pypsa-eur/scripts/build_sequestration_potentials.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

61 lines
1.9 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
2024-02-19 15:21:48 +00:00
# SPDX-FileCopyrightText: : 2023-2024 The PyPSA-Eur Authors
2023-03-06 17:49:23 +00:00
#
# SPDX-License-Identifier: MIT
2023-03-09 11:45:43 +00:00
"""
Build regionalised geological sequestration potential for carbon dioxide using
data from `CO2Stop <https://setis.ec.europa.eu/european-co2-storage-
database_en>`_.
2023-03-09 11:45:43 +00:00
"""
2023-01-24 17:44:39 +00:00
import geopandas as gpd
import pandas as pd
2024-02-12 10:53:20 +00:00
from _helpers import set_scenario_config
2023-01-24 17:44:39 +00:00
def area(gdf):
"""
Returns area of GeoDataFrame geometries in square kilometers.
"""
return gdf.to_crs(epsg=3035).area.div(1e6)
def allocate_sequestration_potential(
gdf, regions, attr="conservative estimate Mt", threshold=3
):
if isinstance(attr, str):
attr = [attr]
2024-04-10 10:06:53 +00:00
gdf = gdf.loc[gdf[attr].sum(axis=1) > threshold, attr + ["geometry"]]
2023-01-24 17:44:39 +00:00
gdf["area_sqkm"] = area(gdf)
overlay = gpd.overlay(regions, gdf, keep_geom_type=True)
overlay["share"] = area(overlay) / overlay["area_sqkm"]
adjust_cols = overlay.columns.difference({"name", "area_sqkm", "geometry", "share"})
overlay[adjust_cols] = overlay[adjust_cols].multiply(overlay["share"], axis=0)
2024-04-10 10:06:53 +00:00
return overlay.dissolve("name", aggfunc="sum")[attr].sum(axis=1)
2023-01-24 17:44:39 +00:00
if __name__ == "__main__":
if "snakemake" not in globals():
2023-03-06 18:09:45 +00:00
from _helpers import mock_snakemake
snakemake = mock_snakemake("build_sequestration_potentials", clusters="128")
2023-01-24 17:44:39 +00:00
2024-02-12 10:53:20 +00:00
set_scenario_config(snakemake)
2023-06-15 17:12:30 +00:00
cf = snakemake.params.sequestration_potential
2023-01-24 17:44:39 +00:00
gdf = gpd.read_file(snakemake.input.sequestration_potential)
2023-01-24 17:44:39 +00:00
regions = gpd.read_file(snakemake.input.regions_offshore)
if cf["include_onshore"]:
2023-01-24 17:44:39 +00:00
onregions = gpd.read_file(snakemake.input.regions_onshore)
regions = pd.concat([regions, onregions]).dissolve(by="name").reset_index()
s = allocate_sequestration_potential(
gdf, regions, attr=cf["attribute"], threshold=cf["min_size"]
)
2023-01-24 17:44:39 +00:00
s = s.where(s > cf["min_size"]).dropna()
2023-01-24 17:44:39 +00:00
s.to_csv(snakemake.output.sequestration_potential)