2022-09-16 13:04:04 +00:00
|
|
|
# -*- coding: utf-8 -*-
|
2023-02-16 10:50:55 +00:00
|
|
|
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
|
2020-05-29 07:50:55 +00:00
|
|
|
#
|
2021-09-14 14:37:41 +00:00
|
|
|
# SPDX-License-Identifier: MIT
|
2020-05-29 07:50:55 +00:00
|
|
|
|
2023-03-06 18:16:37 +00:00
|
|
|
import contextlib
|
2023-12-29 11:34:14 +00:00
|
|
|
import hashlib
|
2023-03-06 18:16:37 +00:00
|
|
|
import logging
|
|
|
|
import os
|
2023-09-11 20:51:31 +00:00
|
|
|
import re
|
2023-09-11 21:03:58 +00:00
|
|
|
import urllib
|
2023-03-06 18:18:17 +00:00
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import pandas as pd
|
2023-03-06 18:16:37 +00:00
|
|
|
import pytz
|
2023-12-29 11:34:14 +00:00
|
|
|
import requests
|
2023-03-06 18:16:37 +00:00
|
|
|
import yaml
|
|
|
|
from pypsa.components import component_attrs, components
|
|
|
|
from pypsa.descriptors import Dict
|
2023-03-06 18:18:17 +00:00
|
|
|
from tqdm import tqdm
|
2023-03-06 18:16:37 +00:00
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
2022-09-16 13:04:04 +00:00
|
|
|
|
|
|
|
REGION_COLS = ["geometry", "name", "x", "y", "country"]
|
|
|
|
|
2023-03-06 18:18:17 +00:00
|
|
|
|
2023-09-11 20:51:31 +00:00
|
|
|
def get_opt(opts, expr, flags=None):
|
|
|
|
"""
|
|
|
|
Return the first option matching the regular expression.
|
2023-09-11 21:03:58 +00:00
|
|
|
|
2023-09-11 20:51:31 +00:00
|
|
|
The regular expression is case-insensitive by default.
|
|
|
|
"""
|
|
|
|
if flags is None:
|
|
|
|
flags = re.IGNORECASE
|
|
|
|
for o in opts:
|
|
|
|
match = re.match(expr, o, flags=flags)
|
|
|
|
if match:
|
|
|
|
return match.group(0)
|
|
|
|
return None
|
|
|
|
|
2023-09-28 19:11:51 +00:00
|
|
|
|
2023-09-28 19:11:22 +00:00
|
|
|
def find_opt(opts, expr):
|
|
|
|
"""
|
|
|
|
Return if available the float after the expression.
|
|
|
|
"""
|
|
|
|
for o in opts:
|
|
|
|
if expr in o:
|
|
|
|
m = re.findall("[0-9]*\.?[0-9]+$", o)
|
|
|
|
if len(m) > 0:
|
|
|
|
return True, float(m[0])
|
|
|
|
else:
|
|
|
|
return True, None
|
|
|
|
return False, None
|
2023-09-11 21:03:58 +00:00
|
|
|
|
2023-09-28 19:11:51 +00:00
|
|
|
|
2023-03-06 18:16:37 +00:00
|
|
|
# Define a context manager to temporarily mute print statements
|
|
|
|
@contextlib.contextmanager
|
|
|
|
def mute_print():
|
|
|
|
with open(os.devnull, "w") as devnull:
|
|
|
|
with contextlib.redirect_stdout(devnull):
|
|
|
|
yield
|
|
|
|
|
2018-10-26 08:33:58 +00:00
|
|
|
|
2019-11-28 07:22:52 +00:00
|
|
|
def configure_logging(snakemake, skip_handlers=False):
|
|
|
|
"""
|
|
|
|
Configure the basic behaviour for the logging module.
|
|
|
|
|
|
|
|
Note: Must only be called once from the __main__ section of a script.
|
|
|
|
|
|
|
|
The setup includes printing log messages to STDERR and to a log file defined
|
|
|
|
by either (in priority order): snakemake.log.python, snakemake.log[0] or "logs/{rulename}.log".
|
|
|
|
Additional keywords from logging.basicConfig are accepted via the snakemake configuration
|
|
|
|
file under snakemake.config.logging.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
snakemake : snakemake object
|
|
|
|
Your snakemake object containing a snakemake.config and snakemake.log.
|
|
|
|
skip_handlers : True | False (default)
|
|
|
|
Do (not) skip the default handlers created for redirecting output to STDERR and file.
|
|
|
|
"""
|
|
|
|
import logging
|
|
|
|
|
2022-09-16 13:04:04 +00:00
|
|
|
kwargs = snakemake.config.get("logging", dict()).copy()
|
2019-11-28 07:22:52 +00:00
|
|
|
kwargs.setdefault("level", "INFO")
|
|
|
|
|
|
|
|
if skip_handlers is False:
|
2022-09-16 13:04:04 +00:00
|
|
|
fallback_path = Path(__file__).parent.joinpath(
|
|
|
|
"..", "logs", f"{snakemake.rule}.log"
|
|
|
|
)
|
|
|
|
logfile = snakemake.log.get(
|
|
|
|
"python", snakemake.log[0] if snakemake.log else fallback_path
|
|
|
|
)
|
2019-11-28 07:22:52 +00:00
|
|
|
kwargs.update(
|
2022-09-16 13:04:04 +00:00
|
|
|
{
|
|
|
|
"handlers": [
|
|
|
|
# Prefer the 'python' log, otherwise take the first log for each
|
|
|
|
# Snakemake rule
|
|
|
|
logging.FileHandler(logfile),
|
|
|
|
logging.StreamHandler(),
|
2019-11-28 07:22:52 +00:00
|
|
|
]
|
2022-09-16 13:04:04 +00:00
|
|
|
}
|
|
|
|
)
|
2019-11-28 07:22:52 +00:00
|
|
|
logging.basicConfig(**kwargs)
|
2018-10-26 08:33:58 +00:00
|
|
|
|
2020-12-03 18:50:53 +00:00
|
|
|
|
2021-06-30 19:07:38 +00:00
|
|
|
def update_p_nom_max(n):
|
|
|
|
# if extendable carriers (solar/onwind/...) have capacity >= 0,
|
|
|
|
# e.g. existing assets from the OPSD project are included to the network,
|
|
|
|
# the installed capacity might exceed the expansion limit.
|
|
|
|
# Hence, we update the assumptions.
|
2022-09-16 13:04:04 +00:00
|
|
|
|
|
|
|
n.generators.p_nom_max = n.generators[["p_nom_min", "p_nom_max"]].max(1)
|
|
|
|
|
2021-06-30 19:07:38 +00:00
|
|
|
|
2018-10-26 08:33:58 +00:00
|
|
|
def aggregate_p_nom(n):
|
2022-09-16 13:04:04 +00:00
|
|
|
return pd.concat(
|
|
|
|
[
|
|
|
|
n.generators.groupby("carrier").p_nom_opt.sum(),
|
|
|
|
n.storage_units.groupby("carrier").p_nom_opt.sum(),
|
|
|
|
n.links.groupby("carrier").p_nom_opt.sum(),
|
|
|
|
n.loads_t.p.groupby(n.loads.carrier, axis=1).sum().mean(),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
2018-10-26 08:33:58 +00:00
|
|
|
|
|
|
|
def aggregate_p(n):
|
2022-09-16 13:04:04 +00:00
|
|
|
return pd.concat(
|
|
|
|
[
|
|
|
|
n.generators_t.p.sum().groupby(n.generators.carrier).sum(),
|
|
|
|
n.storage_units_t.p.sum().groupby(n.storage_units.carrier).sum(),
|
|
|
|
n.stores_t.p.sum().groupby(n.stores.carrier).sum(),
|
|
|
|
-n.loads_t.p.sum().groupby(n.loads.carrier).sum(),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
2018-10-26 08:33:58 +00:00
|
|
|
|
|
|
|
def aggregate_e_nom(n):
|
2022-09-16 13:04:04 +00:00
|
|
|
return pd.concat(
|
|
|
|
[
|
|
|
|
(n.storage_units["p_nom_opt"] * n.storage_units["max_hours"])
|
|
|
|
.groupby(n.storage_units["carrier"])
|
|
|
|
.sum(),
|
|
|
|
n.stores["e_nom_opt"].groupby(n.stores.carrier).sum(),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
2018-10-26 08:33:58 +00:00
|
|
|
|
|
|
|
def aggregate_p_curtailed(n):
|
2022-09-16 13:04:04 +00:00
|
|
|
return pd.concat(
|
|
|
|
[
|
|
|
|
(
|
|
|
|
(
|
|
|
|
n.generators_t.p_max_pu.sum().multiply(n.generators.p_nom_opt)
|
|
|
|
- n.generators_t.p.sum()
|
|
|
|
)
|
|
|
|
.groupby(n.generators.carrier)
|
|
|
|
.sum()
|
|
|
|
),
|
|
|
|
(
|
|
|
|
(n.storage_units_t.inflow.sum() - n.storage_units_t.p.sum())
|
|
|
|
.groupby(n.storage_units.carrier)
|
|
|
|
.sum()
|
|
|
|
),
|
|
|
|
]
|
|
|
|
)
|
2018-10-26 08:33:58 +00:00
|
|
|
|
2019-12-09 20:29:15 +00:00
|
|
|
|
2022-09-16 13:04:04 +00:00
|
|
|
def aggregate_costs(n, flatten=False, opts=None, existing_only=False):
|
|
|
|
components = dict(
|
|
|
|
Link=("p_nom", "p0"),
|
|
|
|
Generator=("p_nom", "p"),
|
|
|
|
StorageUnit=("p_nom", "p"),
|
|
|
|
Store=("e_nom", "p"),
|
|
|
|
Line=("s_nom", None),
|
|
|
|
Transformer=("s_nom", None),
|
|
|
|
)
|
2018-10-26 08:33:58 +00:00
|
|
|
|
|
|
|
costs = {}
|
|
|
|
for c, (p_nom, p_attr) in zip(
|
2022-09-16 13:04:04 +00:00
|
|
|
n.iterate_components(components.keys(), skip_empty=False), components.values()
|
2018-10-26 08:33:58 +00:00
|
|
|
):
|
2022-09-16 13:04:04 +00:00
|
|
|
if c.df.empty:
|
|
|
|
continue
|
|
|
|
if not existing_only:
|
|
|
|
p_nom += "_opt"
|
|
|
|
costs[(c.list_name, "capital")] = (
|
|
|
|
(c.df[p_nom] * c.df.capital_cost).groupby(c.df.carrier).sum()
|
|
|
|
)
|
2018-10-26 08:33:58 +00:00
|
|
|
if p_attr is not None:
|
|
|
|
p = c.pnl[p_attr].sum()
|
2022-09-16 13:04:04 +00:00
|
|
|
if c.name == "StorageUnit":
|
2018-10-26 08:33:58 +00:00
|
|
|
p = p.loc[p > 0]
|
2022-09-16 13:04:04 +00:00
|
|
|
costs[(c.list_name, "marginal")] = (
|
|
|
|
(p * c.df.marginal_cost).groupby(c.df.carrier).sum()
|
|
|
|
)
|
2018-10-26 08:33:58 +00:00
|
|
|
costs = pd.concat(costs)
|
|
|
|
|
|
|
|
if flatten:
|
|
|
|
assert opts is not None
|
2022-09-16 13:04:04 +00:00
|
|
|
conv_techs = opts["conv_techs"]
|
2018-10-26 08:33:58 +00:00
|
|
|
|
|
|
|
costs = costs.reset_index(level=0, drop=True)
|
2022-09-16 13:04:04 +00:00
|
|
|
costs = costs["capital"].add(
|
|
|
|
costs["marginal"].rename({t: t + " marginal" for t in conv_techs}),
|
|
|
|
fill_value=0.0,
|
2018-10-26 08:33:58 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
return costs
|
2019-11-05 11:53:21 +00:00
|
|
|
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2023-03-07 19:37:47 +00:00
|
|
|
def progress_retrieve(url, file, disable=False):
|
|
|
|
if disable:
|
|
|
|
urllib.request.urlretrieve(url, file)
|
|
|
|
else:
|
|
|
|
with tqdm(unit="B", unit_scale=True, unit_divisor=1024, miniters=1) as t:
|
|
|
|
|
|
|
|
def update_to(b=1, bsize=1, tsize=None):
|
|
|
|
if tsize is not None:
|
|
|
|
t.total = tsize
|
|
|
|
t.update(b * bsize - t.n)
|
|
|
|
|
|
|
|
urllib.request.urlretrieve(url, file, reporthook=update_to)
|
2019-11-05 11:53:21 +00:00
|
|
|
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2023-10-31 11:09:39 +00:00
|
|
|
def mock_snakemake(rulename, root_dir=None, configfiles=[], **wildcards):
|
2019-12-09 20:29:15 +00:00
|
|
|
"""
|
|
|
|
This function is expected to be executed from the 'scripts'-directory of '
|
|
|
|
the snakemake project. It returns a snakemake.script.Snakemake object,
|
|
|
|
based on the Snakefile.
|
|
|
|
|
|
|
|
If a rule has wildcards, you have to specify them in **wildcards.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
rulename: str
|
|
|
|
name of the rule for which the snakemake object should be generated
|
2023-10-31 11:09:39 +00:00
|
|
|
root_dir: str/path-like
|
|
|
|
path to the root directory of the snakemake project
|
2023-03-09 11:45:44 +00:00
|
|
|
configfiles: list, str
|
|
|
|
list of configfiles to be used to update the config
|
2019-12-09 20:29:15 +00:00
|
|
|
**wildcards:
|
|
|
|
keyword arguments fixing the wildcards. Only necessary if wildcards are
|
|
|
|
needed.
|
|
|
|
"""
|
|
|
|
import os
|
2022-09-16 13:04:04 +00:00
|
|
|
|
|
|
|
import snakemake as sm
|
|
|
|
from packaging.version import Version, parse
|
2019-12-09 20:29:15 +00:00
|
|
|
from pypsa.descriptors import Dict
|
|
|
|
from snakemake.script import Snakemake
|
|
|
|
|
|
|
|
script_dir = Path(__file__).parent.resolve()
|
2023-10-31 11:09:39 +00:00
|
|
|
if root_dir is None:
|
|
|
|
root_dir = script_dir.parent
|
|
|
|
else:
|
|
|
|
root_dir = Path(root_dir).resolve()
|
2023-03-09 11:45:44 +00:00
|
|
|
|
|
|
|
user_in_script_dir = Path.cwd().resolve() == script_dir
|
|
|
|
if user_in_script_dir:
|
|
|
|
os.chdir(root_dir)
|
|
|
|
elif Path.cwd().resolve() != root_dir:
|
|
|
|
raise RuntimeError(
|
|
|
|
"mock_snakemake has to be run from the repository root"
|
|
|
|
f" {root_dir} or scripts directory {script_dir}"
|
|
|
|
)
|
|
|
|
try:
|
|
|
|
for p in sm.SNAKEFILE_CHOICES:
|
|
|
|
if os.path.exists(p):
|
|
|
|
snakefile = p
|
|
|
|
break
|
|
|
|
kwargs = (
|
|
|
|
dict(rerun_triggers=[]) if parse(sm.__version__) > Version("7.7.0") else {}
|
|
|
|
)
|
|
|
|
if isinstance(configfiles, str):
|
|
|
|
configfiles = [configfiles]
|
2023-03-09 21:51:56 +00:00
|
|
|
|
|
|
|
workflow = sm.Workflow(snakefile, overwrite_configfiles=configfiles, **kwargs)
|
|
|
|
workflow.include(snakefile)
|
|
|
|
|
2023-03-09 11:45:44 +00:00
|
|
|
if configfiles:
|
|
|
|
for f in configfiles:
|
|
|
|
if not os.path.exists(f):
|
|
|
|
raise FileNotFoundError(f"Config file {f} does not exist.")
|
|
|
|
workflow.configfile(f)
|
|
|
|
|
|
|
|
workflow.global_resources = {}
|
|
|
|
rule = workflow.get_rule(rulename)
|
|
|
|
dag = sm.dag.DAG(workflow, rules=[rule])
|
|
|
|
wc = Dict(wildcards)
|
|
|
|
job = sm.jobs.Job(rule, dag, wc)
|
|
|
|
|
|
|
|
def make_accessable(*ios):
|
|
|
|
for io in ios:
|
|
|
|
for i in range(len(io)):
|
|
|
|
io[i] = os.path.abspath(io[i])
|
|
|
|
|
|
|
|
make_accessable(job.input, job.output, job.log)
|
|
|
|
snakemake = Snakemake(
|
|
|
|
job.input,
|
|
|
|
job.output,
|
|
|
|
job.params,
|
|
|
|
job.wildcards,
|
|
|
|
job.threads,
|
|
|
|
job.resources,
|
|
|
|
job.log,
|
|
|
|
job.dag.workflow.config,
|
|
|
|
job.rule.name,
|
|
|
|
None,
|
|
|
|
)
|
|
|
|
# create log and output dir if not existent
|
|
|
|
for path in list(snakemake.log) + list(snakemake.output):
|
|
|
|
Path(path).parent.mkdir(parents=True, exist_ok=True)
|
2019-12-09 20:29:15 +00:00
|
|
|
|
2023-03-09 11:45:44 +00:00
|
|
|
finally:
|
|
|
|
if user_in_script_dir:
|
|
|
|
os.chdir(script_dir)
|
2019-12-09 20:29:15 +00:00
|
|
|
return snakemake
|
2023-03-06 18:16:37 +00:00
|
|
|
|
|
|
|
|
|
|
|
def generate_periodic_profiles(dt_index, nodes, weekly_profile, localize=None):
|
|
|
|
"""
|
|
|
|
Give a 24*7 long list of weekly hourly profiles, generate this for each
|
|
|
|
country for the period dt_index, taking account of time zones and summer
|
|
|
|
time.
|
|
|
|
"""
|
|
|
|
weekly_profile = pd.Series(weekly_profile, range(24 * 7))
|
|
|
|
|
|
|
|
week_df = pd.DataFrame(index=dt_index, columns=nodes)
|
|
|
|
|
|
|
|
for node in nodes:
|
|
|
|
timezone = pytz.timezone(pytz.country_timezones[node[:2]][0])
|
|
|
|
tz_dt_index = dt_index.tz_convert(timezone)
|
|
|
|
week_df[node] = [24 * dt.weekday() + dt.hour for dt in tz_dt_index]
|
|
|
|
week_df[node] = week_df[node].map(weekly_profile)
|
|
|
|
|
|
|
|
week_df = week_df.tz_localize(localize)
|
|
|
|
|
|
|
|
return week_df
|
|
|
|
|
|
|
|
|
|
|
|
def parse(l):
|
2023-10-08 09:20:36 +00:00
|
|
|
return yaml.safe_load(l[0]) if len(l) == 1 else {l.pop(0): parse(l)}
|
2023-03-06 18:16:37 +00:00
|
|
|
|
|
|
|
|
|
|
|
def update_config_with_sector_opts(config, sector_opts):
|
2023-03-16 14:54:52 +00:00
|
|
|
from snakemake.utils import update_config
|
2023-03-16 14:56:42 +00:00
|
|
|
|
2023-03-06 18:16:37 +00:00
|
|
|
for o in sector_opts.split("-"):
|
|
|
|
if o.startswith("CF+"):
|
|
|
|
l = o.split("+")[1:]
|
|
|
|
update_config(config, parse(l))
|
2023-12-29 11:34:14 +00:00
|
|
|
|
|
|
|
|
|
|
|
def get_checksum_from_zenodo(file_url):
|
|
|
|
parts = file_url.split("/")
|
|
|
|
record_id = parts[parts.index("record") + 1]
|
|
|
|
filename = parts[-1]
|
|
|
|
|
|
|
|
response = requests.get(f"https://zenodo.org/api/records/{record_id}", timeout=30)
|
|
|
|
response.raise_for_status()
|
|
|
|
data = response.json()
|
|
|
|
|
|
|
|
for file in data["files"]:
|
|
|
|
if file["key"] == filename:
|
|
|
|
return file["checksum"]
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
def validate_checksum(file_path, zenodo_url=None, checksum=None):
|
|
|
|
"""
|
|
|
|
Validate file checksum against provided or Zenodo-retrieved checksum.
|
2023-12-29 11:38:41 +00:00
|
|
|
Calculates the hash of a file using 64KB chunks. Compares it against a
|
|
|
|
given checksum or one from a Zenodo URL.
|
2023-12-29 11:34:14 +00:00
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
file_path : str
|
|
|
|
Path to the file for checksum validation.
|
|
|
|
zenodo_url : str, optional
|
|
|
|
URL of the file on Zenodo to fetch the checksum.
|
|
|
|
checksum : str, optional
|
|
|
|
Checksum (format 'hash_type:checksum_value') for validation.
|
|
|
|
|
|
|
|
Raises
|
|
|
|
------
|
|
|
|
AssertionError
|
|
|
|
If the checksum does not match, or if neither `checksum` nor `zenodo_url` is provided.
|
|
|
|
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
2023-12-29 11:38:41 +00:00
|
|
|
>>> validate_checksum("/path/to/file", checksum="md5:abc123...")
|
|
|
|
>>> validate_checksum(
|
|
|
|
... "/path/to/file",
|
|
|
|
... zenodo_url="https://zenodo.org/record/12345/files/example.txt",
|
|
|
|
... )
|
2023-12-29 11:34:14 +00:00
|
|
|
|
|
|
|
If the checksum is invalid, an AssertionError will be raised.
|
|
|
|
"""
|
|
|
|
assert checksum or zenodo_url, "Either checksum or zenodo_url must be provided"
|
|
|
|
if zenodo_url:
|
|
|
|
checksum = get_checksum_from_zenodo(zenodo_url)
|
|
|
|
hash_type, checksum = checksum.split(":")
|
|
|
|
hasher = hashlib.new(hash_type)
|
|
|
|
with open(file_path, "rb") as f:
|
|
|
|
for chunk in iter(lambda: f.read(65536), b""): # 64kb chunks
|
|
|
|
hasher.update(chunk)
|
|
|
|
calculated_checksum = hasher.hexdigest()
|
|
|
|
assert (
|
|
|
|
calculated_checksum == checksum
|
|
|
|
), "Checksum is invalid. This may be due to an incomplete download. Delete the file and re-execute the rule."
|