2022-09-16 13:04:04 +00:00
|
|
|
# -*- coding: utf-8 -*-
|
2022-07-26 13:05:59 +00:00
|
|
|
# SPDX-FileCopyrightText: : 2017-2022 The PyPSA-Eur Authors
|
2020-05-29 07:50:55 +00:00
|
|
|
#
|
2021-09-14 14:37:41 +00:00
|
|
|
# SPDX-License-Identifier: MIT
|
2020-05-29 07:50:55 +00:00
|
|
|
|
2019-08-08 13:02:28 +00:00
|
|
|
"""
|
2019-08-11 20:34:18 +00:00
|
|
|
Solves linear optimal power flow for a network iteratively while updating
|
|
|
|
reactances.
|
2019-08-11 09:40:47 +00:00
|
|
|
|
|
|
|
Relevant Settings
|
|
|
|
-----------------
|
|
|
|
|
2019-08-11 11:17:36 +00:00
|
|
|
.. code:: yaml
|
|
|
|
|
|
|
|
solving:
|
|
|
|
tmpdir:
|
|
|
|
options:
|
|
|
|
formulation:
|
|
|
|
clip_p_max_pu:
|
|
|
|
load_shedding:
|
|
|
|
noisy_costs:
|
|
|
|
nhours:
|
|
|
|
min_iterations:
|
|
|
|
max_iterations:
|
2020-02-19 16:03:19 +00:00
|
|
|
skip_iterations:
|
2020-02-10 11:06:43 +00:00
|
|
|
track_iterations:
|
2019-08-11 11:17:36 +00:00
|
|
|
solver:
|
|
|
|
name:
|
|
|
|
|
2019-11-14 16:50:24 +00:00
|
|
|
.. seealso::
|
2019-08-13 08:03:46 +00:00
|
|
|
Documentation of the configuration file ``config.yaml`` at
|
|
|
|
:ref:`electricity_cf`, :ref:`solving_cf`, :ref:`plotting_cf`
|
|
|
|
|
2019-08-11 09:40:47 +00:00
|
|
|
Inputs
|
|
|
|
------
|
|
|
|
|
2020-12-03 18:50:53 +00:00
|
|
|
- ``networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc``: confer :ref:`prepare`
|
2019-08-11 20:34:18 +00:00
|
|
|
|
2019-08-11 09:40:47 +00:00
|
|
|
Outputs
|
|
|
|
-------
|
|
|
|
|
2020-12-03 18:50:53 +00:00
|
|
|
- ``results/networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc``: Solved PyPSA network including optimisation results
|
2019-08-11 20:34:18 +00:00
|
|
|
|
2019-08-14 13:36:46 +00:00
|
|
|
.. image:: ../img/results.png
|
2019-08-14 08:35:41 +00:00
|
|
|
:scale: 40 %
|
|
|
|
|
2019-08-11 09:40:47 +00:00
|
|
|
Description
|
|
|
|
-----------
|
|
|
|
|
2019-08-14 09:07:52 +00:00
|
|
|
Total annual system costs are minimised with PyPSA. The full formulation of the
|
|
|
|
linear optimal power flow (plus investment planning
|
|
|
|
is provided in the
|
|
|
|
`documentation of PyPSA <https://pypsa.readthedocs.io/en/latest/optimal_power_flow.html#linear-optimal-power-flow>`_.
|
2020-02-10 11:06:43 +00:00
|
|
|
The optimization is based on the ``pyomo=False`` setting in the :func:`network.lopf` and :func:`pypsa.linopf.ilopf` function.
|
|
|
|
Additionally, some extra constraints specified in :mod:`prepare_network` are added.
|
2019-08-14 09:07:52 +00:00
|
|
|
|
|
|
|
Solving the network in multiple iterations is motivated through the dependence of transmission line capacities and impedances.
|
|
|
|
As lines are expanded their electrical parameters change, which renders the optimisation bilinear even if the power flow
|
|
|
|
equations are linearized.
|
|
|
|
To retain the computational advantage of continuous linear programming, a sequential linear programming technique
|
|
|
|
is used, where in between iterations the line impedances are updated.
|
|
|
|
Details (and errors made through this heuristic) are discussed in the paper
|
|
|
|
|
|
|
|
- Fabian Neumann and Tom Brown. `Heuristics for Transmission Expansion Planning in Low-Carbon Energy System Models <https://arxiv.org/abs/1907.10548>`_), *16th International Conference on the European Energy Market*, 2019. `arXiv:1907.10548 <https://arxiv.org/abs/1907.10548>`_.
|
|
|
|
|
|
|
|
.. warning::
|
|
|
|
Capital costs of existing network components are not included in the objective function,
|
|
|
|
since for the optimisation problem they are just a constant term (no influence on optimal result).
|
|
|
|
|
|
|
|
Therefore, these capital costs are not included in ``network.objective``!
|
|
|
|
|
|
|
|
If you want to calculate the full total annual system costs add these to the objective value.
|
|
|
|
|
2019-08-11 20:34:18 +00:00
|
|
|
.. tip::
|
2019-08-13 15:52:33 +00:00
|
|
|
The rule :mod:`solve_all_networks` runs
|
2019-11-14 16:50:24 +00:00
|
|
|
for all ``scenario`` s in the configuration file
|
2019-08-13 15:52:33 +00:00
|
|
|
the rule :mod:`solve_network`.
|
2019-08-08 13:02:28 +00:00
|
|
|
"""
|
|
|
|
|
2017-12-18 19:31:27 +00:00
|
|
|
import logging
|
2022-01-24 18:48:26 +00:00
|
|
|
import re
|
|
|
|
from pathlib import Path
|
2019-11-28 07:22:52 +00:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
2018-02-10 16:19:46 +00:00
|
|
|
import pypsa
|
2022-04-07 12:39:34 +00:00
|
|
|
from _helpers import configure_logging
|
|
|
|
from pypsa.descriptors import get_switchable_as_dense as get_as_dense
|
2020-02-10 11:06:43 +00:00
|
|
|
from pypsa.linopf import (
|
2020-09-26 11:10:50 +00:00
|
|
|
define_constraints,
|
2022-04-07 12:39:34 +00:00
|
|
|
define_variables,
|
2022-09-16 13:04:04 +00:00
|
|
|
get_var,
|
|
|
|
ilopf,
|
2022-04-07 12:39:34 +00:00
|
|
|
join_exprs,
|
2022-09-16 13:04:04 +00:00
|
|
|
linexpr,
|
2022-04-07 12:39:34 +00:00
|
|
|
network_lopf,
|
2022-09-16 13:04:04 +00:00
|
|
|
)
|
2018-03-02 13:13:12 +00:00
|
|
|
from vresutils.benchmark import memory_logger
|
2018-02-01 11:42:56 +00:00
|
|
|
|
2020-12-03 18:50:53 +00:00
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2020-02-10 11:06:43 +00:00
|
|
|
def prepare_network(n, solve_opts):
|
2017-12-18 19:31:27 +00:00
|
|
|
if "clip_p_max_pu" in solve_opts:
|
|
|
|
for df in (n.generators_t.p_max_pu, n.storage_units_t.inflow):
|
|
|
|
df.where(df > solve_opts["clip_p_max_pu"], other=0.0, inplace=True)
|
|
|
|
|
2022-04-08 11:19:25 +00:00
|
|
|
load_shedding = solve_opts.get("load_shedding")
|
|
|
|
if load_shedding:
|
2022-03-03 22:08:29 +00:00
|
|
|
n.add("Carrier", "load", color="#dd2e23", nice_name="Load shedding")
|
2021-08-18 08:38:51 +00:00
|
|
|
buses_i = n.buses.query("carrier == 'AC'").index
|
2022-06-28 11:14:47 +00:00
|
|
|
if not np.isscalar(load_shedding):
|
|
|
|
load_shedding = 1e2 # Eur/kWh
|
2022-04-08 11:19:25 +00:00
|
|
|
# intersect between macroeconomic and surveybased
|
|
|
|
# willingness to pay
|
|
|
|
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full)
|
2021-08-18 08:38:51 +00:00
|
|
|
n.madd(
|
|
|
|
"Generator",
|
|
|
|
buses_i,
|
|
|
|
" load",
|
|
|
|
bus=buses_i,
|
2018-01-29 21:28:33 +00:00
|
|
|
carrier="load",
|
2018-10-22 21:20:51 +00:00
|
|
|
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
|
2022-04-08 11:19:25 +00:00
|
|
|
marginal_cost=load_shedding,
|
2018-10-22 21:20:51 +00:00
|
|
|
p_nom=1e9, # kW
|
2020-02-10 11:06:43 +00:00
|
|
|
)
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2017-12-18 19:31:27 +00:00
|
|
|
if solve_opts.get("noisy_costs"):
|
2019-02-03 12:50:05 +00:00
|
|
|
for t in n.iterate_components(n.one_port_components):
|
2017-12-18 19:31:27 +00:00
|
|
|
# if 'capital_cost' in t.df:
|
|
|
|
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
|
|
|
|
if "marginal_cost" in t.df:
|
2020-02-10 11:06:43 +00:00
|
|
|
t.df["marginal_cost"] += 1e-2 + 2e-3 * (
|
|
|
|
np.random.random(len(t.df)) - 0.5
|
|
|
|
)
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2018-03-09 14:41:46 +00:00
|
|
|
for t in n.iterate_components(["Line", "Link"]):
|
2020-02-10 11:06:43 +00:00
|
|
|
t.df["capital_cost"] += (
|
|
|
|
1e-1 + 2e-2 * (np.random.random(len(t.df)) - 0.5)
|
|
|
|
) * t.df["length"]
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2017-12-18 19:31:27 +00:00
|
|
|
if solve_opts.get("nhours"):
|
|
|
|
nhours = solve_opts["nhours"]
|
2018-03-09 14:41:46 +00:00
|
|
|
n.set_snapshots(n.snapshots[:nhours])
|
2021-08-06 13:43:12 +00:00
|
|
|
n.snapshot_weightings[:] = 8760.0 / nhours
|
2017-12-18 19:31:27 +00:00
|
|
|
|
|
|
|
return n
|
|
|
|
|
2018-02-10 16:19:46 +00:00
|
|
|
|
2020-02-10 11:06:43 +00:00
|
|
|
def add_CCL_constraints(n, config):
|
|
|
|
agg_p_nom_limits = config["electricity"].get("agg_p_nom_limits")
|
|
|
|
|
|
|
|
try:
|
|
|
|
agg_p_nom_minmax = pd.read_csv(agg_p_nom_limits, index_col=list(range(2)))
|
|
|
|
except IOError:
|
|
|
|
logger.exception(
|
|
|
|
"Need to specify the path to a .csv file containing "
|
|
|
|
"aggregate capacity limits per country in "
|
|
|
|
"config['electricity']['agg_p_nom_limit']."
|
|
|
|
)
|
|
|
|
logger.info(
|
|
|
|
"Adding per carrier generation capacity constraints for " "individual countries"
|
|
|
|
)
|
|
|
|
|
|
|
|
gen_country = n.generators.bus.map(n.buses.country)
|
|
|
|
# cc means country and carrier
|
|
|
|
p_nom_per_cc = (
|
|
|
|
pd.DataFrame(
|
|
|
|
{
|
|
|
|
"p_nom": linexpr((1, get_var(n, "Generator", "p_nom"))),
|
|
|
|
"country": gen_country,
|
|
|
|
"carrier": n.generators.carrier,
|
2022-09-16 13:04:04 +00:00
|
|
|
}
|
2020-02-10 11:06:43 +00:00
|
|
|
)
|
|
|
|
.dropna(subset=["p_nom"])
|
|
|
|
.groupby(["country", "carrier"])
|
|
|
|
.p_nom.apply(join_exprs)
|
2022-09-16 13:04:04 +00:00
|
|
|
)
|
2020-02-10 11:06:43 +00:00
|
|
|
minimum = agg_p_nom_minmax["min"].dropna()
|
|
|
|
if not minimum.empty:
|
|
|
|
minconstraint = define_constraints(
|
|
|
|
n, p_nom_per_cc[minimum.index], ">=", minimum, "agg_p_nom", "min"
|
|
|
|
)
|
|
|
|
maximum = agg_p_nom_minmax["max"].dropna()
|
|
|
|
if not maximum.empty:
|
|
|
|
maxconstraint = define_constraints(
|
|
|
|
n, p_nom_per_cc[maximum.index], "<=", maximum, "agg_p_nom", "max"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2020-09-26 11:10:50 +00:00
|
|
|
def add_EQ_constraints(n, o, scaling=1e-1):
|
|
|
|
float_regex = "[0-9]*\.?[0-9]+"
|
|
|
|
level = float(re.findall(float_regex, o)[0])
|
|
|
|
if o[-1] == "c":
|
|
|
|
ggrouper = n.generators.bus.map(n.buses.country)
|
|
|
|
lgrouper = n.loads.bus.map(n.buses.country)
|
|
|
|
sgrouper = n.storage_units.bus.map(n.buses.country)
|
|
|
|
else:
|
|
|
|
ggrouper = n.generators.bus
|
|
|
|
lgrouper = n.loads.bus
|
|
|
|
sgrouper = n.storage_units.bus
|
2021-08-06 13:43:12 +00:00
|
|
|
load = (
|
|
|
|
n.snapshot_weightings.generators
|
2020-09-26 11:10:50 +00:00
|
|
|
@ n.loads_t.p_set.groupby(lgrouper, axis=1).sum()
|
2022-09-16 13:04:04 +00:00
|
|
|
)
|
2021-08-06 13:43:12 +00:00
|
|
|
inflow = (
|
|
|
|
n.snapshot_weightings.stores
|
2020-09-26 11:10:50 +00:00
|
|
|
@ n.storage_units_t.inflow.groupby(sgrouper, axis=1).sum()
|
2022-09-16 13:04:04 +00:00
|
|
|
)
|
2020-09-26 11:10:50 +00:00
|
|
|
inflow = inflow.reindex(load.index).fillna(0.0)
|
|
|
|
rhs = scaling * (level * load - inflow)
|
2021-08-06 13:43:12 +00:00
|
|
|
lhs_gen = (
|
|
|
|
linexpr(
|
|
|
|
(n.snapshot_weightings.generators * scaling, get_var(n, "Generator", "p").T)
|
2020-09-26 11:10:50 +00:00
|
|
|
)
|
|
|
|
.T.groupby(ggrouper, axis=1)
|
|
|
|
.apply(join_exprs)
|
|
|
|
)
|
2021-08-06 13:43:12 +00:00
|
|
|
lhs_spill = (
|
|
|
|
linexpr(
|
2022-09-16 13:04:04 +00:00
|
|
|
(
|
2021-08-06 13:43:12 +00:00
|
|
|
-n.snapshot_weightings.stores * scaling,
|
2020-09-26 11:10:50 +00:00
|
|
|
get_var(n, "StorageUnit", "spill").T,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
.T.groupby(sgrouper, axis=1)
|
|
|
|
.apply(join_exprs)
|
2022-09-16 13:04:04 +00:00
|
|
|
)
|
2020-09-26 11:10:50 +00:00
|
|
|
lhs_spill = lhs_spill.reindex(lhs_gen.index).fillna("")
|
|
|
|
lhs = lhs_gen + lhs_spill
|
|
|
|
define_constraints(n, lhs, ">=", rhs, "equity", "min")
|
|
|
|
|
|
|
|
|
2020-02-10 11:06:43 +00:00
|
|
|
def add_BAU_constraints(n, config):
|
|
|
|
mincaps = pd.Series(config["electricity"]["BAU_mincapacities"])
|
|
|
|
lhs = (
|
|
|
|
linexpr((1, get_var(n, "Generator", "p_nom")))
|
|
|
|
.groupby(n.generators.carrier)
|
|
|
|
.apply(join_exprs)
|
2022-09-16 13:04:04 +00:00
|
|
|
)
|
2020-02-10 11:06:43 +00:00
|
|
|
define_constraints(n, lhs, ">=", mincaps[lhs.index], "Carrier", "bau_mincaps")
|
|
|
|
|
|
|
|
|
|
|
|
def add_SAFE_constraints(n, config):
|
|
|
|
peakdemand = (
|
|
|
|
1.0 + config["electricity"]["SAFE_reservemargin"]
|
|
|
|
) * n.loads_t.p_set.sum(axis=1).max()
|
|
|
|
conv_techs = config["plotting"]["conv_techs"]
|
|
|
|
exist_conv_caps = n.generators.query(
|
|
|
|
"~p_nom_extendable & carrier in @conv_techs"
|
|
|
|
).p_nom.sum()
|
|
|
|
ext_gens_i = n.generators.query("carrier in @conv_techs & p_nom_extendable").index
|
|
|
|
lhs = linexpr((1, get_var(n, "Generator", "p_nom")[ext_gens_i])).sum()
|
|
|
|
rhs = peakdemand - exist_conv_caps
|
|
|
|
define_constraints(n, lhs, ">=", rhs, "Safe", "mintotalcap")
|
|
|
|
|
|
|
|
|
2022-04-07 12:39:34 +00:00
|
|
|
def add_operational_reserve_margin_constraint(n, config):
|
|
|
|
reserve_config = config["electricity"]["operational_reserve"]
|
|
|
|
EPSILON_LOAD = reserve_config["epsilon_load"]
|
|
|
|
EPSILON_VRES = reserve_config["epsilon_vres"]
|
|
|
|
CONTINGENCY = reserve_config["contingency"]
|
|
|
|
|
|
|
|
# Reserve Variables
|
|
|
|
reserve = get_var(n, "Generator", "r")
|
2022-04-07 15:20:56 +00:00
|
|
|
lhs = linexpr((1, reserve)).sum(1)
|
2022-04-07 12:39:34 +00:00
|
|
|
|
|
|
|
# Share of extendable renewable capacities
|
|
|
|
ext_i = n.generators.query("p_nom_extendable").index
|
|
|
|
vres_i = n.generators_t.p_max_pu.columns
|
2022-04-07 15:20:56 +00:00
|
|
|
if not ext_i.empty and not vres_i.empty:
|
|
|
|
capacity_factor = n.generators_t.p_max_pu[vres_i.intersection(ext_i)]
|
|
|
|
renewable_capacity_variables = get_var(n, "Generator", "p_nom")[
|
|
|
|
vres_i.intersection(ext_i)
|
|
|
|
]
|
|
|
|
lhs += linexpr(
|
|
|
|
(-EPSILON_VRES * capacity_factor, renewable_capacity_variables)
|
|
|
|
).sum(1)
|
2022-04-07 12:39:34 +00:00
|
|
|
|
|
|
|
# Total demand at t
|
|
|
|
demand = n.loads_t.p.sum(1)
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2022-04-07 12:39:34 +00:00
|
|
|
# VRES potential of non extendable generators
|
|
|
|
capacity_factor = n.generators_t.p_max_pu[vres_i.difference(ext_i)]
|
|
|
|
renewable_capacity = n.generators.p_nom[vres_i.difference(ext_i)]
|
|
|
|
potential = (capacity_factor * renewable_capacity).sum(1)
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2022-04-07 12:39:34 +00:00
|
|
|
# Right-hand-side
|
|
|
|
rhs = EPSILON_LOAD * demand + EPSILON_VRES * potential + CONTINGENCY
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2022-04-07 12:39:34 +00:00
|
|
|
define_constraints(n, lhs, ">=", rhs, "Reserve margin")
|
|
|
|
|
|
|
|
|
|
|
|
def update_capacity_constraint(n):
|
|
|
|
gen_i = n.generators.index
|
|
|
|
ext_i = n.generators.query("p_nom_extendable").index
|
|
|
|
fix_i = n.generators.query("not p_nom_extendable").index
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2022-04-07 12:39:34 +00:00
|
|
|
dispatch = get_var(n, "Generator", "p")
|
|
|
|
reserve = get_var(n, "Generator", "r")
|
|
|
|
|
|
|
|
capacity_fixed = n.generators.p_nom[fix_i]
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2022-04-07 12:39:34 +00:00
|
|
|
p_max_pu = get_as_dense(n, "Generator", "p_max_pu")
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2022-04-07 12:39:34 +00:00
|
|
|
lhs = linexpr((1, dispatch), (1, reserve))
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2022-04-07 15:20:56 +00:00
|
|
|
if not ext_i.empty:
|
|
|
|
capacity_variable = get_var(n, "Generator", "p_nom")
|
|
|
|
lhs += linexpr((-p_max_pu[ext_i], capacity_variable)).reindex(
|
|
|
|
columns=gen_i, fill_value=""
|
|
|
|
)
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2022-04-07 12:39:34 +00:00
|
|
|
rhs = (p_max_pu[fix_i] * capacity_fixed).reindex(columns=gen_i, fill_value=0)
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2022-04-07 12:39:34 +00:00
|
|
|
define_constraints(n, lhs, "<=", rhs, "Generators", "updated_capacity_constraint")
|
|
|
|
|
|
|
|
|
|
|
|
def add_operational_reserve_margin(n, sns, config):
|
2022-06-23 14:04:49 +00:00
|
|
|
"""
|
|
|
|
Build reserve margin constraints based on the formulation given in
|
|
|
|
https://genxproject.github.io/GenX/dev/core/#Reserves.
|
|
|
|
"""
|
2022-04-07 12:39:34 +00:00
|
|
|
|
|
|
|
define_variables(n, 0, np.inf, "Generator", "r", axes=[sns, n.generators.index])
|
|
|
|
|
|
|
|
add_operational_reserve_margin_constraint(n, config)
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2022-04-07 12:39:34 +00:00
|
|
|
update_capacity_constraint(n)
|
|
|
|
|
|
|
|
|
2020-02-10 11:06:43 +00:00
|
|
|
def add_battery_constraints(n):
|
|
|
|
nodes = n.buses.index[n.buses.carrier == "battery"]
|
|
|
|
if nodes.empty or ("Link", "p_nom") not in n.variables.index:
|
|
|
|
return
|
|
|
|
link_p_nom = get_var(n, "Link", "p_nom")
|
|
|
|
lhs = linexpr(
|
|
|
|
(1, link_p_nom[nodes + " charger"]),
|
|
|
|
(
|
|
|
|
-n.links.loc[nodes + " discharger", "efficiency"].values,
|
|
|
|
link_p_nom[nodes + " discharger"].values,
|
2022-09-16 13:04:04 +00:00
|
|
|
),
|
2020-02-10 11:06:43 +00:00
|
|
|
)
|
|
|
|
define_constraints(n, lhs, "=", 0, "Link", "charger_ratio")
|
|
|
|
|
|
|
|
|
|
|
|
def extra_functionality(n, snapshots):
|
|
|
|
"""
|
|
|
|
Collects supplementary constraints which will be passed to
|
|
|
|
``pypsa.linopf.network_lopf``.
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2020-02-10 11:06:43 +00:00
|
|
|
If you want to enforce additional custom constraints, this is a good
|
|
|
|
location to add them. The arguments ``opts`` and
|
|
|
|
``snakemake.config`` are expected to be attached to the network.
|
|
|
|
"""
|
|
|
|
opts = n.opts
|
|
|
|
config = n.config
|
|
|
|
if "BAU" in opts and n.generators.p_nom_extendable.any():
|
|
|
|
add_BAU_constraints(n, config)
|
|
|
|
if "SAFE" in opts and n.generators.p_nom_extendable.any():
|
|
|
|
add_SAFE_constraints(n, config)
|
|
|
|
if "CCL" in opts and n.generators.p_nom_extendable.any():
|
|
|
|
add_CCL_constraints(n, config)
|
2022-04-07 13:22:10 +00:00
|
|
|
reserve = config["electricity"].get("operational_reserve", {})
|
|
|
|
if reserve.get("activate"):
|
2022-04-07 12:39:34 +00:00
|
|
|
add_operational_reserve_margin(n, snapshots, config)
|
2020-09-26 11:10:50 +00:00
|
|
|
for o in opts:
|
|
|
|
if "EQ" in o:
|
|
|
|
add_EQ_constraints(n, o)
|
2020-02-10 11:06:43 +00:00
|
|
|
add_battery_constraints(n)
|
|
|
|
|
|
|
|
|
2021-05-25 13:55:23 +00:00
|
|
|
def solve_network(n, config, opts="", **kwargs):
|
2020-02-10 11:06:43 +00:00
|
|
|
solver_options = config["solving"]["solver"].copy()
|
|
|
|
solver_name = solver_options.pop("name")
|
2020-12-03 18:50:53 +00:00
|
|
|
cf_solving = config["solving"]["options"]
|
|
|
|
track_iterations = cf_solving.get("track_iterations", False)
|
|
|
|
min_iterations = cf_solving.get("min_iterations", 4)
|
|
|
|
max_iterations = cf_solving.get("max_iterations", 6)
|
2020-02-10 15:47:11 +00:00
|
|
|
|
2020-02-10 11:06:43 +00:00
|
|
|
# add to network for extra_functionality
|
|
|
|
n.config = config
|
|
|
|
n.opts = opts
|
2020-02-10 15:47:11 +00:00
|
|
|
|
2022-03-24 13:30:28 +00:00
|
|
|
skip_iterations = cf_solving.get("skip_iterations", False)
|
|
|
|
if not n.lines.s_nom_extendable.any():
|
|
|
|
skip_iterations = True
|
|
|
|
logger.info("No expandable lines found. Skipping iterative solving.")
|
|
|
|
|
|
|
|
if skip_iterations:
|
2020-02-10 11:06:43 +00:00
|
|
|
network_lopf(
|
|
|
|
n,
|
|
|
|
solver_name=solver_name,
|
|
|
|
solver_options=solver_options,
|
|
|
|
extra_functionality=extra_functionality,
|
|
|
|
**kwargs
|
|
|
|
)
|
2019-06-18 11:24:29 +00:00
|
|
|
else:
|
2020-02-10 11:06:43 +00:00
|
|
|
ilopf(
|
|
|
|
n,
|
|
|
|
solver_name=solver_name,
|
|
|
|
solver_options=solver_options,
|
|
|
|
track_iterations=track_iterations,
|
2020-02-25 21:00:36 +00:00
|
|
|
min_iterations=min_iterations,
|
|
|
|
max_iterations=max_iterations,
|
2020-02-10 11:06:43 +00:00
|
|
|
extra_functionality=extra_functionality,
|
|
|
|
**kwargs
|
|
|
|
)
|
2017-12-18 19:31:27 +00:00
|
|
|
return n
|
|
|
|
|
2020-02-10 11:06:43 +00:00
|
|
|
|
2017-12-18 19:31:27 +00:00
|
|
|
if __name__ == "__main__":
|
2018-01-30 22:09:06 +00:00
|
|
|
if "snakemake" not in globals():
|
2019-12-09 20:29:15 +00:00
|
|
|
from _helpers import mock_snakemake
|
2022-09-16 13:04:04 +00:00
|
|
|
|
2022-06-30 06:39:03 +00:00
|
|
|
snakemake = mock_snakemake(
|
2020-02-10 11:06:43 +00:00
|
|
|
"solve_network", simpl="", clusters="5", ll="copt", opts="Co2L-BAU-CCL-24H"
|
|
|
|
)
|
2019-11-28 07:22:52 +00:00
|
|
|
configure_logging(snakemake)
|
|
|
|
|
2022-01-24 18:48:26 +00:00
|
|
|
tmpdir = snakemake.config["solving"].get("tmpdir")
|
2018-02-01 11:42:56 +00:00
|
|
|
if tmpdir is not None:
|
2020-02-10 11:06:43 +00:00
|
|
|
Path(tmpdir).mkdir(parents=True, exist_ok=True)
|
2022-01-24 18:48:26 +00:00
|
|
|
opts = snakemake.wildcards.opts.split("-")
|
|
|
|
solve_opts = snakemake.config["solving"]["options"]
|
2018-02-01 11:42:56 +00:00
|
|
|
|
2022-01-24 18:48:26 +00:00
|
|
|
fn = getattr(snakemake.log, "memory", None)
|
2020-12-03 18:50:53 +00:00
|
|
|
with memory_logger(filename=fn, interval=30.0) as mem:
|
2022-01-24 18:48:26 +00:00
|
|
|
n = pypsa.Network(snakemake.input[0])
|
2020-02-10 11:06:43 +00:00
|
|
|
n = prepare_network(n, solve_opts)
|
2022-01-24 18:48:26 +00:00
|
|
|
n = solve_network(
|
|
|
|
n,
|
|
|
|
snakemake.config,
|
|
|
|
opts,
|
|
|
|
solver_dir=tmpdir,
|
|
|
|
solver_logfile=snakemake.log.solver,
|
|
|
|
)
|
2022-06-30 06:39:03 +00:00
|
|
|
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
2022-01-24 18:48:26 +00:00
|
|
|
n.export_to_netcdf(snakemake.output[0])
|
2017-12-18 19:31:27 +00:00
|
|
|
|
2018-03-02 13:13:12 +00:00
|
|
|
logger.info("Maximum memory usage: {}".format(mem.mem_usage))
|