2023-03-31 15:59:42 +00:00
|
|
|
import numpy as np
|
|
|
|
|
2023-03-23 14:05:28 +00:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch.distributions.normal import Normal
|
|
|
|
|
|
|
|
|
|
|
|
class ObservationEncoder(nn.Module):
|
|
|
|
def __init__(self, obs_shape, state_size, num_layers=4, num_filters=32, stride=None):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
assert len(obs_shape) == 3
|
|
|
|
|
|
|
|
self.state_size = state_size
|
2023-04-24 15:42:37 +00:00
|
|
|
|
2023-03-23 14:05:28 +00:00
|
|
|
layers = []
|
|
|
|
for i in range(num_layers):
|
|
|
|
input_channels = obs_shape[0] if i == 0 else output_channels
|
|
|
|
output_channels = num_filters * (2 ** i)
|
|
|
|
layers.append(nn.Conv2d(in_channels=input_channels, out_channels= output_channels, kernel_size=4, stride=2))
|
2023-04-10 18:18:39 +00:00
|
|
|
layers.append(nn.LeakyReLU())
|
2023-03-23 14:05:28 +00:00
|
|
|
|
|
|
|
self.convs = nn.Sequential(*layers)
|
|
|
|
|
2023-04-24 15:42:37 +00:00
|
|
|
self.fc = nn.Linear(256 * obs_shape[0], 2 * state_size) # 9 if 3 frames stacked
|
2023-03-23 14:05:28 +00:00
|
|
|
|
|
|
|
def forward(self, x):
|
2023-04-24 15:42:37 +00:00
|
|
|
x_reshaped = x.reshape(-1, *x.shape[-3:])
|
|
|
|
x_embed = self.convs(x_reshaped)
|
|
|
|
x_embed = torch.reshape(x_embed, (*x.shape[:-3], -1))
|
|
|
|
x = self.fc(x_embed)
|
2023-03-23 14:05:28 +00:00
|
|
|
|
|
|
|
# Mean and standard deviation
|
|
|
|
mean, std = torch.chunk(x, 2, dim=-1)
|
2023-04-24 15:42:37 +00:00
|
|
|
mean = nn.ELU()(mean)
|
2023-03-23 14:05:28 +00:00
|
|
|
std = F.softplus(std)
|
2023-04-24 15:42:37 +00:00
|
|
|
std = torch.clamp(std, min=0.0, max=1e1)
|
2023-03-23 14:05:28 +00:00
|
|
|
|
|
|
|
# Normal Distribution
|
2023-03-27 17:22:17 +00:00
|
|
|
dist = self.get_dist(mean, std)
|
|
|
|
|
|
|
|
# Sampling via reparameterization Trick
|
2023-03-23 14:05:28 +00:00
|
|
|
x = self.reparameterize(mean, std)
|
2023-03-27 17:22:17 +00:00
|
|
|
|
|
|
|
encoded_output = {"sample": x, "distribution": dist}
|
|
|
|
return encoded_output
|
2023-03-23 14:05:28 +00:00
|
|
|
|
|
|
|
def reparameterize(self, mu, std):
|
|
|
|
eps = torch.randn_like(std)
|
|
|
|
return mu + eps * std
|
2023-03-27 17:22:17 +00:00
|
|
|
|
|
|
|
def get_dist(self, mean, std):
|
|
|
|
distribution = torch.distributions.Normal(mean, std)
|
|
|
|
distribution = torch.distributions.independent.Independent(distribution, 1)
|
|
|
|
return distribution
|
2023-03-23 14:05:28 +00:00
|
|
|
|
|
|
|
|
|
|
|
class ObservationDecoder(nn.Module):
|
|
|
|
def __init__(self, state_size, output_shape):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.state_size = state_size
|
|
|
|
self.output_shape = output_shape
|
|
|
|
self.input_size = 256 * 3 * 3
|
|
|
|
self.in_channels = [self.input_size, 256, 128, 64]
|
2023-04-24 15:42:37 +00:00
|
|
|
self.out_channels = [256, 128, 64, 9]
|
2023-03-23 14:05:28 +00:00
|
|
|
|
|
|
|
if output_shape[1] == 84:
|
|
|
|
self.kernels = [5, 7, 5, 6]
|
|
|
|
self.output_padding = [1, 1, 1, 0]
|
|
|
|
elif output_shape[1] == 64:
|
|
|
|
self.kernels = [5, 5, 6, 6]
|
|
|
|
self.output_padding = [0, 0, 0, 0]
|
|
|
|
|
|
|
|
self.dense = nn.Linear(state_size, self.input_size)
|
|
|
|
|
|
|
|
layers = []
|
|
|
|
for i in range(len(self.kernels)):
|
|
|
|
layers.append(nn.ConvTranspose2d(in_channels=self.in_channels[i], out_channels=self.out_channels[i],
|
|
|
|
kernel_size=self.kernels[i], stride=2, output_padding=self.output_padding[i]))
|
|
|
|
if i!=len(self.kernels)-1:
|
2023-04-12 16:22:02 +00:00
|
|
|
layers.append(nn.LeakyReLU())
|
2023-03-23 14:05:28 +00:00
|
|
|
|
|
|
|
self.convtranspose = nn.Sequential(*layers)
|
|
|
|
|
|
|
|
def forward(self, features):
|
|
|
|
out_batch_shape = features.shape[:-1]
|
|
|
|
out = self.dense(features)
|
|
|
|
out = torch.reshape(out, [-1, self.input_size, 1, 1])
|
|
|
|
out = self.convtranspose(out)
|
|
|
|
mean = torch.reshape(out, (*out_batch_shape, *self.output_shape))
|
|
|
|
out_dist = torch.distributions.independent.Independent(torch.distributions.Normal(mean, 1), len(self.output_shape))
|
|
|
|
return out_dist
|
|
|
|
|
|
|
|
|
2023-04-10 11:18:41 +00:00
|
|
|
class Actor(nn.Module):
|
2023-04-24 15:42:37 +00:00
|
|
|
def __init__(self, state_size, hidden_size, action_size, num_layers=4, min_std=1e-4, init_std=5, mean_scale=5):
|
2023-03-31 15:59:42 +00:00
|
|
|
super().__init__()
|
|
|
|
self.state_size = state_size
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.action_size = action_size
|
|
|
|
self.num_layers = num_layers
|
|
|
|
|
2023-04-24 15:42:37 +00:00
|
|
|
self._min_std = min_std
|
|
|
|
self._init_std = init_std
|
|
|
|
self._mean_scale = mean_scale
|
2023-03-31 15:59:42 +00:00
|
|
|
|
|
|
|
layers = []
|
|
|
|
for i in range(self.num_layers):
|
|
|
|
input_channels = state_size if i == 0 else self.hidden_size
|
2023-04-24 15:42:37 +00:00
|
|
|
layers.append(nn.Linear(input_channels, self.hidden_size))
|
|
|
|
layers.append(nn.ReLU())
|
|
|
|
layers.append(nn.Linear(self.hidden_size, 2*self.action_size))
|
2023-03-31 15:59:42 +00:00
|
|
|
self.action_model = nn.Sequential(*layers)
|
|
|
|
|
|
|
|
def get_dist(self, mean, std):
|
|
|
|
distribution = torch.distributions.Normal(mean, std)
|
|
|
|
distribution = torch.distributions.transformed_distribution.TransformedDistribution(distribution, TanhBijector())
|
|
|
|
distribution = torch.distributions.independent.Independent(distribution, 1)
|
2023-04-24 15:42:37 +00:00
|
|
|
distribution = SampleDist(distribution)
|
2023-03-31 15:59:42 +00:00
|
|
|
return distribution
|
|
|
|
|
2023-04-24 15:42:37 +00:00
|
|
|
def add_exploration(self, action, action_noise=0.3):
|
|
|
|
return torch.clamp(torch.distributions.Normal(action, action_noise).rsample(), -1, 1)
|
|
|
|
|
2023-03-31 15:59:42 +00:00
|
|
|
def forward(self, features):
|
|
|
|
out = self.action_model(features)
|
|
|
|
mean, std = torch.chunk(out, 2, dim=-1)
|
|
|
|
|
2023-04-24 15:42:37 +00:00
|
|
|
raw_init_std = np.log(np.exp(self._init_std) - 1)
|
2023-03-31 15:59:42 +00:00
|
|
|
action_mean = self._mean_scale * torch.tanh(mean / self._mean_scale)
|
|
|
|
action_std = F.softplus(std + raw_init_std) + self._min_std
|
|
|
|
|
|
|
|
dist = self.get_dist(action_mean, action_std)
|
2023-04-24 15:42:37 +00:00
|
|
|
sample = dist.rsample() #self.reparameterize(action_mean, action_std)
|
2023-03-31 15:59:42 +00:00
|
|
|
return sample
|
2023-04-24 15:42:37 +00:00
|
|
|
|
|
|
|
def reparameterize(self, mu, std):
|
|
|
|
eps = torch.randn_like(std)
|
|
|
|
return mu + eps * std
|
2023-03-31 15:59:42 +00:00
|
|
|
|
2023-03-31 16:38:51 +00:00
|
|
|
class ValueModel(nn.Module):
|
|
|
|
def __init__(self, state_size, hidden_size, num_layers=4):
|
|
|
|
super().__init__()
|
|
|
|
self.state_size = state_size
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.num_layers = num_layers
|
|
|
|
|
|
|
|
layers = []
|
2023-04-24 15:42:37 +00:00
|
|
|
for i in range(self.num_layers-1):
|
2023-03-31 16:38:51 +00:00
|
|
|
input_channels = state_size if i == 0 else self.hidden_size
|
2023-04-24 15:42:37 +00:00
|
|
|
output_channels = self.hidden_size
|
2023-03-31 16:38:51 +00:00
|
|
|
layers.append(nn.Linear(input_channels, output_channels))
|
2023-04-12 16:22:02 +00:00
|
|
|
layers.append(nn.LeakyReLU())
|
2023-04-24 15:42:37 +00:00
|
|
|
layers.append(nn.Linear(self.hidden_size, int(np.prod(1))))
|
2023-03-31 16:38:51 +00:00
|
|
|
self.value_model = nn.Sequential(*layers)
|
|
|
|
|
|
|
|
def forward(self, state):
|
|
|
|
value = self.value_model(state)
|
2023-03-31 17:12:46 +00:00
|
|
|
value_dist = torch.distributions.independent.Independent(torch.distributions.Normal(value, 1), 1)
|
|
|
|
return value_dist
|
2023-04-10 11:18:41 +00:00
|
|
|
|
|
|
|
|
|
|
|
class RewardModel(nn.Module):
|
|
|
|
def __init__(self, state_size, hidden_size):
|
|
|
|
super().__init__()
|
|
|
|
self.reward_model = nn.Sequential(
|
|
|
|
nn.Linear(state_size, hidden_size),
|
2023-04-12 16:22:02 +00:00
|
|
|
nn.LeakyReLU(),
|
2023-04-10 11:18:41 +00:00
|
|
|
nn.Linear(hidden_size, hidden_size),
|
2023-04-12 16:22:02 +00:00
|
|
|
nn.LeakyReLU(),
|
2023-04-10 11:18:41 +00:00
|
|
|
nn.Linear(hidden_size, 1)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, state):
|
2023-04-12 07:34:11 +00:00
|
|
|
reward = self.reward_model(state)
|
|
|
|
return torch.distributions.independent.Independent(
|
|
|
|
torch.distributions.Normal(reward, 1), 1)
|
2023-04-10 11:18:41 +00:00
|
|
|
|
2023-04-24 15:42:37 +00:00
|
|
|
"""
|
2023-03-23 14:05:28 +00:00
|
|
|
class TransitionModel(nn.Module):
|
|
|
|
def __init__(self, state_size, hidden_size, action_size, history_size):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.state_size = state_size
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.action_size = action_size
|
|
|
|
self.history_size = history_size
|
2023-04-12 16:22:02 +00:00
|
|
|
self.act_fn = nn.LeakyReLU()
|
2023-03-23 14:05:28 +00:00
|
|
|
|
|
|
|
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
|
2023-04-24 15:42:37 +00:00
|
|
|
self.ln = nn.LayerNorm(hidden_size)
|
2023-03-23 14:05:28 +00:00
|
|
|
self.history_cell = nn.GRUCell(hidden_size + history_size, history_size)
|
|
|
|
self.fc_state_prior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
|
|
|
|
self.fc_state_posterior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
|
|
|
|
|
|
|
|
def init_states(self, batch_size, device):
|
|
|
|
self.prev_state = torch.zeros(batch_size, self.state_size).to(device)
|
|
|
|
self.prev_action = torch.zeros(batch_size, self.action_size).to(device)
|
|
|
|
self.prev_history = torch.zeros(batch_size, self.history_size).to(device)
|
|
|
|
|
|
|
|
def get_dist(self, mean, std):
|
|
|
|
distribution = torch.distributions.Normal(mean, std)
|
|
|
|
distribution = torch.distributions.independent.Independent(distribution, 1)
|
|
|
|
return distribution
|
|
|
|
|
2023-04-24 15:42:37 +00:00
|
|
|
def stack_states(self, states, dim=0):
|
|
|
|
s = dict(
|
|
|
|
mean = torch.stack([state['mean'] for state in states], dim=dim),
|
|
|
|
std = torch.stack([state['std'] for state in states], dim=dim),
|
|
|
|
sample = torch.stack([state['sample'] for state in states], dim=dim),
|
|
|
|
history = torch.stack([state['history'] for state in states], dim=dim),)
|
|
|
|
if 'distribution' in states:
|
|
|
|
dist = dict(distribution = [state['distribution'] for state in states])
|
|
|
|
s.update(dist)
|
|
|
|
return s
|
|
|
|
|
|
|
|
def seq_to_batch(self, state, name):
|
|
|
|
return dict(
|
|
|
|
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
|
|
|
|
|
|
|
|
def imagine_step(self, state, action, history):
|
|
|
|
state_action = self.ln(self.act_fn(self.fc_state_action(torch.cat([state, action], dim=-1))))
|
|
|
|
imag_hist = self.history_cell(torch.cat([state_action, history], dim=-1), history)
|
|
|
|
state_prior = self.fc_state_prior(torch.cat([imag_hist, state, action], dim=-1))
|
2023-03-23 14:05:28 +00:00
|
|
|
state_prior_mean, state_prior_std = torch.chunk(state_prior, 2, dim=-1)
|
|
|
|
state_prior_std = F.softplus(state_prior_std)
|
|
|
|
|
2023-03-27 17:22:17 +00:00
|
|
|
# Normal Distribution
|
|
|
|
state_prior_dist = self.get_dist(state_prior_mean, state_prior_std)
|
|
|
|
|
|
|
|
# Sampling via reparameterization Trick
|
2023-03-23 14:05:28 +00:00
|
|
|
sample_state_prior = self.reparemeterize(state_prior_mean, state_prior_std)
|
2023-04-24 15:42:37 +00:00
|
|
|
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": imag_hist, "distribution": state_prior_dist}
|
2023-03-23 14:05:28 +00:00
|
|
|
return prior
|
|
|
|
|
2023-04-24 15:42:37 +00:00
|
|
|
def imagine_rollout(self, state, action, history, horizon):
|
|
|
|
imagined_priors = []
|
|
|
|
for i in range(horizon):
|
|
|
|
prior = self.imagine_step(state, action, history)
|
|
|
|
state = prior["sample"]
|
|
|
|
history = prior["history"]
|
|
|
|
imagined_priors.append(prior)
|
|
|
|
imagined_priors = self.stack_states(imagined_priors, dim=0)
|
|
|
|
return imagined_priors
|
|
|
|
|
|
|
|
def observe_step(self, prev_state, prev_action, prev_history, nonterms):
|
|
|
|
state_action = self.ln(self.act_fn(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))))
|
|
|
|
current_history = self.history_cell(torch.cat([state_action, prev_history], dim=-1), prev_history)
|
|
|
|
state_prior = self.fc_state_prior(torch.cat([prev_history, prev_state, prev_action], dim=-1))
|
|
|
|
state_prior_mean, state_prior_std = torch.chunk(state_prior*nonterms, 2, dim=-1)
|
|
|
|
state_prior_std = F.softplus(state_prior_std) + 0.1
|
|
|
|
sample_state_prior = state_prior_mean + torch.randn_like(state_prior_mean) * state_prior_std
|
|
|
|
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": current_history}
|
|
|
|
return prior
|
|
|
|
|
|
|
|
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
|
|
|
|
observed_rollout = []
|
|
|
|
for i in range(rollout_states.shape[0]):
|
|
|
|
actions = rollout_actions[i] * nonterms[i]
|
|
|
|
prior = self.observe_step(rollout_states[i], actions, init_history, nonterms[i])
|
|
|
|
init_history = prior["history"]
|
|
|
|
observed_rollout.append(prior)
|
|
|
|
observed_rollout = self.stack_states(observed_rollout, dim=0)
|
|
|
|
return observed_rollout
|
|
|
|
|
|
|
|
def reparemeterize(self, mean, std):
|
|
|
|
eps = torch.randn_like(std)
|
|
|
|
return mean + eps * std
|
|
|
|
"""
|
|
|
|
|
|
|
|
class TransitionModel(nn.Module):
|
|
|
|
def __init__(self, state_size, hidden_size, action_size, history_size):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.state_size = state_size
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.action_size = action_size
|
|
|
|
self.history_size = history_size
|
|
|
|
self.act_fn = nn.ELU()
|
|
|
|
|
|
|
|
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
|
|
|
|
self.history_cell = nn.GRUCell(hidden_size, history_size)
|
|
|
|
self.fc_state_mu = nn.Linear(history_size + hidden_size, state_size)
|
|
|
|
self.fc_state_sigma = nn.Linear(history_size + hidden_size, state_size)
|
|
|
|
|
|
|
|
self.batch_norm = nn.BatchNorm1d(hidden_size)
|
|
|
|
self.batch_norm2 = nn.BatchNorm1d(state_size)
|
|
|
|
|
|
|
|
self.min_sigma = 1e-4
|
|
|
|
self.max_sigma = 1e0
|
|
|
|
|
|
|
|
def init_states(self, batch_size, device):
|
|
|
|
self.prev_state = torch.zeros(batch_size, self.state_size).to(device)
|
|
|
|
self.prev_action = torch.zeros(batch_size, self.action_size).to(device)
|
|
|
|
self.prev_history = torch.zeros(batch_size, self.history_size).to(device)
|
|
|
|
|
|
|
|
def get_dist(self, mean, std):
|
|
|
|
distribution = torch.distributions.Normal(mean, std)
|
|
|
|
distribution = torch.distributions.independent.Independent(distribution, 1)
|
|
|
|
return distribution
|
|
|
|
|
2023-04-10 11:18:41 +00:00
|
|
|
def stack_states(self, states, dim=0):
|
2023-04-09 16:23:16 +00:00
|
|
|
s = dict(
|
|
|
|
mean = torch.stack([state['mean'] for state in states], dim=dim),
|
|
|
|
std = torch.stack([state['std'] for state in states], dim=dim),
|
|
|
|
sample = torch.stack([state['sample'] for state in states], dim=dim),
|
|
|
|
history = torch.stack([state['history'] for state in states], dim=dim),)
|
2023-04-24 15:42:37 +00:00
|
|
|
if 'distribution' in states:
|
|
|
|
dist = dict(distribution = [state['distribution'] for state in states])
|
|
|
|
s.update(dist)
|
2023-04-09 16:23:16 +00:00
|
|
|
return s
|
|
|
|
|
2023-04-24 15:42:37 +00:00
|
|
|
def seq_to_batch(self, state, name):
|
|
|
|
return dict(
|
|
|
|
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
|
|
|
|
|
|
|
|
def imagine_step(self, state, action, history):
|
|
|
|
next_state_action_enc = self.act_fn(self.batch_norm(self.fc_state_action(torch.cat([state, action], dim=-1))))
|
|
|
|
imag_history = self.history_cell(next_state_action_enc, history)
|
|
|
|
next_state_mu = self.act_fn(self.batch_norm2(self.fc_state_mu(torch.cat([next_state_action_enc, imag_history], dim=-1))))
|
|
|
|
next_state_sigma = torch.sigmoid(self.fc_state_sigma(torch.cat([next_state_action_enc, imag_history], dim=-1)))
|
|
|
|
next_state_sigma = self.min_sigma + (self.max_sigma - self.min_sigma) * next_state_sigma
|
|
|
|
|
|
|
|
# Normal Distribution
|
|
|
|
next_state_dist = self.get_dist(next_state_mu, next_state_sigma)
|
|
|
|
next_state_sample = self.reparemeterize(next_state_mu, next_state_sigma)
|
|
|
|
prior = {"mean": next_state_mu, "std": next_state_sigma, "sample": next_state_sample, "history": imag_history, "distribution": next_state_dist}
|
|
|
|
return prior
|
|
|
|
|
2023-04-09 16:23:16 +00:00
|
|
|
def imagine_rollout(self, state, action, history, horizon):
|
|
|
|
imagined_priors = []
|
|
|
|
for i in range(horizon):
|
|
|
|
prior = self.imagine_step(state, action, history)
|
|
|
|
state = prior["sample"]
|
|
|
|
history = prior["history"]
|
|
|
|
imagined_priors.append(prior)
|
|
|
|
imagined_priors = self.stack_states(imagined_priors, dim=0)
|
|
|
|
return imagined_priors
|
|
|
|
|
2023-04-24 15:42:37 +00:00
|
|
|
def observe_step(self, prev_state, prev_action, prev_history):
|
|
|
|
state_action_enc = self.act_fn(self.batch_norm(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))))
|
|
|
|
current_history = self.history_cell(state_action_enc, prev_history)
|
|
|
|
state_mu = self.act_fn(self.batch_norm2(self.fc_state_mu(torch.cat([state_action_enc, prev_history], dim=-1))))
|
|
|
|
state_sigma = F.softplus(self.fc_state_sigma(torch.cat([state_action_enc, prev_history], dim=-1)))
|
|
|
|
|
|
|
|
sample_state = state_mu + torch.randn_like(state_mu) * state_sigma
|
|
|
|
state_enc = {"mean": state_mu, "std": state_sigma, "sample": sample_state, "history": current_history}
|
|
|
|
return state_enc
|
|
|
|
|
|
|
|
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
|
|
|
|
observed_rollout = []
|
|
|
|
for i in range(rollout_states.shape[0]):
|
|
|
|
rollout_states_ = rollout_states[i]
|
|
|
|
rollout_actions_ = rollout_actions[i]
|
|
|
|
init_history_ = nonterms[i] * init_history
|
|
|
|
state_enc = self.observe_step(rollout_states_, rollout_actions_, init_history_)
|
|
|
|
init_history = state_enc["history"]
|
|
|
|
observed_rollout.append(state_enc)
|
|
|
|
observed_rollout = self.stack_states(observed_rollout, dim=0)
|
|
|
|
return observed_rollout
|
|
|
|
|
2023-03-23 14:05:28 +00:00
|
|
|
def reparemeterize(self, mean, std):
|
2023-04-24 15:42:37 +00:00
|
|
|
eps = torch.randn_like(mean)
|
2023-03-23 14:05:28 +00:00
|
|
|
return mean + eps * std
|
2023-04-24 15:42:37 +00:00
|
|
|
|
2023-03-31 15:59:42 +00:00
|
|
|
|
|
|
|
class TanhBijector(torch.distributions.Transform):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.bijective = True
|
|
|
|
self.domain = torch.distributions.constraints.real
|
|
|
|
self.codomain = torch.distributions.constraints.interval(-1.0, 1.0)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def sign(self): return 1.
|
|
|
|
|
|
|
|
def _call(self, x): return torch.tanh(x)
|
|
|
|
|
|
|
|
def atanh(self, x):
|
|
|
|
return 0.5 * torch.log((1 + x) / (1 - x))
|
|
|
|
|
|
|
|
def _inverse(self, y: torch.Tensor):
|
|
|
|
y = torch.where(
|
|
|
|
(torch.abs(y) <= 1.),
|
|
|
|
torch.clamp(y, -0.99999997, 0.99999997),
|
|
|
|
y)
|
|
|
|
y = self.atanh(y)
|
|
|
|
return y
|
|
|
|
|
|
|
|
def log_abs_det_jacobian(self, x, y):
|
|
|
|
#return 2. * (np.log(2) - x - F.softplus(-2. * x))
|
|
|
|
return 2.0 * (torch.log(torch.tensor([2.0])) - x - F.softplus(-2.0 * x))
|
|
|
|
|
2023-03-23 14:05:28 +00:00
|
|
|
|
2023-04-02 16:52:26 +00:00
|
|
|
class ProjectionHead(nn.Module):
|
|
|
|
def __init__(self, state_size, action_size, hidden_size):
|
|
|
|
super(ProjectionHead, self).__init__()
|
|
|
|
self.state_size = state_size
|
|
|
|
self.action_size = action_size
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
|
|
|
|
self.projection_model = nn.Sequential(
|
|
|
|
nn.Linear(state_size + action_size, hidden_size),
|
|
|
|
nn.LayerNorm(hidden_size),
|
2023-04-12 16:22:02 +00:00
|
|
|
nn.LeakyReLU(),
|
2023-04-02 16:52:26 +00:00
|
|
|
nn.Linear(hidden_size, hidden_size),
|
|
|
|
nn.LayerNorm(hidden_size),
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, state, action):
|
|
|
|
x = torch.cat([state, action], dim=-1)
|
|
|
|
x = self.projection_model(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ContrastiveHead(nn.Module):
|
|
|
|
def __init__(self, hidden_size, temperature=1):
|
|
|
|
super(ContrastiveHead, self).__init__()
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.temperature = temperature
|
|
|
|
self.W = nn.Parameter(torch.rand(self.hidden_size, self.hidden_size))
|
|
|
|
|
|
|
|
def forward(self, z_a, z_pos):
|
|
|
|
Wz = torch.matmul(self.W, z_pos.T) # (z_dim,B)
|
|
|
|
logits = torch.matmul(z_a, Wz) # (B,B)
|
|
|
|
logits = logits - torch.max(logits, 1)[0][:, None]
|
|
|
|
logits = logits * self.temperature
|
2023-04-09 16:23:16 +00:00
|
|
|
return logits
|
|
|
|
|
|
|
|
|
2023-04-24 15:42:37 +00:00
|
|
|
"""
|
2023-04-09 16:23:16 +00:00
|
|
|
class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
|
|
|
|
def __init__(self, last_states, current_states, negative_current_states, predicted_current_states):
|
|
|
|
super(CLUBSample, self).__init__()
|
|
|
|
self.last_states = last_states
|
|
|
|
self.current_states = current_states
|
|
|
|
self.negative_current_states = negative_current_states
|
|
|
|
self.predicted_current_states = predicted_current_states
|
|
|
|
|
|
|
|
def get_mu_var_samples(self, state_dict):
|
|
|
|
dist = state_dict["distribution"]
|
2023-04-12 07:34:11 +00:00
|
|
|
sample = state_dict["sample"] #dist.sample() # Use state_dict["sample"] if you want to use the same sample for all the losses
|
2023-04-09 16:23:16 +00:00
|
|
|
mu = dist.mean
|
|
|
|
var = dist.variance
|
2023-04-24 15:42:37 +00:00
|
|
|
return mu.detach(), var.detach(), sample.detach()
|
2023-04-09 16:23:16 +00:00
|
|
|
|
|
|
|
def loglikeli(self):
|
|
|
|
_, _, pred_sample = self.get_mu_var_samples(self.predicted_current_states)
|
|
|
|
mu_curr, var_curr, _ = self.get_mu_var_samples(self.current_states)
|
2023-04-12 07:34:11 +00:00
|
|
|
logvar_curr = torch.log(var_curr)
|
2023-04-09 16:23:16 +00:00
|
|
|
return (-(mu_curr - pred_sample)**2 /var_curr-logvar_curr).sum(dim=1).mean(dim=0)
|
|
|
|
|
|
|
|
def forward(self):
|
|
|
|
_, _, pred_sample = self.get_mu_var_samples(self.predicted_current_states)
|
|
|
|
mu_curr, var_curr, _ = self.get_mu_var_samples(self.current_states)
|
|
|
|
mu_neg, var_neg, _ = self.get_mu_var_samples(self.negative_current_states)
|
|
|
|
|
2023-04-12 07:34:11 +00:00
|
|
|
sample_size = pred_sample.shape[0]
|
|
|
|
random_index = torch.randperm(sample_size).long()
|
|
|
|
|
2023-04-09 16:23:16 +00:00
|
|
|
pos = (-(mu_curr - pred_sample)**2 /var_curr).sum(dim=1).mean(dim=0)
|
2023-04-24 15:42:37 +00:00
|
|
|
#neg = (-(mu_curr - pred_sample[random_index])**2 /var_curr).sum(dim=1).mean(dim=0)
|
|
|
|
neg = (-(mu_neg - pred_sample)**2 /var_neg).sum(dim=1).mean(dim=0)
|
2023-04-09 16:23:16 +00:00
|
|
|
upper_bound = pos - neg
|
|
|
|
|
|
|
|
return upper_bound/2
|
|
|
|
|
|
|
|
def learning_loss(self):
|
|
|
|
return - self.loglikeli()
|
2023-04-24 15:42:37 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
|
|
|
|
def __init__(self, x_dim, y_dim, hidden_size):
|
|
|
|
super(CLUBSample, self).__init__()
|
|
|
|
self.p_mu = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(hidden_size//2, y_dim))
|
|
|
|
|
|
|
|
self.p_logvar = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(hidden_size//2, y_dim),
|
|
|
|
nn.Tanh())
|
|
|
|
|
|
|
|
def get_mu_logvar(self, x_samples):
|
|
|
|
mu = self.p_mu(x_samples)
|
|
|
|
logvar = self.p_logvar(x_samples)
|
|
|
|
return mu, logvar
|
|
|
|
|
|
|
|
|
|
|
|
def loglikeli(self, x_samples, y_samples):
|
|
|
|
mu, logvar = self.get_mu_logvar(x_samples)
|
|
|
|
return (-(mu - y_samples)**2 /logvar.exp()-logvar).sum(dim=1).mean(dim=0)
|
2023-04-09 16:23:16 +00:00
|
|
|
|
|
|
|
|
2023-04-24 15:42:37 +00:00
|
|
|
def forward(self, x_samples, y_samples, y_negatives):
|
|
|
|
mu, logvar = self.get_mu_logvar(x_samples)
|
|
|
|
|
|
|
|
sample_size = x_samples.shape[0]
|
|
|
|
#random_index = torch.randint(sample_size, (sample_size,)).long()
|
|
|
|
random_index = torch.randperm(sample_size).long()
|
|
|
|
|
|
|
|
positive = -(mu - y_samples)**2 / logvar.exp()
|
|
|
|
#negative = - (mu - y_samples[random_index])**2 / logvar.exp()
|
|
|
|
negative = -(mu - y_negatives)**2 / logvar.exp()
|
|
|
|
upper_bound = (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
|
|
|
|
return upper_bound/2.
|
|
|
|
|
|
|
|
def learning_loss(self, x_samples, y_samples):
|
|
|
|
return -self.loglikeli(x_samples, y_samples)
|
|
|
|
|
|
|
|
|
|
|
|
class QFunction(nn.Module):
|
|
|
|
"""MLP for q-function."""
|
|
|
|
def __init__(self, obs_dim, action_dim, hidden_dim):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.trunk = nn.Sequential(
|
|
|
|
nn.Linear(obs_dim + action_dim, hidden_dim), nn.ReLU(),
|
|
|
|
nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
|
|
|
|
nn.Linear(hidden_dim, 1)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, obs, action):
|
|
|
|
assert obs.size(0) == action.size(0)
|
|
|
|
|
|
|
|
obs_action = torch.cat([obs, action], dim=1)
|
|
|
|
return self.trunk(obs_action)
|
|
|
|
|
|
|
|
|
|
|
|
class Critic(nn.Module):
|
|
|
|
"""Critic network, employes two q-functions."""
|
|
|
|
def __init__(
|
|
|
|
self, obs_shape, action_shape, hidden_dim, encoder_feature_dim):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.Q1 = QFunction(
|
|
|
|
self.encoder.feature_dim, action_shape[0], hidden_dim
|
|
|
|
)
|
|
|
|
self.Q2 = QFunction(
|
|
|
|
self.encoder.feature_dim, action_shape[0], hidden_dim
|
|
|
|
)
|
|
|
|
|
|
|
|
self.outputs = dict()
|
|
|
|
|
|
|
|
def forward(self, obs, action, detach_encoder=False):
|
|
|
|
# detach_encoder allows to stop gradient propogation to encoder
|
|
|
|
obs = self.encoder(obs, detach=detach_encoder)
|
|
|
|
|
|
|
|
q1 = self.Q1(obs, action)
|
|
|
|
q2 = self.Q2(obs, action)
|
|
|
|
|
|
|
|
self.outputs['q1'] = q1
|
|
|
|
self.outputs['q2'] = q2
|
|
|
|
|
|
|
|
return q1, q2
|
|
|
|
|
|
|
|
class SampleDist:
|
|
|
|
def __init__(self, dist, samples=100):
|
|
|
|
self._dist = dist
|
|
|
|
self._samples = samples
|
|
|
|
|
|
|
|
@property
|
|
|
|
def name(self):
|
|
|
|
return 'SampleDist'
|
|
|
|
|
|
|
|
def __getattr__(self, name):
|
|
|
|
return getattr(self._dist, name)
|
|
|
|
|
|
|
|
def mean(self):
|
|
|
|
sample = self._dist.rsample(self._samples)
|
|
|
|
return torch.mean(sample, 0)
|
|
|
|
|
|
|
|
def mode(self):
|
|
|
|
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
|
|
|
|
sample = dist.rsample()
|
|
|
|
logprob = dist.log_prob(sample)
|
|
|
|
batch_size = sample.size(1)
|
|
|
|
feature_size = sample.size(2)
|
|
|
|
indices = torch.argmax(logprob, dim=0).reshape(1, batch_size, 1).expand(1, batch_size, feature_size)
|
|
|
|
return torch.gather(sample, 0, indices).squeeze(0)
|
|
|
|
|
|
|
|
def entropy(self):
|
|
|
|
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
|
|
|
|
sample = dist.rsample()
|
|
|
|
logprob = dist.log_prob(sample)
|
|
|
|
return -torch.mean(logprob, 0)
|
|
|
|
|
|
|
|
def sample(self):
|
|
|
|
return self._dist.sample()
|
|
|
|
|
|
|
|
|
2023-04-09 16:23:16 +00:00
|
|
|
if "__name__ == __main__":
|
2023-04-24 15:42:37 +00:00
|
|
|
tr = TransitionModel(50, 512, 1, 256)
|
|
|
|
|