331 lines
13 KiB
Python
331 lines
13 KiB
Python
|
# coding: utf-8
|
||
|
|
||
|
import yaml
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
import scipy as sp, scipy.spatial
|
||
|
from scipy.sparse import csgraph
|
||
|
from operator import attrgetter
|
||
|
from six import iteritems
|
||
|
from itertools import count, chain
|
||
|
|
||
|
import shapely, shapely.prepared, shapely.wkt
|
||
|
from shapely.geometry import Point
|
||
|
|
||
|
from vresutils import shapes as vshapes
|
||
|
|
||
|
import logging
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
import pypsa
|
||
|
|
||
|
def _find_closest_bus(buses, pos):
|
||
|
if (not hasattr(_find_closest_bus, 'kdtree')) or len(_find_closest_bus.kdtree.data) != len(buses.index):
|
||
|
_find_closest_bus.kdtree = sp.spatial.cKDTree(buses.loc[:,["x", "y"]].values)
|
||
|
return buses.index[_find_closest_bus.kdtree.query(pos)[1]]
|
||
|
|
||
|
def _load_buses_from_eg():
|
||
|
buses = (pd.read_csv(snakemake.input.eg_buses, quotechar="'",
|
||
|
true_values='t', false_values='f',
|
||
|
dtype=dict(bus_id="str"))
|
||
|
.set_index("bus_id")
|
||
|
.drop(['under_construction', 'station_id'], axis=1)
|
||
|
.rename(columns=dict(voltage='v_nom')))
|
||
|
|
||
|
buses['carrier'] = buses.pop('dc').map({True: 'DC', False: 'AC'})
|
||
|
|
||
|
# remove all buses outside of all countries including exclusive economic zones (offshore)
|
||
|
europe_shape = vshapes.country_cover(snakemake.config['countries'])
|
||
|
europe_shape_exterior = shapely.geometry.Polygon(shell=europe_shape.exterior) # no holes
|
||
|
europe_shape_exterior_prepped = shapely.prepared.prep(europe_shape_exterior)
|
||
|
buses_in_europe_b = buses[['x', 'y']].apply(lambda p: europe_shape_exterior_prepped.contains(Point(p)), axis=1)
|
||
|
|
||
|
buses_with_v_nom_to_keep_b = buses.v_nom.isin(snakemake.config['electricity']['voltages']) | buses.v_nom.isnull()
|
||
|
logger.info("Removing buses with voltages {}".format(pd.Index(buses.v_nom.unique()).dropna().difference(snakemake.config['electricity']['voltages'])))
|
||
|
|
||
|
return pd.DataFrame(buses.loc[buses_in_europe_b & buses_with_v_nom_to_keep_b])
|
||
|
|
||
|
def _load_transformers_from_eg(buses):
|
||
|
transformers = (pd.read_csv(snakemake.input.eg_transformers, quotechar="'",
|
||
|
true_values='t', false_values='f',
|
||
|
dtype=dict(transformer_id='str', bus0='str', bus1='str'))
|
||
|
.set_index('transformer_id'))
|
||
|
|
||
|
transformers = _remove_dangling_branches(transformers, buses)
|
||
|
|
||
|
return transformers
|
||
|
|
||
|
def _load_converters_from_eg(buses):
|
||
|
converters = (pd.read_csv(snakemake.input.eg_converters, quotechar="'",
|
||
|
true_values='t', false_values='f',
|
||
|
dtype=dict(converter_id='str', bus0='str', bus1='str'))
|
||
|
.set_index('converter_id'))
|
||
|
|
||
|
converters = _remove_dangling_branches(converters, buses)
|
||
|
|
||
|
converters['carrier'] = 'B2B'
|
||
|
|
||
|
return converters
|
||
|
|
||
|
|
||
|
def _load_links_from_eg(buses):
|
||
|
links = (pd.read_csv(snakemake.input.eg_links, quotechar="'", true_values='t', false_values='f',
|
||
|
dtype=dict(link_id='str', bus0='str', bus1='str', under_construction="bool"))
|
||
|
.set_index('link_id'))
|
||
|
|
||
|
links['length'] /= 1e3
|
||
|
|
||
|
links = _remove_dangling_branches(links, buses)
|
||
|
|
||
|
# Add DC line parameters
|
||
|
links['carrier'] = 'DC'
|
||
|
|
||
|
return links
|
||
|
|
||
|
def _load_lines_from_eg(buses):
|
||
|
lines = (pd.read_csv(snakemake.input.eg_lines, quotechar="'", true_values='t', false_values='f',
|
||
|
dtype=dict(line_id='str', bus0='str', bus1='str',
|
||
|
underground="bool", under_construction="bool"))
|
||
|
.set_index('line_id')
|
||
|
.rename(columns=dict(voltage='v_nom', circuits='num_parallel')))
|
||
|
|
||
|
lines['length'] /= 1e3
|
||
|
|
||
|
lines = _remove_dangling_branches(lines, buses)
|
||
|
|
||
|
return lines
|
||
|
|
||
|
def _split_aclines_with_several_voltages(buses, lines, transformers):
|
||
|
## Split AC lines with multiple voltages
|
||
|
def namer(string, start=0): return (string.format(x) for x in count(start=start))
|
||
|
busname = namer("M{:02}")
|
||
|
trafoname = namer("M{:02}")
|
||
|
linename = namer("M{:02}")
|
||
|
|
||
|
def find_or_add_lower_v_nom_bus(bus, v_nom):
|
||
|
candidates = transformers.loc[(transformers.bus1 == bus) &
|
||
|
(transformers.bus0.map(buses.v_nom) == v_nom),
|
||
|
'bus0']
|
||
|
if len(candidates):
|
||
|
return candidates.iloc[0]
|
||
|
new_bus = next(busname)
|
||
|
buses.loc[new_bus] = pd.Series({'v_nom': v_nom, 'symbol': 'joint', 'carrier': 'AC',
|
||
|
'x': buses.at[bus, 'x'], 'y': buses.at[bus, 'y'],
|
||
|
'under_construction': buses.at[bus, 'under_construction']})
|
||
|
|
||
|
transformers.loc[next(trafoname)] = pd.Series({'bus0': new_bus, 'bus1': bus})
|
||
|
return new_bus
|
||
|
|
||
|
voltage_levels = lines.v_nom.unique()
|
||
|
|
||
|
for line in lines.tags.str.extract(r'"text_"=>"\(?(\d+)\+(\d+).*?"', expand=True).dropna().itertuples():
|
||
|
v_nom = int(line._2)
|
||
|
if lines.at[line.Index, 'num_parallel'] > 1:
|
||
|
lines.at[line.Index, 'num_parallel'] -= 1
|
||
|
|
||
|
if v_nom in voltage_levels:
|
||
|
bus0 = find_or_add_lower_v_nom_bus(lines.at[line.Index, 'bus0'], v_nom)
|
||
|
bus1 = find_or_add_lower_v_nom_bus(lines.at[line.Index, 'bus1'], v_nom)
|
||
|
lines.loc[next(linename)] = pd.Series(
|
||
|
dict(chain(iteritems({'bus0': bus0, 'bus1': bus1, 'v_nom': v_nom, 'circuits': 1}),
|
||
|
iteritems({k: lines.at[line.Index, k]
|
||
|
for k in ('underground', 'under_construction',
|
||
|
'tags', 'geometry', 'length')})))
|
||
|
)
|
||
|
|
||
|
return buses, lines, transformers
|
||
|
|
||
|
def _apply_parameter_corrections(n):
|
||
|
with open(snakemake.input.parameter_corrections) as f:
|
||
|
corrections = yaml.load(f)
|
||
|
|
||
|
for component, attrs in iteritems(corrections):
|
||
|
df = n.df(component)
|
||
|
for attr, repls in iteritems(attrs):
|
||
|
for i, r in iteritems(repls):
|
||
|
if i == 'oid':
|
||
|
df["oid"] = df.tags.str.extract('"oid"=>"(\d+)"', expand=False)
|
||
|
r = df.oid.map(repls["oid"]).dropna()
|
||
|
elif i == 'index':
|
||
|
r = pd.Series(repls["index"])
|
||
|
else:
|
||
|
raise NotImplementedError()
|
||
|
df.loc[r.index, attr] = r
|
||
|
|
||
|
def _set_electrical_parameters_lines(lines):
|
||
|
v_noms = snakemake.config['electricity']['voltages']
|
||
|
linetypes = snakemake.config['lines']['types']
|
||
|
|
||
|
for v_nom in v_noms:
|
||
|
lines.loc[lines["v_nom"] == v_nom, 'type'] = linetypes[v_nom]
|
||
|
|
||
|
lines['s_max_pu'] = snakemake.config['lines']['s_max_pu']
|
||
|
|
||
|
return lines
|
||
|
|
||
|
def _set_electrical_parameters_links(links):
|
||
|
links['p_max_pu'] = snakemake.config['links']['s_max_pu']
|
||
|
links['p_min_pu'] = -1. * snakemake.config['links']['s_max_pu']
|
||
|
|
||
|
links_p_nom = pd.read_csv(snakemake.input.links_p_nom)
|
||
|
|
||
|
tree = sp.spatial.KDTree(np.vstack([
|
||
|
links_p_nom[['x1', 'y1', 'x2', 'y2']],
|
||
|
links_p_nom[['x2', 'y2', 'x1', 'y1']]
|
||
|
]))
|
||
|
|
||
|
dist, ind = tree.query(
|
||
|
np.asarray([np.asarray(shapely.wkt.loads(s))[[0, -1]].flatten()
|
||
|
for s in links.geometry]),
|
||
|
distance_upper_bound=1.5
|
||
|
)
|
||
|
|
||
|
links_p_nom["j"] =(
|
||
|
pd.DataFrame(dict(D=dist, i=links_p_nom.index[ind % len(links_p_nom)]), index=links.index)
|
||
|
.groupby('i').D.idxmin()
|
||
|
)
|
||
|
|
||
|
p_nom = links_p_nom.dropna(subset=["j"]).set_index("j")["Power (MW)"]
|
||
|
links.loc[p_nom.index, "p_nom"] = p_nom
|
||
|
|
||
|
links.loc[links.under_construction.astype(bool), "p_nom"] = 0.
|
||
|
|
||
|
return links
|
||
|
|
||
|
def _set_electrical_parameters_transformers(transformers):
|
||
|
config = snakemake.config['transformers']
|
||
|
|
||
|
## Add transformer parameters
|
||
|
transformers["x"] = config.get('x', 0.1)
|
||
|
transformers["s_nom"] = config.get('s_nom', 2000)
|
||
|
transformers['type'] = config.get('type', '')
|
||
|
|
||
|
return transformers
|
||
|
|
||
|
def _remove_dangling_branches(branches, buses):
|
||
|
return pd.DataFrame(branches.loc[branches.bus0.isin(buses.index) & branches.bus1.isin(buses.index)])
|
||
|
|
||
|
def _connect_close_buses(network, radius=1.):
|
||
|
adj = network.graph(["Line", "Transformer", "Link"]).adj
|
||
|
|
||
|
n_lines_added = 0
|
||
|
n_transformers_added = 0
|
||
|
ac_buses = network.buses[network.buses.carrier == 'AC']
|
||
|
|
||
|
for i,u in enumerate(ac_buses.index):
|
||
|
|
||
|
vs = ac_buses[["x","y"]].iloc[i+1:]
|
||
|
distance_km = pypsa.geo.haversine(vs, ac_buses.loc[u,["x","y"]])
|
||
|
|
||
|
for j,v in enumerate(vs.index):
|
||
|
km = distance_km[j,0]
|
||
|
|
||
|
if km < radius:
|
||
|
if u in adj[v]:
|
||
|
continue
|
||
|
#print(u,v,ac_buses.at[u,"v_nom"], ac_buses.at[v,"v_nom"],km)
|
||
|
|
||
|
if ac_buses.at[u,"v_nom"] != ac_buses.at[v,"v_nom"]:
|
||
|
network.add("Transformer","extra_trafo_{}_{}".format(u,v),s_nom=2000,bus0=u,bus1=v,x=0.1)
|
||
|
n_transformers_added += 1
|
||
|
else:
|
||
|
network.add("Line","extra_line_{}_{}".format(u,v),s_nom=4000,bus0=u,bus1=v,x=0.1)
|
||
|
n_lines_added += 1
|
||
|
|
||
|
logger.info("Added {} lines and {} transformers to connect buses less than {} km apart."
|
||
|
.format(n_lines_added, n_transformers_added, radius))
|
||
|
|
||
|
return network
|
||
|
|
||
|
def _remove_connected_components_smaller_than(network, min_size):
|
||
|
network.determine_network_topology()
|
||
|
|
||
|
sub_network_sizes = network.buses.groupby('sub_network').size()
|
||
|
subs_to_remove = sub_network_sizes.index[sub_network_sizes < min_size]
|
||
|
|
||
|
logger.info("Removing {} small sub_networks (synchronous zones) with less than {} buses. In total {} buses."
|
||
|
.format(len(subs_to_remove), min_size, network.buses.sub_network.isin(subs_to_remove).sum()))
|
||
|
|
||
|
return network[~network.buses.sub_network.isin(subs_to_remove)]
|
||
|
|
||
|
def _remove_unconnected_components(network):
|
||
|
_, labels = csgraph.connected_components(network.adjacency_matrix(), directed=False)
|
||
|
component = pd.Series(labels, index=network.buses.index)
|
||
|
|
||
|
component_sizes = component.value_counts()
|
||
|
components_to_remove = component_sizes.iloc[1:]
|
||
|
|
||
|
logger.info("Removing {} unconnected network components with less than {} buses. In total {} buses."
|
||
|
.format(len(components_to_remove), components_to_remove.max(), components_to_remove.sum()))
|
||
|
|
||
|
return network[component == component_sizes.index[0]]
|
||
|
|
||
|
def base_network():
|
||
|
buses = _load_buses_from_eg()
|
||
|
|
||
|
links = _load_links_from_eg(buses)
|
||
|
converters = _load_converters_from_eg(buses)
|
||
|
|
||
|
lines = _load_lines_from_eg(buses)
|
||
|
transformers = _load_transformers_from_eg(buses)
|
||
|
|
||
|
# buses, lines, transformers = _split_aclines_with_several_voltages(buses, lines, transformers)
|
||
|
|
||
|
lines = _set_electrical_parameters_lines(lines)
|
||
|
links = _set_electrical_parameters_links(links)
|
||
|
transformers = _set_electrical_parameters_transformers(transformers)
|
||
|
|
||
|
n = pypsa.Network()
|
||
|
n.name = 'PyPSA-Eur'
|
||
|
|
||
|
n.set_snapshots(pd.date_range(snakemake.config['historical_year'], periods=8760, freq='h'))
|
||
|
|
||
|
n.import_components_from_dataframe(buses, "Bus")
|
||
|
n.import_components_from_dataframe(lines, "Line")
|
||
|
n.import_components_from_dataframe(transformers, "Transformer")
|
||
|
n.import_components_from_dataframe(links, "Link")
|
||
|
n.import_components_from_dataframe(converters, "Link")
|
||
|
|
||
|
if 'T' in snakemake.wildcards.opts.split('-'):
|
||
|
raise NotImplemented
|
||
|
|
||
|
# n = _connect_close_buses(n, radius=1.)
|
||
|
|
||
|
n = _remove_unconnected_components(n)
|
||
|
|
||
|
_apply_parameter_corrections(n)
|
||
|
|
||
|
# Workaround: import_components_from_dataframe does not preserve types of foreign columns
|
||
|
n.lines['underground'] = n.lines['underground'].astype(bool)
|
||
|
n.lines['under_construction'] = n.lines['under_construction'].astype(bool)
|
||
|
n.links['underground'] = n.links['underground'].astype(bool)
|
||
|
n.links['under_construction'] = n.links['under_construction'].astype(bool)
|
||
|
|
||
|
return n
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
# Detect running outside of snakemake and mock snakemake for testing
|
||
|
if 'snakemake' not in globals():
|
||
|
from vresutils import Dict
|
||
|
import yaml
|
||
|
snakemake = Dict()
|
||
|
snakemake.input = Dict(
|
||
|
eg_buses='../data/entsoegridkit/buses.csv',
|
||
|
eg_lines='../data/entsoegridkit/lines.csv',
|
||
|
eg_links='../data/entsoegridkit/links.csv',
|
||
|
eg_converters='../data/entsoegridkit/converters.csv',
|
||
|
eg_transformers='../data/entsoegridkit/transformers.csv',
|
||
|
parameter_corrections='../data/parameter_corrections.yaml',
|
||
|
links_p_nom='../data/links_p_nom.csv'
|
||
|
)
|
||
|
|
||
|
snakemake.wildcards = Dict(opts='LC')
|
||
|
with open('../config.yaml') as f:
|
||
|
snakemake.config = yaml.load(f)
|
||
|
snakemake.output = ['../networks/base_LC.h5']
|
||
|
|
||
|
logger.setLevel(level=snakemake.config['logging_level'])
|
||
|
|
||
|
n = base_network()
|
||
|
n.export_to_hdf5(snakemake.output[0])
|