break
|
||||
|
||||
for o in opts:
|
||||
m = re.match(r'^\d+seg$', o, re.IGNORECASE)
|
||||
m = re.match(r"^\d+seg$", o, re.IGNORECASE)
|
||||
if m is not None:
|
||||
solver_name = snakemake.config["solving"]["solver"]["name"]
|
||||
n = apply_time_segmentation(n, m.group(0)[:-3], solver_name)
|
||||
@ -242,11 +277,11 @@ if __name__ == "__main__":
|
||||
if "Co2L" in o:
|
||||
m = re.findall("[0-9]*\.?[0-9]+$", o)
|
||||
if len(m) > 0:
|
||||
co2limit = float(m[0]) * snakemake.config['electricity']['co2base']
|
||||
co2limit = float(m[0]) * snakemake.config["electricity"]["co2base"]
|
||||
add_co2limit(n, co2limit, Nyears)
|
||||
logger.info("Setting CO2 limit according to wildcard value.")
|
||||
else:
|
||||
add_co2limit(n, snakemake.config['electricity']['co2limit'], Nyears)
|
||||
add_co2limit(n, snakemake.config["electricity"]["co2limit"], Nyears)
|
||||
logger.info("Setting CO2 limit according to config value.")
|
||||
break
|
||||
|
||||
@ -277,24 +312,27 @@ if __name__ == "__main__":
|
||||
comps = {"Generator", "Link", "StorageUnit", "Store"}
|
||||
for c in n.iterate_components(comps):
|
||||
sel = c.df.carrier.str.contains(carrier)
|
||||
c.df.loc[sel,attr] *= factor
|
||||
c.df.loc[sel, attr] *= factor
|
||||
|
||||
for o in opts:
|
||||
if 'Ep' in o:
|
||||
if "Ep" in o:
|
||||
m = re.findall("[0-9]*\.?[0-9]+$", o)
|
||||
if len(m) > 0:
|
||||
logger.info("Setting emission prices according to wildcard value.")
|
||||
add_emission_prices(n, dict(co2=float(m[0])))
|
||||
else:
|
||||
logger.info("Setting emission prices according to config value.")
|
||||
add_emission_prices(n, snakemake.config['costs']['emission_prices'])
|
||||
add_emission_prices(n, snakemake.config["costs"]["emission_prices"])
|
||||
break
|
||||
|
||||
ll_type, factor = snakemake.wildcards.ll[0], snakemake.wildcards.ll[1:]
|
||||
set_transmission_limit(n, ll_type, factor, costs, Nyears)
|
||||
|
||||
set_line_nom_max(n, s_nom_max_set=snakemake.config["lines"].get("s_nom_max,", np.inf),
|
||||
p_nom_max_set=snakemake.config["links"].get("p_nom_max,", np.inf))
|
||||
set_line_nom_max(
|
||||
n,
|
||||
s_nom_max_set=snakemake.config["lines"].get("s_nom_max,", np.inf),
|
||||
p_nom_max_set=snakemake.config["links"].get("p_nom_max,", np.inf),
|
||||
)
|
||||
|
||||
if "ATK" in opts:
|
||||
enforce_autarky(n)
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright 2019-2022 Fabian Hofmann (TUB, FIAS)
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
@ -33,24 +34,27 @@ The :ref:`tutorial` uses a smaller `data bundle <https://zenodo.org/record/35179
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import progress_retrieve, configure_logging
|
||||
|
||||
import tarfile
|
||||
from pathlib import Path
|
||||
|
||||
from _helpers import configure_logging, progress_retrieve
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('retrieve_databundle')
|
||||
rootpath = '..'
|
||||
else:
|
||||
rootpath = '.'
|
||||
configure_logging(snakemake) # TODO Make logging compatible with progressbar (see PR #102)
|
||||
|
||||
if snakemake.config['tutorial']:
|
||||
snakemake = mock_snakemake("retrieve_databundle")
|
||||
rootpath = ".."
|
||||
else:
|
||||
rootpath = "."
|
||||
configure_logging(
|
||||
snakemake
|
||||
) # TODO Make logging compatible with progressbar (see PR #102)
|
||||
|
||||
if snakemake.config["tutorial"]:
|
||||
url = "https://zenodo.org/record/3517921/files/pypsa-eur-tutorial-data-bundle.tar.xz"
|
||||
else:
|
||||
url = "https://zenodo.org/record/3517935/files/pypsa-eur-data-bundle.tar.xz"
|
||||
|
@ -1,12 +1,13 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# coding: utf-8
|
||||
"""
|
||||
Lifts electrical transmission network to a single 380 kV voltage layer,
|
||||
removes dead-ends of the network,
|
||||
and reduces multi-hop HVDC connections to a single link.
|
||||
Lifts electrical transmission network to a single 380 kV voltage layer, removes
|
||||
dead-ends of the network, and reduces multi-hop HVDC connections to a single
|
||||
link.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -85,21 +86,23 @@ The rule :mod:`simplify_network` does up to four things:
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging, update_p_nom_max, get_aggregation_strategies
|
||||
|
||||
from cluster_network import clustering_for_n_clusters, cluster_regions
|
||||
from add_electricity import load_costs
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import scipy as sp
|
||||
from scipy.sparse.csgraph import connected_components, dijkstra
|
||||
|
||||
from functools import reduce
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
import scipy as sp
|
||||
from _helpers import configure_logging, get_aggregation_strategies, update_p_nom_max
|
||||
from add_electricity import load_costs
|
||||
from cluster_network import cluster_regions, clustering_for_n_clusters
|
||||
from pypsa.io import import_components_from_dataframe, import_series_from_dataframe
|
||||
from pypsa.networkclustering import busmap_by_stubs, aggregategenerators, aggregateoneport, get_clustering_from_busmap
|
||||
from pypsa.networkclustering import (
|
||||
aggregategenerators,
|
||||
aggregateoneport,
|
||||
busmap_by_stubs,
|
||||
get_clustering_from_busmap,
|
||||
)
|
||||
from scipy.sparse.csgraph import connected_components, dijkstra
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -117,26 +120,26 @@ def simplify_network_to_380(n):
|
||||
"""
|
||||
logger.info("Mapping all network lines onto a single 380kV layer")
|
||||
|
||||
n.buses['v_nom'] = 380.
|
||||
n.buses["v_nom"] = 380.0
|
||||
|
||||
linetype_380, = n.lines.loc[n.lines.v_nom == 380., 'type'].unique()
|
||||
n.lines['type'] = linetype_380
|
||||
(linetype_380,) = n.lines.loc[n.lines.v_nom == 380.0, "type"].unique()
|
||||
n.lines["type"] = linetype_380
|
||||
n.lines["v_nom"] = 380
|
||||
n.lines["i_nom"] = n.line_types.i_nom[linetype_380]
|
||||
n.lines['num_parallel'] = n.lines.eval("s_nom / (sqrt(3) * v_nom * i_nom)")
|
||||
n.lines["num_parallel"] = n.lines.eval("s_nom / (sqrt(3) * v_nom * i_nom)")
|
||||
|
||||
trafo_map = pd.Series(n.transformers.bus1.values, n.transformers.bus0.values)
|
||||
trafo_map = trafo_map[~trafo_map.index.duplicated(keep='first')]
|
||||
trafo_map = trafo_map[~trafo_map.index.duplicated(keep="first")]
|
||||
several_trafo_b = trafo_map.isin(trafo_map.index)
|
||||
trafo_map[several_trafo_b] = trafo_map[several_trafo_b].map(trafo_map)
|
||||
missing_buses_i = n.buses.index.difference(trafo_map.index)
|
||||
missing = pd.Series(missing_buses_i, missing_buses_i)
|
||||
trafo_map = pd.concat([trafo_map, missing])
|
||||
|
||||
for c in n.one_port_components|n.branch_components:
|
||||
for c in n.one_port_components | n.branch_components:
|
||||
df = n.df(c)
|
||||
for col in df.columns:
|
||||
if col.startswith('bus'):
|
||||
if col.startswith("bus"):
|
||||
df[col] = df[col].map(trafo_map)
|
||||
|
||||
n.mremove("Transformer", n.transformers.index)
|
||||
@ -146,22 +149,30 @@ def simplify_network_to_380(n):
|
||||
|
||||
|
||||
def _prepare_connection_costs_per_link(n, costs, config):
|
||||
if n.links.empty: return {}
|
||||
if n.links.empty:
|
||||
return {}
|
||||
|
||||
connection_costs_per_link = {}
|
||||
|
||||
for tech in config['renewable']:
|
||||
if tech.startswith('offwind'):
|
||||
for tech in config["renewable"]:
|
||||
if tech.startswith("offwind"):
|
||||
connection_costs_per_link[tech] = (
|
||||
n.links.length * config['lines']['length_factor'] *
|
||||
(n.links.underwater_fraction * costs.at[tech + '-connection-submarine', 'capital_cost'] +
|
||||
(1. - n.links.underwater_fraction) * costs.at[tech + '-connection-underground', 'capital_cost'])
|
||||
n.links.length
|
||||
* config["lines"]["length_factor"]
|
||||
* (
|
||||
n.links.underwater_fraction
|
||||
* costs.at[tech + "-connection-submarine", "capital_cost"]
|
||||
+ (1.0 - n.links.underwater_fraction)
|
||||
* costs.at[tech + "-connection-underground", "capital_cost"]
|
||||
)
|
||||
)
|
||||
|
||||
return connection_costs_per_link
|
||||
|
||||
|
||||
def _compute_connection_costs_to_bus(n, busmap, costs, config, connection_costs_per_link=None, buses=None):
|
||||
def _compute_connection_costs_to_bus(
|
||||
n, busmap, costs, config, connection_costs_per_link=None, buses=None
|
||||
):
|
||||
if connection_costs_per_link is None:
|
||||
connection_costs_per_link = _prepare_connection_costs_per_link(n, costs, config)
|
||||
|
||||
@ -171,12 +182,21 @@ def _compute_connection_costs_to_bus(n, busmap, costs, config, connection_costs_
|
||||
connection_costs_to_bus = pd.DataFrame(index=buses)
|
||||
|
||||
for tech in connection_costs_per_link:
|
||||
adj = n.adjacency_matrix(weights=pd.concat(dict(Link=connection_costs_per_link[tech].reindex(n.links.index),
|
||||
Line=pd.Series(0., n.lines.index))))
|
||||
adj = n.adjacency_matrix(
|
||||
weights=pd.concat(
|
||||
dict(
|
||||
Link=connection_costs_per_link[tech].reindex(n.links.index),
|
||||
Line=pd.Series(0.0, n.lines.index),
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
costs_between_buses = dijkstra(adj, directed=False, indices=n.buses.index.get_indexer(buses))
|
||||
connection_costs_to_bus[tech] = costs_between_buses[np.arange(len(buses)),
|
||||
n.buses.index.get_indexer(busmap.loc[buses])]
|
||||
costs_between_buses = dijkstra(
|
||||
adj, directed=False, indices=n.buses.index.get_indexer(buses)
|
||||
)
|
||||
connection_costs_to_bus[tech] = costs_between_buses[
|
||||
np.arange(len(buses)), n.buses.index.get_indexer(busmap.loc[buses])
|
||||
]
|
||||
|
||||
return connection_costs_to_bus
|
||||
|
||||
@ -185,20 +205,34 @@ def _adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus, out
|
||||
connection_costs = {}
|
||||
for tech in connection_costs_to_bus:
|
||||
tech_b = n.generators.carrier == tech
|
||||
costs = n.generators.loc[tech_b, "bus"].map(connection_costs_to_bus[tech]).loc[lambda s: s>0]
|
||||
costs = (
|
||||
n.generators.loc[tech_b, "bus"]
|
||||
.map(connection_costs_to_bus[tech])
|
||||
.loc[lambda s: s > 0]
|
||||
)
|
||||
if not costs.empty:
|
||||
n.generators.loc[costs.index, "capital_cost"] += costs
|
||||
logger.info("Displacing {} generator(s) and adding connection costs to capital_costs: {} "
|
||||
.format(tech, ", ".join("{:.0f} Eur/MW/a for `{}`".format(d, b) for b, d in costs.iteritems())))
|
||||
logger.info(
|
||||
"Displacing {} generator(s) and adding connection costs to capital_costs: {} ".format(
|
||||
tech,
|
||||
", ".join(
|
||||
"{:.0f} Eur/MW/a for `{}`".format(d, b)
|
||||
for b, d in costs.iteritems()
|
||||
),
|
||||
)
|
||||
)
|
||||
connection_costs[tech] = costs
|
||||
pd.DataFrame(connection_costs).to_csv(output.connection_costs)
|
||||
|
||||
|
||||
|
||||
def _aggregate_and_move_components(n, busmap, connection_costs_to_bus, output,
|
||||
aggregate_one_ports={"Load", "StorageUnit"},
|
||||
aggregation_strategies=dict()):
|
||||
|
||||
def _aggregate_and_move_components(
|
||||
n,
|
||||
busmap,
|
||||
connection_costs_to_bus,
|
||||
output,
|
||||
aggregate_one_ports={"Load", "StorageUnit"},
|
||||
aggregation_strategies=dict(),
|
||||
):
|
||||
def replace_components(n, c, df, pnl):
|
||||
n.mremove(c, n.df(c).index)
|
||||
|
||||
@ -236,8 +270,10 @@ def simplify_links(n, costs, config, output, aggregation_strategies=dict()):
|
||||
return n, n.buses.index.to_series()
|
||||
|
||||
# Determine connected link components, ignore all links but DC
|
||||
adjacency_matrix = n.adjacency_matrix(branch_components=['Link'],
|
||||
weights=dict(Link=(n.links.carrier == 'DC').astype(float)))
|
||||
adjacency_matrix = n.adjacency_matrix(
|
||||
branch_components=["Link"],
|
||||
weights=dict(Link=(n.links.carrier == "DC").astype(float)),
|
||||
)
|
||||
|
||||
_, labels = connected_components(adjacency_matrix, directed=False)
|
||||
labels = pd.Series(labels, n.buses.index)
|
||||
@ -248,22 +284,23 @@ def simplify_links(n, costs, config, output, aggregation_strategies=dict()):
|
||||
nodes = frozenset(nodes)
|
||||
|
||||
seen = set()
|
||||
supernodes = {m for m in nodes
|
||||
if len(G.adj[m]) > 2 or (set(G.adj[m]) - nodes)}
|
||||
supernodes = {m for m in nodes if len(G.adj[m]) > 2 or (set(G.adj[m]) - nodes)}
|
||||
|
||||
for u in supernodes:
|
||||
for m, ls in G.adj[u].items():
|
||||
if m not in nodes or m in seen: continue
|
||||
if m not in nodes or m in seen:
|
||||
continue
|
||||
|
||||
buses = [u, m]
|
||||
links = [list(ls)] #[name for name in ls]]
|
||||
links = [list(ls)] # [name for name in ls]]
|
||||
|
||||
while m not in (supernodes | seen):
|
||||
seen.add(m)
|
||||
for m2, ls in G.adj[m].items():
|
||||
if m2 in seen or m2 == u: continue
|
||||
if m2 in seen or m2 == u:
|
||||
continue
|
||||
buses.append(m2)
|
||||
links.append(list(ls)) # [name for name in ls])
|
||||
links.append(list(ls)) # [name for name in ls])
|
||||
break
|
||||
else:
|
||||
# stub
|
||||
@ -276,83 +313,123 @@ def simplify_links(n, costs, config, output, aggregation_strategies=dict()):
|
||||
busmap = n.buses.index.to_series()
|
||||
|
||||
connection_costs_per_link = _prepare_connection_costs_per_link(n, costs, config)
|
||||
connection_costs_to_bus = pd.DataFrame(0., index=n.buses.index, columns=list(connection_costs_per_link))
|
||||
connection_costs_to_bus = pd.DataFrame(
|
||||
0.0, index=n.buses.index, columns=list(connection_costs_per_link)
|
||||
)
|
||||
|
||||
for lbl in labels.value_counts().loc[lambda s: s > 2].index:
|
||||
|
||||
for b, buses, links in split_links(labels.index[labels == lbl]):
|
||||
if len(buses) <= 2: continue
|
||||
if len(buses) <= 2:
|
||||
continue
|
||||
|
||||
logger.debug('nodes = {}'.format(labels.index[labels == lbl]))
|
||||
logger.debug('b = {}\nbuses = {}\nlinks = {}'.format(b, buses, links))
|
||||
logger.debug("nodes = {}".format(labels.index[labels == lbl]))
|
||||
logger.debug("b = {}\nbuses = {}\nlinks = {}".format(b, buses, links))
|
||||
|
||||
m = sp.spatial.distance_matrix(n.buses.loc[b, ['x', 'y']],
|
||||
n.buses.loc[buses[1:-1], ['x', 'y']])
|
||||
m = sp.spatial.distance_matrix(
|
||||
n.buses.loc[b, ["x", "y"]], n.buses.loc[buses[1:-1], ["x", "y"]]
|
||||
)
|
||||
busmap.loc[buses] = b[np.r_[0, m.argmin(axis=0), 1]]
|
||||
connection_costs_to_bus.loc[buses] += _compute_connection_costs_to_bus(n, busmap, costs, config, connection_costs_per_link, buses)
|
||||
connection_costs_to_bus.loc[buses] += _compute_connection_costs_to_bus(
|
||||
n, busmap, costs, config, connection_costs_per_link, buses
|
||||
)
|
||||
|
||||
all_links = [i for _, i in sum(links, [])]
|
||||
|
||||
p_max_pu = config['links'].get('p_max_pu', 1.)
|
||||
lengths = n.links.loc[all_links, 'length']
|
||||
name = lengths.idxmax() + '+{}'.format(len(links) - 1)
|
||||
p_max_pu = config["links"].get("p_max_pu", 1.0)
|
||||
lengths = n.links.loc[all_links, "length"]
|
||||
name = lengths.idxmax() + "+{}".format(len(links) - 1)
|
||||
params = dict(
|
||||
carrier='DC',
|
||||
bus0=b[0], bus1=b[1],
|
||||
length=sum(n.links.loc[[i for _, i in l], 'length'].mean() for l in links),
|
||||
p_nom=min(n.links.loc[[i for _, i in l], 'p_nom'].sum() for l in links),
|
||||
underwater_fraction=sum(lengths/lengths.sum() * n.links.loc[all_links, 'underwater_fraction']),
|
||||
carrier="DC",
|
||||
bus0=b[0],
|
||||
bus1=b[1],
|
||||
length=sum(
|
||||
n.links.loc[[i for _, i in l], "length"].mean() for l in links
|
||||
),
|
||||
p_nom=min(n.links.loc[[i for _, i in l], "p_nom"].sum() for l in links),
|
||||
underwater_fraction=sum(
|
||||
lengths
|
||||
/ lengths.sum()
|
||||
* n.links.loc[all_links, "underwater_fraction"]
|
||||
),
|
||||
p_max_pu=p_max_pu,
|
||||
p_min_pu=-p_max_pu,
|
||||
underground=False,
|
||||
under_construction=False
|
||||
under_construction=False,
|
||||
)
|
||||
|
||||
logger.info("Joining the links {} connecting the buses {} to simple link {}".format(", ".join(all_links), ", ".join(buses), name))
|
||||
logger.info(
|
||||
"Joining the links {} connecting the buses {} to simple link {}".format(
|
||||
", ".join(all_links), ", ".join(buses), name
|
||||
)
|
||||
)
|
||||
|
||||
n.mremove("Link", all_links)
|
||||
|
||||
static_attrs = n.components["Link"]["attrs"].loc[lambda df: df.static]
|
||||
for attr, default in static_attrs.default.iteritems(): params.setdefault(attr, default)
|
||||
for attr, default in static_attrs.default.iteritems():
|
||||
params.setdefault(attr, default)
|
||||
n.links.loc[name] = pd.Series(params)
|
||||
|
||||
# n.add("Link", **params)
|
||||
|
||||
logger.debug("Collecting all components using the busmap")
|
||||
|
||||
_aggregate_and_move_components(n, busmap, connection_costs_to_bus, output,
|
||||
aggregation_strategies=aggregation_strategies)
|
||||
_aggregate_and_move_components(
|
||||
n,
|
||||
busmap,
|
||||
connection_costs_to_bus,
|
||||
output,
|
||||
aggregation_strategies=aggregation_strategies,
|
||||
)
|
||||
return n, busmap
|
||||
|
||||
|
||||
def remove_stubs(n, costs, config, output, aggregation_strategies=dict()):
|
||||
logger.info("Removing stubs")
|
||||
|
||||
busmap = busmap_by_stubs(n) # ['country'])
|
||||
busmap = busmap_by_stubs(n) # ['country'])
|
||||
|
||||
connection_costs_to_bus = _compute_connection_costs_to_bus(n, busmap, costs, config)
|
||||
|
||||
_aggregate_and_move_components(n, busmap, connection_costs_to_bus, output,
|
||||
aggregation_strategies=aggregation_strategies)
|
||||
_aggregate_and_move_components(
|
||||
n,
|
||||
busmap,
|
||||
connection_costs_to_bus,
|
||||
output,
|
||||
aggregation_strategies=aggregation_strategies,
|
||||
)
|
||||
|
||||
return n, busmap
|
||||
|
||||
|
||||
def aggregate_to_substations(n, aggregation_strategies=dict(), buses_i=None):
|
||||
# can be used to aggregate a selection of buses to electrically closest neighbors
|
||||
# if no buses are given, nodes that are no substations or without offshore connection are aggregated
|
||||
|
||||
if buses_i is None:
|
||||
logger.info("Aggregating buses that are no substations or have no valid offshore connection")
|
||||
buses_i = list(set(n.buses.index)-set(n.generators.bus)-set(n.loads.bus))
|
||||
logger.info(
|
||||
"Aggregating buses that are no substations or have no valid offshore connection"
|
||||
)
|
||||
buses_i = list(set(n.buses.index) - set(n.generators.bus) - set(n.loads.bus))
|
||||
|
||||
weight = pd.concat({'Line': n.lines.length/n.lines.s_nom.clip(1e-3),
|
||||
'Link': n.links.length/n.links.p_nom.clip(1e-3)})
|
||||
weight = pd.concat(
|
||||
{
|
||||
"Line": n.lines.length / n.lines.s_nom.clip(1e-3),
|
||||
"Link": n.links.length / n.links.p_nom.clip(1e-3),
|
||||
}
|
||||
)
|
||||
|
||||
adj = n.adjacency_matrix(branch_components=['Line', 'Link'], weights=weight)
|
||||
adj = n.adjacency_matrix(branch_components=["Line", "Link"], weights=weight)
|
||||
|
||||
bus_indexer = n.buses.index.get_indexer(buses_i)
|
||||
dist = pd.DataFrame(dijkstra(adj, directed=False, indices=bus_indexer), buses_i, n.buses.index)
|
||||
dist = pd.DataFrame(
|
||||
dijkstra(adj, directed=False, indices=bus_indexer), buses_i, n.buses.index
|
||||
)
|
||||
|
||||
dist[buses_i] = np.inf # bus in buses_i should not be assigned to different bus in buses_i
|
||||
dist[
|
||||
buses_i
|
||||
] = np.inf # bus in buses_i should not be assigned to different bus in buses_i
|
||||
|
||||
for c in n.buses.country.unique():
|
||||
incountry_b = n.buses.country == c
|
||||
@ -361,49 +438,68 @@ def aggregate_to_substations(n, aggregation_strategies=dict(), buses_i=None):
|
||||
busmap = n.buses.index.to_series()
|
||||
busmap.loc[buses_i] = dist.idxmin(1)
|
||||
|
||||
bus_strategies, generator_strategies = get_aggregation_strategies(aggregation_strategies)
|
||||
bus_strategies, generator_strategies = get_aggregation_strategies(
|
||||
aggregation_strategies
|
||||
)
|
||||
|
||||
clustering = get_clustering_from_busmap(n, busmap,
|
||||
bus_strategies=bus_strategies,
|
||||
aggregate_generators_weighted=True,
|
||||
aggregate_generators_carriers=None,
|
||||
aggregate_one_ports=["Load", "StorageUnit"],
|
||||
line_length_factor=1.0,
|
||||
generator_strategies=generator_strategies,
|
||||
scale_link_capital_costs=False)
|
||||
clustering = get_clustering_from_busmap(
|
||||
n,
|
||||
busmap,
|
||||
bus_strategies=bus_strategies,
|
||||
aggregate_generators_weighted=True,
|
||||
aggregate_generators_carriers=None,
|
||||
aggregate_one_ports=["Load", "StorageUnit"],
|
||||
line_length_factor=1.0,
|
||||
generator_strategies=generator_strategies,
|
||||
scale_link_capital_costs=False,
|
||||
)
|
||||
return clustering.network, busmap
|
||||
|
||||
|
||||
def cluster(n, n_clusters, config, algorithm="hac", feature=None, aggregation_strategies=dict()):
|
||||
def cluster(
|
||||
n, n_clusters, config, algorithm="hac", feature=None, aggregation_strategies=dict()
|
||||
):
|
||||
logger.info(f"Clustering to {n_clusters} buses")
|
||||
|
||||
focus_weights = config.get('focus_weights', None)
|
||||
focus_weights = config.get("focus_weights", None)
|
||||
|
||||
renewable_carriers = pd.Index([tech
|
||||
for tech in n.generators.carrier.unique()
|
||||
if tech.split('-', 2)[0] in config['renewable']])
|
||||
renewable_carriers = pd.Index(
|
||||
[
|
||||
tech
|
||||
for tech in n.generators.carrier.unique()
|
||||
if tech.split("-", 2)[0] in config["renewable"]
|
||||
]
|
||||
)
|
||||
|
||||
clustering = clustering_for_n_clusters(n, n_clusters, custom_busmap=False,
|
||||
aggregation_strategies=aggregation_strategies,
|
||||
solver_name=config['solving']['solver']['name'],
|
||||
algorithm=algorithm, feature=feature,
|
||||
focus_weights=focus_weights)
|
||||
clustering = clustering_for_n_clusters(
|
||||
n,
|
||||
n_clusters,
|
||||
custom_busmap=False,
|
||||
aggregation_strategies=aggregation_strategies,
|
||||
solver_name=config["solving"]["solver"]["name"],
|
||||
algorithm=algorithm,
|
||||
feature=feature,
|
||||
focus_weights=focus_weights,
|
||||
)
|
||||
|
||||
return clustering.network, clustering.busmap
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('simplify_network', simpl='f')
|
||||
|
||||
snakemake = mock_snakemake("simplify_network", simpl="f")
|
||||
configure_logging(snakemake)
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
|
||||
aggregation_strategies = snakemake.config["clustering"].get("aggregation_strategies", {})
|
||||
aggregation_strategies = snakemake.config["clustering"].get(
|
||||
"aggregation_strategies", {}
|
||||
)
|
||||
# translate str entries of aggregation_strategies to pd.Series functions:
|
||||
aggregation_strategies = {
|
||||
p: {k: getattr(pd.Series, v) for k,v in aggregation_strategies[p].items()}
|
||||
p: {k: getattr(pd.Series, v) for k, v in aggregation_strategies[p].items()}
|
||||
for p in aggregation_strategies.keys()
|
||||
}
|
||||
|
||||
@ -411,44 +507,78 @@ if __name__ == "__main__":
|
||||
|
||||
Nyears = n.snapshot_weightings.objective.sum() / 8760
|
||||
|
||||
technology_costs = load_costs(snakemake.input.tech_costs, snakemake.config['costs'], snakemake.config['electricity'], Nyears)
|
||||
technology_costs = load_costs(
|
||||
snakemake.input.tech_costs,
|
||||
snakemake.config["costs"],
|
||||
snakemake.config["electricity"],
|
||||
Nyears,
|
||||
)
|
||||
|
||||
n, simplify_links_map = simplify_links(n, technology_costs, snakemake.config, snakemake.output,
|
||||
aggregation_strategies)
|
||||
n, simplify_links_map = simplify_links(
|
||||
n, technology_costs, snakemake.config, snakemake.output, aggregation_strategies
|
||||
)
|
||||
|
||||
n, stub_map = remove_stubs(n, technology_costs, snakemake.config, snakemake.output,
|
||||
aggregation_strategies=aggregation_strategies)
|
||||
n, stub_map = remove_stubs(
|
||||
n,
|
||||
technology_costs,
|
||||
snakemake.config,
|
||||
snakemake.output,
|
||||
aggregation_strategies=aggregation_strategies,
|
||||
)
|
||||
|
||||
busmaps = [trafo_map, simplify_links_map, stub_map]
|
||||
|
||||
cluster_config = snakemake.config.get('clustering', {}).get('simplify_network', {})
|
||||
if cluster_config.get('clustering', {}).get('simplify_network', {}).get('to_substations', False):
|
||||
cluster_config = snakemake.config.get("clustering", {}).get("simplify_network", {})
|
||||
if (
|
||||
cluster_config.get("clustering", {})
|
||||
.get("simplify_network", {})
|
||||
.get("to_substations", False)
|
||||
):
|
||||
n, substation_map = aggregate_to_substations(n, aggregation_strategies)
|
||||
busmaps.append(substation_map)
|
||||
|
||||
# treatment of outliers (nodes without a profile for considered carrier):
|
||||
# all nodes that have no profile of the given carrier are being aggregated to closest neighbor
|
||||
if (
|
||||
snakemake.config.get("clustering", {}).get("cluster_network", {}).get("algorithm", "hac") == "hac" or
|
||||
cluster_config.get("algorithm", "hac") == "hac"
|
||||
snakemake.config.get("clustering", {})
|
||||
.get("cluster_network", {})
|
||||
.get("algorithm", "hac")
|
||||
== "hac"
|
||||
or cluster_config.get("algorithm", "hac") == "hac"
|
||||
):
|
||||
carriers = cluster_config.get("feature", "solar+onwind-time").split('-')[0].split('+')
|
||||
carriers = (
|
||||
cluster_config.get("feature", "solar+onwind-time").split("-")[0].split("+")
|
||||
)
|
||||
for carrier in carriers:
|
||||
buses_i = list(set(n.buses.index)-set(n.generators.query("carrier == @carrier").bus))
|
||||
logger.info(f'clustering preparaton (hac): aggregating {len(buses_i)} buses of type {carrier}.')
|
||||
buses_i = list(
|
||||
set(n.buses.index) - set(n.generators.query("carrier == @carrier").bus)
|
||||
)
|
||||
logger.info(
|
||||
f"clustering preparaton (hac): aggregating {len(buses_i)} buses of type {carrier}."
|
||||
)
|
||||
n, busmap_hac = aggregate_to_substations(n, aggregation_strategies, buses_i)
|
||||
busmaps.append(busmap_hac)
|
||||
|
||||
if snakemake.wildcards.simpl:
|
||||
n, cluster_map = cluster(n, int(snakemake.wildcards.simpl), snakemake.config,
|
||||
cluster_config.get('algorithm', 'hac'),
|
||||
cluster_config.get('feature', None),
|
||||
aggregation_strategies)
|
||||
n, cluster_map = cluster(
|
||||
n,
|
||||
int(snakemake.wildcards.simpl),
|
||||
snakemake.config,
|
||||
cluster_config.get("algorithm", "hac"),
|
||||
cluster_config.get("feature", None),
|
||||
aggregation_strategies,
|
||||
)
|
||||
busmaps.append(cluster_map)
|
||||
|
||||
# some entries in n.buses are not updated in previous functions, therefore can be wrong. as they are not needed
|
||||
# and are lost when clustering (for example with the simpl wildcard), we remove them for consistency:
|
||||
buses_c = {'symbol', 'tags', 'under_construction', 'substation_lv', 'substation_off'}.intersection(n.buses.columns)
|
||||
buses_c = {
|
||||
"symbol",
|
||||
"tags",
|
||||
"under_construction",
|
||||
"substation_lv",
|
||||
"substation_off",
|
||||
}.intersection(n.buses.columns)
|
||||
n.buses = n.buses.drop(buses_c, axis=1)
|
||||
|
||||
update_p_nom_max(n)
|
||||
|
@ -1,9 +1,11 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
"""
|
||||
Solves linear optimal power flow for a network iteratively while updating reactances.
|
||||
Solves linear optimal power flow for a network iteratively while updating
|
||||
reactances.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -73,104 +75,123 @@ Details (and errors made through this heuristic) are discussed in the paper
|
||||
The rule :mod:`solve_all_networks` runs
|
||||
for all ``scenario`` s in the configuration file
|
||||
the rule :mod:`solve_network`.
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import re
|
||||
|
||||
import pypsa
|
||||
from pypsa.linopf import (get_var, define_constraints, define_variables,
|
||||
linexpr, join_exprs, network_lopf, ilopf)
|
||||
from _helpers import configure_logging
|
||||
from pypsa.descriptors import get_switchable_as_dense as get_as_dense
|
||||
|
||||
from pathlib import Path
|
||||
from pypsa.linopf import (
|
||||
define_constraints,
|
||||
define_variables,
|
||||
get_var,
|
||||
ilopf,
|
||||
join_exprs,
|
||||
linexpr,
|
||||
network_lopf,
|
||||
)
|
||||
from vresutils.benchmark import memory_logger
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def prepare_network(n, solve_opts):
|
||||
|
||||
if 'clip_p_max_pu' in solve_opts:
|
||||
if "clip_p_max_pu" in solve_opts:
|
||||
for df in (n.generators_t.p_max_pu, n.storage_units_t.inflow):
|
||||
df.where(df>solve_opts['clip_p_max_pu'], other=0., inplace=True)
|
||||
df.where(df > solve_opts["clip_p_max_pu"], other=0.0, inplace=True)
|
||||
|
||||
load_shedding = solve_opts.get('load_shedding')
|
||||
load_shedding = solve_opts.get("load_shedding")
|
||||
if load_shedding:
|
||||
n.add("Carrier", "load", color="#dd2e23", nice_name="Load shedding")
|
||||
buses_i = n.buses.query("carrier == 'AC'").index
|
||||
if not np.isscalar(load_shedding): load_shedding = 1e2 # Eur/kWh
|
||||
if not np.isscalar(load_shedding):
|
||||
load_shedding = 1e2 # Eur/kWh
|
||||
# intersect between macroeconomic and surveybased
|
||||
# willingness to pay
|
||||
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full)
|
||||
n.madd("Generator", buses_i, " load",
|
||||
bus=buses_i,
|
||||
carrier='load',
|
||||
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
|
||||
marginal_cost=load_shedding,
|
||||
p_nom=1e9 # kW
|
||||
)
|
||||
n.madd(
|
||||
"Generator",
|
||||
buses_i,
|
||||
" load",
|
||||
bus=buses_i,
|
||||
carrier="load",
|
||||
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
|
||||
marginal_cost=load_shedding,
|
||||
p_nom=1e9, # kW
|
||||
)
|
||||
|
||||
if solve_opts.get('noisy_costs'):
|
||||
if solve_opts.get("noisy_costs"):
|
||||
for t in n.iterate_components(n.one_port_components):
|
||||
#if 'capital_cost' in t.df:
|
||||
# if 'capital_cost' in t.df:
|
||||
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
|
||||
if 'marginal_cost' in t.df:
|
||||
t.df['marginal_cost'] += (1e-2 + 2e-3 *
|
||||
(np.random.random(len(t.df)) - 0.5))
|
||||
if "marginal_cost" in t.df:
|
||||
t.df["marginal_cost"] += 1e-2 + 2e-3 * (
|
||||
np.random.random(len(t.df)) - 0.5
|
||||
)
|
||||
|
||||
for t in n.iterate_components(['Line', 'Link']):
|
||||
t.df['capital_cost'] += (1e-1 +
|
||||
2e-2*(np.random.random(len(t.df)) - 0.5)) * t.df['length']
|
||||
for t in n.iterate_components(["Line", "Link"]):
|
||||
t.df["capital_cost"] += (
|
||||
1e-1 + 2e-2 * (np.random.random(len(t.df)) - 0.5)
|
||||
) * t.df["length"]
|
||||
|
||||
if solve_opts.get('nhours'):
|
||||
nhours = solve_opts['nhours']
|
||||
if solve_opts.get("nhours"):
|
||||
nhours = solve_opts["nhours"]
|
||||
n.set_snapshots(n.snapshots[:nhours])
|
||||
n.snapshot_weightings[:] = 8760. / nhours
|
||||
n.snapshot_weightings[:] = 8760.0 / nhours
|
||||
|
||||
return n
|
||||
|
||||
|
||||
def add_CCL_constraints(n, config):
|
||||
agg_p_nom_limits = config['electricity'].get('agg_p_nom_limits')
|
||||
agg_p_nom_limits = config["electricity"].get("agg_p_nom_limits")
|
||||
|
||||
try:
|
||||
agg_p_nom_minmax = pd.read_csv(agg_p_nom_limits,
|
||||
index_col=list(range(2)))
|
||||
agg_p_nom_minmax = pd.read_csv(agg_p_nom_limits, index_col=list(range(2)))
|
||||
except IOError:
|
||||
logger.exception("Need to specify the path to a .csv file containing "
|
||||
"aggregate capacity limits per country in "
|
||||
"config['electricity']['agg_p_nom_limit'].")
|
||||
logger.info("Adding per carrier generation capacity constraints for "
|
||||
"individual countries")
|
||||
logger.exception(
|
||||
"Need to specify the path to a .csv file containing "
|
||||
"aggregate capacity limits per country in "
|
||||
"config['electricity']['agg_p_nom_limit']."
|
||||
)
|
||||
logger.info(
|
||||
"Adding per carrier generation capacity constraints for " "individual countries"
|
||||
)
|
||||
|
||||
gen_country = n.generators.bus.map(n.buses.country)
|
||||
# cc means country and carrier
|
||||
p_nom_per_cc = (pd.DataFrame(
|
||||
{'p_nom': linexpr((1, get_var(n, 'Generator', 'p_nom'))),
|
||||
'country': gen_country, 'carrier': n.generators.carrier})
|
||||
.dropna(subset=['p_nom'])
|
||||
.groupby(['country', 'carrier']).p_nom
|
||||
.apply(join_exprs))
|
||||
minimum = agg_p_nom_minmax['min'].dropna()
|
||||
p_nom_per_cc = (
|
||||
pd.DataFrame(
|
||||
{
|
||||
"p_nom": linexpr((1, get_var(n, "Generator", "p_nom"))),
|
||||
"country": gen_country,
|
||||
"carrier": n.generators.carrier,
|
||||
}
|
||||
)
|
||||
.dropna(subset=["p_nom"])
|
||||
.groupby(["country", "carrier"])
|
||||
.p_nom.apply(join_exprs)
|
||||
)
|
||||
minimum = agg_p_nom_minmax["min"].dropna()
|
||||
if not minimum.empty:
|
||||
minconstraint = define_constraints(n, p_nom_per_cc[minimum.index],
|
||||
'>=', minimum, 'agg_p_nom', 'min')
|
||||
maximum = agg_p_nom_minmax['max'].dropna()
|
||||
minconstraint = define_constraints(
|
||||
n, p_nom_per_cc[minimum.index], ">=", minimum, "agg_p_nom", "min"
|
||||
)
|
||||
maximum = agg_p_nom_minmax["max"].dropna()
|
||||
if not maximum.empty:
|
||||
maxconstraint = define_constraints(n, p_nom_per_cc[maximum.index],
|
||||
'<=', maximum, 'agg_p_nom', 'max')
|
||||
maxconstraint = define_constraints(
|
||||
n, p_nom_per_cc[maximum.index], "<=", maximum, "agg_p_nom", "max"
|
||||
)
|
||||
|
||||
|
||||
def add_EQ_constraints(n, o, scaling=1e-1):
|
||||
float_regex = "[0-9]*\.?[0-9]+"
|
||||
level = float(re.findall(float_regex, o)[0])
|
||||
if o[-1] == 'c':
|
||||
if o[-1] == "c":
|
||||
ggrouper = n.generators.bus.map(n.buses.country)
|
||||
lgrouper = n.loads.bus.map(n.buses.country)
|
||||
sgrouper = n.storage_units.bus.map(n.buses.country)
|
||||
@ -178,135 +199,167 @@ def add_EQ_constraints(n, o, scaling=1e-1):
|
||||
ggrouper = n.generators.bus
|
||||
lgrouper = n.loads.bus
|
||||
sgrouper = n.storage_units.bus
|
||||
load = n.snapshot_weightings.generators @ \
|
||||
n.loads_t.p_set.groupby(lgrouper, axis=1).sum()
|
||||
inflow = n.snapshot_weightings.stores @ \
|
||||
n.storage_units_t.inflow.groupby(sgrouper, axis=1).sum()
|
||||
inflow = inflow.reindex(load.index).fillna(0.)
|
||||
rhs = scaling * ( level * load - inflow )
|
||||
lhs_gen = linexpr((n.snapshot_weightings.generators * scaling,
|
||||
get_var(n, "Generator", "p").T)
|
||||
).T.groupby(ggrouper, axis=1).apply(join_exprs)
|
||||
lhs_spill = linexpr((-n.snapshot_weightings.stores * scaling,
|
||||
get_var(n, "StorageUnit", "spill").T)
|
||||
).T.groupby(sgrouper, axis=1).apply(join_exprs)
|
||||
load = (
|
||||
n.snapshot_weightings.generators
|
||||
@ n.loads_t.p_set.groupby(lgrouper, axis=1).sum()
|
||||
)
|
||||
inflow = (
|
||||
n.snapshot_weightings.stores
|
||||
@ n.storage_units_t.inflow.groupby(sgrouper, axis=1).sum()
|
||||
)
|
||||
inflow = inflow.reindex(load.index).fillna(0.0)
|
||||
rhs = scaling * (level * load - inflow)
|
||||
lhs_gen = (
|
||||
linexpr(
|
||||
(n.snapshot_weightings.generators * scaling, get_var(n, "Generator", "p").T)
|
||||
)
|
||||
.T.groupby(ggrouper, axis=1)
|
||||
.apply(join_exprs)
|
||||
)
|
||||
lhs_spill = (
|
||||
linexpr(
|
||||
(
|
||||
-n.snapshot_weightings.stores * scaling,
|
||||
get_var(n, "StorageUnit", "spill").T,
|
||||
)
|
||||
)
|
||||
.T.groupby(sgrouper, axis=1)
|
||||
.apply(join_exprs)
|
||||
)
|
||||
lhs_spill = lhs_spill.reindex(lhs_gen.index).fillna("")
|
||||
lhs = lhs_gen + lhs_spill
|
||||
define_constraints(n, lhs, ">=", rhs, "equity", "min")
|
||||
|
||||
|
||||
def add_BAU_constraints(n, config):
|
||||
mincaps = pd.Series(config['electricity']['BAU_mincapacities'])
|
||||
lhs = (linexpr((1, get_var(n, 'Generator', 'p_nom')))
|
||||
.groupby(n.generators.carrier).apply(join_exprs))
|
||||
define_constraints(n, lhs, '>=', mincaps[lhs.index], 'Carrier', 'bau_mincaps')
|
||||
mincaps = pd.Series(config["electricity"]["BAU_mincapacities"])
|
||||
lhs = (
|
||||
linexpr((1, get_var(n, "Generator", "p_nom")))
|
||||
.groupby(n.generators.carrier)
|
||||
.apply(join_exprs)
|
||||
)
|
||||
define_constraints(n, lhs, ">=", mincaps[lhs.index], "Carrier", "bau_mincaps")
|
||||
|
||||
|
||||
def add_SAFE_constraints(n, config):
|
||||
peakdemand = (1. + config['electricity']['SAFE_reservemargin']) *\
|
||||
n.loads_t.p_set.sum(axis=1).max()
|
||||
conv_techs = config['plotting']['conv_techs']
|
||||
exist_conv_caps = n.generators.query('~p_nom_extendable & carrier in @conv_techs')\
|
||||
.p_nom.sum()
|
||||
ext_gens_i = n.generators.query('carrier in @conv_techs & p_nom_extendable').index
|
||||
lhs = linexpr((1, get_var(n, 'Generator', 'p_nom')[ext_gens_i])).sum()
|
||||
peakdemand = (
|
||||
1.0 + config["electricity"]["SAFE_reservemargin"]
|
||||
) * n.loads_t.p_set.sum(axis=1).max()
|
||||
conv_techs = config["plotting"]["conv_techs"]
|
||||
exist_conv_caps = n.generators.query(
|
||||
"~p_nom_extendable & carrier in @conv_techs"
|
||||
).p_nom.sum()
|
||||
ext_gens_i = n.generators.query("carrier in @conv_techs & p_nom_extendable").index
|
||||
lhs = linexpr((1, get_var(n, "Generator", "p_nom")[ext_gens_i])).sum()
|
||||
rhs = peakdemand - exist_conv_caps
|
||||
define_constraints(n, lhs, '>=', rhs, 'Safe', 'mintotalcap')
|
||||
define_constraints(n, lhs, ">=", rhs, "Safe", "mintotalcap")
|
||||
|
||||
|
||||
def add_operational_reserve_margin_constraint(n, config):
|
||||
|
||||
reserve_config = config["electricity"]["operational_reserve"]
|
||||
EPSILON_LOAD = reserve_config["epsilon_load"]
|
||||
EPSILON_VRES = reserve_config["epsilon_vres"]
|
||||
CONTINGENCY = reserve_config["contingency"]
|
||||
|
||||
# Reserve Variables
|
||||
reserve = get_var(n, 'Generator', 'r')
|
||||
# Reserve Variables
|
||||
reserve = get_var(n, "Generator", "r")
|
||||
lhs = linexpr((1, reserve)).sum(1)
|
||||
|
||||
# Share of extendable renewable capacities
|
||||
ext_i = n.generators.query('p_nom_extendable').index
|
||||
ext_i = n.generators.query("p_nom_extendable").index
|
||||
vres_i = n.generators_t.p_max_pu.columns
|
||||
if not ext_i.empty and not vres_i.empty:
|
||||
capacity_factor = n.generators_t.p_max_pu[vres_i.intersection(ext_i)]
|
||||
renewable_capacity_variables = get_var(n, 'Generator', 'p_nom')[vres_i.intersection(ext_i)]
|
||||
lhs += linexpr((-EPSILON_VRES * capacity_factor, renewable_capacity_variables)).sum(1)
|
||||
renewable_capacity_variables = get_var(n, "Generator", "p_nom")[
|
||||
vres_i.intersection(ext_i)
|
||||
]
|
||||
lhs += linexpr(
|
||||
(-EPSILON_VRES * capacity_factor, renewable_capacity_variables)
|
||||
).sum(1)
|
||||
|
||||
# Total demand at t
|
||||
demand = n.loads_t.p.sum(1)
|
||||
|
||||
demand = n.loads_t.p.sum(1)
|
||||
|
||||
# VRES potential of non extendable generators
|
||||
capacity_factor = n.generators_t.p_max_pu[vres_i.difference(ext_i)]
|
||||
renewable_capacity = n.generators.p_nom[vres_i.difference(ext_i)]
|
||||
potential = (capacity_factor * renewable_capacity).sum(1)
|
||||
|
||||
|
||||
# Right-hand-side
|
||||
rhs = EPSILON_LOAD * demand + EPSILON_VRES * potential + CONTINGENCY
|
||||
|
||||
define_constraints(n, lhs, '>=', rhs, "Reserve margin")
|
||||
|
||||
define_constraints(n, lhs, ">=", rhs, "Reserve margin")
|
||||
|
||||
|
||||
def update_capacity_constraint(n):
|
||||
gen_i = n.generators.index
|
||||
ext_i = n.generators.query('p_nom_extendable').index
|
||||
fix_i = n.generators.query('not p_nom_extendable').index
|
||||
ext_i = n.generators.query("p_nom_extendable").index
|
||||
fix_i = n.generators.query("not p_nom_extendable").index
|
||||
|
||||
dispatch = get_var(n, "Generator", "p")
|
||||
reserve = get_var(n, "Generator", "r")
|
||||
|
||||
dispatch = get_var(n, 'Generator', 'p')
|
||||
reserve = get_var(n, 'Generator', 'r')
|
||||
|
||||
capacity_fixed = n.generators.p_nom[fix_i]
|
||||
|
||||
p_max_pu = get_as_dense(n, 'Generator', 'p_max_pu')
|
||||
|
||||
|
||||
p_max_pu = get_as_dense(n, "Generator", "p_max_pu")
|
||||
|
||||
lhs = linexpr((1, dispatch), (1, reserve))
|
||||
|
||||
|
||||
if not ext_i.empty:
|
||||
capacity_variable = get_var(n, 'Generator', 'p_nom')
|
||||
lhs += linexpr((-p_max_pu[ext_i], capacity_variable)).reindex(columns=gen_i, fill_value='')
|
||||
|
||||
capacity_variable = get_var(n, "Generator", "p_nom")
|
||||
lhs += linexpr((-p_max_pu[ext_i], capacity_variable)).reindex(
|
||||
columns=gen_i, fill_value=""
|
||||
)
|
||||
|
||||
rhs = (p_max_pu[fix_i] * capacity_fixed).reindex(columns=gen_i, fill_value=0)
|
||||
|
||||
define_constraints(n, lhs, '<=', rhs, 'Generators', 'updated_capacity_constraint')
|
||||
|
||||
define_constraints(n, lhs, "<=", rhs, "Generators", "updated_capacity_constraint")
|
||||
|
||||
|
||||
def add_operational_reserve_margin(n, sns, config):
|
||||
"""
|
||||
Build reserve margin constraints based on the formulation given in
|
||||
Build reserve margin constraints based on the formulation given in
|
||||
https://genxproject.github.io/GenX/dev/core/#Reserves.
|
||||
"""
|
||||
|
||||
define_variables(n, 0, np.inf, 'Generator', 'r', axes=[sns, n.generators.index])
|
||||
define_variables(n, 0, np.inf, "Generator", "r", axes=[sns, n.generators.index])
|
||||
|
||||
add_operational_reserve_margin_constraint(n, config)
|
||||
|
||||
|
||||
update_capacity_constraint(n)
|
||||
|
||||
|
||||
def add_battery_constraints(n):
|
||||
nodes = n.buses.index[n.buses.carrier == "battery"]
|
||||
if nodes.empty or ('Link', 'p_nom') not in n.variables.index:
|
||||
if nodes.empty or ("Link", "p_nom") not in n.variables.index:
|
||||
return
|
||||
link_p_nom = get_var(n, "Link", "p_nom")
|
||||
lhs = linexpr((1,link_p_nom[nodes + " charger"]),
|
||||
(-n.links.loc[nodes + " discharger", "efficiency"].values,
|
||||
link_p_nom[nodes + " discharger"].values))
|
||||
define_constraints(n, lhs, "=", 0, 'Link', 'charger_ratio')
|
||||
lhs = linexpr(
|
||||
(1, link_p_nom[nodes + " charger"]),
|
||||
(
|
||||
-n.links.loc[nodes + " discharger", "efficiency"].values,
|
||||
link_p_nom[nodes + " discharger"].values,
|
||||
),
|
||||
)
|
||||
define_constraints(n, lhs, "=", 0, "Link", "charger_ratio")
|
||||
|
||||
|
||||
def extra_functionality(n, snapshots):
|
||||
"""
|
||||
Collects supplementary constraints which will be passed to ``pypsa.linopf.network_lopf``.
|
||||
If you want to enforce additional custom constraints, this is a good location to add them.
|
||||
The arguments ``opts`` and ``snakemake.config`` are expected to be attached to the network.
|
||||
Collects supplementary constraints which will be passed to
|
||||
``pypsa.linopf.network_lopf``.
|
||||
|
||||
If you want to enforce additional custom constraints, this is a good
|
||||
location to add them. The arguments ``opts`` and
|
||||
``snakemake.config`` are expected to be attached to the network.
|
||||
"""
|
||||
opts = n.opts
|
||||
config = n.config
|
||||
if 'BAU' in opts and n.generators.p_nom_extendable.any():
|
||||
if "BAU" in opts and n.generators.p_nom_extendable.any():
|
||||
add_BAU_constraints(n, config)
|
||||
if 'SAFE' in opts and n.generators.p_nom_extendable.any():
|
||||
if "SAFE" in opts and n.generators.p_nom_extendable.any():
|
||||
add_SAFE_constraints(n, config)
|
||||
if 'CCL' in opts and n.generators.p_nom_extendable.any():
|
||||
if "CCL" in opts and n.generators.p_nom_extendable.any():
|
||||
add_CCL_constraints(n, config)
|
||||
reserve = config["electricity"].get("operational_reserve", {})
|
||||
if reserve.get("activate"):
|
||||
@ -317,54 +370,71 @@ def extra_functionality(n, snapshots):
|
||||
add_battery_constraints(n)
|
||||
|
||||
|
||||
def solve_network(n, config, opts='', **kwargs):
|
||||
solver_options = config['solving']['solver'].copy()
|
||||
solver_name = solver_options.pop('name')
|
||||
cf_solving = config['solving']['options']
|
||||
track_iterations = cf_solving.get('track_iterations', False)
|
||||
min_iterations = cf_solving.get('min_iterations', 4)
|
||||
max_iterations = cf_solving.get('max_iterations', 6)
|
||||
def solve_network(n, config, opts="", **kwargs):
|
||||
solver_options = config["solving"]["solver"].copy()
|
||||
solver_name = solver_options.pop("name")
|
||||
cf_solving = config["solving"]["options"]
|
||||
track_iterations = cf_solving.get("track_iterations", False)
|
||||
min_iterations = cf_solving.get("min_iterations", 4)
|
||||
max_iterations = cf_solving.get("max_iterations", 6)
|
||||
|
||||
# add to network for extra_functionality
|
||||
n.config = config
|
||||
n.opts = opts
|
||||
|
||||
skip_iterations = cf_solving.get('skip_iterations', False)
|
||||
skip_iterations = cf_solving.get("skip_iterations", False)
|
||||
if not n.lines.s_nom_extendable.any():
|
||||
skip_iterations = True
|
||||
logger.info("No expandable lines found. Skipping iterative solving.")
|
||||
|
||||
if skip_iterations:
|
||||
network_lopf(n, solver_name=solver_name, solver_options=solver_options,
|
||||
extra_functionality=extra_functionality, **kwargs)
|
||||
network_lopf(
|
||||
n,
|
||||
solver_name=solver_name,
|
||||
solver_options=solver_options,
|
||||
extra_functionality=extra_functionality,
|
||||
**kwargs
|
||||
)
|
||||
else:
|
||||
ilopf(n, solver_name=solver_name, solver_options=solver_options,
|
||||
track_iterations=track_iterations,
|
||||
min_iterations=min_iterations,
|
||||
max_iterations=max_iterations,
|
||||
extra_functionality=extra_functionality, **kwargs)
|
||||
ilopf(
|
||||
n,
|
||||
solver_name=solver_name,
|
||||
solver_options=solver_options,
|
||||
track_iterations=track_iterations,
|
||||
min_iterations=min_iterations,
|
||||
max_iterations=max_iterations,
|
||||
extra_functionality=extra_functionality,
|
||||
**kwargs
|
||||
)
|
||||
return n
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('solve_network', simpl='',
|
||||
clusters='5', ll='copt', opts='Co2L-BAU-CCL-24H')
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"solve_network", simpl="", clusters="5", ll="copt", opts="Co2L-BAU-CCL-24H"
|
||||
)
|
||||
configure_logging(snakemake)
|
||||
|
||||
tmpdir = snakemake.config['solving'].get('tmpdir')
|
||||
tmpdir = snakemake.config["solving"].get("tmpdir")
|
||||
if tmpdir is not None:
|
||||
Path(tmpdir).mkdir(parents=True, exist_ok=True)
|
||||
opts = snakemake.wildcards.opts.split('-')
|
||||
solve_opts = snakemake.config['solving']['options']
|
||||
opts = snakemake.wildcards.opts.split("-")
|
||||
solve_opts = snakemake.config["solving"]["options"]
|
||||
|
||||
fn = getattr(snakemake.log, 'memory', None)
|
||||
with memory_logger(filename=fn, interval=30.) as mem:
|
||||
fn = getattr(snakemake.log, "memory", None)
|
||||
with memory_logger(filename=fn, interval=30.0) as mem:
|
||||
n = pypsa.Network(snakemake.input[0])
|
||||
n = prepare_network(n, solve_opts)
|
||||
n = solve_network(n, snakemake.config, opts, solver_dir=tmpdir,
|
||||
solver_logfile=snakemake.log.solver)
|
||||
n = solve_network(
|
||||
n,
|
||||
snakemake.config,
|
||||
opts,
|
||||
solver_dir=tmpdir,
|
||||
solver_logfile=snakemake.log.solver,
|
||||
)
|
||||
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
||||
n.export_to_netcdf(snakemake.output[0])
|
||||
|
||||
|
@ -1,10 +1,11 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
"""
|
||||
Solves linear optimal dispatch in hourly resolution
|
||||
using the capacities of previous capacity expansion in rule :mod:`solve_network`.
|
||||
Solves linear optimal dispatch in hourly resolution using the capacities of
|
||||
previous capacity expansion in rule :mod:`solve_network`.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
@ -42,65 +43,80 @@ Outputs
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
|
||||
import pypsa
|
||||
import numpy as np
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import pypsa
|
||||
from _helpers import configure_logging
|
||||
from solve_network import prepare_network, solve_network
|
||||
from vresutils.benchmark import memory_logger
|
||||
from solve_network import solve_network, prepare_network
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def set_parameters_from_optimized(n, n_optim):
|
||||
lines_typed_i = n.lines.index[n.lines.type != '']
|
||||
n.lines.loc[lines_typed_i, 'num_parallel'] = \
|
||||
n_optim.lines['num_parallel'].reindex(lines_typed_i, fill_value=0.)
|
||||
n.lines.loc[lines_typed_i, 's_nom'] = (
|
||||
np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) *
|
||||
n.lines.bus0.map(n.buses.v_nom) * n.lines.num_parallel)
|
||||
|
||||
lines_untyped_i = n.lines.index[n.lines.type == '']
|
||||
for attr in ('s_nom', 'r', 'x'):
|
||||
n.lines.loc[lines_untyped_i, attr] = \
|
||||
n_optim.lines[attr].reindex(lines_untyped_i, fill_value=0.)
|
||||
n.lines['s_nom_extendable'] = False
|
||||
def set_parameters_from_optimized(n, n_optim):
|
||||
lines_typed_i = n.lines.index[n.lines.type != ""]
|
||||
n.lines.loc[lines_typed_i, "num_parallel"] = n_optim.lines["num_parallel"].reindex(
|
||||
lines_typed_i, fill_value=0.0
|
||||
)
|
||||
n.lines.loc[lines_typed_i, "s_nom"] = (
|
||||
np.sqrt(3)
|
||||
* n.lines["type"].map(n.line_types.i_nom)
|
||||
* n.lines.bus0.map(n.buses.v_nom)
|
||||
* n.lines.num_parallel
|
||||
)
|
||||
|
||||
lines_untyped_i = n.lines.index[n.lines.type == ""]
|
||||
for attr in ("s_nom", "r", "x"):
|
||||
n.lines.loc[lines_untyped_i, attr] = n_optim.lines[attr].reindex(
|
||||
lines_untyped_i, fill_value=0.0
|
||||
)
|
||||
n.lines["s_nom_extendable"] = False
|
||||
|
||||
links_dc_i = n.links.index[n.links.p_nom_extendable]
|
||||
n.links.loc[links_dc_i, 'p_nom'] = \
|
||||
n_optim.links['p_nom_opt'].reindex(links_dc_i, fill_value=0.)
|
||||
n.links.loc[links_dc_i, 'p_nom_extendable'] = False
|
||||
n.links.loc[links_dc_i, "p_nom"] = n_optim.links["p_nom_opt"].reindex(
|
||||
links_dc_i, fill_value=0.0
|
||||
)
|
||||
n.links.loc[links_dc_i, "p_nom_extendable"] = False
|
||||
|
||||
gen_extend_i = n.generators.index[n.generators.p_nom_extendable]
|
||||
n.generators.loc[gen_extend_i, 'p_nom'] = \
|
||||
n_optim.generators['p_nom_opt'].reindex(gen_extend_i, fill_value=0.)
|
||||
n.generators.loc[gen_extend_i, 'p_nom_extendable'] = False
|
||||
n.generators.loc[gen_extend_i, "p_nom"] = n_optim.generators["p_nom_opt"].reindex(
|
||||
gen_extend_i, fill_value=0.0
|
||||
)
|
||||
n.generators.loc[gen_extend_i, "p_nom_extendable"] = False
|
||||
|
||||
stor_units_extend_i = n.storage_units.index[n.storage_units.p_nom_extendable]
|
||||
n.storage_units.loc[stor_units_extend_i, 'p_nom'] = \
|
||||
n_optim.storage_units['p_nom_opt'].reindex(stor_units_extend_i, fill_value=0.)
|
||||
n.storage_units.loc[stor_units_extend_i, 'p_nom_extendable'] = False
|
||||
n.storage_units.loc[stor_units_extend_i, "p_nom"] = n_optim.storage_units[
|
||||
"p_nom_opt"
|
||||
].reindex(stor_units_extend_i, fill_value=0.0)
|
||||
n.storage_units.loc[stor_units_extend_i, "p_nom_extendable"] = False
|
||||
|
||||
stor_extend_i = n.stores.index[n.stores.e_nom_extendable]
|
||||
n.stores.loc[stor_extend_i, 'e_nom'] = \
|
||||
n_optim.stores['e_nom_opt'].reindex(stor_extend_i, fill_value=0.)
|
||||
n.stores.loc[stor_extend_i, 'e_nom_extendable'] = False
|
||||
n.stores.loc[stor_extend_i, "e_nom"] = n_optim.stores["e_nom_opt"].reindex(
|
||||
stor_extend_i, fill_value=0.0
|
||||
)
|
||||
n.stores.loc[stor_extend_i, "e_nom_extendable"] = False
|
||||
|
||||
return n
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('solve_operations_network',
|
||||
simpl='', clusters='5', ll='copt', opts='Co2L-BAU-24H')
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"solve_operations_network",
|
||||
simpl="",
|
||||
clusters="5",
|
||||
ll="copt",
|
||||
opts="Co2L-BAU-24H",
|
||||
)
|
||||
configure_logging(snakemake)
|
||||
|
||||
tmpdir = snakemake.config['solving'].get('tmpdir')
|
||||
tmpdir = snakemake.config["solving"].get("tmpdir")
|
||||
if tmpdir is not None:
|
||||
Path(tmpdir).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
@ -109,14 +125,19 @@ if __name__ == "__main__":
|
||||
n = set_parameters_from_optimized(n, n_optim)
|
||||
del n_optim
|
||||
|
||||
opts = snakemake.wildcards.opts.split('-')
|
||||
snakemake.config['solving']['options']['skip_iterations'] = False
|
||||
opts = snakemake.wildcards.opts.split("-")
|
||||
snakemake.config["solving"]["options"]["skip_iterations"] = False
|
||||
|
||||
fn = getattr(snakemake.log, 'memory', None)
|
||||
with memory_logger(filename=fn, interval=30.) as mem:
|
||||
n = prepare_network(n, snakemake.config['solving']['options'])
|
||||
n = solve_network(n, snakemake.config, opts, solver_dir=tmpdir,
|
||||
solver_logfile=snakemake.log.solver)
|
||||
fn = getattr(snakemake.log, "memory", None)
|
||||
with memory_logger(filename=fn, interval=30.0) as mem:
|
||||
n = prepare_network(n, snakemake.config["solving"]["options"])
|
||||
n = solve_network(
|
||||
n,
|
||||
snakemake.config,
|
||||
opts,
|
||||
solver_dir=tmpdir,
|
||||
solver_logfile=snakemake.log.solver,
|
||||
)
|
||||
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
||||
n.export_to_netcdf(snakemake.output[0])
|
||||
|
||||
|
@ -8,7 +8,7 @@ logging:
|
||||
level: INFO
|
||||
format: '%(levelname)s:%(name)s:%(message)s'
|
||||
|
||||
run:
|
||||
run:
|
||||
name: ""
|
||||
|
||||
scenario:
|
||||
@ -72,8 +72,7 @@ renewable:
|
||||
corine:
|
||||
# Scholz, Y. (2012). Renewable energy based electricity supply at low costs:
|
||||
# development of the REMix model and application for Europe. ( p.42 / p.28)
|
||||
grid_codes: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
|
||||
24, 25, 26, 27, 28, 29, 31, 32]
|
||||
grid_codes: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32]
|
||||
distance: 1000
|
||||
distance_grid_codes: [1, 2, 3, 4, 5, 6]
|
||||
natura: true
|
||||
@ -124,8 +123,7 @@ renewable:
|
||||
# sector: The economic potential of photovoltaics and concentrating solar
|
||||
# power." Applied Energy 135 (2014): 704-720.
|
||||
correction_factor: 0.854337
|
||||
corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
|
||||
14, 15, 16, 17, 18, 19, 20, 26, 31, 32]
|
||||
corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 26, 31, 32]
|
||||
natura: true
|
||||
excluder_resolution: 200
|
||||
potential: simple # or conservative
|
||||
@ -153,7 +151,7 @@ transformers:
|
||||
type: ''
|
||||
|
||||
load:
|
||||
power_statistics: True # only for files from <2019; set false in order to get ENTSOE transparency data
|
||||
power_statistics: true # only for files from <2019; set false in order to get ENTSOE transparency data
|
||||
interpolate_limit: 3 # data gaps up until this size are interpolated linearly
|
||||
time_shift_for_large_gaps: 1w # data gaps up until this size are copied by copying from
|
||||
manual_adjustments: true # false
|
||||
@ -232,7 +230,7 @@ solving:
|
||||
plotting:
|
||||
map:
|
||||
figsize: [7, 7]
|
||||
boundaries: [-10.2, 29, 35, 72]
|
||||
boundaries: [-10.2, 29, 35, 72]
|
||||
p_nom:
|
||||
bus_size_factor: 5.e+4
|
||||
linewidth_factor: 3.e+3
|
||||
@ -251,50 +249,50 @@ plotting:
|
||||
AC_carriers: ["AC line", "AC transformer"]
|
||||
link_carriers: ["DC line", "Converter AC-DC"]
|
||||
tech_colors:
|
||||
"onwind" : "#235ebc"
|
||||
"onshore wind" : "#235ebc"
|
||||
'offwind' : "#6895dd"
|
||||
'offwind-ac' : "#6895dd"
|
||||
'offshore wind' : "#6895dd"
|
||||
'offshore wind ac' : "#6895dd"
|
||||
'offwind-dc' : "#74c6f2"
|
||||
'offshore wind dc' : "#74c6f2"
|
||||
"hydro" : "#08ad97"
|
||||
"hydro+PHS" : "#08ad97"
|
||||
"PHS" : "#08ad97"
|
||||
"hydro reservoir" : "#08ad97"
|
||||
'hydroelectricity' : '#08ad97'
|
||||
"ror" : "#4adbc8"
|
||||
"run of river" : "#4adbc8"
|
||||
'solar' : "#f9d002"
|
||||
'solar PV' : "#f9d002"
|
||||
'solar thermal' : '#ffef60'
|
||||
'biomass' : '#0c6013'
|
||||
'solid biomass' : '#06540d'
|
||||
'biogas' : '#23932d'
|
||||
'waste' : '#68896b'
|
||||
'geothermal' : '#ba91b1'
|
||||
"OCGT" : "#d35050"
|
||||
"gas" : "#d35050"
|
||||
"natural gas" : "#d35050"
|
||||
"CCGT" : "#b20101"
|
||||
"nuclear" : "#ff9000"
|
||||
"coal" : "#707070"
|
||||
"lignite" : "#9e5a01"
|
||||
"oil" : "#262626"
|
||||
"H2" : "#ea048a"
|
||||
"hydrogen storage" : "#ea048a"
|
||||
"battery" : "#b8ea04"
|
||||
"Electric load" : "#f9d002"
|
||||
"electricity" : "#f9d002"
|
||||
"lines" : "#70af1d"
|
||||
"transmission lines" : "#70af1d"
|
||||
"AC-AC" : "#70af1d"
|
||||
"AC line" : "#70af1d"
|
||||
"links" : "#8a1caf"
|
||||
"HVDC links" : "#8a1caf"
|
||||
"DC-DC" : "#8a1caf"
|
||||
"DC link" : "#8a1caf"
|
||||
"onwind": "#235ebc"
|
||||
"onshore wind": "#235ebc"
|
||||
'offwind': "#6895dd"
|
||||
'offwind-ac': "#6895dd"
|
||||
'offshore wind': "#6895dd"
|
||||
'offshore wind ac': "#6895dd"
|
||||
'offwind-dc': "#74c6f2"
|
||||
'offshore wind dc': "#74c6f2"
|
||||
"hydro": "#08ad97"
|
||||
"hydro+PHS": "#08ad97"
|
||||
"PHS": "#08ad97"
|
||||
"hydro reservoir": "#08ad97"
|
||||
'hydroelectricity': '#08ad97'
|
||||
"ror": "#4adbc8"
|
||||
"run of river": "#4adbc8"
|
||||
'solar': "#f9d002"
|
||||
'solar PV': "#f9d002"
|
||||
'solar thermal': '#ffef60'
|
||||
'biomass': '#0c6013'
|
||||
'solid biomass': '#06540d'
|
||||
'biogas': '#23932d'
|
||||
'waste': '#68896b'
|
||||
'geothermal': '#ba91b1'
|
||||
"OCGT": "#d35050"
|
||||
"gas": "#d35050"
|
||||
"natural gas": "#d35050"
|
||||
"CCGT": "#b20101"
|
||||
"nuclear": "#ff9000"
|
||||
"coal": "#707070"
|
||||
"lignite": "#9e5a01"
|
||||
"oil": "#262626"
|
||||
"H2": "#ea048a"
|
||||
"hydrogen storage": "#ea048a"
|
||||
"battery": "#b8ea04"
|
||||
"Electric load": "#f9d002"
|
||||
"electricity": "#f9d002"
|
||||
"lines": "#70af1d"
|
||||
"transmission lines": "#70af1d"
|
||||
"AC-AC": "#70af1d"
|
||||
"AC line": "#70af1d"
|
||||
"links": "#8a1caf"
|
||||
"HVDC links": "#8a1caf"
|
||||
"DC-DC": "#8a1caf"
|
||||
"DC link": "#8a1caf"
|
||||
nice_names:
|
||||
OCGT: "Open-Cycle Gas"
|
||||
CCGT: "Combined-Cycle Gas"
|
||||
|
Loading…
Reference in New Issue
Block a user