pypsa-eur/scripts/_helpers.py

117 lines
4.1 KiB
Python
Raw Normal View History

2018-10-26 08:33:58 +00:00
import pandas as pd
2019-11-05 11:53:21 +00:00
from six import iterkeys, itervalues
import urllib
from progressbar import ProgressBar
2018-10-26 08:33:58 +00:00
import pypsa
from add_electricity import load_costs, update_transmission_costs
def pdbcast(v, h):
return pd.DataFrame(v.values.reshape((-1, 1)) * h.values,
index=v.index, columns=h.index)
def load_network(fn, tech_costs, config, combine_hydro_ps=True):
opts = config['plotting']
n = pypsa.Network(fn)
n.loads["carrier"] = n.loads.bus.map(n.buses.carrier) + " load"
n.stores["carrier"] = n.stores.bus.map(n.buses.carrier)
n.links["carrier"] = (n.links.bus0.map(n.buses.carrier) + "-" + n.links.bus1.map(n.buses.carrier))
n.lines["carrier"] = "AC line"
n.transformers["carrier"] = "AC transformer"
n.lines['s_nom'] = n.lines['s_nom_min']
n.links['p_nom'] = n.links['p_nom_min']
if combine_hydro_ps:
n.storage_units.loc[n.storage_units.carrier.isin({'PHS', 'hydro'}), 'carrier'] = 'hydro+PHS'
# #if the carrier was not set on the heat storage units
# bus_carrier = n.storage_units.bus.map(n.buses.carrier)
# n.storage_units.loc[bus_carrier == "heat","carrier"] = "water tanks"
for name in opts['heat_links'] + opts['heat_generators']:
n.links.loc[n.links.index.to_series().str.endswith(name), "carrier"] = name
Nyears = n.snapshot_weightings.sum()/8760.
costs = load_costs(Nyears, tech_costs, config['costs'], config['electricity'])
update_transmission_costs(n, costs)
return n
def aggregate_p_nom(n):
return pd.concat([
n.generators.groupby("carrier").p_nom_opt.sum(),
n.storage_units.groupby("carrier").p_nom_opt.sum(),
n.links.groupby("carrier").p_nom_opt.sum(),
n.loads_t.p.groupby(n.loads.carrier,axis=1).sum().mean()
])
def aggregate_p(n):
return pd.concat([
n.generators_t.p.sum().groupby(n.generators.carrier).sum(),
n.storage_units_t.p.sum().groupby(n.storage_units.carrier).sum(),
n.stores_t.p.sum().groupby(n.stores.carrier).sum(),
-n.loads_t.p.sum().groupby(n.loads.carrier).sum()
])
def aggregate_e_nom(n):
return pd.concat([
(n.storage_units["p_nom_opt"]*n.storage_units["max_hours"]).groupby(n.storage_units["carrier"]).sum(),
n.stores["e_nom_opt"].groupby(n.stores.carrier).sum()
])
def aggregate_p_curtailed(n):
return pd.concat([
((n.generators_t.p_max_pu.sum().multiply(n.generators.p_nom_opt) - n.generators_t.p.sum())
.groupby(n.generators.carrier).sum()),
((n.storage_units_t.inflow.sum() - n.storage_units_t.p.sum())
.groupby(n.storage_units.carrier).sum())
])
def aggregate_costs(n, flatten=False, opts=None, existing_only=False):
components = dict(Link=("p_nom", "p0"),
Generator=("p_nom", "p"),
StorageUnit=("p_nom", "p"),
Store=("e_nom", "p"),
Line=("s_nom", None),
Transformer=("s_nom", None))
costs = {}
for c, (p_nom, p_attr) in zip(
n.iterate_components(iterkeys(components), skip_empty=False),
itervalues(components)
):
if not existing_only: p_nom += "_opt"
costs[(c.list_name, 'capital')] = (c.df[p_nom] * c.df.capital_cost).groupby(c.df.carrier).sum()
if p_attr is not None:
p = c.pnl[p_attr].sum()
if c.name == 'StorageUnit':
p = p.loc[p > 0]
costs[(c.list_name, 'marginal')] = (p*c.df.marginal_cost).groupby(c.df.carrier).sum()
costs = pd.concat(costs)
if flatten:
assert opts is not None
conv_techs = opts['conv_techs']
costs = costs.reset_index(level=0, drop=True)
costs = costs['capital'].add(
costs['marginal'].rename({t: t + ' marginal' for t in conv_techs}),
fill_value=0.
)
return costs
2019-11-05 11:53:21 +00:00
def progress_retrieve(url, file):
pbar = ProgressBar(0, 100)
def dlProgress(count, blockSize, totalSize):
pbar.update( int(count * blockSize * 100 / totalSize) )
urllib.request.urlretrieve(url, file, reporthook=dlProgress)