pypsa-eur/scripts/base_network.py

331 lines
13 KiB
Python
Raw Normal View History

# coding: utf-8
import yaml
import pandas as pd
import numpy as np
import scipy as sp, scipy.spatial
from scipy.sparse import csgraph
from operator import attrgetter
from six import iteritems
from itertools import count, chain
import shapely, shapely.prepared, shapely.wkt
from shapely.geometry import Point
from vresutils import shapes as vshapes
import logging
logger = logging.getLogger(__name__)
import pypsa
def _find_closest_bus(buses, pos):
if (not hasattr(_find_closest_bus, 'kdtree')) or len(_find_closest_bus.kdtree.data) != len(buses.index):
_find_closest_bus.kdtree = sp.spatial.cKDTree(buses.loc[:,["x", "y"]].values)
return buses.index[_find_closest_bus.kdtree.query(pos)[1]]
def _load_buses_from_eg():
buses = (pd.read_csv(snakemake.input.eg_buses, quotechar="'",
true_values='t', false_values='f',
dtype=dict(bus_id="str"))
.set_index("bus_id")
.drop(['under_construction', 'station_id'], axis=1)
.rename(columns=dict(voltage='v_nom')))
buses['carrier'] = buses.pop('dc').map({True: 'DC', False: 'AC'})
# remove all buses outside of all countries including exclusive economic zones (offshore)
europe_shape = vshapes.country_cover(snakemake.config['countries'])
europe_shape_exterior = shapely.geometry.Polygon(shell=europe_shape.exterior) # no holes
europe_shape_exterior_prepped = shapely.prepared.prep(europe_shape_exterior)
buses_in_europe_b = buses[['x', 'y']].apply(lambda p: europe_shape_exterior_prepped.contains(Point(p)), axis=1)
buses_with_v_nom_to_keep_b = buses.v_nom.isin(snakemake.config['electricity']['voltages']) | buses.v_nom.isnull()
logger.info("Removing buses with voltages {}".format(pd.Index(buses.v_nom.unique()).dropna().difference(snakemake.config['electricity']['voltages'])))
return pd.DataFrame(buses.loc[buses_in_europe_b & buses_with_v_nom_to_keep_b])
def _load_transformers_from_eg(buses):
transformers = (pd.read_csv(snakemake.input.eg_transformers, quotechar="'",
true_values='t', false_values='f',
dtype=dict(transformer_id='str', bus0='str', bus1='str'))
.set_index('transformer_id'))
transformers = _remove_dangling_branches(transformers, buses)
return transformers
def _load_converters_from_eg(buses):
converters = (pd.read_csv(snakemake.input.eg_converters, quotechar="'",
true_values='t', false_values='f',
dtype=dict(converter_id='str', bus0='str', bus1='str'))
.set_index('converter_id'))
converters = _remove_dangling_branches(converters, buses)
converters['carrier'] = 'B2B'
return converters
def _load_links_from_eg(buses):
links = (pd.read_csv(snakemake.input.eg_links, quotechar="'", true_values='t', false_values='f',
dtype=dict(link_id='str', bus0='str', bus1='str', under_construction="bool"))
.set_index('link_id'))
links['length'] /= 1e3
links = _remove_dangling_branches(links, buses)
# Add DC line parameters
links['carrier'] = 'DC'
return links
def _load_lines_from_eg(buses):
lines = (pd.read_csv(snakemake.input.eg_lines, quotechar="'", true_values='t', false_values='f',
dtype=dict(line_id='str', bus0='str', bus1='str',
underground="bool", under_construction="bool"))
.set_index('line_id')
.rename(columns=dict(voltage='v_nom', circuits='num_parallel')))
lines['length'] /= 1e3
lines = _remove_dangling_branches(lines, buses)
return lines
def _split_aclines_with_several_voltages(buses, lines, transformers):
## Split AC lines with multiple voltages
def namer(string, start=0): return (string.format(x) for x in count(start=start))
busname = namer("M{:02}")
trafoname = namer("M{:02}")
linename = namer("M{:02}")
def find_or_add_lower_v_nom_bus(bus, v_nom):
candidates = transformers.loc[(transformers.bus1 == bus) &
(transformers.bus0.map(buses.v_nom) == v_nom),
'bus0']
if len(candidates):
return candidates.iloc[0]
new_bus = next(busname)
buses.loc[new_bus] = pd.Series({'v_nom': v_nom, 'symbol': 'joint', 'carrier': 'AC',
'x': buses.at[bus, 'x'], 'y': buses.at[bus, 'y'],
'under_construction': buses.at[bus, 'under_construction']})
transformers.loc[next(trafoname)] = pd.Series({'bus0': new_bus, 'bus1': bus})
return new_bus
voltage_levels = lines.v_nom.unique()
for line in lines.tags.str.extract(r'"text_"=>"\(?(\d+)\+(\d+).*?"', expand=True).dropna().itertuples():
v_nom = int(line._2)
if lines.at[line.Index, 'num_parallel'] > 1:
lines.at[line.Index, 'num_parallel'] -= 1
if v_nom in voltage_levels:
bus0 = find_or_add_lower_v_nom_bus(lines.at[line.Index, 'bus0'], v_nom)
bus1 = find_or_add_lower_v_nom_bus(lines.at[line.Index, 'bus1'], v_nom)
lines.loc[next(linename)] = pd.Series(
dict(chain(iteritems({'bus0': bus0, 'bus1': bus1, 'v_nom': v_nom, 'circuits': 1}),
iteritems({k: lines.at[line.Index, k]
for k in ('underground', 'under_construction',
'tags', 'geometry', 'length')})))
)
return buses, lines, transformers
def _apply_parameter_corrections(n):
with open(snakemake.input.parameter_corrections) as f:
corrections = yaml.load(f)
for component, attrs in iteritems(corrections):
df = n.df(component)
for attr, repls in iteritems(attrs):
for i, r in iteritems(repls):
if i == 'oid':
df["oid"] = df.tags.str.extract('"oid"=>"(\d+)"', expand=False)
r = df.oid.map(repls["oid"]).dropna()
elif i == 'index':
r = pd.Series(repls["index"])
else:
raise NotImplementedError()
df.loc[r.index, attr] = r
def _set_electrical_parameters_lines(lines):
v_noms = snakemake.config['electricity']['voltages']
linetypes = snakemake.config['lines']['types']
for v_nom in v_noms:
lines.loc[lines["v_nom"] == v_nom, 'type'] = linetypes[v_nom]
lines['s_max_pu'] = snakemake.config['lines']['s_max_pu']
return lines
def _set_electrical_parameters_links(links):
links['p_max_pu'] = snakemake.config['links']['s_max_pu']
links['p_min_pu'] = -1. * snakemake.config['links']['s_max_pu']
links_p_nom = pd.read_csv(snakemake.input.links_p_nom)
tree = sp.spatial.KDTree(np.vstack([
links_p_nom[['x1', 'y1', 'x2', 'y2']],
links_p_nom[['x2', 'y2', 'x1', 'y1']]
]))
dist, ind = tree.query(
np.asarray([np.asarray(shapely.wkt.loads(s))[[0, -1]].flatten()
for s in links.geometry]),
distance_upper_bound=1.5
)
links_p_nom["j"] =(
pd.DataFrame(dict(D=dist, i=links_p_nom.index[ind % len(links_p_nom)]), index=links.index)
.groupby('i').D.idxmin()
)
p_nom = links_p_nom.dropna(subset=["j"]).set_index("j")["Power (MW)"]
links.loc[p_nom.index, "p_nom"] = p_nom
links.loc[links.under_construction.astype(bool), "p_nom"] = 0.
return links
def _set_electrical_parameters_transformers(transformers):
config = snakemake.config['transformers']
## Add transformer parameters
transformers["x"] = config.get('x', 0.1)
transformers["s_nom"] = config.get('s_nom', 2000)
transformers['type'] = config.get('type', '')
return transformers
def _remove_dangling_branches(branches, buses):
return pd.DataFrame(branches.loc[branches.bus0.isin(buses.index) & branches.bus1.isin(buses.index)])
def _connect_close_buses(network, radius=1.):
adj = network.graph(["Line", "Transformer", "Link"]).adj
n_lines_added = 0
n_transformers_added = 0
ac_buses = network.buses[network.buses.carrier == 'AC']
for i,u in enumerate(ac_buses.index):
vs = ac_buses[["x","y"]].iloc[i+1:]
distance_km = pypsa.geo.haversine(vs, ac_buses.loc[u,["x","y"]])
for j,v in enumerate(vs.index):
km = distance_km[j,0]
if km < radius:
if u in adj[v]:
continue
#print(u,v,ac_buses.at[u,"v_nom"], ac_buses.at[v,"v_nom"],km)
if ac_buses.at[u,"v_nom"] != ac_buses.at[v,"v_nom"]:
network.add("Transformer","extra_trafo_{}_{}".format(u,v),s_nom=2000,bus0=u,bus1=v,x=0.1)
n_transformers_added += 1
else:
network.add("Line","extra_line_{}_{}".format(u,v),s_nom=4000,bus0=u,bus1=v,x=0.1)
n_lines_added += 1
logger.info("Added {} lines and {} transformers to connect buses less than {} km apart."
.format(n_lines_added, n_transformers_added, radius))
return network
def _remove_connected_components_smaller_than(network, min_size):
network.determine_network_topology()
sub_network_sizes = network.buses.groupby('sub_network').size()
subs_to_remove = sub_network_sizes.index[sub_network_sizes < min_size]
logger.info("Removing {} small sub_networks (synchronous zones) with less than {} buses. In total {} buses."
.format(len(subs_to_remove), min_size, network.buses.sub_network.isin(subs_to_remove).sum()))
return network[~network.buses.sub_network.isin(subs_to_remove)]
def _remove_unconnected_components(network):
_, labels = csgraph.connected_components(network.adjacency_matrix(), directed=False)
component = pd.Series(labels, index=network.buses.index)
component_sizes = component.value_counts()
components_to_remove = component_sizes.iloc[1:]
logger.info("Removing {} unconnected network components with less than {} buses. In total {} buses."
.format(len(components_to_remove), components_to_remove.max(), components_to_remove.sum()))
return network[component == component_sizes.index[0]]
def base_network():
buses = _load_buses_from_eg()
links = _load_links_from_eg(buses)
converters = _load_converters_from_eg(buses)
lines = _load_lines_from_eg(buses)
transformers = _load_transformers_from_eg(buses)
# buses, lines, transformers = _split_aclines_with_several_voltages(buses, lines, transformers)
lines = _set_electrical_parameters_lines(lines)
links = _set_electrical_parameters_links(links)
transformers = _set_electrical_parameters_transformers(transformers)
n = pypsa.Network()
n.name = 'PyPSA-Eur'
n.set_snapshots(pd.date_range(snakemake.config['historical_year'], periods=8760, freq='h'))
n.import_components_from_dataframe(buses, "Bus")
n.import_components_from_dataframe(lines, "Line")
n.import_components_from_dataframe(transformers, "Transformer")
n.import_components_from_dataframe(links, "Link")
n.import_components_from_dataframe(converters, "Link")
if 'T' in snakemake.wildcards.opts.split('-'):
raise NotImplemented
# n = _connect_close_buses(n, radius=1.)
n = _remove_unconnected_components(n)
_apply_parameter_corrections(n)
# Workaround: import_components_from_dataframe does not preserve types of foreign columns
n.lines['underground'] = n.lines['underground'].astype(bool)
n.lines['under_construction'] = n.lines['under_construction'].astype(bool)
n.links['underground'] = n.links['underground'].astype(bool)
n.links['under_construction'] = n.links['under_construction'].astype(bool)
return n
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils import Dict
import yaml
snakemake = Dict()
snakemake.input = Dict(
eg_buses='../data/entsoegridkit/buses.csv',
eg_lines='../data/entsoegridkit/lines.csv',
eg_links='../data/entsoegridkit/links.csv',
eg_converters='../data/entsoegridkit/converters.csv',
eg_transformers='../data/entsoegridkit/transformers.csv',
parameter_corrections='../data/parameter_corrections.yaml',
links_p_nom='../data/links_p_nom.csv'
)
snakemake.wildcards = Dict(opts='LC')
with open('../config.yaml') as f:
snakemake.config = yaml.load(f)
snakemake.output = ['../networks/base_LC.h5']
logger.setLevel(level=snakemake.config['logging_level'])
n = base_network()
n.export_to_hdf5(snakemake.output[0])