'Refactored by Sourcery'
This commit is contained in:
parent
9cc6761d36
commit
3c36c60bdd
@ -303,10 +303,7 @@ def generate_periodic_profiles(dt_index, nodes, weekly_profile, localize=None):
|
||||
|
||||
|
||||
def parse(l):
|
||||
if len(l) == 1:
|
||||
return yaml.safe_load(l[0])
|
||||
else:
|
||||
return {l.pop(0): parse(l)}
|
||||
return yaml.safe_load(l[0]) if len(l) == 1 else {l.pop(0): parse(l)}
|
||||
|
||||
|
||||
def update_config_with_sector_opts(config, sector_opts):
|
||||
|
@ -42,11 +42,11 @@ def add_brownfield(n, n_p, year):
|
||||
# since CHP heat Link is proportional to CHP electric Link, make sure threshold is compatible
|
||||
chp_heat = c.df.index[
|
||||
(
|
||||
c.df[attr + "_nom_extendable"]
|
||||
c.df[f"{attr}_nom_extendable"]
|
||||
& c.df.index.str.contains("urban central")
|
||||
& c.df.index.str.contains("CHP")
|
||||
& c.df.index.str.contains("heat")
|
||||
)
|
||||
& c.df.index.str.contains("CHP")
|
||||
& c.df.index.str.contains("heat")
|
||||
]
|
||||
|
||||
threshold = snakemake.params.threshold_capacity
|
||||
@ -60,21 +60,22 @@ def add_brownfield(n, n_p, year):
|
||||
)
|
||||
n_p.mremove(
|
||||
c.name,
|
||||
chp_heat[c.df.loc[chp_heat, attr + "_nom_opt"] < threshold_chp_heat],
|
||||
chp_heat[
|
||||
c.df.loc[chp_heat, f"{attr}_nom_opt"] < threshold_chp_heat
|
||||
],
|
||||
)
|
||||
|
||||
n_p.mremove(
|
||||
c.name,
|
||||
c.df.index[
|
||||
c.df[attr + "_nom_extendable"]
|
||||
& ~c.df.index.isin(chp_heat)
|
||||
& (c.df[attr + "_nom_opt"] < threshold)
|
||||
(c.df[f"{attr}_nom_extendable"] & ~c.df.index.isin(chp_heat))
|
||||
& (c.df[f"{attr}_nom_opt"] < threshold)
|
||||
],
|
||||
)
|
||||
|
||||
# copy over assets but fix their capacity
|
||||
c.df[attr + "_nom"] = c.df[attr + "_nom_opt"]
|
||||
c.df[attr + "_nom_extendable"] = False
|
||||
c.df[f"{attr}_nom"] = c.df[f"{attr}_nom_opt"]
|
||||
c.df[f"{attr}_nom_extendable"] = False
|
||||
|
||||
n.import_components_from_dataframe(c.df, c.name)
|
||||
|
||||
|
@ -293,24 +293,23 @@ def attach_load(n, regions, load, nuts3_shapes, countries, scaling=1.0):
|
||||
l = opsd_load[cntry]
|
||||
if len(group) == 1:
|
||||
return pd.DataFrame({group.index[0]: l})
|
||||
else:
|
||||
nuts3_cntry = nuts3.loc[nuts3.country == cntry]
|
||||
transfer = shapes_to_shapes(group, nuts3_cntry.geometry).T.tocsr()
|
||||
gdp_n = pd.Series(
|
||||
transfer.dot(nuts3_cntry["gdp"].fillna(1.0).values), index=group.index
|
||||
)
|
||||
pop_n = pd.Series(
|
||||
transfer.dot(nuts3_cntry["pop"].fillna(1.0).values), index=group.index
|
||||
)
|
||||
nuts3_cntry = nuts3.loc[nuts3.country == cntry]
|
||||
transfer = shapes_to_shapes(group, nuts3_cntry.geometry).T.tocsr()
|
||||
gdp_n = pd.Series(
|
||||
transfer.dot(nuts3_cntry["gdp"].fillna(1.0).values), index=group.index
|
||||
)
|
||||
pop_n = pd.Series(
|
||||
transfer.dot(nuts3_cntry["pop"].fillna(1.0).values), index=group.index
|
||||
)
|
||||
|
||||
# relative factors 0.6 and 0.4 have been determined from a linear
|
||||
# regression on the country to continent load data
|
||||
factors = normed(0.6 * normed(gdp_n) + 0.4 * normed(pop_n))
|
||||
return pd.DataFrame(
|
||||
factors.values * l.values[:, np.newaxis],
|
||||
index=l.index,
|
||||
columns=factors.index,
|
||||
)
|
||||
# relative factors 0.6 and 0.4 have been determined from a linear
|
||||
# regression on the country to continent load data
|
||||
factors = normed(0.6 * normed(gdp_n) + 0.4 * normed(pop_n))
|
||||
return pd.DataFrame(
|
||||
factors.values * l.values[:, np.newaxis],
|
||||
index=l.index,
|
||||
columns=factors.index,
|
||||
)
|
||||
|
||||
load = pd.concat(
|
||||
[
|
||||
@ -435,7 +434,7 @@ def attach_conventional_generators(
|
||||
ppl = (
|
||||
ppl.query("carrier in @carriers")
|
||||
.join(costs, on="carrier", rsuffix="_r")
|
||||
.rename(index=lambda s: "C" + str(s))
|
||||
.rename(index=lambda s: f"C{str(s)}")
|
||||
)
|
||||
ppl["efficiency"] = ppl.efficiency.fillna(ppl.efficiency_r)
|
||||
|
||||
@ -512,7 +511,7 @@ def attach_hydro(n, costs, ppl, profile_hydro, hydro_capacities, carriers, **par
|
||||
ppl = (
|
||||
ppl.query('carrier == "hydro"')
|
||||
.reset_index(drop=True)
|
||||
.rename(index=lambda s: str(s) + " hydro")
|
||||
.rename(index=lambda s: f"{str(s)} hydro")
|
||||
)
|
||||
ror = ppl.query('technology == "Run-Of-River"')
|
||||
phs = ppl.query('technology == "Pumped Storage"')
|
||||
@ -609,16 +608,13 @@ def attach_hydro(n, costs, ppl, profile_hydro, hydro_capacities, carriers, **par
|
||||
)
|
||||
if not missing_countries.empty:
|
||||
logger.warning(
|
||||
"Assuming max_hours=6 for hydro reservoirs in the countries: {}".format(
|
||||
", ".join(missing_countries)
|
||||
)
|
||||
f'Assuming max_hours=6 for hydro reservoirs in the countries: {", ".join(missing_countries)}'
|
||||
)
|
||||
hydro_max_hours = hydro.max_hours.where(
|
||||
hydro.max_hours > 0, hydro.country.map(max_hours_country)
|
||||
).fillna(6)
|
||||
|
||||
flatten_dispatch = params.get("flatten_dispatch", False)
|
||||
if flatten_dispatch:
|
||||
if flatten_dispatch := params.get("flatten_dispatch", False):
|
||||
buffer = params.get("flatten_dispatch_buffer", 0.2)
|
||||
average_capacity_factor = inflow_t[hydro.index].mean() / hydro["p_nom"]
|
||||
p_max_pu = (average_capacity_factor + buffer).clip(upper=1)
|
||||
|
@ -45,7 +45,7 @@ def add_build_year_to_new_assets(n, baseyear):
|
||||
|
||||
# add -baseyear to name
|
||||
rename = pd.Series(c.df.index, c.df.index)
|
||||
rename[assets] += "-" + str(baseyear)
|
||||
rename[assets] += f"-{str(baseyear)}"
|
||||
c.df.rename(index=rename, inplace=True)
|
||||
|
||||
# rename time-dependent
|
||||
@ -252,7 +252,7 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
|
||||
if "m" in snakemake.wildcards.clusters:
|
||||
for ind in new_capacity.index:
|
||||
# existing capacities are split evenly among regions in every country
|
||||
inv_ind = [i for i in inv_busmap[ind]]
|
||||
inv_ind = list(inv_busmap[ind])
|
||||
|
||||
# for offshore the splitting only includes coastal regions
|
||||
inv_ind = [
|
||||
@ -545,13 +545,19 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
bus0=nodes[name],
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
carrier=name + " resistive heater",
|
||||
efficiency=costs.at[name_type + " resistive heater", "efficiency"],
|
||||
capital_cost=costs.at[name_type + " resistive heater", "efficiency"]
|
||||
* costs.at[name_type + " resistive heater", "fixed"],
|
||||
p_nom=0.5
|
||||
* nodal_df[f"{heat_type} resistive heater"][nodes[name]]
|
||||
* ratio
|
||||
/ costs.at[name_type + " resistive heater", "efficiency"],
|
||||
efficiency=costs.at[
|
||||
f"{name_type} resistive heater", "efficiency"
|
||||
],
|
||||
capital_cost=(
|
||||
costs.at[f"{name_type} resistive heater", "efficiency"]
|
||||
* costs.at[f"{name_type} resistive heater", "fixed"]
|
||||
),
|
||||
p_nom=(
|
||||
0.5
|
||||
* nodal_df[f"{heat_type} resistive heater"][nodes[name]]
|
||||
* ratio
|
||||
/ costs.at[f"{name_type} resistive heater", "efficiency"]
|
||||
),
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[costs_name, "lifetime"],
|
||||
)
|
||||
@ -564,16 +570,20 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=name + " gas boiler",
|
||||
efficiency=costs.at[name_type + " gas boiler", "efficiency"],
|
||||
efficiency=costs.at[f"{name_type} gas boiler", "efficiency"],
|
||||
efficiency2=costs.at["gas", "CO2 intensity"],
|
||||
capital_cost=costs.at[name_type + " gas boiler", "efficiency"]
|
||||
* costs.at[name_type + " gas boiler", "fixed"],
|
||||
p_nom=0.5
|
||||
* nodal_df[f"{heat_type} gas boiler"][nodes[name]]
|
||||
* ratio
|
||||
/ costs.at[name_type + " gas boiler", "efficiency"],
|
||||
capital_cost=(
|
||||
costs.at[f"{name_type} gas boiler", "efficiency"]
|
||||
* costs.at[f"{name_type} gas boiler", "fixed"]
|
||||
),
|
||||
p_nom=(
|
||||
0.5
|
||||
* nodal_df[f"{heat_type} gas boiler"][nodes[name]]
|
||||
* ratio
|
||||
/ costs.at[f"{name_type} gas boiler", "efficiency"]
|
||||
),
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[name_type + " gas boiler", "lifetime"],
|
||||
lifetime=costs.at[f"{name_type} gas boiler", "lifetime"],
|
||||
)
|
||||
|
||||
n.madd(
|
||||
@ -593,7 +603,7 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
* ratio
|
||||
/ costs.at["decentral oil boiler", "efficiency"],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[name_type + " gas boiler", "lifetime"],
|
||||
lifetime=costs.at[f"{name_type} gas boiler", "lifetime"],
|
||||
)
|
||||
|
||||
# delete links with p_nom=nan corresponding to extra nodes in country
|
||||
|
@ -151,9 +151,7 @@ def _load_buses_from_eg(eg_buses, europe_shape, config_elec):
|
||||
buses.v_nom.isin(config_elec["voltages"]) | buses.v_nom.isnull()
|
||||
)
|
||||
logger.info(
|
||||
"Removing buses with voltages {}".format(
|
||||
pd.Index(buses.v_nom.unique()).dropna().difference(config_elec["voltages"])
|
||||
)
|
||||
f'Removing buses with voltages {pd.Index(buses.v_nom.unique()).dropna().difference(config_elec["voltages"])}'
|
||||
)
|
||||
|
||||
return pd.DataFrame(buses.loc[buses_in_europe_b & buses_with_v_nom_to_keep_b])
|
||||
@ -460,11 +458,7 @@ def _remove_unconnected_components(network):
|
||||
components_to_remove = component_sizes.iloc[1:]
|
||||
|
||||
logger.info(
|
||||
"Removing {} unconnected network components with less than {} buses. In total {} buses.".format(
|
||||
len(components_to_remove),
|
||||
components_to_remove.max(),
|
||||
components_to_remove.sum(),
|
||||
)
|
||||
f"Removing {len(components_to_remove)} unconnected network components with less than {components_to_remove.max()} buses. In total {components_to_remove.sum()} buses."
|
||||
)
|
||||
|
||||
return network[component == component_sizes.index[0]]
|
||||
|
@ -172,8 +172,6 @@ def build_swiss(year):
|
||||
|
||||
|
||||
def idees_per_country(ct, year, base_dir):
|
||||
ct_totals = {}
|
||||
|
||||
ct_idees = idees_rename.get(ct, ct)
|
||||
fn_residential = f"{base_dir}/JRC-IDEES-2015_Residential_{ct_idees}.xlsx"
|
||||
fn_tertiary = f"{base_dir}/JRC-IDEES-2015_Tertiary_{ct_idees}.xlsx"
|
||||
@ -183,11 +181,11 @@ def idees_per_country(ct, year, base_dir):
|
||||
|
||||
df = pd.read_excel(fn_residential, "RES_hh_fec", index_col=0)[year]
|
||||
|
||||
ct_totals["total residential space"] = df["Space heating"]
|
||||
|
||||
rows = ["Advanced electric heating", "Conventional electric heating"]
|
||||
ct_totals["electricity residential space"] = df[rows].sum()
|
||||
|
||||
ct_totals = {
|
||||
"total residential space": df["Space heating"],
|
||||
"electricity residential space": df[rows].sum(),
|
||||
}
|
||||
ct_totals["total residential water"] = df.at["Water heating"]
|
||||
|
||||
assert df.index[23] == "Electricity"
|
||||
|
@ -29,25 +29,25 @@ def diameter_to_capacity(pipe_diameter_mm):
|
||||
Based on p.15 of
|
||||
https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf
|
||||
"""
|
||||
# slopes definitions
|
||||
m0 = (1500 - 0) / (500 - 0)
|
||||
m1 = (5000 - 1500) / (600 - 500)
|
||||
m2 = (11250 - 5000) / (900 - 600)
|
||||
m3 = (21700 - 11250) / (1200 - 900)
|
||||
|
||||
# intercept
|
||||
a0 = 0
|
||||
a1 = -16000
|
||||
a2 = -7500
|
||||
a3 = -20100
|
||||
|
||||
if pipe_diameter_mm < 500:
|
||||
# slopes definitions
|
||||
m0 = (1500 - 0) / (500 - 0)
|
||||
# intercept
|
||||
a0 = 0
|
||||
return a0 + m0 * pipe_diameter_mm
|
||||
elif pipe_diameter_mm < 600:
|
||||
return a1 + m1 * pipe_diameter_mm
|
||||
elif pipe_diameter_mm < 900:
|
||||
return a2 + m2 * pipe_diameter_mm
|
||||
else:
|
||||
m3 = (21700 - 11250) / (1200 - 900)
|
||||
|
||||
a3 = -20100
|
||||
|
||||
return a3 + m3 * pipe_diameter_mm
|
||||
|
||||
|
||||
|
@ -167,9 +167,7 @@ def industrial_energy_demand(countries, year):
|
||||
with mp.Pool(processes=nprocesses) as pool:
|
||||
demand_l = list(tqdm(pool.imap(func, countries), **tqdm_kwargs))
|
||||
|
||||
demand = pd.concat(demand_l, keys=countries)
|
||||
|
||||
return demand
|
||||
return pd.concat(demand_l, keys=countries)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -83,8 +83,7 @@ def calculate_resistance(T, R_ref, T_ref=293, alpha=0.00403):
|
||||
-------
|
||||
Resistance of at given temperature.
|
||||
"""
|
||||
R = R_ref * (1 + alpha * (T - T_ref))
|
||||
return R
|
||||
return R_ref * (1 + alpha * (T - T_ref))
|
||||
|
||||
|
||||
def calculate_line_rating(n, cutout):
|
||||
@ -125,13 +124,12 @@ def calculate_line_rating(n, cutout):
|
||||
R = calculate_resistance(T=353, R_ref=R)
|
||||
Imax = cutout.line_rating(shapes, R, D=0.0218, Ts=353, epsilon=0.8, alpha=0.8)
|
||||
line_factor = relevant_lines.eval("v_nom * n_bundle * num_parallel") / 1e3 # in mW
|
||||
da = xr.DataArray(
|
||||
return xr.DataArray(
|
||||
data=np.sqrt(3) * Imax * line_factor.values.reshape(-1, 1),
|
||||
attrs=dict(
|
||||
description="Maximal possible power in MW for given line considering line rating"
|
||||
),
|
||||
)
|
||||
return da
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -146,8 +146,7 @@ if __name__ == "__main__":
|
||||
ppl, snakemake.input.custom_powerplants, custom_ppl_query
|
||||
)
|
||||
|
||||
countries_wo_ppl = set(countries) - set(ppl.Country.unique())
|
||||
if countries_wo_ppl:
|
||||
if countries_wo_ppl := set(countries) - set(ppl.Country.unique()):
|
||||
logging.warning(f"No powerplants known in: {', '.join(countries_wo_ppl)}")
|
||||
|
||||
substations = n.buses.query("substation_lv")
|
||||
|
@ -609,12 +609,14 @@ def calculate_costs(u_values, l, cost_retro, window_assumptions):
|
||||
/ x.A_C_Ref
|
||||
if x.name[3] != "Window"
|
||||
else (
|
||||
window_cost(x["new_U_{}".format(l)], cost_retro, window_assumptions)
|
||||
* x.A_element
|
||||
(
|
||||
window_cost(x[f"new_U_{l}"], cost_retro, window_assumptions)
|
||||
* x.A_element
|
||||
)
|
||||
/ x.A_C_Ref
|
||||
if x.value > window_limit(float(l), window_assumptions)
|
||||
else 0
|
||||
),
|
||||
)
|
||||
if x.value > window_limit(float(l), window_assumptions)
|
||||
else 0,
|
||||
axis=1,
|
||||
)
|
||||
|
||||
@ -739,12 +741,12 @@ def calculate_heat_losses(u_values, data_tabula, l_strength, temperature_factor)
|
||||
# (1) by transmission
|
||||
# calculate new U values of building elements due to additional insulation
|
||||
for l in l_strength:
|
||||
u_values["new_U_{}".format(l)] = calculate_new_u(
|
||||
u_values[f"new_U_{l}"] = calculate_new_u(
|
||||
u_values, l, l_weight, window_assumptions
|
||||
)
|
||||
# surface area of building components [m^2]
|
||||
area_element = (
|
||||
data_tabula[["A_{}".format(e) for e in u_values.index.levels[3]]]
|
||||
data_tabula[[f"A_{e}" for e in u_values.index.levels[3]]]
|
||||
.rename(columns=lambda x: x[2:])
|
||||
.stack()
|
||||
.unstack(-2)
|
||||
@ -756,7 +758,7 @@ def calculate_heat_losses(u_values, data_tabula, l_strength, temperature_factor)
|
||||
|
||||
# heat transfer H_tr_e [W/m^2K] through building element
|
||||
# U_e * A_e / A_C_Ref
|
||||
columns = ["value"] + ["new_U_{}".format(l) for l in l_strength]
|
||||
columns = ["value"] + [f"new_U_{l}" for l in l_strength]
|
||||
heat_transfer = pd.concat(
|
||||
[u_values[columns].mul(u_values.A_element, axis=0), u_values.A_element], axis=1
|
||||
)
|
||||
@ -875,10 +877,7 @@ def calculate_gain_utilisation_factor(heat_transfer_perm2, Q_ht, Q_gain):
|
||||
alpha = alpha_H_0 + (tau / tau_H_0)
|
||||
# heat balance ratio
|
||||
gamma = (1 / Q_ht).mul(Q_gain.sum(axis=1), axis=0)
|
||||
# gain utilisation factor
|
||||
nu = (1 - gamma**alpha) / (1 - gamma ** (alpha + 1))
|
||||
|
||||
return nu
|
||||
return (1 - gamma**alpha) / (1 - gamma ** (alpha + 1))
|
||||
|
||||
|
||||
def calculate_space_heat_savings(
|
||||
|
@ -66,12 +66,12 @@ def salt_cavern_potential_by_region(caverns, regions):
|
||||
"capacity_per_area * share * area_caverns / 1000"
|
||||
) # TWh
|
||||
|
||||
caverns_regions = (
|
||||
overlay.groupby(["name", "storage_type"]).e_nom.sum().unstack("storage_type")
|
||||
return (
|
||||
overlay.groupby(["name", "storage_type"])
|
||||
.e_nom.sum()
|
||||
.unstack("storage_type")
|
||||
)
|
||||
|
||||
return caverns_regions
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
|
@ -119,7 +119,9 @@ def countries(naturalearth, country_list):
|
||||
fieldnames = (
|
||||
df[x].where(lambda s: s != "-99") for x in ("ISO_A2", "WB_A2", "ADM0_A3")
|
||||
)
|
||||
df["name"] = reduce(lambda x, y: x.fillna(y), fieldnames, next(fieldnames)).str[0:2]
|
||||
df["name"] = reduce(
|
||||
lambda x, y: x.fillna(y), fieldnames, next(fieldnames)
|
||||
).str[:2]
|
||||
|
||||
df = df.loc[
|
||||
df.name.isin(country_list) & ((df["scalerank"] == 0) | (df["scalerank"] == 5))
|
||||
|
@ -81,14 +81,12 @@ def build_transport_demand(traffic_fn, airtemp_fn, nodes, nodal_transport_data):
|
||||
- pop_weighted_energy_totals["electricity rail"]
|
||||
)
|
||||
|
||||
transport = (
|
||||
return (
|
||||
(transport_shape.multiply(energy_totals_transport) * 1e6 * nyears)
|
||||
.divide(efficiency_gain * ice_correction)
|
||||
.multiply(1 + dd_EV)
|
||||
)
|
||||
|
||||
return transport
|
||||
|
||||
|
||||
def transport_degree_factor(
|
||||
temperature,
|
||||
@ -132,14 +130,12 @@ def bev_availability_profile(fn, snapshots, nodes, options):
|
||||
traffic.mean() - traffic.min()
|
||||
)
|
||||
|
||||
avail_profile = generate_periodic_profiles(
|
||||
return generate_periodic_profiles(
|
||||
dt_index=snapshots,
|
||||
nodes=nodes,
|
||||
weekly_profile=avail.values,
|
||||
)
|
||||
|
||||
return avail_profile
|
||||
|
||||
|
||||
def bev_dsm_profile(snapshots, nodes, options):
|
||||
dsm_week = np.zeros((24 * 7,))
|
||||
@ -148,14 +144,12 @@ def bev_dsm_profile(snapshots, nodes, options):
|
||||
"bev_dsm_restriction_value"
|
||||
]
|
||||
|
||||
dsm_profile = generate_periodic_profiles(
|
||||
return generate_periodic_profiles(
|
||||
dt_index=snapshots,
|
||||
nodes=nodes,
|
||||
weekly_profile=dsm_week,
|
||||
)
|
||||
|
||||
return dsm_profile
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
|
@ -322,9 +322,7 @@ def busmap_for_n_clusters(
|
||||
neighbor_bus = n.lines.query(
|
||||
"bus0 == @disconnected_bus or bus1 == @disconnected_bus"
|
||||
).iloc[0][["bus0", "bus1"]]
|
||||
new_country = list(
|
||||
set(n.buses.loc[neighbor_bus].country) - set([country])
|
||||
)[0]
|
||||
new_country = list(set(n.buses.loc[neighbor_bus].country) - {country})[0]
|
||||
|
||||
logger.info(
|
||||
f"overwriting country `{country}` of bus `{disconnected_bus}` "
|
||||
|
@ -33,10 +33,7 @@ def assign_locations(n):
|
||||
ifind = pd.Series(c.df.index.str.find(" ", start=4), c.df.index)
|
||||
for i in ifind.unique():
|
||||
names = ifind.index[ifind == i]
|
||||
if i == -1:
|
||||
c.df.loc[names, "location"] = ""
|
||||
else:
|
||||
c.df.loc[names, "location"] = names.str[:i]
|
||||
c.df.loc[names, "location"] = "" if i == -1 else names.str[:i]
|
||||
|
||||
|
||||
def calculate_nodal_cfs(n, label, nodal_cfs):
|
||||
@ -397,7 +394,7 @@ def calculate_supply_energy(n, label, supply_energy):
|
||||
|
||||
for c in n.iterate_components(n.branch_components):
|
||||
for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
|
||||
items = c.df.index[c.df["bus" + str(end)].map(bus_map).fillna(False)]
|
||||
items = c.df.index[c.df[f"bus{str(end)}"].map(bus_map).fillna(False)]
|
||||
|
||||
if len(items) == 0:
|
||||
continue
|
||||
@ -493,7 +490,7 @@ def calculate_weighted_prices(n, label, weighted_prices):
|
||||
"H2": ["Sabatier", "H2 Fuel Cell"],
|
||||
}
|
||||
|
||||
for carrier in link_loads:
|
||||
for carrier, value in link_loads.items():
|
||||
if carrier == "electricity":
|
||||
suffix = ""
|
||||
elif carrier[:5] == "space":
|
||||
@ -515,15 +512,13 @@ def calculate_weighted_prices(n, label, weighted_prices):
|
||||
else:
|
||||
load = n.loads_t.p_set[buses]
|
||||
|
||||
for tech in link_loads[carrier]:
|
||||
for tech in value:
|
||||
names = n.links.index[n.links.index.to_series().str[-len(tech) :] == tech]
|
||||
|
||||
if names.empty:
|
||||
continue
|
||||
|
||||
load += (
|
||||
n.links_t.p0[names].groupby(n.links.loc[names, "bus0"], axis=1).sum()
|
||||
)
|
||||
if not names.empty:
|
||||
load += (
|
||||
n.links_t.p0[names].groupby(n.links.loc[names, "bus0"], axis=1).sum()
|
||||
)
|
||||
|
||||
# Add H2 Store when charging
|
||||
# if carrier == "H2":
|
||||
@ -650,11 +645,7 @@ def make_summaries(networks_dict):
|
||||
networks_dict.keys(), names=["cluster", "ll", "opt", "planning_horizon"]
|
||||
)
|
||||
|
||||
df = {}
|
||||
|
||||
for output in outputs:
|
||||
df[output] = pd.DataFrame(columns=columns, dtype=float)
|
||||
|
||||
df = {output: pd.DataFrame(columns=columns, dtype=float) for output in outputs}
|
||||
for label, filename in networks_dict.items():
|
||||
logger.info(f"Make summary for scenario {label}, using {filename}")
|
||||
|
||||
|
@ -382,7 +382,7 @@ def calculate_supply_energy(n, label, supply_energy):
|
||||
|
||||
for c in n.iterate_components(n.branch_components):
|
||||
for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
|
||||
items = c.df.index[c.df["bus" + str(end)].map(bus_map).fillna(False)]
|
||||
items = c.df.index[c.df[f"bus{str(end)}"].map(bus_map).fillna(False)]
|
||||
|
||||
if len(items) == 0:
|
||||
continue
|
||||
@ -483,7 +483,7 @@ def calculate_weighted_prices(n, label, weighted_prices):
|
||||
"H2": ["Sabatier", "H2 Fuel Cell"],
|
||||
}
|
||||
|
||||
for carrier in link_loads:
|
||||
for carrier, value in link_loads.items():
|
||||
if carrier == "electricity":
|
||||
suffix = ""
|
||||
elif carrier[:5] == "space":
|
||||
@ -496,12 +496,12 @@ def calculate_weighted_prices(n, label, weighted_prices):
|
||||
if buses.empty:
|
||||
continue
|
||||
|
||||
if carrier in ["H2", "gas"]:
|
||||
load = pd.DataFrame(index=n.snapshots, columns=buses, data=0.0)
|
||||
else:
|
||||
load = n.loads_t.p_set.reindex(buses, axis=1)
|
||||
|
||||
for tech in link_loads[carrier]:
|
||||
load = (
|
||||
pd.DataFrame(index=n.snapshots, columns=buses, data=0.0)
|
||||
if carrier in ["H2", "gas"]
|
||||
else n.loads_t.p_set.reindex(buses, axis=1)
|
||||
)
|
||||
for tech in value:
|
||||
names = n.links.index[n.links.index.to_series().str[-len(tech) :] == tech]
|
||||
|
||||
if names.empty:
|
||||
|
@ -145,12 +145,12 @@ def plot_map(
|
||||
ac_color = "rosybrown"
|
||||
dc_color = "darkseagreen"
|
||||
|
||||
title = "added grid"
|
||||
|
||||
if snakemake.wildcards["ll"] == "v1.0":
|
||||
# should be zero
|
||||
line_widths = n.lines.s_nom_opt - n.lines.s_nom
|
||||
link_widths = n.links.p_nom_opt - n.links.p_nom
|
||||
title = "added grid"
|
||||
|
||||
if transmission:
|
||||
line_widths = n.lines.s_nom_opt
|
||||
link_widths = n.links.p_nom_opt
|
||||
@ -160,8 +160,6 @@ def plot_map(
|
||||
else:
|
||||
line_widths = n.lines.s_nom_opt - n.lines.s_nom_min
|
||||
link_widths = n.links.p_nom_opt - n.links.p_nom_min
|
||||
title = "added grid"
|
||||
|
||||
if transmission:
|
||||
line_widths = n.lines.s_nom_opt
|
||||
link_widths = n.links.p_nom_opt
|
||||
@ -262,13 +260,10 @@ def group_pipes(df, drop_direction=False):
|
||||
lambda x: f"H2 pipeline {x.bus0.replace(' H2', '')} -> {x.bus1.replace(' H2', '')}",
|
||||
axis=1,
|
||||
)
|
||||
# group pipe lines connecting the same buses and rename them for plotting
|
||||
pipe_capacity = df.groupby(level=0).agg(
|
||||
return df.groupby(level=0).agg(
|
||||
{"p_nom_opt": sum, "bus0": "first", "bus1": "first"}
|
||||
)
|
||||
|
||||
return pipe_capacity
|
||||
|
||||
|
||||
def plot_h2_map(network, regions):
|
||||
n = network.copy()
|
||||
@ -766,11 +761,13 @@ def plot_series(network, carrier="AC", name="test"):
|
||||
supply = pd.concat(
|
||||
(
|
||||
supply,
|
||||
(-1)
|
||||
* c.pnl["p" + str(i)]
|
||||
.loc[:, c.df.index[c.df["bus" + str(i)].isin(buses)]]
|
||||
.groupby(c.df.carrier, axis=1)
|
||||
.sum(),
|
||||
(
|
||||
-1
|
||||
* c.pnl[f"p{str(i)}"]
|
||||
.loc[:, c.df.index[c.df[f"bus{str(i)}"].isin(buses)]]
|
||||
.groupby(c.df.carrier, axis=1)
|
||||
.sum()
|
||||
),
|
||||
),
|
||||
axis=1,
|
||||
)
|
||||
|
@ -297,11 +297,7 @@ def plot_balances():
|
||||
df.abs().max(axis=1) < snakemake.params.plotting["energy_threshold"] / 10
|
||||
]
|
||||
|
||||
if v[0] in co2_carriers:
|
||||
units = "MtCO2/a"
|
||||
else:
|
||||
units = "TWh/a"
|
||||
|
||||
units = "MtCO2/a" if v[0] in co2_carriers else "TWh/a"
|
||||
logger.debug(
|
||||
f"Dropping technology energy balance smaller than {snakemake.params['plotting']['energy_threshold']/10} {units}"
|
||||
)
|
||||
@ -587,7 +583,8 @@ if __name__ == "__main__":
|
||||
|
||||
for sector_opts in snakemake.params.sector_opts:
|
||||
opts = sector_opts.split("-")
|
||||
if any(["cb" in o for o in opts]) or (
|
||||
snakemake.config["foresight"] == "perfect"
|
||||
if (
|
||||
any("cb" in o for o in opts)
|
||||
or snakemake.config["foresight"] == "perfect"
|
||||
):
|
||||
plot_carbon_budget_distribution(snakemake.input.eurostat)
|
||||
|
@ -84,13 +84,10 @@ def cross_border_time_series(countries, data):
|
||||
df_neg.plot.area(
|
||||
ax=ax[axis], stacked=True, linewidth=0.0, color=color, ylim=[-1, 1]
|
||||
)
|
||||
if (axis % 2) == 0:
|
||||
title = "Historic"
|
||||
else:
|
||||
title = "Optimized"
|
||||
|
||||
title = "Historic" if (axis % 2) == 0 else "Optimized"
|
||||
ax[axis].set_title(
|
||||
title + " Import / Export for " + cc.convert(country, to="name_short")
|
||||
f"{title} Import / Export for "
|
||||
+ cc.convert(country, to="name_short")
|
||||
)
|
||||
|
||||
# Custom legend elements
|
||||
@ -137,16 +134,12 @@ def cross_border_bar(countries, data):
|
||||
df_country = sort_one_country(country, df)
|
||||
df_neg, df_pos = df_country.clip(upper=0), df_country.clip(lower=0)
|
||||
|
||||
if (order % 2) == 0:
|
||||
title = "Historic"
|
||||
else:
|
||||
title = "Optimized"
|
||||
|
||||
title = "Historic" if (order % 2) == 0 else "Optimized"
|
||||
df_positive_new = pd.DataFrame(data=df_pos.sum()).T.rename(
|
||||
{0: title + " " + cc.convert(country, to="name_short")}
|
||||
{0: f"{title} " + cc.convert(country, to="name_short")}
|
||||
)
|
||||
df_negative_new = pd.DataFrame(data=df_neg.sum()).T.rename(
|
||||
{0: title + " " + cc.convert(country, to="name_short")}
|
||||
{0: f"{title} " + cc.convert(country, to="name_short")}
|
||||
)
|
||||
|
||||
df_positive = pd.concat([df_positive_new, df_positive])
|
||||
|
@ -56,7 +56,9 @@ def get_investment_weighting(time_weighting, r=0.01):
|
||||
end = time_weighting.cumsum()
|
||||
start = time_weighting.cumsum().shift().fillna(0)
|
||||
return pd.concat([start, end], axis=1).apply(
|
||||
lambda x: sum([get_social_discount(t, r) for t in range(int(x[0]), int(x[1]))]),
|
||||
lambda x: sum(
|
||||
get_social_discount(t, r) for t in range(int(x[0]), int(x[1]))
|
||||
),
|
||||
axis=1,
|
||||
)
|
||||
|
||||
@ -306,7 +308,7 @@ def set_carbon_constraints(n, opts):
|
||||
if m is not None:
|
||||
budget = snakemake.config["co2_budget"][m.group(0)] * 1e9
|
||||
if budget != None:
|
||||
logger.info("add carbon budget of {}".format(budget))
|
||||
logger.info(f"add carbon budget of {budget}")
|
||||
n.add(
|
||||
"GlobalConstraint",
|
||||
"Budget",
|
||||
@ -340,9 +342,7 @@ def set_carbon_constraints(n, opts):
|
||||
first_year = n.snapshots.levels[0][0]
|
||||
time_weightings = n.investment_period_weightings.loc[first_year, "years"]
|
||||
co2min = emissions_2019 - ((first_year - 2019) * annual_reduction)
|
||||
logger.info(
|
||||
"add minimum emissions for {} of {} t CO2/a".format(first_year, co2min)
|
||||
)
|
||||
logger.info(f"add minimum emissions for {first_year} of {co2min} t CO2/a")
|
||||
n.add(
|
||||
"GlobalConstraint",
|
||||
f"Co2Min-{first_year}",
|
||||
@ -519,9 +519,7 @@ if __name__ == "__main__":
|
||||
social_discountrate = float(o.replace("sdr", "")) / 100
|
||||
|
||||
logger.info(
|
||||
"Concat networks of investment period {} with social discount rate of {}%".format(
|
||||
years, social_discountrate * 100
|
||||
)
|
||||
f"Concat networks of investment period {years} with social discount rate of {social_discountrate * 100}%"
|
||||
)
|
||||
|
||||
# concat prenetworks of planning horizon to single network ------------
|
||||
|
@ -184,10 +184,7 @@ def get(item, investment_year=None):
|
||||
"""
|
||||
Check whether item depends on investment year.
|
||||
"""
|
||||
if isinstance(item, dict):
|
||||
return item[investment_year]
|
||||
else:
|
||||
return item
|
||||
return item[investment_year] if isinstance(item, dict) else item
|
||||
|
||||
|
||||
def co2_emissions_year(
|
||||
@ -413,11 +410,7 @@ def update_wind_solar_costs(n, costs):
|
||||
# e.g. clusters == 37m means that VRE generators are left
|
||||
# at clustering of simplified network, but that they are
|
||||
# connected to 37-node network
|
||||
if snakemake.wildcards.clusters[-1:] == "m":
|
||||
genmap = busmap_s
|
||||
else:
|
||||
genmap = clustermaps
|
||||
|
||||
genmap = busmap_s if snakemake.wildcards.clusters[-1:] == "m" else clustermaps
|
||||
connection_cost = (connection_cost * weight).groupby(
|
||||
genmap
|
||||
).sum() / weight.groupby(genmap).sum()
|
||||
@ -505,8 +498,9 @@ def remove_non_electric_buses(n):
|
||||
"""
|
||||
Remove buses from pypsa-eur with carriers which are not AC buses.
|
||||
"""
|
||||
to_drop = list(n.buses.query("carrier not in ['AC', 'DC']").carrier.unique())
|
||||
if to_drop:
|
||||
if to_drop := list(
|
||||
n.buses.query("carrier not in ['AC', 'DC']").carrier.unique()
|
||||
):
|
||||
logger.info(f"Drop buses from PyPSA-Eur with carrier: {to_drop}")
|
||||
n.buses = n.buses[n.buses.carrier.isin(["AC", "DC"])]
|
||||
|
||||
@ -1232,11 +1226,9 @@ def add_storage_and_grids(n, costs):
|
||||
|
||||
# apply k_edge_augmentation weighted by length of complement edges
|
||||
k_edge = options.get("gas_network_connectivity_upgrade", 3)
|
||||
augmentation = list(
|
||||
if augmentation := list(
|
||||
k_edge_augmentation(G, k_edge, avail=complement_edges.values)
|
||||
)
|
||||
|
||||
if augmentation:
|
||||
):
|
||||
new_gas_pipes = pd.DataFrame(augmentation, columns=["bus0", "bus1"])
|
||||
new_gas_pipes["length"] = new_gas_pipes.apply(haversine, axis=1)
|
||||
|
||||
|
@ -152,22 +152,20 @@ def _prepare_connection_costs_per_link(n, costs, renewable_carriers, length_fact
|
||||
if n.links.empty:
|
||||
return {}
|
||||
|
||||
connection_costs_per_link = {}
|
||||
|
||||
for tech in renewable_carriers:
|
||||
if tech.startswith("offwind"):
|
||||
connection_costs_per_link[tech] = (
|
||||
n.links.length
|
||||
* length_factor
|
||||
* (
|
||||
n.links.underwater_fraction
|
||||
* costs.at[tech + "-connection-submarine", "capital_cost"]
|
||||
+ (1.0 - n.links.underwater_fraction)
|
||||
* costs.at[tech + "-connection-underground", "capital_cost"]
|
||||
)
|
||||
return {
|
||||
tech: (
|
||||
n.links.length
|
||||
* length_factor
|
||||
* (
|
||||
n.links.underwater_fraction
|
||||
* costs.at[tech + "-connection-submarine", "capital_cost"]
|
||||
+ (1.0 - n.links.underwater_fraction)
|
||||
* costs.at[tech + "-connection-underground", "capital_cost"]
|
||||
)
|
||||
|
||||
return connection_costs_per_link
|
||||
)
|
||||
for tech in renewable_carriers
|
||||
if tech.startswith("offwind")
|
||||
}
|
||||
|
||||
|
||||
def _compute_connection_costs_to_bus(
|
||||
|
@ -153,12 +153,10 @@ def _add_land_use_constraint_m(n, planning_horizons, config):
|
||||
for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]:
|
||||
existing = n.generators.loc[n.generators.carrier == carrier, "p_nom"]
|
||||
ind = list(
|
||||
set(
|
||||
[
|
||||
i.split(sep=" ")[0] + " " + i.split(sep=" ")[1]
|
||||
for i in existing.index
|
||||
]
|
||||
)
|
||||
{
|
||||
i.split(sep=" ")[0] + " " + i.split(sep=" ")[1]
|
||||
for i in existing.index
|
||||
}
|
||||
)
|
||||
|
||||
previous_years = [
|
||||
@ -217,7 +215,6 @@ def add_carbon_constraint(n, snapshots):
|
||||
if glcs.empty:
|
||||
return
|
||||
for name, glc in glcs.iterrows():
|
||||
rhs = glc.constant
|
||||
carattr = glc.carrier_attribute
|
||||
emissions = n.carriers.query(f"{carattr} != 0")[carattr]
|
||||
|
||||
@ -227,14 +224,15 @@ def add_carbon_constraint(n, snapshots):
|
||||
# stores
|
||||
n.stores["carrier"] = n.stores.bus.map(n.buses.carrier)
|
||||
stores = n.stores.query("carrier in @emissions.index and not e_cyclic")
|
||||
time_valid = int(glc.loc["investment_period"])
|
||||
if not stores.empty:
|
||||
last = n.snapshot_weightings.reset_index().groupby("period").last()
|
||||
last_i = last.set_index([last.index, last.timestep]).index
|
||||
final_e = n.model["Store-e"].loc[last_i, stores.index]
|
||||
time_valid = int(glc.loc["investment_period"])
|
||||
time_i = pd.IndexSlice[time_valid, :]
|
||||
lhs = final_e.loc[time_i, :] - final_e.shift(snapshot=1).loc[time_i, :]
|
||||
|
||||
rhs = glc.constant
|
||||
n.model.add_constraints(lhs <= rhs, name=f"GlobalConstraint-{name}")
|
||||
|
||||
|
||||
@ -243,7 +241,6 @@ def add_carbon_budget_constraint(n, snapshots):
|
||||
if glcs.empty:
|
||||
return
|
||||
for name, glc in glcs.iterrows():
|
||||
rhs = glc.constant
|
||||
carattr = glc.carrier_attribute
|
||||
emissions = n.carriers.query(f"{carattr} != 0")[carattr]
|
||||
|
||||
@ -253,15 +250,16 @@ def add_carbon_budget_constraint(n, snapshots):
|
||||
# stores
|
||||
n.stores["carrier"] = n.stores.bus.map(n.buses.carrier)
|
||||
stores = n.stores.query("carrier in @emissions.index and not e_cyclic")
|
||||
time_valid = int(glc.loc["investment_period"])
|
||||
weighting = n.investment_period_weightings.loc[time_valid, "years"]
|
||||
if not stores.empty:
|
||||
last = n.snapshot_weightings.reset_index().groupby("period").last()
|
||||
last_i = last.set_index([last.index, last.timestep]).index
|
||||
final_e = n.model["Store-e"].loc[last_i, stores.index]
|
||||
time_valid = int(glc.loc["investment_period"])
|
||||
time_i = pd.IndexSlice[time_valid, :]
|
||||
weighting = n.investment_period_weightings.loc[time_valid, "years"]
|
||||
lhs = final_e.loc[time_i, :] * weighting
|
||||
|
||||
rhs = glc.constant
|
||||
n.model.add_constraints(lhs <= rhs, name=f"GlobalConstraint-{name}")
|
||||
|
||||
|
||||
@ -350,8 +348,7 @@ def prepare_network(
|
||||
):
|
||||
df.where(df > solve_opts["clip_p_max_pu"], other=0.0, inplace=True)
|
||||
|
||||
load_shedding = solve_opts.get("load_shedding")
|
||||
if load_shedding:
|
||||
if load_shedding := solve_opts.get("load_shedding"):
|
||||
# intersect between macroeconomic and surveybased willingness to pay
|
||||
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full
|
||||
# TODO: retrieve color and nice name from config
|
||||
@ -803,9 +800,7 @@ def solve_network(n, config, solving, opts="", **kwargs):
|
||||
set_of_options = solving["solver"]["options"]
|
||||
cf_solving = solving["options"]
|
||||
|
||||
kwargs["multi_investment_periods"] = (
|
||||
True if config["foresight"] == "perfect" else False
|
||||
)
|
||||
kwargs["multi_investment_periods"] = config["foresight"] == "perfect"
|
||||
kwargs["solver_options"] = (
|
||||
solving["solver_options"][set_of_options] if set_of_options else {}
|
||||
)
|
||||
@ -903,7 +898,7 @@ if __name__ == "__main__":
|
||||
log_fn=snakemake.log.solver,
|
||||
)
|
||||
|
||||
logger.info("Maximum memory usage: {}".format(mem.mem_usage))
|
||||
logger.info(f"Maximum memory usage: {mem.mem_usage}")
|
||||
|
||||
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
||||
n.export_to_netcdf(snakemake.output[0])
|
||||
|
@ -7,6 +7,7 @@ Solves linear optimal dispatch in hourly resolution using the capacities of
|
||||
previous capacity expansion in rule :mod:`solve_network`.
|
||||
"""
|
||||
|
||||
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
@ -35,7 +36,11 @@ if __name__ == "__main__":
|
||||
configure_logging(snakemake)
|
||||
update_config_with_sector_opts(snakemake.config, snakemake.wildcards.sector_opts)
|
||||
|
||||
opts = (snakemake.wildcards.opts + "-" + snakemake.wildcards.sector_opts).split("-")
|
||||
opts = (
|
||||
f"{snakemake.wildcards.opts}-{snakemake.wildcards.sector_opts}".split(
|
||||
"-"
|
||||
)
|
||||
)
|
||||
opts = [o for o in opts if o != ""]
|
||||
solve_opts = snakemake.params.options
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user