pypsa-eur/scripts/base_network.py

878 lines
28 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
2024-02-19 15:21:48 +00:00
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
2021-09-14 14:37:41 +00:00
# SPDX-License-Identifier: MIT
# coding: utf-8
"""
2022-09-16 13:20:10 +00:00
Creates the network topology from a `ENTSO-E map extract.
<https://github.com/PyPSA/GridKit/tree/master/entsoe>`_ (March 2022) as a PyPSA
network.
2019-08-11 09:40:47 +00:00
Relevant Settings
-----------------
2019-08-11 11:17:36 +00:00
.. code:: yaml
countries:
electricity:
voltages:
lines:
types:
s_max_pu:
under_construction:
2019-11-05 13:29:15 +00:00
2019-08-11 11:17:36 +00:00
links:
p_max_pu:
under_construction:
include_tyndp:
2019-11-05 13:29:15 +00:00
2019-08-11 11:17:36 +00:00
transformers:
x:
s_nom:
type:
2019-11-05 13:29:15 +00:00
.. seealso::
Documentation of the configuration file ``config/config.yaml`` at
:ref:`snapshots_cf`, :ref:`toplevel_cf`, :ref:`electricity_cf`, :ref:`load_cf`,
:ref:`lines_cf`, :ref:`links_cf`, :ref:`transformers_cf`
2019-11-05 13:29:15 +00:00
2019-08-11 09:40:47 +00:00
Inputs
------
- ``data/entsoegridkit``: Extract from the geographical vector data of the online `ENTSO-E Interactive Map <https://www.entsoe.eu/data/map/>`_ by the `GridKit <https://github.com/martacki/gridkit>`_ toolkit dating back to March 2022.
2019-08-12 17:01:53 +00:00
- ``data/parameter_corrections.yaml``: Corrections for ``data/entsoegridkit``
2019-08-11 20:34:18 +00:00
- ``data/links_p_nom.csv``: confer :ref:`links`
2019-08-12 17:01:53 +00:00
- ``data/links_tyndp.csv``: List of projects in the `TYNDP 2018 <https://tyndp.entsoe.eu/tyndp2018/>`_ that are at least *in permitting* with fields for start- and endpoint (names and coordinates), length, capacity, construction status, and project reference ID.
2019-08-11 20:34:18 +00:00
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
- ``resources/offshore_shapes.geojson``: confer :ref:`shapes`
- ``resources/europe_shape.geojson``: confer :ref:`shapes`
2019-08-11 09:40:47 +00:00
Outputs
-------
2019-08-11 20:34:18 +00:00
- ``networks/base.nc``
2023-03-09 12:28:42 +00:00
.. image:: img/base.png
2019-08-11 20:34:18 +00:00
:scale: 33 %
2019-08-11 09:40:47 +00:00
Description
-----------
"""
Add logging to logfiles to all snakemake workflow scripts. (#102) * Add logging to logfiles to all snakemake workflow scripts. * Fix missing quotation marks in Snakefile. * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * doc: fix _ec_ filenames in docs * Allow logging message format to be specified in config.yaml. * Add logging for Snakemake rule 'retrieve_databundle '. * Add limited logging to STDERR only for retrieve_*.py scripts. * Import progressbar module only on demand. * Fix logging to file and enable concurrent printing to STDERR for most scripts. * Add new 'logging_format' option to Travis CI test config.yaml. * Add missing parenthesis (bug fix) and cross-os compatible paths. * Fix typos in messages. * Use correct log files for logging (bug fix). * doc: fix line references * config: logging_format in all configs * doc: add doc for logging_format * environment: update to powerplantmatching 0.4.3 * doc: update line references for tutorial.rst * Change logging configuration scheme for config.yaml. * Add helper function for doing basic logging configuration. * Add logpath for prepare_links_p_nom rule. * Outsource basic logging configuration for all scripts to _helper submodule. * Update documentation for changed config.yaml structure. Instead of 'logging_level' and 'logging_format', now 'logging' with subcategories is used. * _helpers: Change configure_logging signature.
2019-11-28 07:22:52 +00:00
import logging
from itertools import product
Add logging to logfiles to all snakemake workflow scripts. (#102) * Add logging to logfiles to all snakemake workflow scripts. * Fix missing quotation marks in Snakefile. * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * doc: fix _ec_ filenames in docs * Allow logging message format to be specified in config.yaml. * Add logging for Snakemake rule 'retrieve_databundle '. * Add limited logging to STDERR only for retrieve_*.py scripts. * Import progressbar module only on demand. * Fix logging to file and enable concurrent printing to STDERR for most scripts. * Add new 'logging_format' option to Travis CI test config.yaml. * Add missing parenthesis (bug fix) and cross-os compatible paths. * Fix typos in messages. * Use correct log files for logging (bug fix). * doc: fix line references * config: logging_format in all configs * doc: add doc for logging_format * environment: update to powerplantmatching 0.4.3 * doc: update line references for tutorial.rst * Change logging configuration scheme for config.yaml. * Add helper function for doing basic logging configuration. * Add logpath for prepare_links_p_nom rule. * Outsource basic logging configuration for all scripts to _helper submodule. * Update documentation for changed config.yaml structure. Instead of 'logging_level' and 'logging_format', now 'logging' with subcategories is used. * _helpers: Change configure_logging signature.
2019-11-28 07:22:52 +00:00
import geopandas as gpd
2020-09-11 10:40:53 +00:00
import networkx as nx
import numpy as np
import pandas as pd
import pypsa
import shapely
import shapely.prepared
import shapely.wkt
import yaml
from _helpers import configure_logging, get_snapshots, set_scenario_config
2024-02-09 12:59:15 +00:00
from packaging.version import Version, parse
from scipy import spatial
from scipy.sparse import csgraph
from shapely.geometry import LineString, Point
2024-02-09 12:59:15 +00:00
PD_GE_2_2 = parse(pd.__version__) >= Version("2.2")
2020-09-11 10:40:53 +00:00
logger = logging.getLogger(__name__)
def _get_oid(df):
if "tags" in df.columns:
return df.tags.str.extract('"oid"=>"(\d+)"', expand=False)
else:
return pd.Series(np.nan, df.index)
2020-09-11 10:40:53 +00:00
def _get_country(df):
if "tags" in df.columns:
return df.tags.str.extract('"country"=>"([A-Z]{2})"', expand=False)
else:
return pd.Series(np.nan, df.index)
2020-09-11 10:40:53 +00:00
def _find_closest_links(links, new_links, distance_upper_bound=1.5):
treecoords = np.asarray(
[
np.asarray(shapely.wkt.loads(s).coords)[[0, -1]].flatten()
for s in links.geometry
]
)
querycoords = np.vstack(
[new_links[["x1", "y1", "x2", "y2"]], new_links[["x2", "y2", "x1", "y1"]]]
)
tree = spatial.KDTree(treecoords)
dist, ind = tree.query(querycoords, distance_upper_bound=distance_upper_bound)
found_b = ind < len(links)
found_i = np.arange(len(new_links) * 2)[found_b] % len(new_links)
return (
pd.DataFrame(
dict(D=dist[found_b], i=links.index[ind[found_b] % len(links)]),
index=new_links.index[found_i],
)
.sort_values(by="D")[lambda ds: ~ds.index.duplicated(keep="first")]
.sort_index()["i"]
)
2020-09-11 10:40:53 +00:00
2022-01-13 17:54:27 +00:00
def _load_buses_from_eg(eg_buses, europe_shape, config_elec):
buses = (
pd.read_csv(
eg_buses,
quotechar="'",
true_values=["t"],
false_values=["f"],
dtype=dict(bus_id="str"),
)
.set_index("bus_id")
.drop(["station_id"], axis=1)
.rename(columns=dict(voltage="v_nom"))
)
buses["carrier"] = buses.pop("dc").map({True: "DC", False: "AC"})
2024-01-31 16:10:08 +00:00
buses["under_construction"] = buses.under_construction.where(
lambda s: s.notnull(), False
).astype(bool)
# remove all buses outside of all countries including exclusive economic zones (offshore)
europe_shape = gpd.read_file(europe_shape).loc[0, "geometry"]
europe_shape_prepped = shapely.prepared.prep(europe_shape)
buses_in_europe_b = buses[["x", "y"]].apply(
lambda p: europe_shape_prepped.contains(Point(p)), axis=1
)
buses_with_v_nom_to_keep_b = (
buses.v_nom.isin(config_elec["voltages"]) | buses.v_nom.isnull()
)
logger.info(
2023-10-08 09:20:36 +00:00
f'Removing buses with voltages {pd.Index(buses.v_nom.unique()).dropna().difference(config_elec["voltages"])}'
)
return pd.DataFrame(buses.loc[buses_in_europe_b & buses_with_v_nom_to_keep_b])
2020-09-11 10:40:53 +00:00
2022-01-13 17:54:27 +00:00
def _load_transformers_from_eg(buses, eg_transformers):
transformers = pd.read_csv(
eg_transformers,
quotechar="'",
true_values=["t"],
false_values=["f"],
dtype=dict(transformer_id="str", bus0="str", bus1="str"),
).set_index("transformer_id")
transformers = _remove_dangling_branches(transformers, buses)
return transformers
2020-09-11 10:40:53 +00:00
2022-01-13 17:54:27 +00:00
def _load_converters_from_eg(buses, eg_converters):
converters = pd.read_csv(
eg_converters,
quotechar="'",
true_values=["t"],
false_values=["f"],
dtype=dict(converter_id="str", bus0="str", bus1="str"),
).set_index("converter_id")
converters = _remove_dangling_branches(converters, buses)
converters["carrier"] = "B2B"
return converters
2022-01-13 17:54:27 +00:00
def _load_links_from_eg(buses, eg_links):
links = pd.read_csv(
eg_links,
quotechar="'",
true_values=["t"],
false_values=["f"],
dtype=dict(link_id="str", bus0="str", bus1="str", under_construction="bool"),
).set_index("link_id")
links["length"] /= 1e3
2022-01-31 15:09:42 +00:00
# Skagerrak Link is connected to 132kV bus which is removed in _load_buses_from_eg.
# Connect to neighboring 380kV bus
links.loc[links.bus1 == "6396", "bus1"] = "6398"
links = _remove_dangling_branches(links, buses)
# Add DC line parameters
links["carrier"] = "DC"
return links
2022-01-13 17:54:27 +00:00
def _add_links_from_tyndp(buses, links, links_tyndp, europe_shape):
links_tyndp = pd.read_csv(links_tyndp)
# remove all links from list which lie outside all of the desired countries
europe_shape = gpd.read_file(europe_shape).loc[0, "geometry"]
europe_shape_prepped = shapely.prepared.prep(europe_shape)
x1y1_in_europe_b = links_tyndp[["x1", "y1"]].apply(
lambda p: europe_shape_prepped.contains(Point(p)), axis=1
)
x2y2_in_europe_b = links_tyndp[["x2", "y2"]].apply(
lambda p: europe_shape_prepped.contains(Point(p)), axis=1
)
is_within_covered_countries_b = x1y1_in_europe_b & x2y2_in_europe_b
if not is_within_covered_countries_b.all():
logger.info(
"TYNDP links outside of the covered area (skipping): "
+ ", ".join(links_tyndp.loc[~is_within_covered_countries_b, "Name"])
)
links_tyndp = links_tyndp.loc[is_within_covered_countries_b]
if links_tyndp.empty:
return buses, links
has_replaces_b = links_tyndp.replaces.notnull()
oids = dict(Bus=_get_oid(buses), Link=_get_oid(links))
keep_b = dict(
Bus=pd.Series(True, index=buses.index), Link=pd.Series(True, index=links.index)
)
for reps in links_tyndp.loc[has_replaces_b, "replaces"]:
for comps in reps.split(":"):
oids_to_remove = comps.split(".")
c = oids_to_remove.pop(0)
keep_b[c] &= ~oids[c].isin(oids_to_remove)
buses = buses.loc[keep_b["Bus"]]
links = links.loc[keep_b["Link"]]
links_tyndp["j"] = _find_closest_links(
links, links_tyndp, distance_upper_bound=0.20
)
# Corresponds approximately to 20km tolerances
if links_tyndp["j"].notnull().any():
logger.info(
"TYNDP links already in the dataset (skipping): "
+ ", ".join(links_tyndp.loc[links_tyndp["j"].notnull(), "Name"])
)
links_tyndp = links_tyndp.loc[links_tyndp["j"].isnull()]
if links_tyndp.empty:
return buses, links
tree = spatial.KDTree(buses[["x", "y"]])
_, ind0 = tree.query(links_tyndp[["x1", "y1"]])
ind0_b = ind0 < len(buses)
links_tyndp.loc[ind0_b, "bus0"] = buses.index[ind0[ind0_b]]
_, ind1 = tree.query(links_tyndp[["x2", "y2"]])
ind1_b = ind1 < len(buses)
links_tyndp.loc[ind1_b, "bus1"] = buses.index[ind1[ind1_b]]
links_tyndp_located_b = (
links_tyndp["bus0"].notnull() & links_tyndp["bus1"].notnull()
)
if not links_tyndp_located_b.all():
logger.warning(
"Did not find connected buses for TYNDP links (skipping): "
+ ", ".join(links_tyndp.loc[~links_tyndp_located_b, "Name"])
)
links_tyndp = links_tyndp.loc[links_tyndp_located_b]
logger.info("Adding the following TYNDP links: " + ", ".join(links_tyndp["Name"]))
links_tyndp = links_tyndp[["bus0", "bus1"]].assign(
carrier="DC",
p_nom=links_tyndp["Power (MW)"],
length=links_tyndp["Length (given) (km)"].fillna(
links_tyndp["Length (distance*1.2) (km)"]
),
under_construction=True,
underground=False,
geometry=(
links_tyndp[["x1", "y1", "x2", "y2"]].apply(
lambda s: str(LineString([[s.x1, s.y1], [s.x2, s.y2]])), axis=1
)
),
tags=(
'"name"=>"'
+ links_tyndp["Name"]
+ '", '
+ '"ref"=>"'
+ links_tyndp["Ref"]
+ '", '
+ '"status"=>"'
+ links_tyndp["status"]
+ '"'
),
)
links_tyndp.index = "T" + links_tyndp.index.astype(str)
2022-01-29 15:17:46 +00:00
links = pd.concat([links, links_tyndp], sort=True)
2022-01-29 15:17:46 +00:00
return buses, links
2020-09-11 10:40:53 +00:00
2022-01-13 17:54:27 +00:00
def _load_lines_from_eg(buses, eg_lines):
lines = (
pd.read_csv(
eg_lines,
quotechar="'",
true_values=["t"],
false_values=["f"],
dtype=dict(
line_id="str",
bus0="str",
bus1="str",
underground="bool",
under_construction="bool",
),
)
.set_index("line_id")
.rename(columns=dict(voltage="v_nom", circuits="num_parallel"))
)
lines["length"] /= 1e3
lines["carrier"] = "AC"
lines = _remove_dangling_branches(lines, buses)
return lines
2020-09-11 10:40:53 +00:00
2022-01-13 17:54:27 +00:00
def _apply_parameter_corrections(n, parameter_corrections):
with open(parameter_corrections) as f:
corrections = yaml.safe_load(f)
if corrections is None:
return
2020-09-11 10:40:53 +00:00
2021-05-25 09:29:47 +00:00
for component, attrs in corrections.items():
df = n.df(component)
oid = _get_oid(df)
if attrs is None:
continue
2021-05-25 09:29:47 +00:00
for attr, repls in attrs.items():
for i, r in repls.items():
if i == "oid":
r = oid.map(repls["oid"]).dropna()
elif i == "index":
r = pd.Series(repls["index"])
else:
raise NotImplementedError()
inds = r.index.intersection(df.index)
df.loc[inds, attr] = r[inds].astype(df[attr].dtype)
2020-09-11 10:40:53 +00:00
def _reconnect_crimea(lines):
logger.info("Reconnecting Crimea to the Ukrainian grid.")
lines_to_crimea = pd.DataFrame(
{
"bus0": ["3065", "3181", "3181"],
"bus1": ["3057", "3055", "3057"],
"v_nom": [300, 300, 300],
"num_parallel": [1, 1, 1],
"length": [140, 120, 140],
"carrier": ["AC", "AC", "AC"],
"underground": [False, False, False],
"under_construction": [False, False, False],
},
index=["Melitopol", "Liubymivka left", "Luibymivka right"],
)
return pd.concat([lines, lines_to_crimea])
2022-01-13 17:54:27 +00:00
def _set_electrical_parameters_lines(lines, config):
v_noms = config["electricity"]["voltages"]
linetypes = config["lines"]["types"]
for v_nom in v_noms:
lines.loc[lines["v_nom"] == v_nom, "type"] = linetypes[v_nom]
lines["s_max_pu"] = config["lines"]["s_max_pu"]
return lines
2020-09-11 10:40:53 +00:00
2018-03-14 12:18:26 +00:00
def _set_lines_s_nom_from_linetypes(n):
n.lines["s_nom"] = (
np.sqrt(3)
* n.lines["type"].map(n.line_types.i_nom)
* n.lines["v_nom"]
* n.lines.num_parallel
2018-03-14 12:18:26 +00:00
)
2020-09-11 10:40:53 +00:00
2022-01-13 17:54:27 +00:00
def _set_electrical_parameters_links(links, config, links_p_nom):
if links.empty:
return links
p_max_pu = config["links"].get("p_max_pu", 1.0)
links["p_max_pu"] = p_max_pu
links["p_min_pu"] = -p_max_pu
2022-01-13 17:54:27 +00:00
links_p_nom = pd.read_csv(links_p_nom)
2020-09-11 13:26:43 +00:00
# filter links that are not in operation anymore
removed_b = links_p_nom.Remarks.str.contains("Shut down|Replaced", na=False)
links_p_nom = links_p_nom[~removed_b]
2020-09-11 13:26:43 +00:00
# find closest link for all links in links_p_nom
links_p_nom["j"] = _find_closest_links(links, links_p_nom)
2020-09-11 13:26:43 +00:00
links_p_nom = links_p_nom.groupby(["j"], as_index=False).agg({"Power (MW)": "sum"})
2020-09-11 13:26:43 +00:00
p_nom = links_p_nom.dropna(subset=["j"]).set_index("j")["Power (MW)"]
2020-09-11 13:26:43 +00:00
# Don't update p_nom if it's already set
p_nom_unset = (
p_nom.drop(links.index[links.p_nom.notnull()], errors="ignore")
if "p_nom" in links
else p_nom
)
links.loc[p_nom_unset.index, "p_nom"] = p_nom_unset
return links
2020-09-11 10:40:53 +00:00
2022-01-13 17:54:27 +00:00
def _set_electrical_parameters_converters(converters, config):
p_max_pu = config["links"].get("p_max_pu", 1.0)
converters["p_max_pu"] = p_max_pu
converters["p_min_pu"] = -p_max_pu
converters["p_nom"] = 2000
# Converters are combined with links
converters["under_construction"] = False
converters["underground"] = False
return converters
2020-09-11 10:40:53 +00:00
2022-01-13 17:54:27 +00:00
def _set_electrical_parameters_transformers(transformers, config):
config = config["transformers"]
## Add transformer parameters
transformers["x"] = config.get("x", 0.1)
transformers["s_nom"] = config.get("s_nom", 2000)
transformers["type"] = config.get("type", "")
return transformers
2020-09-11 10:40:53 +00:00
def _remove_dangling_branches(branches, buses):
return pd.DataFrame(
branches.loc[branches.bus0.isin(buses.index) & branches.bus1.isin(buses.index)]
)
2020-09-11 10:40:53 +00:00
def _remove_unconnected_components(network, threshold=6):
_, labels = csgraph.connected_components(network.adjacency_matrix(), directed=False)
component = pd.Series(labels, index=network.buses.index)
component_sizes = component.value_counts()
components_to_remove = component_sizes.loc[component_sizes < threshold]
logger.info(
2023-10-08 09:20:36 +00:00
f"Removing {len(components_to_remove)} unconnected network components with less than {components_to_remove.max()} buses. In total {components_to_remove.sum()} buses."
)
return network[component == component_sizes.index[0]]
2020-09-11 10:40:53 +00:00
2022-01-13 17:54:27 +00:00
def _set_countries_and_substations(n, config, country_shapes, offshore_shapes):
buses = n.buses
def buses_in_shape(shape):
shape = shapely.prepared.prep(shape)
return pd.Series(
np.fromiter(
(
shape.contains(Point(x, y))
for x, y in buses.loc[:, ["x", "y"]].values
),
dtype=bool,
count=len(buses),
),
index=buses.index,
)
countries = config["countries"]
country_shapes = gpd.read_file(country_shapes).set_index("name")["geometry"]
# reindexing necessary for supporting empty geo-dataframes
offshore_shapes = gpd.read_file(offshore_shapes)
offshore_shapes = offshore_shapes.reindex(columns=["name", "geometry"]).set_index(
"name"
)["geometry"]
substation_b = buses["symbol"].str.contains(
"substation|converter station", case=False
)
def prefer_voltage(x, which):
index = x.index
if len(index) == 1:
return pd.Series(index, index)
key = (
x.index[0]
if x["v_nom"].isnull().all()
else getattr(x["v_nom"], "idx" + which)()
)
return pd.Series(key, index)
2024-02-09 12:59:15 +00:00
compat_kws = dict(include_groups=False) if PD_GE_2_2 else {}
gb = buses.loc[substation_b].groupby(
["x", "y"], as_index=False, group_keys=False, sort=False
)
2024-02-09 12:59:15 +00:00
bus_map_low = gb.apply(prefer_voltage, "min", **compat_kws)
lv_b = (bus_map_low == bus_map_low.index).reindex(buses.index, fill_value=False)
2024-02-09 12:59:15 +00:00
bus_map_high = gb.apply(prefer_voltage, "max", **compat_kws)
hv_b = (bus_map_high == bus_map_high.index).reindex(buses.index, fill_value=False)
onshore_b = pd.Series(False, buses.index)
offshore_b = pd.Series(False, buses.index)
for country in countries:
onshore_shape = country_shapes[country]
onshore_country_b = buses_in_shape(onshore_shape)
onshore_b |= onshore_country_b
buses.loc[onshore_country_b, "country"] = country
if country not in offshore_shapes.index:
continue
offshore_country_b = buses_in_shape(offshore_shapes[country])
offshore_b |= offshore_country_b
buses.loc[offshore_country_b, "country"] = country
# Only accept buses as low-voltage substations (where load is attached), if
# they have at least one connection which is not under_construction
has_connections_b = pd.Series(False, index=buses.index)
for b, df in product(("bus0", "bus1"), (n.lines, n.links)):
has_connections_b |= ~df.groupby(b).under_construction.min()
buses["onshore_bus"] = onshore_b
buses["substation_lv"] = (
lv_b & onshore_b & (~buses["under_construction"]) & has_connections_b
)
buses["substation_off"] = (offshore_b | (hv_b & onshore_b)) & (
~buses["under_construction"]
)
c_nan_b = buses.country.fillna("na") == "na"
if c_nan_b.sum() > 0:
c_tag = _get_country(buses.loc[c_nan_b])
c_tag.loc[~c_tag.isin(countries)] = np.nan
n.buses.loc[c_nan_b, "country"] = c_tag
c_tag_nan_b = n.buses.country.isnull()
# Nearest country in path length defines country of still homeless buses
# Work-around until commit 705119 lands in pypsa release
n.transformers["length"] = 0.0
graph = n.graph(weight="length")
n.transformers.drop("length", axis=1, inplace=True)
for b in n.buses.index[c_tag_nan_b]:
df = (
pd.DataFrame(
dict(
pathlength=nx.single_source_dijkstra_path_length(
graph, b, cutoff=200
)
)
)
.join(n.buses.country)
.dropna()
)
assert (
not df.empty
), "No buses with defined country within 200km of bus `{}`".format(b)
n.buses.at[b, "country"] = df.loc[df.pathlength.idxmin(), "country"]
logger.warning(
"{} buses are not in any country or offshore shape,"
" {} have been assigned from the tag of the entsoe map,"
" the rest from the next bus in terms of pathlength.".format(
c_nan_b.sum(), c_nan_b.sum() - c_tag_nan_b.sum()
)
)
return buses
2020-09-11 10:40:53 +00:00
def _replace_b2b_converter_at_country_border_by_link(n):
# Affects only the B2B converter in Lithuania at the Polish border at the moment
buscntry = n.buses.country
linkcntry = n.links.bus0.map(buscntry)
converters_i = n.links.index[
(n.links.carrier == "B2B") & (linkcntry == n.links.bus1.map(buscntry))
]
def findforeignbus(G, i):
cntry = linkcntry.at[i]
for busattr in ("bus0", "bus1"):
b0 = n.links.at[i, busattr]
for b1 in G[b0]:
if buscntry[b1] != cntry:
return busattr, b0, b1
return None, None, None
for i in converters_i:
G = n.graph()
busattr, b0, b1 = findforeignbus(G, i)
if busattr is not None:
comp, line = next(iter(G[b0][b1]))
if comp != "Line":
logger.warning(
"Unable to replace B2B `{}` expected a Line, but found a {}".format(
i, comp
)
)
continue
n.links.at[i, busattr] = b1
n.links.at[i, "p_nom"] = min(
n.links.at[i, "p_nom"], n.lines.at[line, "s_nom"]
)
n.links.at[i, "carrier"] = "DC"
n.links.at[i, "underwater_fraction"] = 0.0
n.links.at[i, "length"] = n.lines.at[line, "length"]
n.remove("Line", line)
n.remove("Bus", b0)
logger.info(
"Replacing B2B converter `{}` together with bus `{}` and line `{}` by an HVDC tie-line {}-{}".format(
i, b0, line, linkcntry.at[i], buscntry.at[b1]
)
)
2020-09-11 10:40:53 +00:00
2022-01-13 17:54:27 +00:00
def _set_links_underwater_fraction(n, offshore_shapes):
if n.links.empty:
return
2019-11-05 13:29:15 +00:00
if not hasattr(n.links, "geometry"):
n.links["underwater_fraction"] = 0.0
else:
2022-01-13 17:54:27 +00:00
offshore_shape = gpd.read_file(offshore_shapes).unary_union
links = gpd.GeoSeries(n.links.geometry.dropna().map(shapely.wkt.loads))
n.links["underwater_fraction"] = (
links.intersection(offshore_shape).length / links.length
)
2020-09-11 10:40:53 +00:00
2022-01-13 17:54:27 +00:00
def _adjust_capacities_of_under_construction_branches(n, config):
lines_mode = config["lines"].get("under_construction", "undef")
if lines_mode == "zero":
n.lines.loc[n.lines.under_construction, "num_parallel"] = 0.0
n.lines.loc[n.lines.under_construction, "s_nom"] = 0.0
elif lines_mode == "remove":
n.mremove("Line", n.lines.index[n.lines.under_construction])
elif lines_mode != "keep":
logger.warning(
"Unrecognized configuration for `lines: under_construction` = `{}`. Keeping under construction lines."
)
links_mode = config["links"].get("under_construction", "undef")
if links_mode == "zero":
n.links.loc[n.links.under_construction, "p_nom"] = 0.0
elif links_mode == "remove":
n.mremove("Link", n.links.index[n.links.under_construction])
elif links_mode != "keep":
logger.warning(
"Unrecognized configuration for `links: under_construction` = `{}`. Keeping under construction links."
)
if lines_mode == "remove" or links_mode == "remove":
# We might need to remove further unconnected components
n = _remove_unconnected_components(n)
return n
2024-04-10 15:10:56 +00:00
def _set_shapes(n, country_shapes, offshore_shapes):
# Write the geodataframes country_shapes and offshore_shapes to the network.shapes component
country_shapes = gpd.read_file(country_shapes).rename(columns={"name": "idx"})
country_shapes["type"] = "country"
offshore_shapes = gpd.read_file(offshore_shapes).rename(columns={"name": "idx"})
offshore_shapes["type"] = "offshore"
2024-04-11 11:45:02 +00:00
all_shapes = pd.concat([country_shapes, offshore_shapes], ignore_index=True)
2024-04-11 14:26:16 +00:00
<<<<<<< HEAD
=======
>>>>>>> dce7d57a (add AC & DC lines)
2024-04-11 11:45:02 +00:00
n.madd(
"Shape",
all_shapes.index,
geometry=all_shapes.geometry,
idx=all_shapes.idx,
type=all_shapes.type,
)
2024-04-11 14:26:16 +00:00
<<<<<<< HEAD
=======
# Write the AC and DC line shapes to the network.shapes component
start_index = n.shapes.index.astype(int).max() + 1
index_AC = pd.RangeIndex(start=start_index, stop=start_index + len(n.lines))
geo_AC = gpd.GeoSeries(
n.lines.geometry.apply(shapely.wkt.loads).fillna(
n.lines[["bus0", "bus1"]].apply(
lambda x: LineString(
[n.buses.loc[x[0], ["x", "y"]], n.buses.loc[x[1], ["x", "y"]]]
),
axis=1,
)
)
)
geo_AC.index = index_AC
n.madd(
"Shape",
index_AC,
geometry=geo_AC.values,
idx=n.lines.index,
component="Line",
type=n.lines.carrier.values,
)
if n.links.empty:
return
start_index = n.shapes.index.astype(int).max() + 1
index_DC = pd.RangeIndex(start=start_index, stop=start_index + len(n.links))
if "geometry" in n.links.columns:
geo_DC = gpd.GeoSeries(
n.links.geometry.apply(shapely.wkt.loads).fillna(
n.links[["bus0", "bus1"]].apply(
lambda x: LineString(
[n.buses.loc[x[0], ["x", "y"]], n.buses.loc[x[1], ["x", "y"]]]
),
axis=1,
)
)
)
else:
geo_DC = gpd.GeoSeries(
n.links[["bus0", "bus1"]].apply(
lambda x: LineString(
[n.buses.loc[x[0], ["x", "y"]], n.buses.loc[x[1], ["x", "y"]]]
),
axis=1,
)
)
geo_DC = gpd.GeoSeries(geo_DC)
n.madd(
"Shape",
index_DC,
geometry=geo_DC.values,
idx=n.links.index,
component="Link",
type=n.links.carrier.values,
)
>>>>>>> dce7d57a (add AC & DC lines)
2020-09-11 10:40:53 +00:00
def base_network(
eg_buses,
eg_converters,
eg_transformers,
eg_lines,
eg_links,
links_p_nom,
links_tyndp,
europe_shape,
country_shapes,
offshore_shapes,
parameter_corrections,
config,
):
buses = _load_buses_from_eg(eg_buses, europe_shape, config["electricity"])
2022-01-13 17:54:27 +00:00
links = _load_links_from_eg(buses, eg_links)
if config["links"].get("include_tyndp"):
2022-01-13 17:54:27 +00:00
buses, links = _add_links_from_tyndp(buses, links, links_tyndp, europe_shape)
2022-01-13 17:54:27 +00:00
converters = _load_converters_from_eg(buses, eg_converters)
2022-01-13 17:54:27 +00:00
lines = _load_lines_from_eg(buses, eg_lines)
transformers = _load_transformers_from_eg(buses, eg_transformers)
if config["lines"].get("reconnect_crimea", True) and "UA" in config["countries"]:
lines = _reconnect_crimea(lines)
2022-01-13 17:54:27 +00:00
lines = _set_electrical_parameters_lines(lines, config)
transformers = _set_electrical_parameters_transformers(transformers, config)
links = _set_electrical_parameters_links(links, config, links_p_nom)
converters = _set_electrical_parameters_converters(converters, config)
n = pypsa.Network()
n.name = "PyPSA-Eur"
time = get_snapshots(snakemake.params.snapshots, snakemake.params.drop_leap_day)
n.set_snapshots(time)
n.madd("Carrier", ["AC", "DC"])
n.import_components_from_dataframe(buses, "Bus")
n.import_components_from_dataframe(lines, "Line")
n.import_components_from_dataframe(transformers, "Transformer")
n.import_components_from_dataframe(links, "Link")
n.import_components_from_dataframe(converters, "Link")
2018-03-14 12:18:26 +00:00
_set_lines_s_nom_from_linetypes(n)
2022-01-13 17:54:27 +00:00
_apply_parameter_corrections(n, parameter_corrections)
n = _remove_unconnected_components(n)
2022-01-13 17:54:27 +00:00
_set_countries_and_substations(n, config, country_shapes, offshore_shapes)
2022-01-13 17:54:27 +00:00
_set_links_underwater_fraction(n, offshore_shapes)
_replace_b2b_converter_at_country_border_by_link(n)
2022-01-13 17:54:27 +00:00
n = _adjust_capacities_of_under_construction_branches(n, config)
2024-04-10 15:10:56 +00:00
_set_shapes(n, country_shapes, offshore_shapes)
return n
if __name__ == "__main__":
if "snakemake" not in globals():
2024-04-10 15:10:56 +00:00
import os
from _helpers import mock_snakemake
2024-04-10 15:10:56 +00:00
os.chdir(os.path.dirname(os.path.abspath(__file__)))
snakemake = mock_snakemake("base_network")
Add logging to logfiles to all snakemake workflow scripts. (#102) * Add logging to logfiles to all snakemake workflow scripts. * Fix missing quotation marks in Snakefile. * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * doc: fix _ec_ filenames in docs * Allow logging message format to be specified in config.yaml. * Add logging for Snakemake rule 'retrieve_databundle '. * Add limited logging to STDERR only for retrieve_*.py scripts. * Import progressbar module only on demand. * Fix logging to file and enable concurrent printing to STDERR for most scripts. * Add new 'logging_format' option to Travis CI test config.yaml. * Add missing parenthesis (bug fix) and cross-os compatible paths. * Fix typos in messages. * Use correct log files for logging (bug fix). * doc: fix line references * config: logging_format in all configs * doc: add doc for logging_format * environment: update to powerplantmatching 0.4.3 * doc: update line references for tutorial.rst * Change logging configuration scheme for config.yaml. * Add helper function for doing basic logging configuration. * Add logpath for prepare_links_p_nom rule. * Outsource basic logging configuration for all scripts to _helper submodule. * Update documentation for changed config.yaml structure. Instead of 'logging_level' and 'logging_format', now 'logging' with subcategories is used. * _helpers: Change configure_logging signature.
2019-11-28 07:22:52 +00:00
configure_logging(snakemake)
2023-08-15 13:02:41 +00:00
set_scenario_config(snakemake)
n = base_network(
snakemake.input.eg_buses,
snakemake.input.eg_converters,
snakemake.input.eg_transformers,
snakemake.input.eg_lines,
snakemake.input.eg_links,
snakemake.input.links_p_nom,
snakemake.input.links_tyndp,
snakemake.input.europe_shape,
snakemake.input.country_shapes,
snakemake.input.offshore_shapes,
snakemake.input.parameter_corrections,
snakemake.config,
)
2020-09-11 10:40:53 +00:00
2022-06-30 06:39:03 +00:00
n.meta = snakemake.config
n.export_to_netcdf(snakemake.output[0])