add minimal description of all scripts

This commit is contained in:
Fabian Neumann 2023-03-09 12:45:43 +01:00
parent 9f1950411c
commit abe4df543e
33 changed files with 98 additions and 51 deletions

View File

@ -157,21 +157,6 @@ Documentation
configuration
costs
**Implementation details**
* :doc:`spatial_resolution`
* :doc:`supply_demand`
* :doc:`technology_assumptions`
.. toctree::
:hidden:
:maxdepth: 1
:caption: Implementation details
spatial_resolution
supply_demand
technology_assumptions
**Rules Overview**
* :doc:`preparation`
@ -204,6 +189,22 @@ Documentation
myopic
perfect
**Implementation details**
* :doc:`spatial_resolution`
* :doc:`supply_demand`
* :doc:`technology_assumptions`
.. toctree::
:hidden:
:maxdepth: 1
:caption: Implementation details
spatial_resolution
supply_demand
technology_assumptions
**References**
* :doc:`release_notes`

View File

@ -3,6 +3,8 @@
#
# SPDX-License-Identifier: MIT
"""Prepares brownfield data from previous planning horizon."""
import logging
logger = logging.getLogger(__name__)

View File

@ -3,6 +3,8 @@
#
# SPDX-License-Identifier: MIT
"""Adds existing power and heat generation capacities for initial planning horizon."""
import logging
logger = logging.getLogger(__name__)

View File

@ -3,7 +3,7 @@
#
# SPDX-License-Identifier: MIT
"""
Build ammonia production.
Build historical annual ammonia production per country in ktonNH3/a.
"""
import country_converter as coco

View File

@ -2,6 +2,10 @@
# SPDX-FileCopyrightText: : 2021-2023 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Compute biogas and solid biomass potentials for each clustered model region
using data from JRC ENSPRESO.
"""
import geopandas as gpd
import pandas as pd

View File

@ -4,7 +4,8 @@
# SPDX-License-Identifier: MIT
"""
Build clustered population layouts.
Build population layouts for all clustered model regions as total as well as
split by urban and rural population.
"""
import atlite

View File

@ -4,19 +4,20 @@
# SPDX-License-Identifier: MIT
"""
Build COP time series for air- or ground-sourced heat pumps.
Build coefficient of performance (COP) time series for air- or ground-sourced
heat pumps.
The COP is a function of the temperature difference between
source and sink.
The quadratic regression used is based on Staffell et al. (2012)
https://doi.org/10.1039/C2EE22653G.
"""
import xarray as xr
def coefficient_of_performance(delta_T, source="air"):
"""
COP is function of temp difference source to sink.
The quadratic regression is based on Staffell et al. (2012)
https://doi.org/10.1039/C2EE22653G.
"""
if source == "air":
return 6.81 - 0.121 * delta_T + 0.000630 * delta_T**2
elif source == "soil":

View File

@ -3,6 +3,10 @@
#
# SPDX-License-Identifier: MIT
"""
Build total energy demands per country using JRC IDEES, eurostat, and EEA data.
"""
import logging
logger = logging.getLogger(__name__)

View File

@ -5,7 +5,7 @@
"""
Build import locations for fossil gas from entry-points, LNG terminals and
production sites.
production sites with data from SciGRID_gas and Global Energy Monitor.
"""
import logging

View File

@ -4,7 +4,7 @@
# SPDX-License-Identifier: MIT
"""
Preprocess gas network based on data from bthe SciGRID Gas project
Preprocess gas network based on data from bthe SciGRID_gas project
(https://www.gas.scigrid.de/).
"""

View File

@ -4,7 +4,7 @@
# SPDX-License-Identifier: MIT
"""
Build heat demand time series.
Build heat demand time series using heating degree day (HDD) approximation.
"""
import atlite

View File

@ -4,7 +4,7 @@
# SPDX-License-Identifier: MIT
"""
Build industrial distribution keys from hotmaps database.
Build spatial distribution of industries from Hotmaps database.
"""
import logging

View File

@ -4,7 +4,7 @@
# SPDX-License-Identifier: MIT
"""
Build industrial energy demand per node.
Build industrial energy demand per model region.
"""
import pandas as pd

View File

@ -4,7 +4,7 @@
# SPDX-License-Identifier: MIT
"""
Build industrial energy demand per node.
Build industrial energy demand per model region.
"""
from itertools import product

View File

@ -4,7 +4,7 @@
# SPDX-License-Identifier: MIT
"""
Build industrial production per node.
Build industrial production per model region.
"""
from itertools import product

View File

@ -4,7 +4,7 @@
# SPDX-License-Identifier: MIT
"""
Build industry sector ratios.
Build specific energy consumption by carrier and industries.
"""
import pandas as pd

View File

@ -4,7 +4,7 @@
# SPDX-License-Identifier: MIT
"""
Build mapping between grid cells and population (total, urban, rural)
Build mapping between cutout grid cells and population (total, urban, rural).
"""
import logging

View File

@ -4,7 +4,7 @@
# SPDX-License-Identifier: MIT
"""
Build population-weighted energy totals.
Distribute country-level energy demands by population.
"""
import pandas as pd

View File

@ -5,13 +5,13 @@
# SPDX-License-Identifier: MIT
"""
Created on Fri Jan 22 10:36:39 2021.
This script should calculate the space heating savings through better
This script calculates the space heating savings through better
insulation of the thermal envelope of a building and corresponding costs for
different building types in different countries.
-----------------METHODOLOGY ------------------------------------------------
Methodology
-----------
The energy savings calculations are based on the
EN ISO 13790 / seasonal method https://www.iso.org/obp/ui/#iso:std:iso:13790:ed-2:v1:en:
@ -29,7 +29,9 @@ The energy savings calculations are based on the
- tabula https://episcope.eu/fileadmin/tabula/public/calc/tabula-calculator.xlsx
---------------------BASIC EQUAIONS -------------------------------------------
Basic Equations
---------------
The basic equations:
The Energy needed for space heating E_space [W/] are calculated as the
@ -53,7 +55,8 @@ The basic equations:
H_gains = nu * (H_solar + H_int)
---------------- STRUCTURE OF THE SCRIPT --------------------------------------
Structure
---------
The script has the following structure:
@ -64,9 +67,6 @@ The script has the following structure:
(3) calculate costs for corresponding additional insulation material
(4) get cost savings per retrofitting measures for each sector by weighting
with heated floor area
-------------------------------------------------------------------------------
@author: Lisa
"""
import pandas as pd
import xarray as xr

View File

@ -3,6 +3,12 @@
#
# SPDX-License-Identifier: MIT
"""
Build regionalised geological sequestration potential for carbon dioxide using
data from `CO2Stop
<https://setis.ec.europa.eu/european-co2-storage-database_en>`_.
"""
import geopandas as gpd
import pandas as pd

View File

@ -4,7 +4,7 @@
# SPDX-License-Identifier: MIT
"""
Build temperature profiles.
Build time series for air and soil temperatures per clustered model region.
"""
import atlite

View File

@ -4,7 +4,9 @@
# SPDX-License-Identifier: MIT
"""
Build transport demand.
Build land transport demand per clustered model region including efficiency
improvements due to drivetrain changes, time series for electric vehicle
availability and demand-side management constraints.
"""
import numpy as np

View File

@ -4,7 +4,7 @@
# SPDX-License-Identifier: MIT
"""
Cluster gas network.
Cluster gas transmission network to clustered model regions.
"""
import logging

View File

@ -3,6 +3,10 @@
#
# SPDX-License-Identifier: MIT
"""
Copy used configuration files and important scripts for archiving.
"""
from pathlib import Path
from shutil import copy

View File

@ -3,6 +3,11 @@
#
# SPDX-License-Identifier: MIT
"""
Create summary CSV files for all scenario runs including costs, capacities,
capacity factors, curtailment, energy balances, prices and other metrics.
"""
import logging
logger = logging.getLogger(__name__)

View File

@ -3,6 +3,12 @@
#
# SPDX-License-Identifier: MIT
"""
Creates plots for optimised network topologies, including electricity, gas and
hydrogen networks, and regional generation, storage and conversion capacities
built.
"""
import logging
logger = logging.getLogger(__name__)

View File

@ -3,6 +3,10 @@
#
# SPDX-License-Identifier: MIT
"""
Creates plots from summary CSV files.
"""
import logging
logger = logging.getLogger(__name__)

View File

@ -3,6 +3,11 @@
#
# SPDX-License-Identifier: MIT
"""
Adds all sector-coupling components to the network, including demand and supply
technologies for the buildings, transport and industry sectors.
"""
import logging
import os
import re

View File

@ -3,7 +3,7 @@
#
# SPDX-License-Identifier: MIT
"""
Retrieve and extract sector data bundle.
Retrieve and extract data bundle for sector-coupled studies.
"""
import logging

View File

@ -3,7 +3,7 @@
#
# SPDX-License-Identifier: MIT
"""
Solve network.
Solves sector-coupled network.
"""
import logging

View File

@ -17,7 +17,7 @@ scenario:
clusters:
- 5
sector_opts:
- 40H-T-H-B-I-A-solar+p3-dist1
- 24H-T-H-B-I-A-solar+p3-dist1
planning_horizons:
- 2030
- 2040

View File

@ -16,7 +16,7 @@ scenario:
clusters:
- 5
sector_opts:
- CO2L0-40H-T-H-B-I-A-solar+p3-dist1
- CO2L0-24H-T-H-B-I-A-solar+p3-dist1
planning_horizons:
- 2030

View File

@ -15,7 +15,7 @@ scenario:
clusters:
- 5
opts:
- Co2L-40H
- Co2L-24H
countries: ['BE']