pypsa-eur/scripts/solve_network.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

443 lines
15 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
2023-02-16 10:50:55 +00:00
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
#
2021-09-14 14:37:41 +00:00
# SPDX-License-Identifier: MIT
"""
2019-08-11 20:34:18 +00:00
Solves linear optimal power flow for a network iteratively while updating
reactances.
2019-08-11 09:40:47 +00:00
Relevant Settings
-----------------
2019-08-11 11:17:36 +00:00
.. code:: yaml
solving:
tmpdir:
options:
formulation:
clip_p_max_pu:
load_shedding:
noisy_costs:
nhours:
min_iterations:
max_iterations:
skip_iterations:
track_iterations:
2019-08-11 11:17:36 +00:00
solver:
name:
2019-11-14 16:50:24 +00:00
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`electricity_cf`, :ref:`solving_cf`, :ref:`plotting_cf`
2019-08-11 09:40:47 +00:00
Inputs
------
- ``networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc``: confer :ref:`prepare`
2019-08-11 20:34:18 +00:00
2019-08-11 09:40:47 +00:00
Outputs
-------
- ``results/networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc``: Solved PyPSA network including optimisation results
2019-08-11 20:34:18 +00:00
.. image:: ../img/results.png
2019-08-14 08:35:41 +00:00
:scale: 40 %
2019-08-11 09:40:47 +00:00
Description
-----------
2019-08-14 09:07:52 +00:00
Total annual system costs are minimised with PyPSA. The full formulation of the
linear optimal power flow (plus investment planning
is provided in the
`documentation of PyPSA <https://pypsa.readthedocs.io/en/latest/optimal_power_flow.html#linear-optimal-power-flow>`_.
The optimization is based on the ``pyomo=False`` setting in the :func:`network.lopf` and :func:`pypsa.linopf.ilopf` function.
Additionally, some extra constraints specified in :mod:`prepare_network` are added.
2019-08-14 09:07:52 +00:00
Solving the network in multiple iterations is motivated through the dependence of transmission line capacities and impedances.
As lines are expanded their electrical parameters change, which renders the optimisation bilinear even if the power flow
equations are linearized.
To retain the computational advantage of continuous linear programming, a sequential linear programming technique
is used, where in between iterations the line impedances are updated.
Details (and errors made through this heuristic) are discussed in the paper
- Fabian Neumann and Tom Brown. `Heuristics for Transmission Expansion Planning in Low-Carbon Energy System Models <https://arxiv.org/abs/1907.10548>`_), *16th International Conference on the European Energy Market*, 2019. `arXiv:1907.10548 <https://arxiv.org/abs/1907.10548>`_.
.. warning::
Capital costs of existing network components are not included in the objective function,
since for the optimisation problem they are just a constant term (no influence on optimal result).
Therefore, these capital costs are not included in ``network.objective``!
If you want to calculate the full total annual system costs add these to the objective value.
2019-08-11 20:34:18 +00:00
.. tip::
The rule :mod:`solve_all_networks` runs
2019-11-14 16:50:24 +00:00
for all ``scenario`` s in the configuration file
the rule :mod:`solve_network`.
"""
import logging
import re
from pathlib import Path
Add logging to logfiles to all snakemake workflow scripts. (#102) * Add logging to logfiles to all snakemake workflow scripts. * Fix missing quotation marks in Snakefile. * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * doc: fix _ec_ filenames in docs * Allow logging message format to be specified in config.yaml. * Add logging for Snakemake rule 'retrieve_databundle '. * Add limited logging to STDERR only for retrieve_*.py scripts. * Import progressbar module only on demand. * Fix logging to file and enable concurrent printing to STDERR for most scripts. * Add new 'logging_format' option to Travis CI test config.yaml. * Add missing parenthesis (bug fix) and cross-os compatible paths. * Fix typos in messages. * Use correct log files for logging (bug fix). * doc: fix line references * config: logging_format in all configs * doc: add doc for logging_format * environment: update to powerplantmatching 0.4.3 * doc: update line references for tutorial.rst * Change logging configuration scheme for config.yaml. * Add helper function for doing basic logging configuration. * Add logpath for prepare_links_p_nom rule. * Outsource basic logging configuration for all scripts to _helper submodule. * Update documentation for changed config.yaml structure. Instead of 'logging_level' and 'logging_format', now 'logging' with subcategories is used. * _helpers: Change configure_logging signature.
2019-11-28 07:22:52 +00:00
import numpy as np
import pandas as pd
import pypsa
from _helpers import configure_logging
from pypsa.descriptors import get_switchable_as_dense as get_as_dense
from pypsa.linopf import (
define_constraints,
define_variables,
get_var,
ilopf,
join_exprs,
linexpr,
network_lopf,
)
from vresutils.benchmark import memory_logger
2018-02-01 11:42:56 +00:00
logger = logging.getLogger(__name__)
def prepare_network(n, solve_opts):
if "clip_p_max_pu" in solve_opts:
for df in (n.generators_t.p_max_pu, n.storage_units_t.inflow):
df.where(df > solve_opts["clip_p_max_pu"], other=0.0, inplace=True)
load_shedding = solve_opts.get("load_shedding")
if load_shedding:
2022-03-03 22:08:29 +00:00
n.add("Carrier", "load", color="#dd2e23", nice_name="Load shedding")
buses_i = n.buses.query("carrier == 'AC'").index
if not np.isscalar(load_shedding):
load_shedding = 1e2 # Eur/kWh
# intersect between macroeconomic and surveybased
# willingness to pay
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full)
n.madd(
"Generator",
buses_i,
" load",
bus=buses_i,
carrier="load",
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
marginal_cost=load_shedding,
p_nom=1e9, # kW
)
if solve_opts.get("noisy_costs"):
for t in n.iterate_components(n.one_port_components):
# if 'capital_cost' in t.df:
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
if "marginal_cost" in t.df:
t.df["marginal_cost"] += 1e-2 + 2e-3 * (
np.random.random(len(t.df)) - 0.5
)
for t in n.iterate_components(["Line", "Link"]):
t.df["capital_cost"] += (
1e-1 + 2e-2 * (np.random.random(len(t.df)) - 0.5)
) * t.df["length"]
if solve_opts.get("nhours"):
nhours = solve_opts["nhours"]
n.set_snapshots(n.snapshots[:nhours])
n.snapshot_weightings[:] = 8760.0 / nhours
return n
def add_CCL_constraints(n, config):
agg_p_nom_limits = config["electricity"].get("agg_p_nom_limits")
try:
agg_p_nom_minmax = pd.read_csv(agg_p_nom_limits, index_col=list(range(2)))
except IOError:
logger.exception(
"Need to specify the path to a .csv file containing "
"aggregate capacity limits per country in "
"config['electricity']['agg_p_nom_limit']."
)
logger.info(
"Adding per carrier generation capacity constraints for " "individual countries"
)
gen_country = n.generators.bus.map(n.buses.country)
# cc means country and carrier
p_nom_per_cc = (
pd.DataFrame(
{
"p_nom": linexpr((1, get_var(n, "Generator", "p_nom"))),
"country": gen_country,
"carrier": n.generators.carrier,
}
)
.dropna(subset=["p_nom"])
.groupby(["country", "carrier"])
.p_nom.apply(join_exprs)
)
minimum = agg_p_nom_minmax["min"].dropna()
if not minimum.empty:
minconstraint = define_constraints(
n, p_nom_per_cc[minimum.index], ">=", minimum, "agg_p_nom", "min"
)
maximum = agg_p_nom_minmax["max"].dropna()
if not maximum.empty:
maxconstraint = define_constraints(
n, p_nom_per_cc[maximum.index], "<=", maximum, "agg_p_nom", "max"
)
def add_EQ_constraints(n, o, scaling=1e-1):
float_regex = "[0-9]*\.?[0-9]+"
level = float(re.findall(float_regex, o)[0])
if o[-1] == "c":
ggrouper = n.generators.bus.map(n.buses.country)
lgrouper = n.loads.bus.map(n.buses.country)
sgrouper = n.storage_units.bus.map(n.buses.country)
else:
ggrouper = n.generators.bus
lgrouper = n.loads.bus
sgrouper = n.storage_units.bus
load = (
n.snapshot_weightings.generators
@ n.loads_t.p_set.groupby(lgrouper, axis=1).sum()
)
inflow = (
n.snapshot_weightings.stores
@ n.storage_units_t.inflow.groupby(sgrouper, axis=1).sum()
)
inflow = inflow.reindex(load.index).fillna(0.0)
rhs = scaling * (level * load - inflow)
lhs_gen = (
linexpr(
(n.snapshot_weightings.generators * scaling, get_var(n, "Generator", "p").T)
)
.T.groupby(ggrouper, axis=1)
.apply(join_exprs)
)
if not n.storage_units_t.inflow.empty:
lhs_spill = (
linexpr(
(
-n.snapshot_weightings.stores * scaling,
get_var(n, "StorageUnit", "spill").T,
)
)
.T.groupby(sgrouper, axis=1)
.apply(join_exprs)
)
lhs_spill = lhs_spill.reindex(lhs_gen.index).fillna("")
lhs = lhs_gen + lhs_spill
else:
lhs = lhs_gen
define_constraints(n, lhs, ">=", rhs, "equity", "min")
def add_BAU_constraints(n, config):
mincaps = pd.Series(config["electricity"]["BAU_mincapacities"])
lhs = (
linexpr((1, get_var(n, "Generator", "p_nom")))
.groupby(n.generators.carrier)
.apply(join_exprs)
)
define_constraints(n, lhs, ">=", mincaps[lhs.index], "Carrier", "bau_mincaps")
def add_SAFE_constraints(n, config):
peakdemand = (
1.0 + config["electricity"]["SAFE_reservemargin"]
) * n.loads_t.p_set.sum(axis=1).max()
conv_techs = config["plotting"]["conv_techs"]
exist_conv_caps = n.generators.query(
"~p_nom_extendable & carrier in @conv_techs"
).p_nom.sum()
ext_gens_i = n.generators.query("carrier in @conv_techs & p_nom_extendable").index
lhs = linexpr((1, get_var(n, "Generator", "p_nom")[ext_gens_i])).sum()
rhs = peakdemand - exist_conv_caps
define_constraints(n, lhs, ">=", rhs, "Safe", "mintotalcap")
def add_operational_reserve_margin_constraint(n, config):
reserve_config = config["electricity"]["operational_reserve"]
EPSILON_LOAD = reserve_config["epsilon_load"]
EPSILON_VRES = reserve_config["epsilon_vres"]
CONTINGENCY = reserve_config["contingency"]
# Reserve Variables
reserve = get_var(n, "Generator", "r")
lhs = linexpr((1, reserve)).sum(1)
# Share of extendable renewable capacities
ext_i = n.generators.query("p_nom_extendable").index
vres_i = n.generators_t.p_max_pu.columns
if not ext_i.empty and not vres_i.empty:
capacity_factor = n.generators_t.p_max_pu[vres_i.intersection(ext_i)]
renewable_capacity_variables = get_var(n, "Generator", "p_nom")[
vres_i.intersection(ext_i)
]
lhs += linexpr(
(-EPSILON_VRES * capacity_factor, renewable_capacity_variables)
).sum(1)
# Total demand at t
demand = n.loads_t.p_set.sum(1)
# VRES potential of non extendable generators
capacity_factor = n.generators_t.p_max_pu[vres_i.difference(ext_i)]
renewable_capacity = n.generators.p_nom[vres_i.difference(ext_i)]
potential = (capacity_factor * renewable_capacity).sum(1)
# Right-hand-side
rhs = EPSILON_LOAD * demand + EPSILON_VRES * potential + CONTINGENCY
define_constraints(n, lhs, ">=", rhs, "Reserve margin")
def update_capacity_constraint(n):
gen_i = n.generators.index
ext_i = n.generators.query("p_nom_extendable").index
fix_i = n.generators.query("not p_nom_extendable").index
dispatch = get_var(n, "Generator", "p")
reserve = get_var(n, "Generator", "r")
capacity_fixed = n.generators.p_nom[fix_i]
p_max_pu = get_as_dense(n, "Generator", "p_max_pu")
lhs = linexpr((1, dispatch), (1, reserve))
if not ext_i.empty:
capacity_variable = get_var(n, "Generator", "p_nom")
lhs += linexpr((-p_max_pu[ext_i], capacity_variable)).reindex(
columns=gen_i, fill_value=""
)
rhs = (p_max_pu[fix_i] * capacity_fixed).reindex(columns=gen_i, fill_value=0)
define_constraints(n, lhs, "<=", rhs, "Generators", "updated_capacity_constraint")
def add_operational_reserve_margin(n, sns, config):
2022-06-23 14:04:49 +00:00
"""
Build reserve margin constraints based on the formulation given in
https://genxproject.github.io/GenX/dev/core/#Reserves.
"""
define_variables(n, 0, np.inf, "Generator", "r", axes=[sns, n.generators.index])
add_operational_reserve_margin_constraint(n, config)
update_capacity_constraint(n)
def add_battery_constraints(n):
nodes = n.buses.index[n.buses.carrier == "battery"]
if nodes.empty or ("Link", "p_nom") not in n.variables.index:
return
link_p_nom = get_var(n, "Link", "p_nom")
lhs = linexpr(
(1, link_p_nom[nodes + " charger"]),
(
-n.links.loc[nodes + " discharger", "efficiency"].values,
link_p_nom[nodes + " discharger"].values,
),
)
define_constraints(n, lhs, "=", 0, "Link", "charger_ratio")
def extra_functionality(n, snapshots):
"""
Collects supplementary constraints which will be passed to
``pypsa.linopf.network_lopf``.
If you want to enforce additional custom constraints, this is a good
location to add them. The arguments ``opts`` and
``snakemake.config`` are expected to be attached to the network.
"""
opts = n.opts
config = n.config
if "BAU" in opts and n.generators.p_nom_extendable.any():
add_BAU_constraints(n, config)
if "SAFE" in opts and n.generators.p_nom_extendable.any():
add_SAFE_constraints(n, config)
if "CCL" in opts and n.generators.p_nom_extendable.any():
add_CCL_constraints(n, config)
reserve = config["electricity"].get("operational_reserve", {})
if reserve.get("activate"):
add_operational_reserve_margin(n, snapshots, config)
for o in opts:
if "EQ" in o:
add_EQ_constraints(n, o)
add_battery_constraints(n)
def solve_network(n, config, opts="", **kwargs):
set_of_options = config["solving"]["solver"]["options"]
solver_options = (
config["solving"]["solver_options"][set_of_options] if set_of_options else {}
)
solver_name = config["solving"]["solver"]["name"]
cf_solving = config["solving"]["options"]
track_iterations = cf_solving.get("track_iterations", False)
min_iterations = cf_solving.get("min_iterations", 4)
max_iterations = cf_solving.get("max_iterations", 6)
2020-02-10 15:47:11 +00:00
# add to network for extra_functionality
n.config = config
n.opts = opts
2020-02-10 15:47:11 +00:00
skip_iterations = cf_solving.get("skip_iterations", False)
if not n.lines.s_nom_extendable.any():
skip_iterations = True
logger.info("No expandable lines found. Skipping iterative solving.")
if skip_iterations:
network_lopf(
n, solver_name=solver_name, solver_options=solver_options, **kwargs
)
else:
ilopf(
n,
solver_name=solver_name,
solver_options=solver_options,
track_iterations=track_iterations,
min_iterations=min_iterations,
max_iterations=max_iterations,
**kwargs
)
return n
if __name__ == "__main__":
2018-01-30 22:09:06 +00:00
if "snakemake" not in globals():
Introduce mocksnakemake which acutally parses Snakefile (#107) * rewrite mocksnakemake for parsing real Snakefile * continue add function to scripts * going through all scripts, setting new mocksnakemake * fix plotting scripts * fix build_country_flh * fix build_country_flh II * adjust config files * fix make_summary for tutorial network * create dir also for output * incorporate suggestions * consistent import of mocksnakemake * consistent import of mocksnakemake II * Update scripts/_helpers.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * Update scripts/_helpers.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * Update scripts/_helpers.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * Update scripts/_helpers.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * Update scripts/plot_network.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * Update scripts/plot_network.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * Update scripts/retrieve_databundle.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * use pathlib for mocksnakemake * rename mocksnakemake into mock_snakemake * revert change in data * Update scripts/_helpers.py Co-Authored-By: euronion <42553970+euronion@users.noreply.github.com> * remove setting logfile in mock_snakemake, use Path in configure_logging * fix fallback path and base_dir fix return type of make_io_accessable * reformulate mock_snakemake * incorporate suggestion, fix typos * mock_snakemake: apply absolute paths again, add assertion error *.py: make hard coded io path accessable for mock_snakemake * retrieve_natura_raster: use snakemake.output for fn_out * include suggestion * Apply suggestions from code review Co-Authored-By: Jonas Hörsch <jonas.hoersch@posteo.de> * linting, add return ad end of file * Update scripts/plot_p_nom_max.py Co-Authored-By: Jonas Hörsch <jonas.hoersch@posteo.de> * Update scripts/plot_p_nom_max.py fixes #112 Co-Authored-By: Jonas Hörsch <jonas.hoersch@posteo.de> * plot_p_nom_max: small correction * config.tutorial.yaml fix snapshots end * use techs instead of technology * revert try out from previous commit, complete replacing * change clusters -> clusts in plot_p_nom_max due to wildcard constraints of clusters * change clusters -> clusts in plot_p_nom_max due to wildcard constraints of clusters II
2019-12-09 20:29:15 +00:00
from _helpers import mock_snakemake
2022-06-30 06:39:03 +00:00
snakemake = mock_snakemake(
"solve_network", simpl="", clusters="5", ll="v1.5", opts=""
)
Add logging to logfiles to all snakemake workflow scripts. (#102) * Add logging to logfiles to all snakemake workflow scripts. * Fix missing quotation marks in Snakefile. * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * Apply suggestions from code review Co-Authored-By: Fabian Neumann <fabian.neumann@outlook.de> * doc: fix _ec_ filenames in docs * Allow logging message format to be specified in config.yaml. * Add logging for Snakemake rule 'retrieve_databundle '. * Add limited logging to STDERR only for retrieve_*.py scripts. * Import progressbar module only on demand. * Fix logging to file and enable concurrent printing to STDERR for most scripts. * Add new 'logging_format' option to Travis CI test config.yaml. * Add missing parenthesis (bug fix) and cross-os compatible paths. * Fix typos in messages. * Use correct log files for logging (bug fix). * doc: fix line references * config: logging_format in all configs * doc: add doc for logging_format * environment: update to powerplantmatching 0.4.3 * doc: update line references for tutorial.rst * Change logging configuration scheme for config.yaml. * Add helper function for doing basic logging configuration. * Add logpath for prepare_links_p_nom rule. * Outsource basic logging configuration for all scripts to _helper submodule. * Update documentation for changed config.yaml structure. Instead of 'logging_level' and 'logging_format', now 'logging' with subcategories is used. * _helpers: Change configure_logging signature.
2019-11-28 07:22:52 +00:00
configure_logging(snakemake)
tmpdir = snakemake.config["solving"].get("tmpdir")
2018-02-01 11:42:56 +00:00
if tmpdir is not None:
Path(tmpdir).mkdir(parents=True, exist_ok=True)
opts = snakemake.wildcards.opts.split("-")
solve_opts = snakemake.config["solving"]["options"]
2018-02-01 11:42:56 +00:00
fn = getattr(snakemake.log, "memory", None)
with memory_logger(filename=fn, interval=30.0) as mem:
n = pypsa.Network(snakemake.input[0])
n = prepare_network(n, solve_opts)
n = solve_network(
n,
snakemake.config,
opts,
extra_functionality=extra_functionality,
solver_dir=tmpdir,
solver_logfile=snakemake.log.solver,
)
2022-06-30 06:39:03 +00:00
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
n.export_to_netcdf(snakemake.output[0])
logger.info("Maximum memory usage: {}".format(mem.mem_usage))