pypsa-eur/scripts/solve_network.py

271 lines
12 KiB
Python
Raw Normal View History

import numpy as np
import pandas as pd
import logging
logger = logging.getLogger(__name__)
import gc
import os
import pypsa
from pypsa.descriptors import free_output_series_dataframes
# Suppress logging of the slack bus choices
pypsa.pf.logger.setLevel(logging.WARNING)
from vresutils.benchmark import memory_logger
2018-02-01 11:42:56 +00:00
def patch_pyomo_tmpdir(tmpdir):
# PYOMO should write its lp files into tmp here
import os
if not os.path.isdir(tmpdir):
os.mkdir(tmpdir)
from pyutilib.services import TempfileManager
TempfileManager.tempdir = tmpdir
2018-02-01 11:42:56 +00:00
def prepare_network(n, solve_opts=None):
if solve_opts is None:
solve_opts = snakemake.config['solving']['options']
if 'clip_p_max_pu' in solve_opts:
for df in (n.generators_t.p_max_pu, n.storage_units_t.inflow):
df.where(df>solve_opts['clip_p_max_pu'], other=0., inplace=True)
if solve_opts.get('load_shedding'):
n.add("Carrier", "Load")
n.madd("Generator", n.buses.index, " load",
bus=n.buses.index,
carrier='load',
marginal_cost=1.0e5,
# intersect between macroeconomic and surveybased
# willingness to pay
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full
p_nom=1e6)
if solve_opts.get('noisy_costs'):
for t in n.iterate_components():
#if 'capital_cost' in t.df:
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
if 'marginal_cost' in t.df:
t.df['marginal_cost'] += 1e-2 + 2e-3*(np.random.random(len(t.df)) - 0.5)
if solve_opts.get('nhours'):
nhours = solve_opts['nhours']
n = n[:solve_opts['nhours'], :]
n.snapshot_weightings[:] = 8760./nhours
return n
2018-02-01 11:42:56 +00:00
def add_opts_constraints(n, opts=None):
if opts is None:
opts = snakemake.wildcards.opts.split('-')
2018-02-01 11:42:56 +00:00
if 'BAU' in opts:
mincaps = snakemake.config['electricity']['BAU_mincapacities']
def bau_mincapacities_rule(model, carrier):
gens = n.generators.index[n.generators.p_nom_extendable & (n.generators.carrier == carrier)]
return sum(model.generator_p_nom[gen] for gen in gens) >= mincaps[carrier]
n.model.bau_mincapacities = pypsa.opt.Constraint(list(mincaps), rule=bau_mincapacities_rule)
if 'SAFE' in opts:
peakdemand = (1. + snakemake.config['electricity']['SAFE_reservemargin']) * n.loads_t.p_set.sum(axis=1).max()
conv_techs = snakemake.config['plotting']['conv_techs']
exist_conv_caps = n.generators.loc[n.generators.carrier.isin(conv_techs) & ~n.generators.p_nom_extendable, 'p_nom'].sum()
ext_gens_i = n.generators.index[n.generators.carrier.isin(conv_techs) & n.generators.p_nom_extendable]
n.model.safe_peakdemand = pypsa.opt.Constraint(expr=sum(n.model.generator_p_nom[gen] for gen in ext_gens_i) >= peakdemand - exist_conv_caps)
def add_lv_constraint(n):
line_volume = getattr(n, 'line_volume_limit', None)
2018-02-01 11:42:56 +00:00
if line_volume is not None and not np.isinf(line_volume):
n.model.line_volume_constraint = pypsa.opt.Constraint(
expr=((sum(n.model.passive_branch_s_nom["Line",line]*n.lines.at[line,"length"]
for line in n.lines.index[n.lines.s_nom_extendable]) +
sum(n.model.link_p_nom[link]*n.links.at[link,"length"]
for link in n.links.index[(n.links.carrier=='DC') &
n.links.p_nom_extendable]))
<= line_volume)
)
2018-02-01 11:42:56 +00:00
def add_eps_storage_constraint(n):
if not hasattr(n, 'epsilon'):
n.epsilon = 1e-5
fix_sus_i = n.storage_units.index[~ n.storage_units.p_nom_extendable]
n.model.objective.expr += sum(n.epsilon * n.model.state_of_charge[su, n.snapshots[0]] for su in fix_sus_i)
def fix_branches(n, lines_s_nom=None, links_p_nom=None):
if lines_s_nom is not None and len(lines_s_nom) > 0:
for l, s_nom in lines_s_nom.iteritems():
n.model.passive_branch_s_nom["Line", l].fix(s_nom)
if isinstance(n.opt, pypsa.opf.PersistentSolver):
n.opt.update_var(n.model.passive_branch_s_nom)
if links_p_nom is not None and len(links_p_nom) > 0:
for l, p_nom in links_p_nom.iteritems():
n.model.link_p_nom[l].fix(p_nom)
if isinstance(n.opt, pypsa.opf.PersistentSolver):
n.opt.update_var(n.model.link_p_nom)
def solve_network(n, config=None, gurobi_log=None):
if config is None:
config = snakemake.config['solving']
solve_opts = config['options']
solver_options = config['solver'].copy()
if gurobi_log is None:
gurobi_log = snakemake.log.gurobi
solver_options['logfile'] = gurobi_log
solver_name = solver_options.pop('name')
2018-02-01 11:42:56 +00:00
def run_lopf(n, allow_warning_status=False, fix_zero_lines=False, fix_ext_lines=False):
free_output_series_dataframes(n)
if not hasattr(n, 'opt') or not isinstance(n.opt, pypsa.opf.PersistentSolver):
pypsa.opf.network_lopf_build_model(n, formulation=solve_opts['formulation'])
add_opts_constraints(n)
add_lv_constraint(n)
add_eps_storage_constraint(n)
pypsa.opf.network_lopf_prepare_solver(n, solver_name=solver_name)
if fix_zero_lines:
fix_lines_b = (n.lines.s_nom_opt == 0.) & n.lines.s_nom_extendable
fix_links_b = (n.links.p_nom_opt == 0.) & n.links.p_nom_extendable
2018-02-01 11:42:56 +00:00
fix_branches(n,
lines_s_nom=pd.Series(0., n.lines.index[fix_lines_b]),
links_p_nom=pd.Series(0., n.links.index[fix_links_b]))
2018-02-01 11:42:56 +00:00
if fix_ext_lines:
fix_branches(n,
lines_s_nom=n.lines.loc[n.lines.s_nom_extendable, 's_nom_opt'],
links_p_nom=n.links.loc[n.links.p_nom_extendable, 'p_nom_opt'])
# Firing up solve will increase memory consumption tremendously, so
# make sure we freed everything we can
gc.collect()
status, termination_condition = \
pypsa.opf.network_lopf_solve(n,
solver_options=solver_options,
2018-02-01 11:42:56 +00:00
formulation=solve_opts['formulation'],
#free_memory={'pypsa'}
)
assert status == "ok" or allow_warning_status and status == 'warning', \
("network_lopf did abort with status={} "
"and termination_condition={}"
.format(status, termination_condition))
return status, termination_condition
lines_ext_b = n.lines.s_nom_extendable
if lines_ext_b.any():
# puh: ok, we need to iterate, since there is a relation
# between s/p_nom and r, x for branches.
msq_threshold = 0.01
lines = pd.DataFrame(n.lines[['r', 'x', 'type', 'num_parallel']])
lines['s_nom'] = (
np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) *
2018-02-01 11:42:56 +00:00
n.lines.bus0.map(n.buses.v_nom)
).where(n.lines.type != '', n.lines['s_nom'])
lines_ext_typed_b = (n.lines.type != '') & lines_ext_b
lines_ext_untyped_b = (n.lines.type == '') & lines_ext_b
def update_line_parameters(n, zero_lines_below=10, fix_zero_lines=False):
if zero_lines_below > 0:
n.lines.loc[n.lines.s_nom_opt < zero_lines_below, 's_nom_opt'] = 0.
n.links.loc[n.links.p_nom_opt < zero_lines_below, 'p_nom_opt'] = 0.
if lines_ext_untyped_b.any():
for attr in ('r', 'x'):
n.lines.loc[lines_ext_untyped_b, attr] = (
lines[attr].multiply(lines['s_nom']/n.lines['s_nom_opt'])
)
if lines_ext_typed_b.any():
n.lines.loc[lines_ext_typed_b, 'num_parallel'] = (
n.lines['s_nom_opt']/lines['s_nom']
)
logger.debug("lines.num_parallel={}".format(n.lines.loc[lines_ext_typed_b, 'num_parallel']))
if isinstance(n.opt, pypsa.opf.PersistentSolver):
n.calculate_dependent_values()
assert solve_opts['formulation'] == 'kirchhoff', \
"Updating persistent solvers has only been implemented for the kirchhoff formulation for now"
n.opt.remove_constraint(n.model.cycle_constraints)
del n.model.cycle_constraints_index
del n.model.cycle_constraints_index_0
del n.model.cycle_constraints_index_1
del n.model.cycle_constraints
pypsa.opf.define_passive_branch_flows_with_kirchhoff(n, n.snapshots, skip_vars=True)
n.opt.add_constraint(n.model.cycle_constraints)
iteration = 1
2018-02-01 11:42:56 +00:00
lines['s_nom_opt'] = lines['s_nom'] * n.lines['num_parallel'].where(n.lines.type != '', 1.)
status, termination_condition = run_lopf(n, allow_warning_status=True)
def msq_diff(n):
lines_err = np.sqrt(((n.lines['s_nom_opt'] - lines['s_nom_opt'])**2).mean())/lines['s_nom_opt'].mean()
logger.info("Mean square difference after iteration {} is {}".format(iteration, lines_err))
return lines_err
min_iterations = solve_opts.get('min_iterations', 2)
max_iterations = solve_opts.get('max_iterations', 999)
while msq_diff(n) > msq_threshold or iteration < min_iterations:
if iteration >= max_iterations:
logger.info("Iteration {} beyond max_iterations {}. Stopping ...".format(iteration, max_iterations))
break
update_line_parameters(n)
lines['s_nom_opt'] = n.lines['s_nom_opt']
iteration += 1
status, termination_condition = run_lopf(n, allow_warning_status=True)
update_line_parameters(n, zero_lines_below=500)
2018-02-01 11:42:56 +00:00
logger.info("Starting last run with fixed extendable lines")
status, termination_condition = run_lopf(n, fix_ext_lines=True)
# Drop zero lines from network
zero_lines_i = n.lines.index[(n.lines.s_nom_opt == 0.) & n.lines.s_nom_extendable]
if len(zero_lines_i):
2018-01-30 22:09:06 +00:00
n.mremove("Line", zero_lines_i)
zero_links_i = n.links.index[(n.links.p_nom_opt == 0.) & n.links.p_nom_extendable]
if len(zero_links_i):
2018-01-30 22:09:06 +00:00
n.mremove("Link", zero_links_i)
return n
if __name__ == "__main__":
2018-01-30 22:09:06 +00:00
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake, Dict
snakemake = MockSnakemake(
wildcards=dict(network='elec', simpl='', clusters='45', lv='1.0', opts='Co2L-3H'),
input=["networks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}.nc"],
2018-01-30 22:09:06 +00:00
output=["results/networks/s{simpl}_{clusters}_lv{lv}_{opts}.nc"],
log=dict(gurobi="logs/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_gurobi.log",
python="logs/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_python.log")
2018-01-30 22:09:06 +00:00
)
2018-02-01 11:42:56 +00:00
tmpdir = snakemake.config['solving'].get('tmpdir')
if tmpdir is not None:
patch_pyomo_tmpdir(tmpdir)
logging.basicConfig(filename=snakemake.log.python,
level=snakemake.config['logging_level'])
with memory_logger(filename=getattr(snakemake.log, 'memory', None), interval=30.) as mem:
n = pypsa.Network(snakemake.input[0])
n = prepare_network(n)
n = solve_network(n)
n.export_to_netcdf(snakemake.output[0])
logger.info("Maximum memory usage: {}".format(mem.mem_usage))