Adding Denoised Predictive Imagination
This commit is contained in:
parent
69d1528077
commit
abaca2bea9
BIN
DPI/Image/Image9.png
Normal file
BIN
DPI/Image/Image9.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 16 KiB |
25
DPI/conda_env.yml
Normal file
25
DPI/conda_env.yml
Normal file
@ -0,0 +1,25 @@
|
||||
name: dpi
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- python=3.7
|
||||
- pytorch
|
||||
- torchvision
|
||||
- cudatoolkit=9.2
|
||||
- absl-py
|
||||
- pyparsing
|
||||
- pip:
|
||||
- termcolor
|
||||
- git+git://github.com/deepmind/dm_control.git
|
||||
- git+git://github.com/1nadequacy/dmc2gym.git
|
||||
- opencv-python
|
||||
- pillow==6.1
|
||||
- scikit-image
|
||||
- scikit-video
|
||||
- tb-nightly
|
||||
- tqdm
|
||||
- imageio
|
||||
- imageio-ffmpeg
|
||||
- pygame
|
||||
- networkx
|
||||
- dotmap
|
52
DPI/dmc2gym/__init__.py
Normal file
52
DPI/dmc2gym/__init__.py
Normal file
@ -0,0 +1,52 @@
|
||||
import gym
|
||||
from gym.envs.registration import register
|
||||
|
||||
|
||||
def make(
|
||||
domain_name,
|
||||
task_name,
|
||||
resource_files,
|
||||
img_source,
|
||||
total_frames,
|
||||
seed=1,
|
||||
visualize_reward=True,
|
||||
from_pixels=False,
|
||||
height=84,
|
||||
width=84,
|
||||
camera_id=0,
|
||||
frame_skip=1,
|
||||
episode_length=1000,
|
||||
environment_kwargs=None
|
||||
):
|
||||
env_id = 'dmc_%s_%s_%s-v1' % (domain_name, task_name, seed)
|
||||
|
||||
if from_pixels:
|
||||
assert not visualize_reward, 'cannot use visualize reward when learning from pixels'
|
||||
|
||||
# shorten episode length
|
||||
max_episode_steps = (episode_length + frame_skip - 1) // frame_skip
|
||||
|
||||
if not env_id in gym.envs.registry.env_specs:
|
||||
register(
|
||||
id=env_id,
|
||||
entry_point='dmc2gym.wrappers:DMCWrapper',
|
||||
kwargs={
|
||||
'domain_name': domain_name,
|
||||
'task_name': task_name,
|
||||
'resource_files': resource_files,
|
||||
'img_source': img_source,
|
||||
'total_frames': total_frames,
|
||||
'task_kwargs': {
|
||||
'random': seed
|
||||
},
|
||||
'environment_kwargs': environment_kwargs,
|
||||
'visualize_reward': visualize_reward,
|
||||
'from_pixels': from_pixels,
|
||||
'height': height,
|
||||
'width': width,
|
||||
'camera_id': camera_id,
|
||||
'frame_skip': frame_skip,
|
||||
},
|
||||
max_episode_steps=max_episode_steps
|
||||
)
|
||||
return gym.make(env_id)
|
183
DPI/dmc2gym/natural_imgsource.py
Normal file
183
DPI/dmc2gym/natural_imgsource.py
Normal file
@ -0,0 +1,183 @@
|
||||
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import skvideo.io
|
||||
import random
|
||||
import tqdm
|
||||
|
||||
class BackgroundMatting(object):
|
||||
"""
|
||||
Produce a mask by masking the given color. This is a simple strategy
|
||||
but effective for many games.
|
||||
"""
|
||||
def __init__(self, color):
|
||||
"""
|
||||
Args:
|
||||
color: a (r, g, b) tuple or single value for grayscale
|
||||
"""
|
||||
self._color = color
|
||||
|
||||
def get_mask(self, img):
|
||||
return img == self._color
|
||||
|
||||
|
||||
class ImageSource(object):
|
||||
"""
|
||||
Source of natural images to be added to a simulated environment.
|
||||
"""
|
||||
def get_image(self):
|
||||
"""
|
||||
Returns:
|
||||
an RGB image of [h, w, 3] with a fixed shape.
|
||||
"""
|
||||
pass
|
||||
|
||||
def reset(self):
|
||||
""" Called when an episode ends. """
|
||||
pass
|
||||
|
||||
|
||||
class FixedColorSource(ImageSource):
|
||||
def __init__(self, shape, color):
|
||||
"""
|
||||
Args:
|
||||
shape: [h, w]
|
||||
color: a 3-tuple
|
||||
"""
|
||||
self.arr = np.zeros((shape[0], shape[1], 3))
|
||||
self.arr[:, :] = color
|
||||
|
||||
def get_image(self):
|
||||
return self.arr
|
||||
|
||||
|
||||
class RandomColorSource(ImageSource):
|
||||
def __init__(self, shape):
|
||||
"""
|
||||
Args:
|
||||
shape: [h, w]
|
||||
"""
|
||||
self.shape = shape
|
||||
self.arr = None
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self._color = np.random.randint(0, 256, size=(3,))
|
||||
self.arr = np.zeros((self.shape[0], self.shape[1], 3))
|
||||
self.arr[:, :] = self._color
|
||||
|
||||
def get_image(self):
|
||||
return self.arr
|
||||
|
||||
|
||||
class NoiseSource(ImageSource):
|
||||
def __init__(self, shape, strength=255):
|
||||
"""
|
||||
Args:
|
||||
shape: [h, w]
|
||||
strength (int): the strength of noise, in range [0, 255]
|
||||
"""
|
||||
self.shape = shape
|
||||
self.strength = strength
|
||||
|
||||
def get_image(self):
|
||||
return np.random.randn(self.shape[0], self.shape[1], 3) * self.strength
|
||||
|
||||
|
||||
class RandomImageSource(ImageSource):
|
||||
def __init__(self, shape, filelist, total_frames=None, grayscale=False):
|
||||
"""
|
||||
Args:
|
||||
shape: [h, w]
|
||||
filelist: a list of image files
|
||||
"""
|
||||
self.grayscale = grayscale
|
||||
self.total_frames = total_frames
|
||||
self.shape = shape
|
||||
self.filelist = filelist
|
||||
self.build_arr()
|
||||
self.current_idx = 0
|
||||
self.reset()
|
||||
|
||||
def build_arr(self):
|
||||
self.total_frames = self.total_frames if self.total_frames else len(self.filelist)
|
||||
self.arr = np.zeros((self.total_frames, self.shape[0], self.shape[1]) + ((3,) if not self.grayscale else (1,)))
|
||||
for i in range(self.total_frames):
|
||||
# if i % len(self.filelist) == 0: random.shuffle(self.filelist)
|
||||
fname = self.filelist[i % len(self.filelist)]
|
||||
if self.grayscale: im = cv2.imread(fname, cv2.IMREAD_GRAYSCALE)[..., None]
|
||||
else: im = cv2.imread(fname, cv2.IMREAD_COLOR)
|
||||
self.arr[i] = cv2.resize(im, (self.shape[1], self.shape[0])) ## THIS IS NOT A BUG! cv2 uses (width, height)
|
||||
|
||||
def reset(self):
|
||||
self._loc = np.random.randint(0, self.total_frames)
|
||||
|
||||
def get_image(self):
|
||||
return self.arr[self._loc]
|
||||
|
||||
|
||||
class RandomVideoSource(ImageSource):
|
||||
def __init__(self, shape, filelist, total_frames=None, grayscale=False):
|
||||
"""
|
||||
Args:
|
||||
shape: [h, w]
|
||||
filelist: a list of video files
|
||||
"""
|
||||
self.grayscale = grayscale
|
||||
self.total_frames = total_frames
|
||||
self.shape = shape
|
||||
self.filelist = filelist
|
||||
self.build_arr()
|
||||
self.current_idx = 0
|
||||
self.reset()
|
||||
|
||||
def build_arr(self):
|
||||
if not self.total_frames:
|
||||
self.total_frames = 0
|
||||
self.arr = None
|
||||
random.shuffle(self.filelist)
|
||||
for fname in tqdm.tqdm(self.filelist, desc="Loading videos for natural", position=0):
|
||||
if self.grayscale: frames = skvideo.io.vread(fname, outputdict={"-pix_fmt": "gray"})
|
||||
else: frames = skvideo.io.vread(fname)
|
||||
local_arr = np.zeros((frames.shape[0], self.shape[0], self.shape[1]) + ((3,) if not self.grayscale else (1,)))
|
||||
for i in tqdm.tqdm(range(frames.shape[0]), desc="video frames", position=1):
|
||||
local_arr[i] = cv2.resize(frames[i], (self.shape[1], self.shape[0])) ## THIS IS NOT A BUG! cv2 uses (width, height)
|
||||
if self.arr is None:
|
||||
self.arr = local_arr
|
||||
else:
|
||||
self.arr = np.concatenate([self.arr, local_arr], 0)
|
||||
self.total_frames += local_arr.shape[0]
|
||||
else:
|
||||
self.arr = np.zeros((self.total_frames, self.shape[0], self.shape[1]) + ((3,) if not self.grayscale else (1,)))
|
||||
total_frame_i = 0
|
||||
file_i = 0
|
||||
with tqdm.tqdm(total=self.total_frames, desc="Loading videos for natural") as pbar:
|
||||
while total_frame_i < self.total_frames:
|
||||
if file_i % len(self.filelist) == 0: random.shuffle(self.filelist)
|
||||
file_i += 1
|
||||
fname = self.filelist[file_i % len(self.filelist)]
|
||||
if self.grayscale: frames = skvideo.io.vread(fname, outputdict={"-pix_fmt": "gray"})
|
||||
else: frames = skvideo.io.vread(fname)
|
||||
for frame_i in range(frames.shape[0]):
|
||||
if total_frame_i >= self.total_frames: break
|
||||
if self.grayscale:
|
||||
self.arr[total_frame_i] = cv2.resize(frames[frame_i], (self.shape[1], self.shape[0]))[..., None] ## THIS IS NOT A BUG! cv2 uses (width, height)
|
||||
else:
|
||||
self.arr[total_frame_i] = cv2.resize(frames[frame_i], (self.shape[1], self.shape[0]))
|
||||
pbar.update(1)
|
||||
total_frame_i += 1
|
||||
|
||||
|
||||
def reset(self):
|
||||
self._loc = np.random.randint(0, self.total_frames)
|
||||
|
||||
def get_image(self):
|
||||
img = self.arr[self._loc % self.total_frames]
|
||||
self._loc += 1
|
||||
return img
|
198
DPI/dmc2gym/wrappers.py
Normal file
198
DPI/dmc2gym/wrappers.py
Normal file
@ -0,0 +1,198 @@
|
||||
from gym import core, spaces
|
||||
import glob
|
||||
import os
|
||||
import local_dm_control_suite as suite
|
||||
from dm_env import specs
|
||||
import numpy as np
|
||||
import skimage.io
|
||||
|
||||
from dmc2gym import natural_imgsource
|
||||
|
||||
|
||||
def _spec_to_box(spec):
|
||||
def extract_min_max(s):
|
||||
assert s.dtype == np.float64 or s.dtype == np.float32
|
||||
dim = np.int(np.prod(s.shape))
|
||||
if type(s) == specs.Array:
|
||||
bound = np.inf * np.ones(dim, dtype=np.float32)
|
||||
return -bound, bound
|
||||
elif type(s) == specs.BoundedArray:
|
||||
zeros = np.zeros(dim, dtype=np.float32)
|
||||
return s.minimum + zeros, s.maximum + zeros
|
||||
|
||||
mins, maxs = [], []
|
||||
for s in spec:
|
||||
mn, mx = extract_min_max(s)
|
||||
mins.append(mn)
|
||||
maxs.append(mx)
|
||||
low = np.concatenate(mins, axis=0)
|
||||
high = np.concatenate(maxs, axis=0)
|
||||
assert low.shape == high.shape
|
||||
return spaces.Box(low, high, dtype=np.float32)
|
||||
|
||||
|
||||
def _flatten_obs(obs):
|
||||
obs_pieces = []
|
||||
for v in obs.values():
|
||||
flat = np.array([v]) if np.isscalar(v) else v.ravel()
|
||||
obs_pieces.append(flat)
|
||||
return np.concatenate(obs_pieces, axis=0)
|
||||
|
||||
|
||||
class DMCWrapper(core.Env):
|
||||
def __init__(
|
||||
self,
|
||||
domain_name,
|
||||
task_name,
|
||||
resource_files,
|
||||
img_source,
|
||||
total_frames,
|
||||
task_kwargs=None,
|
||||
visualize_reward={},
|
||||
from_pixels=False,
|
||||
height=84,
|
||||
width=84,
|
||||
camera_id=0,
|
||||
frame_skip=1,
|
||||
environment_kwargs=None
|
||||
):
|
||||
assert 'random' in task_kwargs, 'please specify a seed, for deterministic behaviour'
|
||||
self._from_pixels = from_pixels
|
||||
self._height = height
|
||||
self._width = width
|
||||
self._camera_id = camera_id
|
||||
self._frame_skip = frame_skip
|
||||
self._img_source = img_source
|
||||
|
||||
# create task
|
||||
self._env = suite.load(
|
||||
domain_name=domain_name,
|
||||
task_name=task_name,
|
||||
task_kwargs=task_kwargs,
|
||||
visualize_reward=visualize_reward,
|
||||
environment_kwargs=environment_kwargs
|
||||
)
|
||||
|
||||
# true and normalized action spaces
|
||||
self._true_action_space = _spec_to_box([self._env.action_spec()])
|
||||
self._norm_action_space = spaces.Box(
|
||||
low=-1.0,
|
||||
high=1.0,
|
||||
shape=self._true_action_space.shape,
|
||||
dtype=np.float32
|
||||
)
|
||||
|
||||
# create observation space
|
||||
if from_pixels:
|
||||
self._observation_space = spaces.Box(
|
||||
low=0, high=255, shape=[3, height, width], dtype=np.uint8
|
||||
)
|
||||
else:
|
||||
self._observation_space = _spec_to_box(
|
||||
self._env.observation_spec().values()
|
||||
)
|
||||
|
||||
self._internal_state_space = spaces.Box(
|
||||
low=-np.inf,
|
||||
high=np.inf,
|
||||
shape=self._env.physics.get_state().shape,
|
||||
dtype=np.float32
|
||||
)
|
||||
|
||||
# background
|
||||
if img_source is not None:
|
||||
shape2d = (height, width)
|
||||
if img_source == "color":
|
||||
self._bg_source = natural_imgsource.RandomColorSource(shape2d)
|
||||
elif img_source == "noise":
|
||||
self._bg_source = natural_imgsource.NoiseSource(shape2d)
|
||||
else:
|
||||
files = glob.glob(os.path.expanduser(resource_files))
|
||||
assert len(files), "Pattern {} does not match any files".format(
|
||||
resource_files
|
||||
)
|
||||
if img_source == "images":
|
||||
self._bg_source = natural_imgsource.RandomImageSource(shape2d, files, grayscale=True, total_frames=total_frames)
|
||||
elif img_source == "video":
|
||||
self._bg_source = natural_imgsource.RandomVideoSource(shape2d, files, grayscale=True, total_frames=total_frames)
|
||||
else:
|
||||
raise Exception("img_source %s not defined." % img_source)
|
||||
|
||||
# set seed
|
||||
self.seed(seed=task_kwargs.get('random', 1))
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
def _get_obs(self, time_step):
|
||||
if self._from_pixels:
|
||||
obs = self.render(
|
||||
height=self._height,
|
||||
width=self._width,
|
||||
camera_id=self._camera_id
|
||||
)
|
||||
if self._img_source is not None:
|
||||
mask = np.logical_and((obs[:, :, 2] > obs[:, :, 1]), (obs[:, :, 2] > obs[:, :, 0])) # hardcoded for dmc
|
||||
bg = self._bg_source.get_image()
|
||||
obs[mask] = bg[mask]
|
||||
obs = obs.transpose(2, 0, 1).copy()
|
||||
else:
|
||||
obs = _flatten_obs(time_step.observation)
|
||||
return obs
|
||||
|
||||
def _convert_action(self, action):
|
||||
action = action.astype(np.float64)
|
||||
true_delta = self._true_action_space.high - self._true_action_space.low
|
||||
norm_delta = self._norm_action_space.high - self._norm_action_space.low
|
||||
action = (action - self._norm_action_space.low) / norm_delta
|
||||
action = action * true_delta + self._true_action_space.low
|
||||
action = action.astype(np.float32)
|
||||
return action
|
||||
|
||||
@property
|
||||
def observation_space(self):
|
||||
return self._observation_space
|
||||
|
||||
@property
|
||||
def internal_state_space(self):
|
||||
return self._internal_state_space
|
||||
|
||||
@property
|
||||
def action_space(self):
|
||||
return self._norm_action_space
|
||||
|
||||
def seed(self, seed):
|
||||
self._true_action_space.seed(seed)
|
||||
self._norm_action_space.seed(seed)
|
||||
self._observation_space.seed(seed)
|
||||
|
||||
def step(self, action):
|
||||
assert self._norm_action_space.contains(action)
|
||||
action = self._convert_action(action)
|
||||
assert self._true_action_space.contains(action)
|
||||
reward = 0
|
||||
extra = {'internal_state': self._env.physics.get_state().copy()}
|
||||
|
||||
for _ in range(self._frame_skip):
|
||||
time_step = self._env.step(action)
|
||||
reward += time_step.reward or 0
|
||||
done = time_step.last()
|
||||
if done:
|
||||
break
|
||||
obs = self._get_obs(time_step)
|
||||
extra['discount'] = time_step.discount
|
||||
return obs, reward, done, extra
|
||||
|
||||
def reset(self):
|
||||
time_step = self._env.reset()
|
||||
obs = self._get_obs(time_step)
|
||||
return obs
|
||||
|
||||
def render(self, mode='rgb_array', height=None, width=None, camera_id=0):
|
||||
assert mode == 'rgb_array', 'only support rgb_array mode, given %s' % mode
|
||||
height = height or self._height
|
||||
width = width or self._width
|
||||
camera_id = camera_id or self._camera_id
|
||||
return self._env.physics.render(
|
||||
height=height, width=width, camera_id=camera_id
|
||||
)
|
56
DPI/local_dm_control_suite/README.md
Executable file
56
DPI/local_dm_control_suite/README.md
Executable file
@ -0,0 +1,56 @@
|
||||
# DeepMind Control Suite.
|
||||
|
||||
This submodule contains the domains and tasks described in the
|
||||
[DeepMind Control Suite tech report](https://arxiv.org/abs/1801.00690).
|
||||
|
||||
## Quickstart
|
||||
|
||||
```python
|
||||
from dm_control import suite
|
||||
import numpy as np
|
||||
|
||||
# Load one task:
|
||||
env = suite.load(domain_name="cartpole", task_name="swingup")
|
||||
|
||||
# Iterate over a task set:
|
||||
for domain_name, task_name in suite.BENCHMARKING:
|
||||
env = suite.load(domain_name, task_name)
|
||||
|
||||
# Step through an episode and print out reward, discount and observation.
|
||||
action_spec = env.action_spec()
|
||||
time_step = env.reset()
|
||||
while not time_step.last():
|
||||
action = np.random.uniform(action_spec.minimum,
|
||||
action_spec.maximum,
|
||||
size=action_spec.shape)
|
||||
time_step = env.step(action)
|
||||
print(time_step.reward, time_step.discount, time_step.observation)
|
||||
```
|
||||
|
||||
## Illustration video
|
||||
|
||||
Below is a video montage of solved Control Suite tasks, with reward
|
||||
visualisation enabled.
|
||||
|
||||
[![Video montage](https://img.youtube.com/vi/rAai4QzcYbs/0.jpg)](https://www.youtube.com/watch?v=rAai4QzcYbs)
|
||||
|
||||
|
||||
### Quadruped domain [April 2019]
|
||||
|
||||
Roughly based on the 'ant' model introduced by [Schulman et al. 2015](https://arxiv.org/abs/1506.02438). Main modifications to the body are:
|
||||
|
||||
- 4 DoFs per leg, 1 constraining tendon.
|
||||
- 3 actuators per leg: 'yaw', 'lift', 'extend'.
|
||||
- Filtered position actuators with timescale of 100ms.
|
||||
- Sensors include an IMU, force/torque sensors, and rangefinders.
|
||||
|
||||
Four tasks:
|
||||
|
||||
- `walk` and `run`: self-right the body then move forward at a desired speed.
|
||||
- `escape`: escape a bowl-shaped random terrain (uses rangefinders).
|
||||
- `fetch`, go to a moving ball and bring it to a target.
|
||||
|
||||
All behaviors in the video below were trained with [Abdolmaleki et al's
|
||||
MPO](https://arxiv.org/abs/1806.06920).
|
||||
|
||||
[![Video montage](https://img.youtube.com/vi/RhRLjbb7pBE/0.jpg)](https://www.youtube.com/watch?v=RhRLjbb7pBE)
|
151
DPI/local_dm_control_suite/__init__.py
Executable file
151
DPI/local_dm_control_suite/__init__.py
Executable file
@ -0,0 +1,151 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""A collection of MuJoCo-based Reinforcement Learning environments."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
import inspect
|
||||
import itertools
|
||||
|
||||
from dm_control.rl import control
|
||||
|
||||
from local_dm_control_suite import acrobot
|
||||
from local_dm_control_suite import ball_in_cup
|
||||
from local_dm_control_suite import cartpole
|
||||
from local_dm_control_suite import cheetah
|
||||
from local_dm_control_suite import finger
|
||||
from local_dm_control_suite import fish
|
||||
from local_dm_control_suite import hopper
|
||||
from local_dm_control_suite import humanoid
|
||||
from local_dm_control_suite import humanoid_CMU
|
||||
from local_dm_control_suite import lqr
|
||||
from local_dm_control_suite import manipulator
|
||||
from local_dm_control_suite import pendulum
|
||||
from local_dm_control_suite import point_mass
|
||||
from local_dm_control_suite import quadruped
|
||||
from local_dm_control_suite import reacher
|
||||
from local_dm_control_suite import stacker
|
||||
from local_dm_control_suite import swimmer
|
||||
from local_dm_control_suite import walker
|
||||
|
||||
# Find all domains imported.
|
||||
_DOMAINS = {name: module for name, module in locals().items()
|
||||
if inspect.ismodule(module) and hasattr(module, 'SUITE')}
|
||||
|
||||
|
||||
def _get_tasks(tag):
|
||||
"""Returns a sequence of (domain name, task name) pairs for the given tag."""
|
||||
result = []
|
||||
|
||||
for domain_name in sorted(_DOMAINS.keys()):
|
||||
domain = _DOMAINS[domain_name]
|
||||
|
||||
if tag is None:
|
||||
tasks_in_domain = domain.SUITE
|
||||
else:
|
||||
tasks_in_domain = domain.SUITE.tagged(tag)
|
||||
|
||||
for task_name in tasks_in_domain.keys():
|
||||
result.append((domain_name, task_name))
|
||||
|
||||
return tuple(result)
|
||||
|
||||
|
||||
def _get_tasks_by_domain(tasks):
|
||||
"""Returns a dict mapping from task name to a tuple of domain names."""
|
||||
result = collections.defaultdict(list)
|
||||
|
||||
for domain_name, task_name in tasks:
|
||||
result[domain_name].append(task_name)
|
||||
|
||||
return {k: tuple(v) for k, v in result.items()}
|
||||
|
||||
|
||||
# A sequence containing all (domain name, task name) pairs.
|
||||
ALL_TASKS = _get_tasks(tag=None)
|
||||
|
||||
# Subsets of ALL_TASKS, generated via the tag mechanism.
|
||||
BENCHMARKING = _get_tasks('benchmarking')
|
||||
EASY = _get_tasks('easy')
|
||||
HARD = _get_tasks('hard')
|
||||
EXTRA = tuple(sorted(set(ALL_TASKS) - set(BENCHMARKING)))
|
||||
|
||||
# A mapping from each domain name to a sequence of its task names.
|
||||
TASKS_BY_DOMAIN = _get_tasks_by_domain(ALL_TASKS)
|
||||
|
||||
|
||||
def load(domain_name, task_name, task_kwargs=None, environment_kwargs=None,
|
||||
visualize_reward=False):
|
||||
"""Returns an environment from a domain name, task name and optional settings.
|
||||
|
||||
```python
|
||||
env = suite.load('cartpole', 'balance')
|
||||
```
|
||||
|
||||
Args:
|
||||
domain_name: A string containing the name of a domain.
|
||||
task_name: A string containing the name of a task.
|
||||
task_kwargs: Optional `dict` of keyword arguments for the task.
|
||||
environment_kwargs: Optional `dict` specifying keyword arguments for the
|
||||
environment.
|
||||
visualize_reward: Optional `bool`. If `True`, object colours in rendered
|
||||
frames are set to indicate the reward at each step. Default `False`.
|
||||
|
||||
Returns:
|
||||
The requested environment.
|
||||
"""
|
||||
return build_environment(domain_name, task_name, task_kwargs,
|
||||
environment_kwargs, visualize_reward)
|
||||
|
||||
|
||||
def build_environment(domain_name, task_name, task_kwargs=None,
|
||||
environment_kwargs=None, visualize_reward=False):
|
||||
"""Returns an environment from the suite given a domain name and a task name.
|
||||
|
||||
Args:
|
||||
domain_name: A string containing the name of a domain.
|
||||
task_name: A string containing the name of a task.
|
||||
task_kwargs: Optional `dict` specifying keyword arguments for the task.
|
||||
environment_kwargs: Optional `dict` specifying keyword arguments for the
|
||||
environment.
|
||||
visualize_reward: Optional `bool`. If `True`, object colours in rendered
|
||||
frames are set to indicate the reward at each step. Default `False`.
|
||||
|
||||
Raises:
|
||||
ValueError: If the domain or task doesn't exist.
|
||||
|
||||
Returns:
|
||||
An instance of the requested environment.
|
||||
"""
|
||||
if domain_name not in _DOMAINS:
|
||||
raise ValueError('Domain {!r} does not exist.'.format(domain_name))
|
||||
|
||||
domain = _DOMAINS[domain_name]
|
||||
|
||||
if task_name not in domain.SUITE:
|
||||
raise ValueError('Level {!r} does not exist in domain {!r}.'.format(
|
||||
task_name, domain_name))
|
||||
|
||||
task_kwargs = task_kwargs or {}
|
||||
if environment_kwargs is not None:
|
||||
task_kwargs = task_kwargs.copy()
|
||||
task_kwargs['environment_kwargs'] = environment_kwargs
|
||||
env = domain.SUITE[task_name](**task_kwargs)
|
||||
env.task.visualize_reward = visualize_reward
|
||||
return env
|
127
DPI/local_dm_control_suite/acrobot.py
Executable file
127
DPI/local_dm_control_suite/acrobot.py
Executable file
@ -0,0 +1,127 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Acrobot domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
import numpy as np
|
||||
|
||||
_DEFAULT_TIME_LIMIT = 10
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def get_model_and_assets():
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
return common.read_model('acrobot.xml'), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def swingup(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns Acrobot balance task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Balance(sparse=False, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, **environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def swingup_sparse(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns Acrobot sparse balance."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Balance(sparse=True, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, **environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the Acrobot domain."""
|
||||
|
||||
def horizontal(self):
|
||||
"""Returns horizontal (x) component of body frame z-axes."""
|
||||
return self.named.data.xmat[['upper_arm', 'lower_arm'], 'xz']
|
||||
|
||||
def vertical(self):
|
||||
"""Returns vertical (z) component of body frame z-axes."""
|
||||
return self.named.data.xmat[['upper_arm', 'lower_arm'], 'zz']
|
||||
|
||||
def to_target(self):
|
||||
"""Returns the distance from the tip to the target."""
|
||||
tip_to_target = (self.named.data.site_xpos['target'] -
|
||||
self.named.data.site_xpos['tip'])
|
||||
return np.linalg.norm(tip_to_target)
|
||||
|
||||
def orientations(self):
|
||||
"""Returns the sines and cosines of the pole angles."""
|
||||
return np.concatenate((self.horizontal(), self.vertical()))
|
||||
|
||||
|
||||
class Balance(base.Task):
|
||||
"""An Acrobot `Task` to swing up and balance the pole."""
|
||||
|
||||
def __init__(self, sparse, random=None):
|
||||
"""Initializes an instance of `Balance`.
|
||||
|
||||
Args:
|
||||
sparse: A `bool` specifying whether to use a sparse (indicator) reward.
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
self._sparse = sparse
|
||||
super(Balance, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode.
|
||||
|
||||
Shoulder and elbow are set to a random position between [-pi, pi).
|
||||
|
||||
Args:
|
||||
physics: An instance of `Physics`.
|
||||
"""
|
||||
physics.named.data.qpos[
|
||||
['shoulder', 'elbow']] = self.random.uniform(-np.pi, np.pi, 2)
|
||||
super(Balance, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation of pole orientation and angular velocities."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['orientations'] = physics.orientations()
|
||||
obs['velocity'] = physics.velocity()
|
||||
return obs
|
||||
|
||||
def _get_reward(self, physics, sparse):
|
||||
target_radius = physics.named.model.site_size['target', 0]
|
||||
return rewards.tolerance(physics.to_target(),
|
||||
bounds=(0, target_radius),
|
||||
margin=0 if sparse else 1)
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a sparse or a smooth reward, as specified in the constructor."""
|
||||
return self._get_reward(physics, sparse=self._sparse)
|
43
DPI/local_dm_control_suite/acrobot.xml
Executable file
43
DPI/local_dm_control_suite/acrobot.xml
Executable file
@ -0,0 +1,43 @@
|
||||
<!--
|
||||
Based on Coulomb's [1] rather than Spong's [2] model.
|
||||
[1] Coulom, Rémi. Reinforcement learning using neural networks, with applications to motor control.
|
||||
Diss. Institut National Polytechnique de Grenoble-INPG, 2002.
|
||||
[2] Spong, Mark W. "The swing up control problem for the acrobot."
|
||||
IEEE control systems 15, no. 1 (1995): 49-55.
|
||||
-->
|
||||
<mujoco model="acrobot">
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
|
||||
<default>
|
||||
<joint damping=".05"/>
|
||||
<geom type="capsule" mass="1"/>
|
||||
</default>
|
||||
|
||||
<option timestep="0.01" integrator="RK4">
|
||||
<flag constraint="disable" energy="enable"/>
|
||||
</option>
|
||||
|
||||
<worldbody>
|
||||
<light name="light" pos="0 0 6"/>
|
||||
<geom name="floor" size="3 3 .2" type="plane" material="grid"/>
|
||||
<site name="target" type="sphere" pos="0 0 4" size="0.2" material="target" group="3"/>
|
||||
<camera name="fixed" pos="0 -6 2" zaxis="0 -1 0"/>
|
||||
<camera name="lookat" mode="targetbodycom" target="upper_arm" pos="0 -2 3"/>
|
||||
<body name="upper_arm" pos="0 0 2">
|
||||
<joint name="shoulder" type="hinge" axis="0 1 0"/>
|
||||
<geom name="upper_arm_decoration" material="decoration" type="cylinder" fromto="0 -.06 0 0 .06 0" size="0.051" mass="0"/>
|
||||
<geom name="upper_arm" fromto="0 0 0 0 0 1" size="0.05" material="self"/>
|
||||
<body name="lower_arm" pos="0 0 1">
|
||||
<joint name="elbow" type="hinge" axis="0 1 0"/>
|
||||
<geom name="lower_arm" fromto="0 0 0 0 0 1" size="0.049" material="self"/>
|
||||
<site name="tip" pos="0 0 1" size="0.01"/>
|
||||
</body>
|
||||
</body>
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<motor name="elbow" joint="elbow" gear="2" ctrllimited="true" ctrlrange="-1 1"/>
|
||||
</actuator>
|
||||
</mujoco>
|
100
DPI/local_dm_control_suite/ball_in_cup.py
Executable file
100
DPI/local_dm_control_suite/ball_in_cup.py
Executable file
@ -0,0 +1,100 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Ball-in-Cup Domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.utils import containers
|
||||
|
||||
_DEFAULT_TIME_LIMIT = 20 # (seconds)
|
||||
_CONTROL_TIMESTEP = .02 # (seconds)
|
||||
|
||||
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def get_model_and_assets():
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
return common.read_model('ball_in_cup.xml'), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking', 'easy')
|
||||
def catch(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Ball-in-Cup task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = BallInCup(random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics with additional features for the Ball-in-Cup domain."""
|
||||
|
||||
def ball_to_target(self):
|
||||
"""Returns the vector from the ball to the target."""
|
||||
target = self.named.data.site_xpos['target', ['x', 'z']]
|
||||
ball = self.named.data.xpos['ball', ['x', 'z']]
|
||||
return target - ball
|
||||
|
||||
def in_target(self):
|
||||
"""Returns 1 if the ball is in the target, 0 otherwise."""
|
||||
ball_to_target = abs(self.ball_to_target())
|
||||
target_size = self.named.model.site_size['target', [0, 2]]
|
||||
ball_size = self.named.model.geom_size['ball', 0]
|
||||
return float(all(ball_to_target < target_size - ball_size))
|
||||
|
||||
|
||||
class BallInCup(base.Task):
|
||||
"""The Ball-in-Cup task. Put the ball in the cup."""
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode.
|
||||
|
||||
Args:
|
||||
physics: An instance of `Physics`.
|
||||
|
||||
"""
|
||||
# Find a collision-free random initial position of the ball.
|
||||
penetrating = True
|
||||
while penetrating:
|
||||
# Assign a random ball position.
|
||||
physics.named.data.qpos['ball_x'] = self.random.uniform(-.2, .2)
|
||||
physics.named.data.qpos['ball_z'] = self.random.uniform(.2, .5)
|
||||
# Check for collisions.
|
||||
physics.after_reset()
|
||||
penetrating = physics.data.ncon > 0
|
||||
super(BallInCup, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation of the state."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['position'] = physics.position()
|
||||
obs['velocity'] = physics.velocity()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a sparse reward."""
|
||||
return physics.in_target()
|
54
DPI/local_dm_control_suite/ball_in_cup.xml
Executable file
54
DPI/local_dm_control_suite/ball_in_cup.xml
Executable file
@ -0,0 +1,54 @@
|
||||
<mujoco model="ball in cup">
|
||||
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
|
||||
<default>
|
||||
<motor ctrllimited="true" ctrlrange="-1 1" gear="5"/>
|
||||
<default class="cup">
|
||||
<joint type="slide" damping="3" stiffness="20"/>
|
||||
<geom type="capsule" size=".008" material="self"/>
|
||||
</default>
|
||||
</default>
|
||||
|
||||
<worldbody>
|
||||
<light name="light" directional="true" diffuse=".6 .6 .6" pos="0 0 2" specular=".3 .3 .3"/>
|
||||
<geom name="ground" type="plane" pos="0 0 0" size=".6 .2 10" material="grid"/>
|
||||
<camera name="cam0" pos="0 -1 .8" xyaxes="1 0 0 0 1 2"/>
|
||||
<camera name="cam1" pos="0 -1 .4" xyaxes="1 0 0 0 0 1" />
|
||||
|
||||
<body name="cup" pos="0 0 .6" childclass="cup">
|
||||
<joint name="cup_x" axis="1 0 0"/>
|
||||
<joint name="cup_z" axis="0 0 1"/>
|
||||
<geom name="cup_part_0" fromto="-.05 0 0 -.05 0 -.075" />
|
||||
<geom name="cup_part_1" fromto="-.05 0 -.075 -.025 0 -.1" />
|
||||
<geom name="cup_part_2" fromto="-.025 0 -.1 .025 0 -.1" />
|
||||
<geom name="cup_part_3" fromto=".025 0 -.1 .05 0 -.075" />
|
||||
<geom name="cup_part_4" fromto=".05 0 -.075 .05 0 0" />
|
||||
<site name="cup" pos="0 0 -.108" size=".005"/>
|
||||
<site name="target" type="box" pos="0 0 -.05" size=".05 .006 .05" group="4"/>
|
||||
</body>
|
||||
|
||||
<body name="ball" pos="0 0 .2">
|
||||
<joint name="ball_x" type="slide" axis="1 0 0"/>
|
||||
<joint name="ball_z" type="slide" axis="0 0 1"/>
|
||||
<geom name="ball" type="sphere" size=".025" material="effector"/>
|
||||
<site name="ball" size=".005"/>
|
||||
</body>
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<motor name="x" joint="cup_x"/>
|
||||
<motor name="z" joint="cup_z"/>
|
||||
</actuator>
|
||||
|
||||
<tendon>
|
||||
<spatial name="string" limited="true" range="0 0.3" width="0.003">
|
||||
<site site="ball"/>
|
||||
<site site="cup"/>
|
||||
</spatial>
|
||||
</tendon>
|
||||
|
||||
</mujoco>
|
||||
|
112
DPI/local_dm_control_suite/base.py
Executable file
112
DPI/local_dm_control_suite/base.py
Executable file
@ -0,0 +1,112 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Base class for tasks in the Control Suite."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Task(control.Task):
|
||||
"""Base class for tasks in the Control Suite.
|
||||
|
||||
Actions are mapped directly to the states of MuJoCo actuators: each element of
|
||||
the action array is used to set the control input for a single actuator. The
|
||||
ordering of the actuators is the same as in the corresponding MJCF XML file.
|
||||
|
||||
Attributes:
|
||||
random: A `numpy.random.RandomState` instance. This should be used to
|
||||
generate all random variables associated with the task, such as random
|
||||
starting states, observation noise* etc.
|
||||
|
||||
*If sensor noise is enabled in the MuJoCo model then this will be generated
|
||||
using MuJoCo's internal RNG, which has its own independent state.
|
||||
"""
|
||||
|
||||
def __init__(self, random=None):
|
||||
"""Initializes a new continuous control task.
|
||||
|
||||
Args:
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an integer
|
||||
seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
if not isinstance(random, np.random.RandomState):
|
||||
random = np.random.RandomState(random)
|
||||
self._random = random
|
||||
self._visualize_reward = False
|
||||
|
||||
@property
|
||||
def random(self):
|
||||
"""Task-specific `numpy.random.RandomState` instance."""
|
||||
return self._random
|
||||
|
||||
def action_spec(self, physics):
|
||||
"""Returns a `BoundedArraySpec` matching the `physics` actuators."""
|
||||
return mujoco.action_spec(physics)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Resets geom colors to their defaults after starting a new episode.
|
||||
|
||||
Subclasses of `base.Task` must delegate to this method after performing
|
||||
their own initialization.
|
||||
|
||||
Args:
|
||||
physics: An instance of `mujoco.Physics`.
|
||||
"""
|
||||
self.after_step(physics)
|
||||
|
||||
def before_step(self, action, physics):
|
||||
"""Sets the control signal for the actuators to values in `action`."""
|
||||
# Support legacy internal code.
|
||||
action = getattr(action, "continuous_actions", action)
|
||||
physics.set_control(action)
|
||||
|
||||
def after_step(self, physics):
|
||||
"""Modifies colors according to the reward."""
|
||||
if self._visualize_reward:
|
||||
reward = np.clip(self.get_reward(physics), 0.0, 1.0)
|
||||
_set_reward_colors(physics, reward)
|
||||
|
||||
@property
|
||||
def visualize_reward(self):
|
||||
return self._visualize_reward
|
||||
|
||||
@visualize_reward.setter
|
||||
def visualize_reward(self, value):
|
||||
if not isinstance(value, bool):
|
||||
raise ValueError("Expected a boolean, got {}.".format(type(value)))
|
||||
self._visualize_reward = value
|
||||
|
||||
|
||||
_MATERIALS = ["self", "effector", "target"]
|
||||
_DEFAULT = [name + "_default" for name in _MATERIALS]
|
||||
_HIGHLIGHT = [name + "_highlight" for name in _MATERIALS]
|
||||
|
||||
|
||||
def _set_reward_colors(physics, reward):
|
||||
"""Sets the highlight, effector and target colors according to the reward."""
|
||||
assert 0.0 <= reward <= 1.0
|
||||
colors = physics.named.model.mat_rgba
|
||||
default = colors[_DEFAULT]
|
||||
highlight = colors[_HIGHLIGHT]
|
||||
blend_coef = reward ** 4 # Better color distinction near high rewards.
|
||||
colors[_MATERIALS] = blend_coef * highlight + (1.0 - blend_coef) * default
|
230
DPI/local_dm_control_suite/cartpole.py
Executable file
230
DPI/local_dm_control_suite/cartpole.py
Executable file
@ -0,0 +1,230 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Cartpole domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
from lxml import etree
|
||||
import numpy as np
|
||||
from six.moves import range
|
||||
|
||||
|
||||
_DEFAULT_TIME_LIMIT = 10
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def get_model_and_assets(num_poles=1):
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
return _make_model(num_poles), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def balance(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns the Cartpole Balance task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Balance(swing_up=False, sparse=False, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, **environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def balance_sparse(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns the sparse reward variant of the Cartpole Balance task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Balance(swing_up=False, sparse=True, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, **environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def swingup(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns the Cartpole Swing-Up task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Balance(swing_up=True, sparse=False, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, **environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def swingup_sparse(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns the sparse reward variant of teh Cartpole Swing-Up task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Balance(swing_up=True, sparse=True, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, **environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add()
|
||||
def two_poles(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns the Cartpole Balance task with two poles."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets(num_poles=2))
|
||||
task = Balance(swing_up=True, sparse=False, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, **environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add()
|
||||
def three_poles(time_limit=_DEFAULT_TIME_LIMIT, random=None, num_poles=3,
|
||||
sparse=False, environment_kwargs=None):
|
||||
"""Returns the Cartpole Balance task with three or more poles."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets(num_poles=num_poles))
|
||||
task = Balance(swing_up=True, sparse=sparse, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, **environment_kwargs)
|
||||
|
||||
|
||||
def _make_model(n_poles):
|
||||
"""Generates an xml string defining a cart with `n_poles` bodies."""
|
||||
xml_string = common.read_model('cartpole.xml')
|
||||
if n_poles == 1:
|
||||
return xml_string
|
||||
mjcf = etree.fromstring(xml_string)
|
||||
parent = mjcf.find('./worldbody/body/body') # Find first pole.
|
||||
# Make chain of poles.
|
||||
for pole_index in range(2, n_poles+1):
|
||||
child = etree.Element('body', name='pole_{}'.format(pole_index),
|
||||
pos='0 0 1', childclass='pole')
|
||||
etree.SubElement(child, 'joint', name='hinge_{}'.format(pole_index))
|
||||
etree.SubElement(child, 'geom', name='pole_{}'.format(pole_index))
|
||||
parent.append(child)
|
||||
parent = child
|
||||
# Move plane down.
|
||||
floor = mjcf.find('./worldbody/geom')
|
||||
floor.set('pos', '0 0 {}'.format(1 - n_poles - .05))
|
||||
# Move cameras back.
|
||||
cameras = mjcf.findall('./worldbody/camera')
|
||||
cameras[0].set('pos', '0 {} 1'.format(-1 - 2*n_poles))
|
||||
cameras[1].set('pos', '0 {} 2'.format(-2*n_poles))
|
||||
return etree.tostring(mjcf, pretty_print=True)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the Cartpole domain."""
|
||||
|
||||
def cart_position(self):
|
||||
"""Returns the position of the cart."""
|
||||
return self.named.data.qpos['slider'][0]
|
||||
|
||||
def angular_vel(self):
|
||||
"""Returns the angular velocity of the pole."""
|
||||
return self.data.qvel[1:]
|
||||
|
||||
def pole_angle_cosine(self):
|
||||
"""Returns the cosine of the pole angle."""
|
||||
return self.named.data.xmat[2:, 'zz']
|
||||
|
||||
def bounded_position(self):
|
||||
"""Returns the state, with pole angle split into sin/cos."""
|
||||
return np.hstack((self.cart_position(),
|
||||
self.named.data.xmat[2:, ['zz', 'xz']].ravel()))
|
||||
|
||||
|
||||
class Balance(base.Task):
|
||||
"""A Cartpole `Task` to balance the pole.
|
||||
|
||||
State is initialized either close to the target configuration or at a random
|
||||
configuration.
|
||||
"""
|
||||
_CART_RANGE = (-.25, .25)
|
||||
_ANGLE_COSINE_RANGE = (.995, 1)
|
||||
|
||||
def __init__(self, swing_up, sparse, random=None):
|
||||
"""Initializes an instance of `Balance`.
|
||||
|
||||
Args:
|
||||
swing_up: A `bool`, which if `True` sets the cart to the middle of the
|
||||
slider and the pole pointing towards the ground. Otherwise, sets the
|
||||
cart to a random position on the slider and the pole to a random
|
||||
near-vertical position.
|
||||
sparse: A `bool`, whether to return a sparse or a smooth reward.
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
self._sparse = sparse
|
||||
self._swing_up = swing_up
|
||||
super(Balance, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode.
|
||||
|
||||
Initializes the cart and pole according to `swing_up`, and in both cases
|
||||
adds a small random initial velocity to break symmetry.
|
||||
|
||||
Args:
|
||||
physics: An instance of `Physics`.
|
||||
"""
|
||||
nv = physics.model.nv
|
||||
if self._swing_up:
|
||||
physics.named.data.qpos['slider'] = .01*self.random.randn()
|
||||
physics.named.data.qpos['hinge_1'] = np.pi + .01*self.random.randn()
|
||||
physics.named.data.qpos[2:] = .1*self.random.randn(nv - 2)
|
||||
else:
|
||||
physics.named.data.qpos['slider'] = self.random.uniform(-.1, .1)
|
||||
physics.named.data.qpos[1:] = self.random.uniform(-.034, .034, nv - 1)
|
||||
physics.named.data.qvel[:] = 0.01 * self.random.randn(physics.model.nv)
|
||||
super(Balance, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation of the (bounded) physics state."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['position'] = physics.bounded_position()
|
||||
obs['velocity'] = physics.velocity()
|
||||
return obs
|
||||
|
||||
def _get_reward(self, physics, sparse):
|
||||
if sparse:
|
||||
cart_in_bounds = rewards.tolerance(physics.cart_position(),
|
||||
self._CART_RANGE)
|
||||
angle_in_bounds = rewards.tolerance(physics.pole_angle_cosine(),
|
||||
self._ANGLE_COSINE_RANGE).prod()
|
||||
return cart_in_bounds * angle_in_bounds
|
||||
else:
|
||||
upright = (physics.pole_angle_cosine() + 1) / 2
|
||||
centered = rewards.tolerance(physics.cart_position(), margin=2)
|
||||
centered = (1 + centered) / 2
|
||||
small_control = rewards.tolerance(physics.control(), margin=1,
|
||||
value_at_margin=0,
|
||||
sigmoid='quadratic')[0]
|
||||
small_control = (4 + small_control) / 5
|
||||
small_velocity = rewards.tolerance(physics.angular_vel(), margin=5).min()
|
||||
small_velocity = (1 + small_velocity) / 2
|
||||
return upright.mean() * small_control * small_velocity * centered
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a sparse or a smooth reward, as specified in the constructor."""
|
||||
return self._get_reward(physics, sparse=self._sparse)
|
37
DPI/local_dm_control_suite/cartpole.xml
Executable file
37
DPI/local_dm_control_suite/cartpole.xml
Executable file
@ -0,0 +1,37 @@
|
||||
<mujoco model="cart-pole">
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
|
||||
<option timestep="0.01" integrator="RK4">
|
||||
<flag contact="disable" energy="enable"/>
|
||||
</option>
|
||||
|
||||
<default>
|
||||
<default class="pole">
|
||||
<joint type="hinge" axis="0 1 0" damping="2e-6"/>
|
||||
<geom type="capsule" fromto="0 0 0 0 0 1" size="0.045" material="self" mass=".1"/>
|
||||
</default>
|
||||
</default>
|
||||
|
||||
<worldbody>
|
||||
<light name="light" pos="0 0 6"/>
|
||||
<camera name="fixed" pos="0 -4 1" zaxis="0 -1 0"/>
|
||||
<camera name="lookatcart" mode="targetbody" target="cart" pos="0 -2 2"/>
|
||||
<geom name="floor" pos="0 0 -.05" size="4 4 .2" type="plane" material="grid"/>
|
||||
<geom name="rail1" type="capsule" pos="0 .07 1" zaxis="1 0 0" size="0.02 2" material="decoration" />
|
||||
<geom name="rail2" type="capsule" pos="0 -.07 1" zaxis="1 0 0" size="0.02 2" material="decoration" />
|
||||
<body name="cart" pos="0 0 1">
|
||||
<joint name="slider" type="slide" limited="true" axis="1 0 0" range="-1.8 1.8" solreflimit=".08 1" damping="5e-4"/>
|
||||
<geom name="cart" type="box" size="0.2 0.15 0.1" material="self" mass="1"/>
|
||||
<body name="pole_1" childclass="pole">
|
||||
<joint name="hinge_1"/>
|
||||
<geom name="pole_1"/>
|
||||
</body>
|
||||
</body>
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<motor name="slide" joint="slider" gear="10" ctrllimited="true" ctrlrange="-1 1" />
|
||||
</actuator>
|
||||
</mujoco>
|
97
DPI/local_dm_control_suite/cheetah.py
Executable file
97
DPI/local_dm_control_suite/cheetah.py
Executable file
@ -0,0 +1,97 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Cheetah Domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
|
||||
|
||||
# How long the simulation will run, in seconds.
|
||||
_DEFAULT_TIME_LIMIT = 10
|
||||
|
||||
# Running speed above which reward is 1.
|
||||
_RUN_SPEED = 10
|
||||
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def get_model_and_assets():
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
return common.read_model('cheetah.xml'), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def run(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the run task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Cheetah(random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(physics, task, time_limit=time_limit,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the Cheetah domain."""
|
||||
|
||||
def speed(self):
|
||||
"""Returns the horizontal speed of the Cheetah."""
|
||||
return self.named.data.sensordata['torso_subtreelinvel'][0]
|
||||
|
||||
|
||||
class Cheetah(base.Task):
|
||||
"""A `Task` to train a running Cheetah."""
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
# The indexing below assumes that all joints have a single DOF.
|
||||
assert physics.model.nq == physics.model.njnt
|
||||
is_limited = physics.model.jnt_limited == 1
|
||||
lower, upper = physics.model.jnt_range[is_limited].T
|
||||
physics.data.qpos[is_limited] = self.random.uniform(lower, upper)
|
||||
|
||||
# Stabilize the model before the actual simulation.
|
||||
for _ in range(200):
|
||||
physics.step()
|
||||
|
||||
physics.data.time = 0
|
||||
self._timeout_progress = 0
|
||||
super(Cheetah, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation of the state, ignoring horizontal position."""
|
||||
obs = collections.OrderedDict()
|
||||
# Ignores horizontal position to maintain translational invariance.
|
||||
obs['position'] = physics.data.qpos[1:].copy()
|
||||
obs['velocity'] = physics.velocity()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a reward to the agent."""
|
||||
return rewards.tolerance(physics.speed(),
|
||||
bounds=(_RUN_SPEED, float('inf')),
|
||||
margin=_RUN_SPEED,
|
||||
value_at_margin=0,
|
||||
sigmoid='linear')
|
73
DPI/local_dm_control_suite/cheetah.xml
Executable file
73
DPI/local_dm_control_suite/cheetah.xml
Executable file
@ -0,0 +1,73 @@
|
||||
<mujoco model="cheetah">
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/materials_white_floor.xml"/>
|
||||
|
||||
<compiler settotalmass="14"/>
|
||||
|
||||
<default>
|
||||
<default class="cheetah">
|
||||
<joint limited="true" damping=".01" armature=".1" stiffness="8" type="hinge" axis="0 1 0"/>
|
||||
<geom contype="1" conaffinity="1" condim="3" friction=".4 .1 .1" material="self"/>
|
||||
</default>
|
||||
<default class="free">
|
||||
<joint limited="false" damping="0" armature="0" stiffness="0"/>
|
||||
</default>
|
||||
<motor ctrllimited="true" ctrlrange="-1 1"/>
|
||||
</default>
|
||||
|
||||
<statistic center="0 0 .7" extent="2"/>
|
||||
|
||||
<option timestep="0.01"/>
|
||||
|
||||
<worldbody>
|
||||
<geom name="ground" type="plane" conaffinity="1" pos="98 0 0" size="100 .8 .5" material="grid"/>
|
||||
<body name="torso" pos="0 0 .7" childclass="cheetah">
|
||||
<light name="light" pos="0 0 2" mode="trackcom"/>
|
||||
<camera name="side" pos="0 -3 0" quat="0.707 0.707 0 0" mode="trackcom"/>
|
||||
<camera name="back" pos="-1.8 -1.3 0.8" xyaxes="0.45 -0.9 0 0.3 0.15 0.94" mode="trackcom"/>
|
||||
<joint name="rootx" type="slide" axis="1 0 0" class="free"/>
|
||||
<joint name="rootz" type="slide" axis="0 0 1" class="free"/>
|
||||
<joint name="rooty" type="hinge" axis="0 1 0" class="free"/>
|
||||
<geom name="torso" type="capsule" fromto="-.5 0 0 .5 0 0" size="0.046"/>
|
||||
<geom name="head" type="capsule" pos=".6 0 .1" euler="0 50 0" size="0.046 .15"/>
|
||||
<body name="bthigh" pos="-.5 0 0">
|
||||
<joint name="bthigh" range="-30 60" stiffness="240" damping="6"/>
|
||||
<geom name="bthigh" type="capsule" pos=".1 0 -.13" euler="0 -218 0" size="0.046 .145"/>
|
||||
<body name="bshin" pos=".16 0 -.25">
|
||||
<joint name="bshin" range="-50 50" stiffness="180" damping="4.5"/>
|
||||
<geom name="bshin" type="capsule" pos="-.14 0 -.07" euler="0 -116 0" size="0.046 .15"/>
|
||||
<body name="bfoot" pos="-.28 0 -.14">
|
||||
<joint name="bfoot" range="-230 50" stiffness="120" damping="3"/>
|
||||
<geom name="bfoot" type="capsule" pos=".03 0 -.097" euler="0 -15 0" size="0.046 .094"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
<body name="fthigh" pos=".5 0 0">
|
||||
<joint name="fthigh" range="-57 .40" stiffness="180" damping="4.5"/>
|
||||
<geom name="fthigh" type="capsule" pos="-.07 0 -.12" euler="0 30 0" size="0.046 .133"/>
|
||||
<body name="fshin" pos="-.14 0 -.24">
|
||||
<joint name="fshin" range="-70 50" stiffness="120" damping="3"/>
|
||||
<geom name="fshin" type="capsule" pos=".065 0 -.09" euler="0 -34 0" size="0.046 .106"/>
|
||||
<body name="ffoot" pos=".13 0 -.18">
|
||||
<joint name="ffoot" range="-28 28" stiffness="60" damping="1.5"/>
|
||||
<geom name="ffoot" type="capsule" pos=".045 0 -.07" euler="0 -34 0" size="0.046 .07"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</worldbody>
|
||||
|
||||
<sensor>
|
||||
<subtreelinvel name="torso_subtreelinvel" body="torso"/>
|
||||
</sensor>
|
||||
|
||||
<actuator>
|
||||
<motor name="bthigh" joint="bthigh" gear="120" />
|
||||
<motor name="bshin" joint="bshin" gear="90" />
|
||||
<motor name="bfoot" joint="bfoot" gear="60" />
|
||||
<motor name="fthigh" joint="fthigh" gear="90" />
|
||||
<motor name="fshin" joint="fshin" gear="60" />
|
||||
<motor name="ffoot" joint="ffoot" gear="30" />
|
||||
</actuator>
|
||||
</mujoco>
|
39
DPI/local_dm_control_suite/common/__init__.py
Executable file
39
DPI/local_dm_control_suite/common/__init__.py
Executable file
@ -0,0 +1,39 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Functions to manage the common assets for domains."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
from dm_control.utils import io as resources
|
||||
|
||||
_SUITE_DIR = os.path.dirname(os.path.dirname(__file__))
|
||||
_FILENAMES = [
|
||||
"./common/materials.xml",
|
||||
"./common/materials_white_floor.xml",
|
||||
"./common/skybox.xml",
|
||||
"./common/visual.xml",
|
||||
]
|
||||
|
||||
ASSETS = {filename: resources.GetResource(os.path.join(_SUITE_DIR, filename))
|
||||
for filename in _FILENAMES}
|
||||
|
||||
|
||||
def read_model(model_filename):
|
||||
"""Reads a model XML file and returns its contents as a string."""
|
||||
return resources.GetResource(os.path.join(_SUITE_DIR, model_filename))
|
23
DPI/local_dm_control_suite/common/materials.xml
Executable file
23
DPI/local_dm_control_suite/common/materials.xml
Executable file
@ -0,0 +1,23 @@
|
||||
<!--
|
||||
Common textures, colors and materials to be used throughout this suite. Some
|
||||
materials such as xxx_highlight are activated on occurence of certain events,
|
||||
for example receiving a positive reward.
|
||||
-->
|
||||
<mujoco>
|
||||
<asset>
|
||||
<texture name="grid" type="2d" builtin="checker" rgb1=".1 .1 .4" rgb2=".2 .2 .8" width="300" height="300" mark="edge" markrgb=".1 .1 .4"/>
|
||||
<material name="grid" texture="grid" texrepeat="1 1" texuniform="true" reflectance=".2"/>
|
||||
<material name="self" rgba=".7 .5 .3 1"/>
|
||||
<material name="self_default" rgba=".7 .5 .3 1"/>
|
||||
<material name="self_highlight" rgba="0 .5 .3 1"/>
|
||||
<material name="effector" rgba=".7 .4 .2 1"/>
|
||||
<material name="effector_default" rgba=".7 .4 .2 1"/>
|
||||
<material name="effector_highlight" rgba="0 .5 .3 1"/>
|
||||
<material name="decoration" rgba=".7 .5 .3 1"/>
|
||||
<material name="eye" rgba="0 .2 1 1"/>
|
||||
<material name="target" rgba=".6 .3 .3 1"/>
|
||||
<material name="target_default" rgba=".6 .3 .3 1"/>
|
||||
<material name="target_highlight" rgba=".6 .3 .3 .4"/>
|
||||
<material name="site" rgba=".5 .5 .5 .3"/>
|
||||
</asset>
|
||||
</mujoco>
|
23
DPI/local_dm_control_suite/common/materials_white_floor.xml
Executable file
23
DPI/local_dm_control_suite/common/materials_white_floor.xml
Executable file
@ -0,0 +1,23 @@
|
||||
<!--
|
||||
Common textures, colors and materials to be used throughout this suite. Some
|
||||
materials such as xxx_highlight are activated on occurence of certain events,
|
||||
for example receiving a positive reward.
|
||||
-->
|
||||
<mujoco>
|
||||
<asset>
|
||||
<texture name="grid" type="2d" builtin="checker" rgb1=".1 .1 .1" rgb2=".2 .2 .2" width="300" height="300" mark="edge" markrgb=".1 .1 .1"/>
|
||||
<material name="grid" texture="grid" texrepeat="1 1" texuniform="true" reflectance=".2"/>
|
||||
<material name="self" rgba=".7 .5 .3 1"/>
|
||||
<material name="self_default" rgba=".7 .5 .3 1"/>
|
||||
<material name="self_highlight" rgba="0 .5 .3 1"/>
|
||||
<material name="effector" rgba=".7 .4 .2 1"/>
|
||||
<material name="effector_default" rgba=".7 .4 .2 1"/>
|
||||
<material name="effector_highlight" rgba="0 .5 .3 1"/>
|
||||
<material name="decoration" rgba=".3 .5 .7 1"/>
|
||||
<material name="eye" rgba="0 .2 1 1"/>
|
||||
<material name="target" rgba=".6 .3 .3 1"/>
|
||||
<material name="target_default" rgba=".6 .3 .3 1"/>
|
||||
<material name="target_highlight" rgba=".6 .3 .3 .4"/>
|
||||
<material name="site" rgba=".5 .5 .5 .3"/>
|
||||
</asset>
|
||||
</mujoco>
|
6
DPI/local_dm_control_suite/common/skybox.xml
Executable file
6
DPI/local_dm_control_suite/common/skybox.xml
Executable file
@ -0,0 +1,6 @@
|
||||
<mujoco>
|
||||
<asset>
|
||||
<texture name="skybox" type="skybox" builtin="gradient" rgb1=".4 .6 .8" rgb2="0 0 0"
|
||||
width="800" height="800" mark="random" markrgb="0 0 0"/>
|
||||
</asset>
|
||||
</mujoco>
|
7
DPI/local_dm_control_suite/common/visual.xml
Executable file
7
DPI/local_dm_control_suite/common/visual.xml
Executable file
@ -0,0 +1,7 @@
|
||||
<mujoco>
|
||||
<visual>
|
||||
<headlight ambient=".4 .4 .4" diffuse=".8 .8 .8" specular="0.1 0.1 0.1"/>
|
||||
<map znear=".01"/>
|
||||
<quality shadowsize="2048"/>
|
||||
</visual>
|
||||
</mujoco>
|
84
DPI/local_dm_control_suite/demos/mocap_demo.py
Executable file
84
DPI/local_dm_control_suite/demos/mocap_demo.py
Executable file
@ -0,0 +1,84 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Demonstration of amc parsing for CMU mocap database.
|
||||
|
||||
To run the demo, supply a path to a `.amc` file:
|
||||
|
||||
python mocap_demo --filename='path/to/mocap.amc'
|
||||
|
||||
CMU motion capture clips are available at mocap.cs.cmu.edu
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import time
|
||||
# Internal dependencies.
|
||||
|
||||
from absl import app
|
||||
from absl import flags
|
||||
|
||||
from local_dm_control_suite import humanoid_CMU
|
||||
from dm_control.suite.utils import parse_amc
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
FLAGS = flags.FLAGS
|
||||
flags.DEFINE_string('filename', None, 'amc file to be converted.')
|
||||
flags.DEFINE_integer('max_num_frames', 90,
|
||||
'Maximum number of frames for plotting/playback')
|
||||
|
||||
|
||||
def main(unused_argv):
|
||||
env = humanoid_CMU.stand()
|
||||
|
||||
# Parse and convert specified clip.
|
||||
converted = parse_amc.convert(FLAGS.filename,
|
||||
env.physics, env.control_timestep())
|
||||
|
||||
max_frame = min(FLAGS.max_num_frames, converted.qpos.shape[1] - 1)
|
||||
|
||||
width = 480
|
||||
height = 480
|
||||
video = np.zeros((max_frame, height, 2 * width, 3), dtype=np.uint8)
|
||||
|
||||
for i in range(max_frame):
|
||||
p_i = converted.qpos[:, i]
|
||||
with env.physics.reset_context():
|
||||
env.physics.data.qpos[:] = p_i
|
||||
video[i] = np.hstack([env.physics.render(height, width, camera_id=0),
|
||||
env.physics.render(height, width, camera_id=1)])
|
||||
|
||||
tic = time.time()
|
||||
for i in range(max_frame):
|
||||
if i == 0:
|
||||
img = plt.imshow(video[i])
|
||||
else:
|
||||
img.set_data(video[i])
|
||||
toc = time.time()
|
||||
clock_dt = toc - tic
|
||||
tic = time.time()
|
||||
# Real-time playback not always possible as clock_dt > .03
|
||||
plt.pause(max(0.01, 0.03 - clock_dt)) # Need min display time > 0.0.
|
||||
plt.draw()
|
||||
plt.waitforbuttonpress()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
flags.mark_flag_as_required('filename')
|
||||
app.run(main)
|
213
DPI/local_dm_control_suite/demos/zeros.amc
Executable file
213
DPI/local_dm_control_suite/demos/zeros.amc
Executable file
@ -0,0 +1,213 @@
|
||||
#DUMMY AMC for testing
|
||||
:FULLY-SPECIFIED
|
||||
:DEGREES
|
||||
1
|
||||
root 0 0 0 0 0 0
|
||||
lowerback 0 0 0
|
||||
upperback 0 0 0
|
||||
thorax 0 0 0
|
||||
lowerneck 0 0 0
|
||||
upperneck 0 0 0
|
||||
head 0 0 0
|
||||
rclavicle 0 0
|
||||
rhumerus 0 0 0
|
||||
rradius 0
|
||||
rwrist 0
|
||||
rhand 0 0
|
||||
rfingers 0
|
||||
rthumb 0 0
|
||||
lclavicle 0 0
|
||||
lhumerus 0 0 0
|
||||
lradius 0
|
||||
lwrist 0
|
||||
lhand 0 0
|
||||
lfingers 0
|
||||
lthumb 0 0
|
||||
rfemur 0 0 0
|
||||
rtibia 0
|
||||
rfoot 0 0
|
||||
rtoes 0
|
||||
lfemur 0 0 0
|
||||
ltibia 0
|
||||
lfoot 0 0
|
||||
ltoes 0
|
||||
2
|
||||
root 0 0 0 0 0 0
|
||||
lowerback 0 0 0
|
||||
upperback 0 0 0
|
||||
thorax 0 0 0
|
||||
lowerneck 0 0 0
|
||||
upperneck 0 0 0
|
||||
head 0 0 0
|
||||
rclavicle 0 0
|
||||
rhumerus 0 0 0
|
||||
rradius 0
|
||||
rwrist 0
|
||||
rhand 0 0
|
||||
rfingers 0
|
||||
rthumb 0 0
|
||||
lclavicle 0 0
|
||||
lhumerus 0 0 0
|
||||
lradius 0
|
||||
lwrist 0
|
||||
lhand 0 0
|
||||
lfingers 0
|
||||
lthumb 0 0
|
||||
rfemur 0 0 0
|
||||
rtibia 0
|
||||
rfoot 0 0
|
||||
rtoes 0
|
||||
lfemur 0 0 0
|
||||
ltibia 0
|
||||
lfoot 0 0
|
||||
ltoes 0
|
||||
3
|
||||
root 0 0 0 0 0 0
|
||||
lowerback 0 0 0
|
||||
upperback 0 0 0
|
||||
thorax 0 0 0
|
||||
lowerneck 0 0 0
|
||||
upperneck 0 0 0
|
||||
head 0 0 0
|
||||
rclavicle 0 0
|
||||
rhumerus 0 0 0
|
||||
rradius 0
|
||||
rwrist 0
|
||||
rhand 0 0
|
||||
rfingers 0
|
||||
rthumb 0 0
|
||||
lclavicle 0 0
|
||||
lhumerus 0 0 0
|
||||
lradius 0
|
||||
lwrist 0
|
||||
lhand 0 0
|
||||
lfingers 0
|
||||
lthumb 0 0
|
||||
rfemur 0 0 0
|
||||
rtibia 0
|
||||
rfoot 0 0
|
||||
rtoes 0
|
||||
lfemur 0 0 0
|
||||
ltibia 0
|
||||
lfoot 0 0
|
||||
ltoes 0
|
||||
4
|
||||
root 0 0 0 0 0 0
|
||||
lowerback 0 0 0
|
||||
upperback 0 0 0
|
||||
thorax 0 0 0
|
||||
lowerneck 0 0 0
|
||||
upperneck 0 0 0
|
||||
head 0 0 0
|
||||
rclavicle 0 0
|
||||
rhumerus 0 0 0
|
||||
rradius 0
|
||||
rwrist 0
|
||||
rhand 0 0
|
||||
rfingers 0
|
||||
rthumb 0 0
|
||||
lclavicle 0 0
|
||||
lhumerus 0 0 0
|
||||
lradius 0
|
||||
lwrist 0
|
||||
lhand 0 0
|
||||
lfingers 0
|
||||
lthumb 0 0
|
||||
rfemur 0 0 0
|
||||
rtibia 0
|
||||
rfoot 0 0
|
||||
rtoes 0
|
||||
lfemur 0 0 0
|
||||
ltibia 0
|
||||
lfoot 0 0
|
||||
ltoes 0
|
||||
5
|
||||
root 0 0 0 0 0 0
|
||||
lowerback 0 0 0
|
||||
upperback 0 0 0
|
||||
thorax 0 0 0
|
||||
lowerneck 0 0 0
|
||||
upperneck 0 0 0
|
||||
head 0 0 0
|
||||
rclavicle 0 0
|
||||
rhumerus 0 0 0
|
||||
rradius 0
|
||||
rwrist 0
|
||||
rhand 0 0
|
||||
rfingers 0
|
||||
rthumb 0 0
|
||||
lclavicle 0 0
|
||||
lhumerus 0 0 0
|
||||
lradius 0
|
||||
lwrist 0
|
||||
lhand 0 0
|
||||
lfingers 0
|
||||
lthumb 0 0
|
||||
rfemur 0 0 0
|
||||
rtibia 0
|
||||
rfoot 0 0
|
||||
rtoes 0
|
||||
lfemur 0 0 0
|
||||
ltibia 0
|
||||
lfoot 0 0
|
||||
ltoes 0
|
||||
6
|
||||
root 0 0 0 0 0 0
|
||||
lowerback 0 0 0
|
||||
upperback 0 0 0
|
||||
thorax 0 0 0
|
||||
lowerneck 0 0 0
|
||||
upperneck 0 0 0
|
||||
head 0 0 0
|
||||
rclavicle 0 0
|
||||
rhumerus 0 0 0
|
||||
rradius 0
|
||||
rwrist 0
|
||||
rhand 0 0
|
||||
rfingers 0
|
||||
rthumb 0 0
|
||||
lclavicle 0 0
|
||||
lhumerus 0 0 0
|
||||
lradius 0
|
||||
lwrist 0
|
||||
lhand 0 0
|
||||
lfingers 0
|
||||
lthumb 0 0
|
||||
rfemur 0 0 0
|
||||
rtibia 0
|
||||
rfoot 0 0
|
||||
rtoes 0
|
||||
lfemur 0 0 0
|
||||
ltibia 0
|
||||
lfoot 0 0
|
||||
ltoes 0
|
||||
7
|
||||
root 0 0 0 0 0 0
|
||||
lowerback 0 0 0
|
||||
upperback 0 0 0
|
||||
thorax 0 0 0
|
||||
lowerneck 0 0 0
|
||||
upperneck 0 0 0
|
||||
head 0 0 0
|
||||
rclavicle 0 0
|
||||
rhumerus 0 0 0
|
||||
rradius 0
|
||||
rwrist 0
|
||||
rhand 0 0
|
||||
rfingers 0
|
||||
rthumb 0 0
|
||||
lclavicle 0 0
|
||||
lhumerus 0 0 0
|
||||
lradius 0
|
||||
lwrist 0
|
||||
lhand 0 0
|
||||
lfingers 0
|
||||
lthumb 0 0
|
||||
rfemur 0 0 0
|
||||
rtibia 0
|
||||
rfoot 0 0
|
||||
rtoes 0
|
||||
lfemur 0 0 0
|
||||
ltibia 0
|
||||
lfoot 0 0
|
||||
ltoes 0
|
84
DPI/local_dm_control_suite/explore.py
Executable file
84
DPI/local_dm_control_suite/explore.py
Executable file
@ -0,0 +1,84 @@
|
||||
# Copyright 2018 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Control suite environments explorer."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl import app
|
||||
from absl import flags
|
||||
from dm_control import suite
|
||||
from dm_control.suite.wrappers import action_noise
|
||||
from six.moves import input
|
||||
|
||||
from dm_control import viewer
|
||||
|
||||
|
||||
_ALL_NAMES = ['.'.join(domain_task) for domain_task in suite.ALL_TASKS]
|
||||
|
||||
flags.DEFINE_enum('environment_name', None, _ALL_NAMES,
|
||||
'Optional \'domain_name.task_name\' pair specifying the '
|
||||
'environment to load. If unspecified a prompt will appear to '
|
||||
'select one.')
|
||||
flags.DEFINE_bool('timeout', True, 'Whether episodes should have a time limit.')
|
||||
flags.DEFINE_bool('visualize_reward', True,
|
||||
'Whether to vary the colors of geoms according to the '
|
||||
'current reward value.')
|
||||
flags.DEFINE_float('action_noise', 0.,
|
||||
'Standard deviation of Gaussian noise to apply to actions, '
|
||||
'expressed as a fraction of the max-min range for each '
|
||||
'action dimension. Defaults to 0, i.e. no noise.')
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
|
||||
def prompt_environment_name(prompt, values):
|
||||
environment_name = None
|
||||
while not environment_name:
|
||||
environment_name = input(prompt)
|
||||
if not environment_name or values.index(environment_name) < 0:
|
||||
print('"%s" is not a valid environment name.' % environment_name)
|
||||
environment_name = None
|
||||
return environment_name
|
||||
|
||||
|
||||
def main(argv):
|
||||
del argv
|
||||
environment_name = FLAGS.environment_name
|
||||
if environment_name is None:
|
||||
print('\n '.join(['Available environments:'] + _ALL_NAMES))
|
||||
environment_name = prompt_environment_name(
|
||||
'Please select an environment name: ', _ALL_NAMES)
|
||||
|
||||
index = _ALL_NAMES.index(environment_name)
|
||||
domain_name, task_name = suite.ALL_TASKS[index]
|
||||
|
||||
task_kwargs = {}
|
||||
if not FLAGS.timeout:
|
||||
task_kwargs['time_limit'] = float('inf')
|
||||
|
||||
def loader():
|
||||
env = suite.load(
|
||||
domain_name=domain_name, task_name=task_name, task_kwargs=task_kwargs)
|
||||
env.task.visualize_reward = FLAGS.visualize_reward
|
||||
if FLAGS.action_noise > 0:
|
||||
env = action_noise.Wrapper(env, scale=FLAGS.action_noise)
|
||||
return env
|
||||
|
||||
viewer.launch(loader)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
217
DPI/local_dm_control_suite/finger.py
Executable file
217
DPI/local_dm_control_suite/finger.py
Executable file
@ -0,0 +1,217 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Finger Domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.suite.utils import randomizers
|
||||
from dm_control.utils import containers
|
||||
import numpy as np
|
||||
from six.moves import range
|
||||
|
||||
_DEFAULT_TIME_LIMIT = 20 # (seconds)
|
||||
_CONTROL_TIMESTEP = .02 # (seconds)
|
||||
# For TURN tasks, the 'tip' geom needs to enter a spherical target of sizes:
|
||||
_EASY_TARGET_SIZE = 0.07
|
||||
_HARD_TARGET_SIZE = 0.03
|
||||
# Initial spin velocity for the Stop task.
|
||||
_INITIAL_SPIN_VELOCITY = 100
|
||||
# Spinning slower than this value (radian/second) is considered stopped.
|
||||
_STOP_VELOCITY = 1e-6
|
||||
# Spinning faster than this value (radian/second) is considered spinning.
|
||||
_SPIN_VELOCITY = 15.0
|
||||
|
||||
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def get_model_and_assets():
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
return common.read_model('finger.xml'), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def spin(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Spin task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Spin(random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def turn_easy(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns the easy Turn task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Turn(target_radius=_EASY_TARGET_SIZE, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def turn_hard(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns the hard Turn task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Turn(target_radius=_HARD_TARGET_SIZE, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the Finger domain."""
|
||||
|
||||
def touch(self):
|
||||
"""Returns logarithmically scaled signals from the two touch sensors."""
|
||||
return np.log1p(self.named.data.sensordata[['touchtop', 'touchbottom']])
|
||||
|
||||
def hinge_velocity(self):
|
||||
"""Returns the velocity of the hinge joint."""
|
||||
return self.named.data.sensordata['hinge_velocity']
|
||||
|
||||
def tip_position(self):
|
||||
"""Returns the (x,z) position of the tip relative to the hinge."""
|
||||
return (self.named.data.sensordata['tip'][[0, 2]] -
|
||||
self.named.data.sensordata['spinner'][[0, 2]])
|
||||
|
||||
def bounded_position(self):
|
||||
"""Returns the positions, with the hinge angle replaced by tip position."""
|
||||
return np.hstack((self.named.data.sensordata[['proximal', 'distal']],
|
||||
self.tip_position()))
|
||||
|
||||
def velocity(self):
|
||||
"""Returns the velocities (extracted from sensordata)."""
|
||||
return self.named.data.sensordata[['proximal_velocity',
|
||||
'distal_velocity',
|
||||
'hinge_velocity']]
|
||||
|
||||
def target_position(self):
|
||||
"""Returns the (x,z) position of the target relative to the hinge."""
|
||||
return (self.named.data.sensordata['target'][[0, 2]] -
|
||||
self.named.data.sensordata['spinner'][[0, 2]])
|
||||
|
||||
def to_target(self):
|
||||
"""Returns the vector from the tip to the target."""
|
||||
return self.target_position() - self.tip_position()
|
||||
|
||||
def dist_to_target(self):
|
||||
"""Returns the signed distance to the target surface, negative is inside."""
|
||||
return (np.linalg.norm(self.to_target()) -
|
||||
self.named.model.site_size['target', 0])
|
||||
|
||||
|
||||
class Spin(base.Task):
|
||||
"""A Finger `Task` to spin the stopped body."""
|
||||
|
||||
def __init__(self, random=None):
|
||||
"""Initializes a new `Spin` instance.
|
||||
|
||||
Args:
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
super(Spin, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
physics.named.model.site_rgba['target', 3] = 0
|
||||
physics.named.model.site_rgba['tip', 3] = 0
|
||||
physics.named.model.dof_damping['hinge'] = .03
|
||||
_set_random_joint_angles(physics, self.random)
|
||||
super(Spin, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns state and touch sensors, and target info."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['position'] = physics.bounded_position()
|
||||
obs['velocity'] = physics.velocity()
|
||||
obs['touch'] = physics.touch()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a sparse reward."""
|
||||
return float(physics.hinge_velocity() <= -_SPIN_VELOCITY)
|
||||
|
||||
|
||||
class Turn(base.Task):
|
||||
"""A Finger `Task` to turn the body to a target angle."""
|
||||
|
||||
def __init__(self, target_radius, random=None):
|
||||
"""Initializes a new `Turn` instance.
|
||||
|
||||
Args:
|
||||
target_radius: Radius of the target site, which specifies the goal angle.
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
self._target_radius = target_radius
|
||||
super(Turn, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
target_angle = self.random.uniform(-np.pi, np.pi)
|
||||
hinge_x, hinge_z = physics.named.data.xanchor['hinge', ['x', 'z']]
|
||||
radius = physics.named.model.geom_size['cap1'].sum()
|
||||
target_x = hinge_x + radius * np.sin(target_angle)
|
||||
target_z = hinge_z + radius * np.cos(target_angle)
|
||||
physics.named.model.site_pos['target', ['x', 'z']] = target_x, target_z
|
||||
physics.named.model.site_size['target', 0] = self._target_radius
|
||||
|
||||
_set_random_joint_angles(physics, self.random)
|
||||
|
||||
super(Turn, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns state, touch sensors, and target info."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['position'] = physics.bounded_position()
|
||||
obs['velocity'] = physics.velocity()
|
||||
obs['touch'] = physics.touch()
|
||||
obs['target_position'] = physics.target_position()
|
||||
obs['dist_to_target'] = physics.dist_to_target()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
return float(physics.dist_to_target() <= 0)
|
||||
|
||||
|
||||
def _set_random_joint_angles(physics, random, max_attempts=1000):
|
||||
"""Sets the joints to a random collision-free state."""
|
||||
|
||||
for _ in range(max_attempts):
|
||||
randomizers.randomize_limited_and_rotational_joints(physics, random)
|
||||
# Check for collisions.
|
||||
physics.after_reset()
|
||||
if physics.data.ncon == 0:
|
||||
break
|
||||
else:
|
||||
raise RuntimeError('Could not find a collision-free state '
|
||||
'after {} attempts'.format(max_attempts))
|
72
DPI/local_dm_control_suite/finger.xml
Executable file
72
DPI/local_dm_control_suite/finger.xml
Executable file
@ -0,0 +1,72 @@
|
||||
<mujoco model="finger">
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
|
||||
<option timestep="0.01" cone="elliptic" iterations="200">
|
||||
<flag gravity="disable"/>
|
||||
</option>
|
||||
|
||||
<default>
|
||||
<geom solimp="0 0.9 0.01" solref=".02 1"/>
|
||||
<joint type="hinge" axis="0 -1 0"/>
|
||||
<motor ctrllimited="true" ctrlrange="-1 1"/>
|
||||
<default class="finger">
|
||||
<joint damping="2.5" limited="true"/>
|
||||
<site type="ellipsoid" size=".025 .03 .025" material="site" group="3"/>
|
||||
</default>
|
||||
</default>
|
||||
|
||||
<worldbody>
|
||||
<light name="light" directional="true" diffuse=".6 .6 .6" pos="0 0 2" specular=".3 .3 .3"/>
|
||||
<geom name="ground" type="plane" pos="0 0 0" size=".6 .2 10" material="grid"/>
|
||||
<camera name="cam0" pos="0 -1 .8" xyaxes="1 0 0 0 1 2"/>
|
||||
<camera name="cam1" pos="0 -1 .4" xyaxes="1 0 0 0 0 1" />
|
||||
|
||||
<body name="proximal" pos="-.2 0 .4" childclass="finger">
|
||||
<geom name="proximal_decoration" type="cylinder" fromto="0 -.033 0 0 .033 0" size=".034" material="decoration"/>
|
||||
<joint name="proximal" range="-110 110" ref="-90"/>
|
||||
<geom name="proximal" type="capsule" material="self" size=".03" fromto="0 0 0 0 0 -.17"/>
|
||||
<body name="distal" pos="0 0 -.18" childclass="finger">
|
||||
<joint name="distal" range="-110 110"/>
|
||||
<geom name="distal" type="capsule" size=".028" material="self" fromto="0 0 0 0 0 -.16" contype="0" conaffinity="0"/>
|
||||
<geom name="fingertip" type="capsule" size=".03" material="effector" fromto="0 0 -.13 0 0 -.161"/>
|
||||
<site name="touchtop" pos=".01 0 -.17"/>
|
||||
<site name="touchbottom" pos="-.01 0 -.17"/>
|
||||
</body>
|
||||
</body>
|
||||
|
||||
<body name="spinner" pos=".2 0 .4">
|
||||
<joint name="hinge" frictionloss=".1" damping=".5"/>
|
||||
<geom name="cap1" type="capsule" size=".04 .09" material="self" pos=".02 0 0"/>
|
||||
<geom name="cap2" type="capsule" size=".04 .09" material="self" pos="-.02 0 0"/>
|
||||
<site name="tip" type="sphere" size=".02" pos="0 0 .13" material="target"/>
|
||||
<geom name="spinner_decoration" type="cylinder" fromto="0 -.045 0 0 .045 0" size=".02" material="decoration"/>
|
||||
</body>
|
||||
|
||||
<site name="target" type="sphere" size=".03" pos="0 0 .4" material="target"/>
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<motor name="proximal" joint="proximal" gear="30"/>
|
||||
<motor name="distal" joint="distal" gear="15"/>
|
||||
</actuator>
|
||||
|
||||
<!-- All finger observations are functions of sensors. This is useful for finite-differencing. -->
|
||||
<sensor>
|
||||
<jointpos name="proximal" joint="proximal"/>
|
||||
<jointpos name="distal" joint="distal"/>
|
||||
<jointvel name="proximal_velocity" joint="proximal"/>
|
||||
<jointvel name="distal_velocity" joint="distal"/>
|
||||
<jointvel name="hinge_velocity" joint="hinge"/>
|
||||
<framepos name="tip" objtype="site" objname="tip"/>
|
||||
<framepos name="target" objtype="site" objname="target"/>
|
||||
<framepos name="spinner" objtype="xbody" objname="spinner"/>
|
||||
<touch name="touchtop" site="touchtop"/>
|
||||
<touch name="touchbottom" site="touchbottom"/>
|
||||
<framepos name="touchtop_pos" objtype="site" objname="touchtop"/>
|
||||
<framepos name="touchbottom_pos" objtype="site" objname="touchbottom"/>
|
||||
</sensor>
|
||||
|
||||
</mujoco>
|
||||
|
176
DPI/local_dm_control_suite/fish.py
Executable file
176
DPI/local_dm_control_suite/fish.py
Executable file
@ -0,0 +1,176 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Fish Domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
import numpy as np
|
||||
|
||||
|
||||
_DEFAULT_TIME_LIMIT = 40
|
||||
_CONTROL_TIMESTEP = .04
|
||||
_JOINTS = ['tail1',
|
||||
'tail_twist',
|
||||
'tail2',
|
||||
'finright_roll',
|
||||
'finright_pitch',
|
||||
'finleft_roll',
|
||||
'finleft_pitch']
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def get_model_and_assets():
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
return common.read_model('fish.xml'), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def upright(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns the Fish Upright task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Upright(random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def swim(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Fish Swim task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Swim(random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the Fish domain."""
|
||||
|
||||
def upright(self):
|
||||
"""Returns projection from z-axes of torso to the z-axes of worldbody."""
|
||||
return self.named.data.xmat['torso', 'zz']
|
||||
|
||||
def torso_velocity(self):
|
||||
"""Returns velocities and angular velocities of the torso."""
|
||||
return self.data.sensordata
|
||||
|
||||
def joint_velocities(self):
|
||||
"""Returns the joint velocities."""
|
||||
return self.named.data.qvel[_JOINTS]
|
||||
|
||||
def joint_angles(self):
|
||||
"""Returns the joint positions."""
|
||||
return self.named.data.qpos[_JOINTS]
|
||||
|
||||
def mouth_to_target(self):
|
||||
"""Returns a vector, from mouth to target in local coordinate of mouth."""
|
||||
data = self.named.data
|
||||
mouth_to_target_global = data.geom_xpos['target'] - data.geom_xpos['mouth']
|
||||
return mouth_to_target_global.dot(data.geom_xmat['mouth'].reshape(3, 3))
|
||||
|
||||
|
||||
class Upright(base.Task):
|
||||
"""A Fish `Task` for getting the torso upright with smooth reward."""
|
||||
|
||||
def __init__(self, random=None):
|
||||
"""Initializes an instance of `Upright`.
|
||||
|
||||
Args:
|
||||
random: Either an existing `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically.
|
||||
"""
|
||||
super(Upright, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Randomizes the tail and fin angles and the orientation of the Fish."""
|
||||
quat = self.random.randn(4)
|
||||
physics.named.data.qpos['root'][3:7] = quat / np.linalg.norm(quat)
|
||||
for joint in _JOINTS:
|
||||
physics.named.data.qpos[joint] = self.random.uniform(-.2, .2)
|
||||
# Hide the target. It's irrelevant for this task.
|
||||
physics.named.model.geom_rgba['target', 3] = 0
|
||||
super(Upright, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation of joint angles, velocities and uprightness."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['joint_angles'] = physics.joint_angles()
|
||||
obs['upright'] = physics.upright()
|
||||
obs['velocity'] = physics.velocity()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a smooth reward."""
|
||||
return rewards.tolerance(physics.upright(), bounds=(1, 1), margin=1)
|
||||
|
||||
|
||||
class Swim(base.Task):
|
||||
"""A Fish `Task` for swimming with smooth reward."""
|
||||
|
||||
def __init__(self, random=None):
|
||||
"""Initializes an instance of `Swim`.
|
||||
|
||||
Args:
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
super(Swim, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
|
||||
quat = self.random.randn(4)
|
||||
physics.named.data.qpos['root'][3:7] = quat / np.linalg.norm(quat)
|
||||
for joint in _JOINTS:
|
||||
physics.named.data.qpos[joint] = self.random.uniform(-.2, .2)
|
||||
# Randomize target position.
|
||||
physics.named.model.geom_pos['target', 'x'] = self.random.uniform(-.4, .4)
|
||||
physics.named.model.geom_pos['target', 'y'] = self.random.uniform(-.4, .4)
|
||||
physics.named.model.geom_pos['target', 'z'] = self.random.uniform(.1, .3)
|
||||
super(Swim, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation of joints, target direction and velocities."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['joint_angles'] = physics.joint_angles()
|
||||
obs['upright'] = physics.upright()
|
||||
obs['target'] = physics.mouth_to_target()
|
||||
obs['velocity'] = physics.velocity()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a smooth reward."""
|
||||
radii = physics.named.model.geom_size[['mouth', 'target'], 0].sum()
|
||||
in_target = rewards.tolerance(np.linalg.norm(physics.mouth_to_target()),
|
||||
bounds=(0, radii), margin=2*radii)
|
||||
is_upright = 0.5 * (physics.upright() + 1)
|
||||
return (7*in_target + is_upright) / 8
|
85
DPI/local_dm_control_suite/fish.xml
Executable file
85
DPI/local_dm_control_suite/fish.xml
Executable file
@ -0,0 +1,85 @@
|
||||
<mujoco model="fish">
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
<asset>
|
||||
<texture name="skybox" type="skybox" builtin="gradient" rgb1=".4 .6 .8" rgb2="0 0 0" width="800" height="800" mark="random" markrgb="1 1 1"/>
|
||||
</asset>
|
||||
|
||||
|
||||
<option timestep="0.004" density="5000">
|
||||
<flag gravity="disable" constraint="disable"/>
|
||||
</option>
|
||||
|
||||
<default>
|
||||
<general ctrllimited="true"/>
|
||||
<default class="fish">
|
||||
<joint type="hinge" limited="false" range="-60 60" damping="2e-5" solreflimit=".1 1" solimplimit="0 .8 .1"/>
|
||||
<geom material="self"/>
|
||||
</default>
|
||||
</default>
|
||||
|
||||
<worldbody>
|
||||
<camera name="tracking_top" pos="0 0 1" xyaxes="1 0 0 0 1 0" mode="trackcom"/>
|
||||
<camera name="tracking_x" pos="-.3 0 .2" xyaxes="0 -1 0 0.342 0 0.940" fovy="60" mode="trackcom"/>
|
||||
<camera name="tracking_y" pos="0 -.3 .2" xyaxes="1 0 0 0 0.342 0.940" fovy="60" mode="trackcom"/>
|
||||
<camera name="fixed_top" pos="0 0 5.5" fovy="10"/>
|
||||
<geom name="ground" type="plane" size=".5 .5 .1" material="grid"/>
|
||||
<geom name="target" type="sphere" pos="0 .4 .1" size=".04" material="target"/>
|
||||
<body name="torso" pos="0 0 .1" childclass="fish">
|
||||
<light name="light" diffuse=".6 .6 .6" pos="0 0 0.5" dir="0 0 -1" specular=".3 .3 .3" mode="track"/>
|
||||
<joint name="root" type="free" damping="0" limited="false"/>
|
||||
<site name="torso" size=".01" rgba="0 0 0 0"/>
|
||||
<geom name="eye" type="ellipsoid" pos="0 .055 .015" size=".008 .012 .008" euler="-10 0 0" material="eye" mass="0"/>
|
||||
<camera name="eye" pos="0 .06 .02" xyaxes="1 0 0 0 0 1"/>
|
||||
<geom name="mouth" type="capsule" fromto="0 .079 0 0 .07 0" size=".005" material="effector" mass="0"/>
|
||||
<geom name="lower_mouth" type="capsule" fromto="0 .079 -.004 0 .07 -.003" size=".0045" material="effector" mass="0"/>
|
||||
<geom name="torso" type="ellipsoid" size=".01 .08 .04" mass="0"/>
|
||||
<geom name="back_fin" type="ellipsoid" size=".001 .03 .015" pos="0 -.03 .03" material="effector" mass="0"/>
|
||||
<geom name="torso_massive" type="box" size=".002 .06 .03" group="4"/>
|
||||
<body name="tail1" pos="0 -.09 0">
|
||||
<joint name="tail1" axis="0 0 1" pos="0 .01 0"/>
|
||||
<joint name="tail_twist" axis="0 1 0" pos="0 .01 0" range="-30 30"/>
|
||||
<geom name="tail1" type="ellipsoid" size=".001 .008 .016"/>
|
||||
<body name="tail2" pos="0 -.028 0">
|
||||
<joint name="tail2" axis="0 0 1" pos="0 .02 0" stiffness="8e-5"/>
|
||||
<geom name="tail2" type="ellipsoid" size=".001 .018 .035"/>
|
||||
</body>
|
||||
</body>
|
||||
<body name="finright" pos=".01 0 0">
|
||||
<joint name="finright_roll" axis="0 1 0"/>
|
||||
<joint name="finright_pitch" axis="1 0 0" pos="0 .005 0"/>
|
||||
<geom name="finright" type="ellipsoid" pos=".015 0 0" size=".02 .015 .001" />
|
||||
</body>
|
||||
<body name="finleft" pos="-.01 0 0">
|
||||
<joint name="finleft_roll" axis="0 1 0"/>
|
||||
<joint name="finleft_pitch" axis="1 0 0" pos="0 .005 0"/>
|
||||
<geom name="finleft" type="ellipsoid" pos="-.015 0 0" size=".02 .015 .001"/>
|
||||
</body>
|
||||
</body>
|
||||
</worldbody>
|
||||
|
||||
<tendon>
|
||||
<fixed name="fins_flap">
|
||||
<joint joint="finleft_roll" coef="-.5"/>
|
||||
<joint joint="finright_roll" coef=".5"/>
|
||||
</fixed>
|
||||
<fixed name="fins_sym" stiffness="1e-4">
|
||||
<joint joint="finleft_roll" coef=".5"/>
|
||||
<joint joint="finright_roll" coef=".5"/>
|
||||
</fixed>
|
||||
</tendon>
|
||||
|
||||
<actuator>
|
||||
<position name="tail" joint="tail1" ctrlrange="-1 1" kp="5e-4"/>
|
||||
<position name="tail_twist" joint="tail_twist" ctrlrange="-1 1" kp="1e-4"/>
|
||||
<position name="fins_flap" tendon="fins_flap" ctrlrange="-1 1" kp="3e-4"/>
|
||||
<position name="finleft_pitch" joint="finleft_pitch" ctrlrange="-1 1" kp="1e-4"/>
|
||||
<position name="finright_pitch" joint="finright_pitch" ctrlrange="-1 1" kp="1e-4"/>
|
||||
</actuator>
|
||||
|
||||
<sensor>
|
||||
<velocimeter name="velocimeter" site="torso"/>
|
||||
<gyro name="gyro" site="torso"/>
|
||||
</sensor>
|
||||
</mujoco>
|
||||
|
138
DPI/local_dm_control_suite/hopper.py
Executable file
138
DPI/local_dm_control_suite/hopper.py
Executable file
@ -0,0 +1,138 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Hopper domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.suite.utils import randomizers
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
import numpy as np
|
||||
|
||||
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
_CONTROL_TIMESTEP = .02 # (Seconds)
|
||||
|
||||
# Default duration of an episode, in seconds.
|
||||
_DEFAULT_TIME_LIMIT = 20
|
||||
|
||||
# Minimal height of torso over foot above which stand reward is 1.
|
||||
_STAND_HEIGHT = 0.6
|
||||
|
||||
# Hopping speed above which hop reward is 1.
|
||||
_HOP_SPEED = 2
|
||||
|
||||
|
||||
def get_model_and_assets():
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
return common.read_model('hopper.xml'), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def stand(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns a Hopper that strives to stand upright, balancing its pose."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Hopper(hopping=False, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def hop(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns a Hopper that strives to hop forward."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Hopper(hopping=True, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the Hopper domain."""
|
||||
|
||||
def height(self):
|
||||
"""Returns height of torso with respect to foot."""
|
||||
return (self.named.data.xipos['torso', 'z'] -
|
||||
self.named.data.xipos['foot', 'z'])
|
||||
|
||||
def speed(self):
|
||||
"""Returns horizontal speed of the Hopper."""
|
||||
return self.named.data.sensordata['torso_subtreelinvel'][0]
|
||||
|
||||
def touch(self):
|
||||
"""Returns the signals from two foot touch sensors."""
|
||||
return np.log1p(self.named.data.sensordata[['touch_toe', 'touch_heel']])
|
||||
|
||||
|
||||
class Hopper(base.Task):
|
||||
"""A Hopper's `Task` to train a standing and a jumping Hopper."""
|
||||
|
||||
def __init__(self, hopping, random=None):
|
||||
"""Initialize an instance of `Hopper`.
|
||||
|
||||
Args:
|
||||
hopping: Boolean, if True the task is to hop forwards, otherwise it is to
|
||||
balance upright.
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
self._hopping = hopping
|
||||
super(Hopper, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
randomizers.randomize_limited_and_rotational_joints(physics, self.random)
|
||||
self._timeout_progress = 0
|
||||
super(Hopper, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation of positions, velocities and touch sensors."""
|
||||
obs = collections.OrderedDict()
|
||||
# Ignores horizontal position to maintain translational invariance:
|
||||
obs['position'] = physics.data.qpos[1:].copy()
|
||||
obs['velocity'] = physics.velocity()
|
||||
obs['touch'] = physics.touch()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a reward applicable to the performed task."""
|
||||
standing = rewards.tolerance(physics.height(), (_STAND_HEIGHT, 2))
|
||||
if self._hopping:
|
||||
hopping = rewards.tolerance(physics.speed(),
|
||||
bounds=(_HOP_SPEED, float('inf')),
|
||||
margin=_HOP_SPEED/2,
|
||||
value_at_margin=0.5,
|
||||
sigmoid='linear')
|
||||
return standing * hopping
|
||||
else:
|
||||
small_control = rewards.tolerance(physics.control(),
|
||||
margin=1, value_at_margin=0,
|
||||
sigmoid='quadratic').mean()
|
||||
small_control = (small_control + 4) / 5
|
||||
return standing * small_control
|
66
DPI/local_dm_control_suite/hopper.xml
Executable file
66
DPI/local_dm_control_suite/hopper.xml
Executable file
@ -0,0 +1,66 @@
|
||||
<mujoco model="planar hopper">
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/materials_white_floor.xml"/>
|
||||
|
||||
<statistic extent="2" center="0 0 .5"/>
|
||||
|
||||
<default>
|
||||
<default class="hopper">
|
||||
<joint type="hinge" axis="0 1 0" limited="true" damping=".05" armature=".2"/>
|
||||
<geom type="capsule" material="self"/>
|
||||
<site type="sphere" size="0.05" group="3"/>
|
||||
</default>
|
||||
<default class="free">
|
||||
<joint limited="false" damping="0" armature="0" stiffness="0"/>
|
||||
</default>
|
||||
<motor ctrlrange="-1 1" ctrllimited="true"/>
|
||||
</default>
|
||||
|
||||
<option timestep="0.005"/>
|
||||
|
||||
<worldbody>
|
||||
<camera name="cam0" pos="0 -2.8 0.8" euler="90 0 0" mode="trackcom"/>
|
||||
<camera name="back" pos="-2 -.2 1.2" xyaxes="0.2 -1 0 .5 0 2" mode="trackcom"/>
|
||||
<geom name="floor" type="plane" conaffinity="1" pos="48 0 0" size="50 1 .2" material="grid"/>
|
||||
<body name="torso" pos="0 0 1" childclass="hopper">
|
||||
<light name="top" pos="0 0 2" mode="trackcom"/>
|
||||
<joint name="rootx" type="slide" axis="1 0 0" class="free"/>
|
||||
<joint name="rootz" type="slide" axis="0 0 1" class="free"/>
|
||||
<joint name="rooty" type="hinge" axis="0 1 0" class="free"/>
|
||||
<geom name="torso" fromto="0 0 -.05 0 0 .2" size="0.0653"/>
|
||||
<geom name="nose" fromto=".08 0 .13 .15 0 .14" size="0.03"/>
|
||||
<body name="pelvis" pos="0 0 -.05">
|
||||
<joint name="waist" range="-30 30"/>
|
||||
<geom name="pelvis" fromto="0 0 0 0 0 -.15" size="0.065"/>
|
||||
<body name="thigh" pos="0 0 -.2">
|
||||
<joint name="hip" range="-170 10"/>
|
||||
<geom name="thigh" fromto="0 0 0 0 0 -.33" size="0.04"/>
|
||||
<body name="calf" pos="0 0 -.33">
|
||||
<joint name="knee" range="5 150"/>
|
||||
<geom name="calf" fromto="0 0 0 0 0 -.32" size="0.03"/>
|
||||
<body name="foot" pos="0 0 -.32">
|
||||
<joint name="ankle" range="-45 45"/>
|
||||
<geom name="foot" fromto="-.08 0 0 .17 0 0" size="0.04"/>
|
||||
<site name="touch_toe" pos=".17 0 0"/>
|
||||
<site name="touch_heel" pos="-.08 0 0"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</worldbody>
|
||||
|
||||
<sensor>
|
||||
<subtreelinvel name="torso_subtreelinvel" body="torso"/>
|
||||
<touch name="touch_toe" site="touch_toe"/>
|
||||
<touch name="touch_heel" site="touch_heel"/>
|
||||
</sensor>
|
||||
|
||||
<actuator>
|
||||
<motor name="waist" joint="waist" gear="30"/>
|
||||
<motor name="hip" joint="hip" gear="40"/>
|
||||
<motor name="knee" joint="knee" gear="30"/>
|
||||
<motor name="ankle" joint="ankle" gear="10"/>
|
||||
</actuator>
|
||||
</mujoco>
|
211
DPI/local_dm_control_suite/humanoid.py
Executable file
211
DPI/local_dm_control_suite/humanoid.py
Executable file
@ -0,0 +1,211 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Humanoid Domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.suite.utils import randomizers
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
import numpy as np
|
||||
|
||||
_DEFAULT_TIME_LIMIT = 25
|
||||
_CONTROL_TIMESTEP = .025
|
||||
|
||||
# Height of head above which stand reward is 1.
|
||||
_STAND_HEIGHT = 1.4
|
||||
|
||||
# Horizontal speeds above which move reward is 1.
|
||||
_WALK_SPEED = 1
|
||||
_RUN_SPEED = 10
|
||||
|
||||
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def get_model_and_assets():
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
return common.read_model('humanoid.xml'), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def stand(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Stand task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Humanoid(move_speed=0, pure_state=False, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def walk(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Walk task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Humanoid(move_speed=_WALK_SPEED, pure_state=False, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def run(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Run task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Humanoid(move_speed=_RUN_SPEED, pure_state=False, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add()
|
||||
def run_pure_state(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns the Run task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Humanoid(move_speed=_RUN_SPEED, pure_state=True, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the Walker domain."""
|
||||
|
||||
def torso_upright(self):
|
||||
"""Returns projection from z-axes of torso to the z-axes of world."""
|
||||
return self.named.data.xmat['torso', 'zz']
|
||||
|
||||
def head_height(self):
|
||||
"""Returns the height of the torso."""
|
||||
return self.named.data.xpos['head', 'z']
|
||||
|
||||
def center_of_mass_position(self):
|
||||
"""Returns position of the center-of-mass."""
|
||||
return self.named.data.subtree_com['torso'].copy()
|
||||
|
||||
def center_of_mass_velocity(self):
|
||||
"""Returns the velocity of the center-of-mass."""
|
||||
return self.named.data.sensordata['torso_subtreelinvel'].copy()
|
||||
|
||||
def torso_vertical_orientation(self):
|
||||
"""Returns the z-projection of the torso orientation matrix."""
|
||||
return self.named.data.xmat['torso', ['zx', 'zy', 'zz']]
|
||||
|
||||
def joint_angles(self):
|
||||
"""Returns the state without global orientation or position."""
|
||||
return self.data.qpos[7:].copy() # Skip the 7 DoFs of the free root joint.
|
||||
|
||||
def extremities(self):
|
||||
"""Returns end effector positions in egocentric frame."""
|
||||
torso_frame = self.named.data.xmat['torso'].reshape(3, 3)
|
||||
torso_pos = self.named.data.xpos['torso']
|
||||
positions = []
|
||||
for side in ('left_', 'right_'):
|
||||
for limb in ('hand', 'foot'):
|
||||
torso_to_limb = self.named.data.xpos[side + limb] - torso_pos
|
||||
positions.append(torso_to_limb.dot(torso_frame))
|
||||
return np.hstack(positions)
|
||||
|
||||
|
||||
class Humanoid(base.Task):
|
||||
"""A humanoid task."""
|
||||
|
||||
def __init__(self, move_speed, pure_state, random=None):
|
||||
"""Initializes an instance of `Humanoid`.
|
||||
|
||||
Args:
|
||||
move_speed: A float. If this value is zero, reward is given simply for
|
||||
standing up. Otherwise this specifies a target horizontal velocity for
|
||||
the walking task.
|
||||
pure_state: A bool. Whether the observations consist of the pure MuJoCo
|
||||
state or includes some useful features thereof.
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
self._move_speed = move_speed
|
||||
self._pure_state = pure_state
|
||||
super(Humanoid, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode.
|
||||
|
||||
Args:
|
||||
physics: An instance of `Physics`.
|
||||
|
||||
"""
|
||||
# Find a collision-free random initial configuration.
|
||||
penetrating = True
|
||||
while penetrating:
|
||||
randomizers.randomize_limited_and_rotational_joints(physics, self.random)
|
||||
# Check for collisions.
|
||||
physics.after_reset()
|
||||
penetrating = physics.data.ncon > 0
|
||||
super(Humanoid, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns either the pure state or a set of egocentric features."""
|
||||
obs = collections.OrderedDict()
|
||||
if self._pure_state:
|
||||
obs['position'] = physics.position()
|
||||
obs['velocity'] = physics.velocity()
|
||||
else:
|
||||
obs['joint_angles'] = physics.joint_angles()
|
||||
obs['head_height'] = physics.head_height()
|
||||
obs['extremities'] = physics.extremities()
|
||||
obs['torso_vertical'] = physics.torso_vertical_orientation()
|
||||
obs['com_velocity'] = physics.center_of_mass_velocity()
|
||||
obs['velocity'] = physics.velocity()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a reward to the agent."""
|
||||
standing = rewards.tolerance(physics.head_height(),
|
||||
bounds=(_STAND_HEIGHT, float('inf')),
|
||||
margin=_STAND_HEIGHT/4)
|
||||
upright = rewards.tolerance(physics.torso_upright(),
|
||||
bounds=(0.9, float('inf')), sigmoid='linear',
|
||||
margin=1.9, value_at_margin=0)
|
||||
stand_reward = standing * upright
|
||||
small_control = rewards.tolerance(physics.control(), margin=1,
|
||||
value_at_margin=0,
|
||||
sigmoid='quadratic').mean()
|
||||
small_control = (4 + small_control) / 5
|
||||
if self._move_speed == 0:
|
||||
horizontal_velocity = physics.center_of_mass_velocity()[[0, 1]]
|
||||
dont_move = rewards.tolerance(horizontal_velocity, margin=2).mean()
|
||||
return small_control * stand_reward * dont_move
|
||||
else:
|
||||
com_velocity = np.linalg.norm(physics.center_of_mass_velocity()[[0, 1]])
|
||||
move = rewards.tolerance(com_velocity,
|
||||
bounds=(self._move_speed, float('inf')),
|
||||
margin=self._move_speed, value_at_margin=0,
|
||||
sigmoid='linear')
|
||||
move = (5*move + 1) / 6
|
||||
return small_control * stand_reward * move
|
202
DPI/local_dm_control_suite/humanoid.xml
Executable file
202
DPI/local_dm_control_suite/humanoid.xml
Executable file
@ -0,0 +1,202 @@
|
||||
<mujoco model="humanoid">
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
|
||||
<statistic extent="2" center="0 0 1"/>
|
||||
|
||||
<option timestep=".005"/>
|
||||
|
||||
<default>
|
||||
<motor ctrlrange="-1 1" ctrllimited="true"/>
|
||||
<default class="body">
|
||||
<geom type="capsule" condim="1" friction=".7" solimp=".9 .99 .003" solref=".015 1" material="self"/>
|
||||
<joint type="hinge" damping=".2" stiffness="1" armature=".01" limited="true" solimplimit="0 .99 .01"/>
|
||||
<default class="big_joint">
|
||||
<joint damping="5" stiffness="10"/>
|
||||
<default class="big_stiff_joint">
|
||||
<joint stiffness="20"/>
|
||||
</default>
|
||||
</default>
|
||||
<site size=".04" group="3"/>
|
||||
<default class="force-torque">
|
||||
<site type="box" size=".01 .01 .02" rgba="1 0 0 1" />
|
||||
</default>
|
||||
<default class="touch">
|
||||
<site type="capsule" rgba="0 0 1 .3"/>
|
||||
</default>
|
||||
</default>
|
||||
</default>
|
||||
|
||||
<worldbody>
|
||||
<geom name="floor" type="plane" conaffinity="1" size="100 100 .2" material="grid"/>
|
||||
<body name="torso" pos="0 0 1.5" childclass="body">
|
||||
<light name="top" pos="0 0 2" mode="trackcom"/>
|
||||
<camera name="back" pos="-3 0 1" xyaxes="0 -1 0 1 0 2" mode="trackcom"/>
|
||||
<camera name="side" pos="0 -3 1" xyaxes="1 0 0 0 1 2" mode="trackcom"/>
|
||||
<freejoint name="root"/>
|
||||
<site name="root" class="force-torque"/>
|
||||
<geom name="torso" fromto="0 -.07 0 0 .07 0" size=".07"/>
|
||||
<geom name="upper_waist" fromto="-.01 -.06 -.12 -.01 .06 -.12" size=".06"/>
|
||||
<site name="torso" class="touch" type="box" pos="0 0 -.05" size=".075 .14 .13"/>
|
||||
<body name="head" pos="0 0 .19">
|
||||
<geom name="head" type="sphere" size=".09"/>
|
||||
<site name="head" class="touch" type="sphere" size=".091"/>
|
||||
<camera name="egocentric" pos=".09 0 0" xyaxes="0 -1 0 .1 0 1" fovy="80"/>
|
||||
</body>
|
||||
<body name="lower_waist" pos="-.01 0 -.260" quat="1.000 0 -.002 0">
|
||||
<geom name="lower_waist" fromto="0 -.06 0 0 .06 0" size=".06"/>
|
||||
<site name="lower_waist" class="touch" size=".061 .06" zaxis="0 1 0"/>
|
||||
<joint name="abdomen_z" pos="0 0 .065" axis="0 0 1" range="-45 45" class="big_stiff_joint"/>
|
||||
<joint name="abdomen_y" pos="0 0 .065" axis="0 1 0" range="-75 30" class="big_joint"/>
|
||||
<body name="pelvis" pos="0 0 -.165" quat="1.000 0 -.002 0">
|
||||
<joint name="abdomen_x" pos="0 0 .1" axis="1 0 0" range="-35 35" class="big_joint"/>
|
||||
<geom name="butt" fromto="-.02 -.07 0 -.02 .07 0" size=".09"/>
|
||||
<site name="butt" class="touch" size=".091 .07" pos="-.02 0 0" zaxis="0 1 0"/>
|
||||
<body name="right_thigh" pos="0 -.1 -.04">
|
||||
<site name="right_hip" class="force-torque"/>
|
||||
<joint name="right_hip_x" axis="1 0 0" range="-25 5" class="big_joint"/>
|
||||
<joint name="right_hip_z" axis="0 0 1" range="-60 35" class="big_joint"/>
|
||||
<joint name="right_hip_y" axis="0 1 0" range="-110 20" class="big_stiff_joint"/>
|
||||
<geom name="right_thigh" fromto="0 0 0 0 .01 -.34" size=".06"/>
|
||||
<site name="right_thigh" class="touch" pos="0 .005 -.17" size=".061 .17" zaxis="0 -1 34"/>
|
||||
<body name="right_shin" pos="0 .01 -.403">
|
||||
<site name="right_knee" class="force-torque" pos="0 0 .02"/>
|
||||
<joint name="right_knee" pos="0 0 .02" axis="0 -1 0" range="-160 2"/>
|
||||
<geom name="right_shin" fromto="0 0 0 0 0 -.3" size=".049"/>
|
||||
<site name="right_shin" class="touch" pos="0 0 -.15" size=".05 .15"/>
|
||||
<body name="right_foot" pos="0 0 -.39">
|
||||
<site name="right_ankle" class="force-torque"/>
|
||||
<joint name="right_ankle_y" pos="0 0 .08" axis="0 1 0" range="-50 50" stiffness="6"/>
|
||||
<joint name="right_ankle_x" pos="0 0 .04" axis="1 0 .5" range="-50 50" stiffness="3"/>
|
||||
<geom name="right_right_foot" fromto="-.07 -.02 0 .14 -.04 0" size=".027"/>
|
||||
<geom name="left_right_foot" fromto="-.07 0 0 .14 .02 0" size=".027"/>
|
||||
<site name="right_right_foot" class="touch" pos=".035 -.03 0" size=".03 .11" zaxis="21 -2 0"/>
|
||||
<site name="left_right_foot" class="touch" pos=".035 .01 0" size=".03 .11" zaxis="21 2 0"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
<body name="left_thigh" pos="0 .1 -.04">
|
||||
<site name="left_hip" class="force-torque"/>
|
||||
<joint name="left_hip_x" axis="-1 0 0" range="-25 5" class="big_joint"/>
|
||||
<joint name="left_hip_z" axis="0 0 -1" range="-60 35" class="big_joint"/>
|
||||
<joint name="left_hip_y" axis="0 1 0" range="-120 20" class="big_stiff_joint"/>
|
||||
<geom name="left_thigh" fromto="0 0 0 0 -.01 -.34" size=".06"/>
|
||||
<site name="left_thigh" class="touch" pos="0 -.005 -.17" size=".061 .17" zaxis="0 1 34"/>
|
||||
<body name="left_shin" pos="0 -.01 -.403">
|
||||
<site name="left_knee" class="force-torque" pos="0 0 .02"/>
|
||||
<joint name="left_knee" pos="0 0 .02" axis="0 -1 0" range="-160 2"/>
|
||||
<geom name="left_shin" fromto="0 0 0 0 0 -.3" size=".049"/>
|
||||
<site name="left_shin" class="touch" pos="0 0 -.15" size=".05 .15"/>
|
||||
<body name="left_foot" pos="0 0 -.39">
|
||||
<site name="left_ankle" class="force-torque"/>
|
||||
<joint name="left_ankle_y" pos="0 0 .08" axis="0 1 0" range="-50 50" stiffness="6"/>
|
||||
<joint name="left_ankle_x" pos="0 0 .04" axis="1 0 .5" range="-50 50" stiffness="3"/>
|
||||
<geom name="left_left_foot" fromto="-.07 .02 0 .14 .04 0" size=".027"/>
|
||||
<geom name="right_left_foot" fromto="-.07 0 0 .14 -.02 0" size=".027"/>
|
||||
<site name="right_left_foot" class="touch" pos=".035 -.01 0" size=".03 .11" zaxis="21 -2 0"/>
|
||||
<site name="left_left_foot" class="touch" pos=".035 .03 0" size=".03 .11" zaxis="21 2 0"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
<body name="right_upper_arm" pos="0 -.17 .06">
|
||||
<joint name="right_shoulder1" axis="2 1 1" range="-85 60"/>
|
||||
<joint name="right_shoulder2" axis="0 -1 1" range="-85 60"/>
|
||||
<geom name="right_upper_arm" fromto="0 0 0 .16 -.16 -.16" size=".04 .16"/>
|
||||
<site name="right_upper_arm" class="touch" pos=".08 -.08 -.08" size=".041 .14" zaxis="1 -1 -1"/>
|
||||
<body name="right_lower_arm" pos=".18 -.18 -.18">
|
||||
<joint name="right_elbow" axis="0 -1 1" range="-90 50" stiffness="0"/>
|
||||
<geom name="right_lower_arm" fromto=".01 .01 .01 .17 .17 .17" size=".031"/>
|
||||
<site name="right_lower_arm" class="touch" pos=".09 .09 .09" size=".032 .14" zaxis="1 1 1"/>
|
||||
<body name="right_hand" pos=".18 .18 .18">
|
||||
<geom name="right_hand" type="sphere" size=".04"/>
|
||||
<site name="right_hand" class="touch" type="sphere" size=".041"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
<body name="left_upper_arm" pos="0 .17 .06">
|
||||
<joint name="left_shoulder1" axis="2 -1 1" range="-60 85"/>
|
||||
<joint name="left_shoulder2" axis="0 1 1" range="-60 85"/>
|
||||
<geom name="left_upper_arm" fromto="0 0 0 .16 .16 -.16" size=".04 .16"/>
|
||||
<site name="left_upper_arm" class="touch" pos=".08 .08 -.08" size=".041 .14" zaxis="1 1 -1"/>
|
||||
<body name="left_lower_arm" pos=".18 .18 -.18">
|
||||
<joint name="left_elbow" axis="0 -1 -1" range="-90 50" stiffness="0"/>
|
||||
<geom name="left_lower_arm" fromto=".01 -.01 .01 .17 -.17 .17" size=".031"/>
|
||||
<site name="left_lower_arm" class="touch" pos=".09 -.09 .09" size=".032 .14" zaxis="1 -1 1"/>
|
||||
<body name="left_hand" pos=".18 -.18 .18">
|
||||
<geom name="left_hand" type="sphere" size=".04"/>
|
||||
<site name="left_hand" class="touch" type="sphere" size=".041"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<motor name="abdomen_y" gear="40" joint="abdomen_y"/>
|
||||
<motor name="abdomen_z" gear="40" joint="abdomen_z"/>
|
||||
<motor name="abdomen_x" gear="40" joint="abdomen_x"/>
|
||||
<motor name="right_hip_x" gear="40" joint="right_hip_x"/>
|
||||
<motor name="right_hip_z" gear="40" joint="right_hip_z"/>
|
||||
<motor name="right_hip_y" gear="120" joint="right_hip_y"/>
|
||||
<motor name="right_knee" gear="80" joint="right_knee"/>
|
||||
<motor name="right_ankle_x" gear="20" joint="right_ankle_x"/>
|
||||
<motor name="right_ankle_y" gear="20" joint="right_ankle_y"/>
|
||||
<motor name="left_hip_x" gear="40" joint="left_hip_x"/>
|
||||
<motor name="left_hip_z" gear="40" joint="left_hip_z"/>
|
||||
<motor name="left_hip_y" gear="120" joint="left_hip_y"/>
|
||||
<motor name="left_knee" gear="80" joint="left_knee"/>
|
||||
<motor name="left_ankle_x" gear="20" joint="left_ankle_x"/>
|
||||
<motor name="left_ankle_y" gear="20" joint="left_ankle_y"/>
|
||||
<motor name="right_shoulder1" gear="20" joint="right_shoulder1"/>
|
||||
<motor name="right_shoulder2" gear="20" joint="right_shoulder2"/>
|
||||
<motor name="right_elbow" gear="40" joint="right_elbow"/>
|
||||
<motor name="left_shoulder1" gear="20" joint="left_shoulder1"/>
|
||||
<motor name="left_shoulder2" gear="20" joint="left_shoulder2"/>
|
||||
<motor name="left_elbow" gear="40" joint="left_elbow"/>
|
||||
</actuator>
|
||||
|
||||
<sensor>
|
||||
<subtreelinvel name="torso_subtreelinvel" body="torso"/>
|
||||
<accelerometer name="torso_accel" site="root"/>
|
||||
<velocimeter name="torso_vel" site="root"/>
|
||||
<gyro name="torso_gyro" site="root"/>
|
||||
|
||||
<force name="left_ankle_force" site="left_ankle"/>
|
||||
<force name="right_ankle_force" site="right_ankle"/>
|
||||
<force name="left_knee_force" site="left_knee"/>
|
||||
<force name="right_knee_force" site="right_knee"/>
|
||||
<force name="left_hip_force" site="left_hip"/>
|
||||
<force name="right_hip_force" site="right_hip"/>
|
||||
|
||||
<torque name="left_ankle_torque" site="left_ankle"/>
|
||||
<torque name="right_ankle_torque" site="right_ankle"/>
|
||||
<torque name="left_knee_torque" site="left_knee"/>
|
||||
<torque name="right_knee_torque" site="right_knee"/>
|
||||
<torque name="left_hip_torque" site="left_hip"/>
|
||||
<torque name="right_hip_torque" site="right_hip"/>
|
||||
|
||||
<touch name="torso_touch" site="torso"/>
|
||||
<touch name="head_touch" site="head"/>
|
||||
<touch name="lower_waist_touch" site="lower_waist"/>
|
||||
<touch name="butt_touch" site="butt"/>
|
||||
<touch name="right_thigh_touch" site="right_thigh"/>
|
||||
<touch name="right_shin_touch" site="right_shin"/>
|
||||
<touch name="right_right_foot_touch" site="right_right_foot"/>
|
||||
<touch name="left_right_foot_touch" site="left_right_foot"/>
|
||||
<touch name="left_thigh_touch" site="left_thigh"/>
|
||||
<touch name="left_shin_touch" site="left_shin"/>
|
||||
<touch name="right_left_foot_touch" site="right_left_foot"/>
|
||||
<touch name="left_left_foot_touch" site="left_left_foot"/>
|
||||
<touch name="right_upper_arm_touch" site="right_upper_arm"/>
|
||||
<touch name="right_lower_arm_touch" site="right_lower_arm"/>
|
||||
<touch name="right_hand_touch" site="right_hand"/>
|
||||
<touch name="left_upper_arm_touch" site="left_upper_arm"/>
|
||||
<touch name="left_lower_arm_touch" site="left_lower_arm"/>
|
||||
<touch name="left_hand_touch" site="left_hand"/>
|
||||
</sensor>
|
||||
|
||||
</mujoco>
|
||||
|
179
DPI/local_dm_control_suite/humanoid_CMU.py
Executable file
179
DPI/local_dm_control_suite/humanoid_CMU.py
Executable file
@ -0,0 +1,179 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Humanoid_CMU Domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.suite.utils import randomizers
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
import numpy as np
|
||||
|
||||
_DEFAULT_TIME_LIMIT = 20
|
||||
_CONTROL_TIMESTEP = 0.02
|
||||
|
||||
# Height of head above which stand reward is 1.
|
||||
_STAND_HEIGHT = 1.4
|
||||
|
||||
# Horizontal speeds above which move reward is 1.
|
||||
_WALK_SPEED = 1
|
||||
_RUN_SPEED = 10
|
||||
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def get_model_and_assets():
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
return common.read_model('humanoid_CMU.xml'), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add()
|
||||
def stand(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Stand task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = HumanoidCMU(move_speed=0, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add()
|
||||
def run(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Run task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = HumanoidCMU(move_speed=_RUN_SPEED, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the humanoid_CMU domain."""
|
||||
|
||||
def thorax_upright(self):
|
||||
"""Returns projection from y-axes of thorax to the z-axes of world."""
|
||||
return self.named.data.xmat['thorax', 'zy']
|
||||
|
||||
def head_height(self):
|
||||
"""Returns the height of the head."""
|
||||
return self.named.data.xpos['head', 'z']
|
||||
|
||||
def center_of_mass_position(self):
|
||||
"""Returns position of the center-of-mass."""
|
||||
return self.named.data.subtree_com['thorax']
|
||||
|
||||
def center_of_mass_velocity(self):
|
||||
"""Returns the velocity of the center-of-mass."""
|
||||
return self.named.data.sensordata['thorax_subtreelinvel'].copy()
|
||||
|
||||
def torso_vertical_orientation(self):
|
||||
"""Returns the z-projection of the thorax orientation matrix."""
|
||||
return self.named.data.xmat['thorax', ['zx', 'zy', 'zz']]
|
||||
|
||||
def joint_angles(self):
|
||||
"""Returns the state without global orientation or position."""
|
||||
return self.data.qpos[7:].copy() # Skip the 7 DoFs of the free root joint.
|
||||
|
||||
def extremities(self):
|
||||
"""Returns end effector positions in egocentric frame."""
|
||||
torso_frame = self.named.data.xmat['thorax'].reshape(3, 3)
|
||||
torso_pos = self.named.data.xpos['thorax']
|
||||
positions = []
|
||||
for side in ('l', 'r'):
|
||||
for limb in ('hand', 'foot'):
|
||||
torso_to_limb = self.named.data.xpos[side + limb] - torso_pos
|
||||
positions.append(torso_to_limb.dot(torso_frame))
|
||||
return np.hstack(positions)
|
||||
|
||||
|
||||
class HumanoidCMU(base.Task):
|
||||
"""A task for the CMU Humanoid."""
|
||||
|
||||
def __init__(self, move_speed, random=None):
|
||||
"""Initializes an instance of `Humanoid_CMU`.
|
||||
|
||||
Args:
|
||||
move_speed: A float. If this value is zero, reward is given simply for
|
||||
standing up. Otherwise this specifies a target horizontal velocity for
|
||||
the walking task.
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
self._move_speed = move_speed
|
||||
super(HumanoidCMU, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets a random collision-free configuration at the start of each episode.
|
||||
|
||||
Args:
|
||||
physics: An instance of `Physics`.
|
||||
"""
|
||||
penetrating = True
|
||||
while penetrating:
|
||||
randomizers.randomize_limited_and_rotational_joints(
|
||||
physics, self.random)
|
||||
# Check for collisions.
|
||||
physics.after_reset()
|
||||
penetrating = physics.data.ncon > 0
|
||||
super(HumanoidCMU, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns a set of egocentric features."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['joint_angles'] = physics.joint_angles()
|
||||
obs['head_height'] = physics.head_height()
|
||||
obs['extremities'] = physics.extremities()
|
||||
obs['torso_vertical'] = physics.torso_vertical_orientation()
|
||||
obs['com_velocity'] = physics.center_of_mass_velocity()
|
||||
obs['velocity'] = physics.velocity()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a reward to the agent."""
|
||||
standing = rewards.tolerance(physics.head_height(),
|
||||
bounds=(_STAND_HEIGHT, float('inf')),
|
||||
margin=_STAND_HEIGHT/4)
|
||||
upright = rewards.tolerance(physics.thorax_upright(),
|
||||
bounds=(0.9, float('inf')), sigmoid='linear',
|
||||
margin=1.9, value_at_margin=0)
|
||||
stand_reward = standing * upright
|
||||
small_control = rewards.tolerance(physics.control(), margin=1,
|
||||
value_at_margin=0,
|
||||
sigmoid='quadratic').mean()
|
||||
small_control = (4 + small_control) / 5
|
||||
if self._move_speed == 0:
|
||||
horizontal_velocity = physics.center_of_mass_velocity()[[0, 1]]
|
||||
dont_move = rewards.tolerance(horizontal_velocity, margin=2).mean()
|
||||
return small_control * stand_reward * dont_move
|
||||
else:
|
||||
com_velocity = np.linalg.norm(physics.center_of_mass_velocity()[[0, 1]])
|
||||
move = rewards.tolerance(com_velocity,
|
||||
bounds=(self._move_speed, float('inf')),
|
||||
margin=self._move_speed, value_at_margin=0,
|
||||
sigmoid='linear')
|
||||
move = (5*move + 1) / 6
|
||||
return small_control * stand_reward * move
|
289
DPI/local_dm_control_suite/humanoid_CMU.xml
Executable file
289
DPI/local_dm_control_suite/humanoid_CMU.xml
Executable file
@ -0,0 +1,289 @@
|
||||
<mujoco model="humanoid_CMU">
|
||||
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
|
||||
<statistic extent="2" center="0 0 1"/>
|
||||
|
||||
<default class="main">
|
||||
<joint limited="true" solimplimit="0 0.99 0.01" stiffness="0.1" armature=".01" damping="1"/>
|
||||
<geom friction="0.7" solref="0.015 1" solimp="0.95 0.99 0.003"/>
|
||||
<motor ctrllimited="true" ctrlrange="-1 1"/>
|
||||
<default class="humanoid">
|
||||
<geom type="capsule" material="self"/>
|
||||
<default class="stiff_low">
|
||||
<joint stiffness=".5" damping="4"/>
|
||||
</default>
|
||||
<default class="stiff_medium">
|
||||
<joint stiffness="10" damping="5"/>
|
||||
</default>
|
||||
<default class="stiff_high">
|
||||
<joint stiffness="30" damping="10"/>
|
||||
</default>
|
||||
<default class="touch">
|
||||
<site group="3" rgba="0 0 1 .5"/>
|
||||
</default>
|
||||
</default>
|
||||
</default>
|
||||
|
||||
<worldbody>
|
||||
<geom name="floor" type="plane" conaffinity="1" size="100 100 .2" material="grid"/>
|
||||
<light name="tracking_light" pos="0 0 7" dir="0 0 -1" mode="trackcom"/>
|
||||
<camera name="back" pos="0 3 2.4" xyaxes="-1 0 0 0 -1 2" mode="trackcom"/>
|
||||
<camera name="side" pos="-3 0 2.4" xyaxes="0 -1 0 1 0 2" mode="trackcom"/>
|
||||
<body name="root" childclass="humanoid" pos="0 0 1" euler="90 0 0">
|
||||
<site name="root" size=".01" rgba="0.5 0.5 0.5 0"/>
|
||||
<freejoint name="root"/>
|
||||
<geom name="root_geom" size="0.09 0.06" pos="0 -0.05 0" quat="1 0 -1 0"/>
|
||||
<body name="lhipjoint">
|
||||
<geom name="lhipjoint" size="0.008 0.022" pos="0.051 -0.046 0.025" quat="0.5708 -0.566602 -0.594264 0"/>
|
||||
<body name="lfemur" pos="0.102 -0.092 0.05" quat="1 0 0 0.17365">
|
||||
<joint name="lfemurrz" axis="0 0 1" range="-60 70" class="stiff_medium"/>
|
||||
<joint name="lfemurry" axis="0 1 0" range="-70 70" class="stiff_medium"/>
|
||||
<joint name="lfemurrx" axis="1 0 0" range="-160 20" class="stiff_medium"/>
|
||||
<geom name="lfemur" size="0.06 0.17" pos="-.01 -0.202473 0" quat="0.7 -0.7 -0.1228 -0.07"/>
|
||||
<body name="ltibia" pos="0 -0.404945 0">
|
||||
<joint name="ltibiarx" axis="1 0 0" range="1 170" class="stiff_low"/>
|
||||
<geom name="ltibia" size="0.03 0.1825614" pos="0 -0.202846 0" quat="0.7 -0.7 -0.1228 -0.1228"/>
|
||||
<geom name="lcalf" size="0.045 0.08" pos="0 -0.1 -.01" quat="0.7 -0.7 -0.1228 -0.1228"/>
|
||||
<body name="lfoot" pos="0 -0.405693 0" quat="0.707107 -0.707107 0 0">
|
||||
<site name="lfoot_touch" type="box" pos="-.005 -.02 -0.025" size=".04 .08 .02" euler="10 0 0" class="touch"/>
|
||||
<joint name="lfootrz" axis="0 0 1" range="-70 20" class="stiff_medium"/>
|
||||
<joint name="lfootrx" axis="1 0 0" range="-45 90" class="stiff_medium"/>
|
||||
<geom name="lfoot0" size="0.02 0.06" pos="-0.02 -0.023 -0.01" euler="100 -2 0"/>
|
||||
<geom name="lfoot1" size="0.02 0.06" pos="0 -0.023 -0.01" euler="100 0 0"/>
|
||||
<geom name="lfoot2" size="0.02 0.06" pos=".01 -0.023 -0.01" euler="100 10 0"/>
|
||||
<body name="ltoes" pos="0 -0.106372 -0.0227756">
|
||||
<joint name="ltoesrx" axis="1 0 0" range="-90 20"/>
|
||||
<geom name="ltoes0" type="sphere" size="0.02" pos="-.025 -0.01 -.01"/>
|
||||
<geom name="ltoes1" type="sphere" size="0.02" pos="0 -0.005 -.01"/>
|
||||
<geom name="ltoes2" type="sphere" size="0.02" pos=".02 .001 -.01"/>
|
||||
<site name="ltoes_touch" type="capsule" pos="-.005 -.005 -.01" size="0.025 0.02" zaxis="1 .2 0" class="touch"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
<body name="rhipjoint">
|
||||
<geom name="rhipjoint" size="0.008 0.022" pos="-0.051 -0.046 0.025" quat="0.574856 -0.547594 0.608014 0"/>
|
||||
<body name="rfemur" pos="-0.102 -0.092 0.05" quat="1 0 0 -0.17365">
|
||||
<joint name="rfemurrz" axis="0 0 1" range="-70 60" class="stiff_medium"/>
|
||||
<joint name="rfemurry" axis="0 1 0" range="-70 70" class="stiff_medium"/>
|
||||
<joint name="rfemurrx" axis="1 0 0" range="-160 20" class="stiff_medium"/>
|
||||
<geom name="rfemur" size="0.06 0.17" pos=".01 -0.202473 0" quat="0.7 -0.7 0.1228 0.07"/>
|
||||
<body name="rtibia" pos="0 -0.404945 0">
|
||||
<joint name="rtibiarx" axis="1 0 0" range="1 170" class="stiff_low"/>
|
||||
<geom name="rtibia" size="0.03 0.1825614" pos="0 -0.202846 0" quat="0.7 -0.7 0.1228 0.1228"/>
|
||||
<geom name="rcalf" size="0.045 0.08" pos="0 -0.1 -.01" quat="0.7 -0.7 -0.1228 -0.1228"/>
|
||||
<body name="rfoot" pos="0 -0.405693 0" quat="0.707107 -0.707107 0 0">
|
||||
<site name="rfoot_touch" type="box" pos=".005 -.02 -0.025" size=".04 .08 .02" euler="10 0 0" class="touch"/>
|
||||
<joint name="rfootrz" axis="0 0 1" range="-20 70" class="stiff_medium"/>
|
||||
<joint name="rfootrx" axis="1 0 0" range="-45 90" class="stiff_medium"/>
|
||||
<geom name="rfoot0" size="0.02 0.06" pos="0.02 -0.023 -0.01" euler="100 2 0"/>
|
||||
<geom name="rfoot1" size="0.02 0.06" pos="0 -0.023 -0.01" euler="100 0 0"/>
|
||||
<geom name="rfoot2" size="0.02 0.06" pos="-.01 -0.023 -0.01" euler="100 -10 0"/>
|
||||
<body name="rtoes" pos="0 -0.106372 -0.0227756">
|
||||
<joint name="rtoesrx" axis="1 0 0" range="-90 20"/>
|
||||
<geom name="rtoes0" type="sphere" size="0.02" pos=".025 -0.01 -.01"/>
|
||||
<geom name="rtoes1" type="sphere" size="0.02" pos="0 -0.005 -.01"/>
|
||||
<geom name="rtoes2" type="sphere" size="0.02" pos="-.02 .001 -.01"/>
|
||||
<site name="rtoes_touch" type="capsule" pos=".005 -.005 -.01" size="0.025 0.02" zaxis="1 -.2 0" class="touch"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
<body name="lowerback">
|
||||
<joint name="lowerbackrz" axis="0 0 1" range="-30 30" class="stiff_high"/>
|
||||
<joint name="lowerbackry" axis="0 1 0" range="-30 30" class="stiff_high"/>
|
||||
<joint name="lowerbackrx" axis="1 0 0" range="-20 45" class="stiff_high"/>
|
||||
<geom name="lowerback" size="0.065 0.055" pos="0 0.056 .03" quat="1 0 1 0"/>
|
||||
<body name="upperback" pos="0 0.1 -0.01">
|
||||
<joint name="upperbackrz" axis="0 0 1" range="-30 30" class="stiff_high"/>
|
||||
<joint name="upperbackry" axis="0 1 0" range="-30 30" class="stiff_high"/>
|
||||
<joint name="upperbackrx" axis="1 0 0" range="-20 45" class="stiff_high"/>
|
||||
<geom name="upperback" size="0.06 0.06" pos="0 0.06 0.02" quat="1 0 1 0"/>
|
||||
<body name="thorax" pos="0.000512528 0.11356 0.000936821">
|
||||
<joint name="thoraxrz" axis="0 0 1" range="-30 30" class="stiff_high"/>
|
||||
<joint name="thoraxry" axis="0 1 0" range="-30 30" class="stiff_high"/>
|
||||
<joint name="thoraxrx" axis="1 0 0" range="-20 45" class="stiff_high"/>
|
||||
<geom name="thorax" size="0.08 0.07" pos="0 0.05 0" quat="1 0 1 0"/>
|
||||
<body name="lowerneck" pos="0 0.113945 0.00468037">
|
||||
<joint name="lowerneckrz" axis="0 0 1" range="-30 30" class="stiff_medium"/>
|
||||
<joint name="lowerneckry" axis="0 1 0" range="-30 30" class="stiff_medium"/>
|
||||
<joint name="lowerneckrx" axis="1 0 0" range="-20 45" class="stiff_medium"/>
|
||||
<geom name="lowerneck" size="0.08 0.02" pos="0 0.04 -.02" quat="1 1 0 0"/>
|
||||
<body name="upperneck" pos="0 0.09 0.01">
|
||||
<joint name="upperneckrz" axis="0 0 1" range="-30 30" class="stiff_medium"/>
|
||||
<joint name="upperneckry" axis="0 1 0" range="-30 30" class="stiff_medium"/>
|
||||
<joint name="upperneckrx" axis="1 0 0" range="-20 45" class="stiff_medium"/>
|
||||
<geom name="upperneck" size="0.05 0.03" pos="0 0.05 0" quat=".8 1 0 0"/>
|
||||
<body name="head" pos="0 0.09 0">
|
||||
<camera name="egocentric" pos="0 0 0" xyaxes="-1 0 0 0 1 0" fovy="80"/>
|
||||
<joint name="headrz" axis="0 0 1" range="-30 30" class="stiff_medium"/>
|
||||
<joint name="headry" axis="0 1 0" range="-30 30" class="stiff_medium"/>
|
||||
<joint name="headrx" axis="1 0 0" range="-20 45" class="stiff_medium"/>
|
||||
<geom name="head" size="0.085 0.035" pos="0 0.11 0.03" quat="1 .9 0 0"/>
|
||||
<geom name="leye" type="sphere" size="0.02" pos=" .03 0.11 0.1"/>
|
||||
<geom name="reye" type="sphere" size="0.02" pos="-.03 0.11 0.1"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
<body name="lclavicle" pos="0 0.113945 0.00468037">
|
||||
<joint name="lclaviclerz" axis="0 0 1" range="0 20" class="stiff_high"/>
|
||||
<joint name="lclaviclery" axis="0 1 0" range="-20 10" class="stiff_high"/>
|
||||
<geom name="lclavicle" size="0.08 0.04" pos="0.09 0.05 -.01" quat="1 0 -1 -.4"/>
|
||||
<body name="lhumerus" pos="0.183 0.076 0.01" quat="0.18 0.68 -0.68 0.18">
|
||||
<joint name="lhumerusrz" axis="0 0 1" range="-90 90" class="stiff_low"/>
|
||||
<joint name="lhumerusry" axis="0 1 0" range="-90 90" class="stiff_low"/>
|
||||
<joint name="lhumerusrx" axis="1 0 0" range="-60 90" class="stiff_low"/>
|
||||
<geom name="lhumerus" size="0.035 0.124" pos="0 -0.138 0" quat="0.612 -0.612 0.35 0.35"/>
|
||||
<body name="lradius" pos="0 -0.277 0">
|
||||
<joint name="lradiusrx" axis="1 0 0" range="-10 170" class="stiff_low"/>
|
||||
<geom name="lradius" size="0.03 0.06" pos="0 -0.08 0" quat="0.612 -0.612 0.35 0.35"/>
|
||||
<body name="lwrist" pos="0 -0.17 0" quat="-0.5 0 0.866 0">
|
||||
<joint name="lwristry" axis="0 1 0" range="-180 0"/>
|
||||
<geom name="lwrist" size="0.025 0.03" pos="0 -0.02 0" quat="0 0 -1 -1"/>
|
||||
<body name="lhand" pos="0 -0.08 0">
|
||||
<joint name="lhandrz" axis="0 0 1" range="-45 45"/>
|
||||
<joint name="lhandrx" axis="1 0 0" range="-90 90"/>
|
||||
<geom name="lhand" type="ellipsoid" size=".048 0.02 0.06" pos="0 -0.047 0" quat="0 0 -1 -1"/>
|
||||
<body name="lfingers" pos="0 -0.08 0">
|
||||
<joint name="lfingersrx" axis="1 0 0" range="0 90"/>
|
||||
<geom name="lfinger0" size="0.01 0.04" pos="-.03 -0.05 0" quat="1 -1 0 0" />
|
||||
<geom name="lfinger1" size="0.01 0.04" pos="-.008 -0.06 0" quat="1 -1 0 0" />
|
||||
<geom name="lfinger2" size="0.009 0.04" pos=".014 -0.06 0" quat="1 -1 0 0" />
|
||||
<geom name="lfinger3" size="0.008 0.04" pos=".032 -0.05 0" quat="1 -1 0 0" />
|
||||
</body>
|
||||
<body name="lthumb" pos="-.02 -.03 0" quat="0.92388 0 0 -0.382683">
|
||||
<joint name="lthumbrz" axis="0 0 1" range="-45 45"/>
|
||||
<joint name="lthumbrx" axis="1 0 0" range="0 90"/>
|
||||
<geom name="lthumb" size="0.012 0.04" pos="0 -0.06 0" quat="0 0 -1 -1"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
<body name="rclavicle" pos="0 0.113945 0.00468037">
|
||||
<joint name="rclaviclerz" axis="0 0 1" range="-20 0" class="stiff_high"/>
|
||||
<joint name="rclaviclery" axis="0 1 0" range="-10 20" class="stiff_high"/>
|
||||
<geom name="rclavicle" size="0.08 0.04" pos="-.09 0.05 -.01" quat="1 0 -1 .4"/>
|
||||
<body name="rhumerus" pos="-0.183 0.076 0.01" quat="0.18 0.68 0.68 -0.18">
|
||||
<joint name="rhumerusrz" axis="0 0 1" range="-90 90" class="stiff_low"/>
|
||||
<joint name="rhumerusry" axis="0 1 0" range="-90 90" class="stiff_low"/>
|
||||
<joint name="rhumerusrx" axis="1 0 0" range="-60 90" class="stiff_low"/>
|
||||
<geom name="rhumerus" size="0.035 0.124" pos="0 -0.138 0" quat="0.61 -0.61 -0.35 -0.35"/>
|
||||
<body name="rradius" pos="0 -0.277 0">
|
||||
<joint name="rradiusrx" axis="1 0 0" range="-10 170" class="stiff_low"/>
|
||||
<geom name="rradius" size="0.03 0.06" pos="0 -0.08 0" quat="0.612 -0.612 -0.35 -0.35"/>
|
||||
<body name="rwrist" pos="0 -0.17 0" quat="-0.5 0 -0.866 0">
|
||||
<joint name="rwristry" axis="0 1 0" range="-180 0"/>
|
||||
<geom name="rwrist" size="0.025 0.03" pos="0 -0.02 0" quat="0 0 1 1"/>
|
||||
<body name="rhand" pos="0 -0.08 0">
|
||||
<joint name="rhandrz" axis="0 0 1" range="-45 45"/>
|
||||
<joint name="rhandrx" axis="1 0 0" range="-90 90"/>
|
||||
<geom name="rhand" type="ellipsoid" size=".048 0.02 .06" pos="0 -0.047 0" quat="0 0 1 1"/>
|
||||
<body name="rfingers" pos="0 -0.08 0">
|
||||
<joint name="rfingersrx" axis="1 0 0" range="0 90"/>
|
||||
<geom name="rfinger0" size="0.01 0.04" pos=".03 -0.05 0" quat="1 -1 0 0" />
|
||||
<geom name="rfinger1" size="0.01 0.04" pos=".008 -0.06 0" quat="1 -1 0 0" />
|
||||
<geom name="rfinger2" size="0.009 0.04" pos="-.014 -0.06 0" quat="1 -1 0 0" />
|
||||
<geom name="rfinger3" size="0.008 0.04" pos="-.032 -0.05 0" quat="1 -1 0 0" />
|
||||
</body>
|
||||
<body name="rthumb" pos=".02 -.03 0" quat="0.92388 0 0 0.382683">
|
||||
<joint name="rthumbrz" axis="0 0 1" range="-45 45"/>
|
||||
<joint name="rthumbrx" axis="1 0 0" range="0 90"/>
|
||||
<geom name="rthumb" size="0.012 0.04" pos="0 -0.06 0" quat="0 0 1 1"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</worldbody>
|
||||
|
||||
<contact>
|
||||
<exclude body1="lclavicle" body2="rclavicle"/>
|
||||
<exclude body1="lowerneck" body2="lclavicle"/>
|
||||
<exclude body1="lowerneck" body2="rclavicle"/>
|
||||
<exclude body1="upperneck" body2="lclavicle"/>
|
||||
<exclude body1="upperneck" body2="rclavicle"/>
|
||||
</contact>
|
||||
|
||||
<actuator>
|
||||
<motor name="headrx" joint="headrx" gear="20"/>
|
||||
<motor name="headry" joint="headry" gear="20"/>
|
||||
<motor name="headrz" joint="headrz" gear="20"/>
|
||||
<motor name="lclaviclery" joint="lclaviclery" gear="20"/>
|
||||
<motor name="lclaviclerz" joint="lclaviclerz" gear="20"/>
|
||||
<motor name="lfemurrx" joint="lfemurrx" gear="120"/>
|
||||
<motor name="lfemurry" joint="lfemurry" gear="40"/>
|
||||
<motor name="lfemurrz" joint="lfemurrz" gear="40"/>
|
||||
<motor name="lfingersrx" joint="lfingersrx" gear="20"/>
|
||||
<motor name="lfootrx" joint="lfootrx" gear="20"/>
|
||||
<motor name="lfootrz" joint="lfootrz" gear="20"/>
|
||||
<motor name="lhandrx" joint="lhandrx" gear="20"/>
|
||||
<motor name="lhandrz" joint="lhandrz" gear="20"/>
|
||||
<motor name="lhumerusrx" joint="lhumerusrx" gear="40"/>
|
||||
<motor name="lhumerusry" joint="lhumerusry" gear="40"/>
|
||||
<motor name="lhumerusrz" joint="lhumerusrz" gear="40"/>
|
||||
<motor name="lowerbackrx" joint="lowerbackrx" gear="40"/>
|
||||
<motor name="lowerbackry" joint="lowerbackry" gear="40"/>
|
||||
<motor name="lowerbackrz" joint="lowerbackrz" gear="40"/>
|
||||
<motor name="lowerneckrx" joint="lowerneckrx" gear="20"/>
|
||||
<motor name="lowerneckry" joint="lowerneckry" gear="20"/>
|
||||
<motor name="lowerneckrz" joint="lowerneckrz" gear="20"/>
|
||||
<motor name="lradiusrx" joint="lradiusrx" gear="40"/>
|
||||
<motor name="lthumbrx" joint="lthumbrx" gear="20"/>
|
||||
<motor name="lthumbrz" joint="lthumbrz" gear="20"/>
|
||||
<motor name="ltibiarx" joint="ltibiarx" gear="80"/>
|
||||
<motor name="ltoesrx" joint="ltoesrx" gear="20"/>
|
||||
<motor name="lwristry" joint="lwristry" gear="20"/>
|
||||
<motor name="rclaviclery" joint="rclaviclery" gear="20"/>
|
||||
<motor name="rclaviclerz" joint="rclaviclerz" gear="20"/>
|
||||
<motor name="rfemurrx" joint="rfemurrx" gear="120"/>
|
||||
<motor name="rfemurry" joint="rfemurry" gear="40"/>
|
||||
<motor name="rfemurrz" joint="rfemurrz" gear="40"/>
|
||||
<motor name="rfingersrx" joint="rfingersrx" gear="20"/>
|
||||
<motor name="rfootrx" joint="rfootrx" gear="20"/>
|
||||
<motor name="rfootrz" joint="rfootrz" gear="20"/>
|
||||
<motor name="rhandrx" joint="rhandrx" gear="20"/>
|
||||
<motor name="rhandrz" joint="rhandrz" gear="20"/>
|
||||
<motor name="rhumerusrx" joint="rhumerusrx" gear="40"/>
|
||||
<motor name="rhumerusry" joint="rhumerusry" gear="40"/>
|
||||
<motor name="rhumerusrz" joint="rhumerusrz" gear="40"/>
|
||||
<motor name="rradiusrx" joint="rradiusrx" gear="40"/>
|
||||
<motor name="rthumbrx" joint="rthumbrx" gear="20"/>
|
||||
<motor name="rthumbrz" joint="rthumbrz" gear="20"/>
|
||||
<motor name="rtibiarx" joint="rtibiarx" gear="80"/>
|
||||
<motor name="rtoesrx" joint="rtoesrx" gear="20"/>
|
||||
<motor name="rwristry" joint="rwristry" gear="20"/>
|
||||
<motor name="thoraxrx" joint="thoraxrx" gear="40"/>
|
||||
<motor name="thoraxry" joint="thoraxry" gear="40"/>
|
||||
<motor name="thoraxrz" joint="thoraxrz" gear="40"/>
|
||||
<motor name="upperbackrx" joint="upperbackrx" gear="40"/>
|
||||
<motor name="upperbackry" joint="upperbackry" gear="40"/>
|
||||
<motor name="upperbackrz" joint="upperbackrz" gear="40"/>
|
||||
<motor name="upperneckrx" joint="upperneckrx" gear="20"/>
|
||||
<motor name="upperneckry" joint="upperneckry" gear="20"/>
|
||||
<motor name="upperneckrz" joint="upperneckrz" gear="20"/>
|
||||
</actuator>
|
||||
|
||||
<sensor>
|
||||
<subtreelinvel name="thorax_subtreelinvel" body="thorax"/>
|
||||
<velocimeter name="sensor_root_veloc" site="root"/>
|
||||
<gyro name="sensor_root_gyro" site="root"/>
|
||||
<accelerometer name="sensor_root_accel" site="root"/>
|
||||
<touch name="sensor_touch_ltoes" site="ltoes_touch"/>
|
||||
<touch name="sensor_touch_rtoes" site="rtoes_touch"/>
|
||||
<touch name="sensor_touch_rfoot" site="rfoot_touch"/>
|
||||
<touch name="sensor_touch_lfoot" site="lfoot_touch"/>
|
||||
</sensor>
|
||||
|
||||
</mujoco>
|
272
DPI/local_dm_control_suite/lqr.py
Executable file
272
DPI/local_dm_control_suite/lqr.py
Executable file
@ -0,0 +1,272 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Procedurally generated LQR domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
import os
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import xml_tools
|
||||
from lxml import etree
|
||||
import numpy as np
|
||||
from six.moves import range
|
||||
|
||||
from dm_control.utils import io as resources
|
||||
|
||||
_DEFAULT_TIME_LIMIT = float('inf')
|
||||
_CONTROL_COST_COEF = 0.1
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def get_model_and_assets(n_bodies, n_actuators, random):
|
||||
"""Returns the model description as an XML string and a dict of assets.
|
||||
|
||||
Args:
|
||||
n_bodies: An int, number of bodies of the LQR.
|
||||
n_actuators: An int, number of actuated bodies of the LQR. `n_actuators`
|
||||
should be less or equal than `n_bodies`.
|
||||
random: A `numpy.random.RandomState` instance.
|
||||
|
||||
Returns:
|
||||
A tuple `(model_xml_string, assets)`, where `assets` is a dict consisting of
|
||||
`{filename: contents_string}` pairs.
|
||||
"""
|
||||
return _make_model(n_bodies, n_actuators, random), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add()
|
||||
def lqr_2_1(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns an LQR environment with 2 bodies of which the first is actuated."""
|
||||
return _make_lqr(n_bodies=2,
|
||||
n_actuators=1,
|
||||
control_cost_coef=_CONTROL_COST_COEF,
|
||||
time_limit=time_limit,
|
||||
random=random,
|
||||
environment_kwargs=environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add()
|
||||
def lqr_6_2(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns an LQR environment with 6 bodies of which first 2 are actuated."""
|
||||
return _make_lqr(n_bodies=6,
|
||||
n_actuators=2,
|
||||
control_cost_coef=_CONTROL_COST_COEF,
|
||||
time_limit=time_limit,
|
||||
random=random,
|
||||
environment_kwargs=environment_kwargs)
|
||||
|
||||
|
||||
def _make_lqr(n_bodies, n_actuators, control_cost_coef, time_limit, random,
|
||||
environment_kwargs):
|
||||
"""Returns a LQR environment.
|
||||
|
||||
Args:
|
||||
n_bodies: An int, number of bodies of the LQR.
|
||||
n_actuators: An int, number of actuated bodies of the LQR. `n_actuators`
|
||||
should be less or equal than `n_bodies`.
|
||||
control_cost_coef: A number, the coefficient of the control cost.
|
||||
time_limit: An int, maximum time for each episode in seconds.
|
||||
random: Either an existing `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically.
|
||||
environment_kwargs: A `dict` specifying keyword arguments for the
|
||||
environment, or None.
|
||||
|
||||
Returns:
|
||||
A LQR environment with `n_bodies` bodies of which first `n_actuators` are
|
||||
actuated.
|
||||
"""
|
||||
|
||||
if not isinstance(random, np.random.RandomState):
|
||||
random = np.random.RandomState(random)
|
||||
|
||||
model_string, assets = get_model_and_assets(n_bodies, n_actuators,
|
||||
random=random)
|
||||
physics = Physics.from_xml_string(model_string, assets=assets)
|
||||
task = LQRLevel(control_cost_coef, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(physics, task, time_limit=time_limit,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
def _make_body(body_id, stiffness_range, damping_range, random):
|
||||
"""Returns an `etree.Element` defining a body.
|
||||
|
||||
Args:
|
||||
body_id: Id of the created body.
|
||||
stiffness_range: A tuple of (stiffness_lower_bound, stiffness_uppder_bound).
|
||||
The stiffness of the joint is drawn uniformly from this range.
|
||||
damping_range: A tuple of (damping_lower_bound, damping_upper_bound). The
|
||||
damping of the joint is drawn uniformly from this range.
|
||||
random: A `numpy.random.RandomState` instance.
|
||||
|
||||
Returns:
|
||||
A new instance of `etree.Element`. A body element with two children: joint
|
||||
and geom.
|
||||
"""
|
||||
body_name = 'body_{}'.format(body_id)
|
||||
joint_name = 'joint_{}'.format(body_id)
|
||||
geom_name = 'geom_{}'.format(body_id)
|
||||
|
||||
body = etree.Element('body', name=body_name)
|
||||
body.set('pos', '.25 0 0')
|
||||
joint = etree.SubElement(body, 'joint', name=joint_name)
|
||||
body.append(etree.Element('geom', name=geom_name))
|
||||
joint.set('stiffness',
|
||||
str(random.uniform(stiffness_range[0], stiffness_range[1])))
|
||||
joint.set('damping',
|
||||
str(random.uniform(damping_range[0], damping_range[1])))
|
||||
return body
|
||||
|
||||
|
||||
def _make_model(n_bodies,
|
||||
n_actuators,
|
||||
random,
|
||||
stiffness_range=(15, 25),
|
||||
damping_range=(0, 0)):
|
||||
"""Returns an MJCF XML string defining a model of springs and dampers.
|
||||
|
||||
Args:
|
||||
n_bodies: An integer, the number of bodies (DoFs) in the system.
|
||||
n_actuators: An integer, the number of actuated bodies.
|
||||
random: A `numpy.random.RandomState` instance.
|
||||
stiffness_range: A tuple containing minimum and maximum stiffness. Each
|
||||
joint's stiffness is sampled uniformly from this interval.
|
||||
damping_range: A tuple containing minimum and maximum damping. Each joint's
|
||||
damping is sampled uniformly from this interval.
|
||||
|
||||
Returns:
|
||||
An MJCF string describing the linear system.
|
||||
|
||||
Raises:
|
||||
ValueError: If the number of bodies or actuators is erronous.
|
||||
"""
|
||||
if n_bodies < 1 or n_actuators < 1:
|
||||
raise ValueError('At least 1 body and 1 actuator required.')
|
||||
if n_actuators > n_bodies:
|
||||
raise ValueError('At most 1 actuator per body.')
|
||||
|
||||
file_path = os.path.join(os.path.dirname(__file__), 'lqr.xml')
|
||||
with resources.GetResourceAsFile(file_path) as xml_file:
|
||||
mjcf = xml_tools.parse(xml_file)
|
||||
parent = mjcf.find('./worldbody')
|
||||
actuator = etree.SubElement(mjcf.getroot(), 'actuator')
|
||||
tendon = etree.SubElement(mjcf.getroot(), 'tendon')
|
||||
|
||||
for body in range(n_bodies):
|
||||
# Inserting body.
|
||||
child = _make_body(body, stiffness_range, damping_range, random)
|
||||
site_name = 'site_{}'.format(body)
|
||||
child.append(etree.Element('site', name=site_name))
|
||||
|
||||
if body == 0:
|
||||
child.set('pos', '.25 0 .1')
|
||||
# Add actuators to the first n_actuators bodies.
|
||||
if body < n_actuators:
|
||||
# Adding actuator.
|
||||
joint_name = 'joint_{}'.format(body)
|
||||
motor_name = 'motor_{}'.format(body)
|
||||
child.find('joint').set('name', joint_name)
|
||||
actuator.append(etree.Element('motor', name=motor_name, joint=joint_name))
|
||||
|
||||
# Add a tendon between consecutive bodies (for visualisation purposes only).
|
||||
if body < n_bodies - 1:
|
||||
child_site_name = 'site_{}'.format(body + 1)
|
||||
tendon_name = 'tendon_{}'.format(body)
|
||||
spatial = etree.SubElement(tendon, 'spatial', name=tendon_name)
|
||||
spatial.append(etree.Element('site', site=site_name))
|
||||
spatial.append(etree.Element('site', site=child_site_name))
|
||||
parent.append(child)
|
||||
parent = child
|
||||
|
||||
return etree.tostring(mjcf, pretty_print=True)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the LQR domain."""
|
||||
|
||||
def state_norm(self):
|
||||
"""Returns the norm of the physics state."""
|
||||
return np.linalg.norm(self.state())
|
||||
|
||||
|
||||
class LQRLevel(base.Task):
|
||||
"""A Linear Quadratic Regulator `Task`."""
|
||||
|
||||
_TERMINAL_TOL = 1e-6
|
||||
|
||||
def __init__(self, control_cost_coef, random=None):
|
||||
"""Initializes an LQR level with cost = sum(states^2) + c*sum(controls^2).
|
||||
|
||||
Args:
|
||||
control_cost_coef: The coefficient of the control cost.
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
|
||||
Raises:
|
||||
ValueError: If the control cost coefficient is not positive.
|
||||
"""
|
||||
if control_cost_coef <= 0:
|
||||
raise ValueError('control_cost_coef must be positive.')
|
||||
|
||||
self._control_cost_coef = control_cost_coef
|
||||
super(LQRLevel, self).__init__(random=random)
|
||||
|
||||
@property
|
||||
def control_cost_coef(self):
|
||||
return self._control_cost_coef
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Random state sampled from a unit sphere."""
|
||||
ndof = physics.model.nq
|
||||
unit = self.random.randn(ndof)
|
||||
physics.data.qpos[:] = np.sqrt(2) * unit / np.linalg.norm(unit)
|
||||
super(LQRLevel, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation of the state."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['position'] = physics.position()
|
||||
obs['velocity'] = physics.velocity()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a quadratic state and control reward."""
|
||||
position = physics.position()
|
||||
state_cost = 0.5 * np.dot(position, position)
|
||||
control_signal = physics.control()
|
||||
control_l2_norm = 0.5 * np.dot(control_signal, control_signal)
|
||||
return 1 - (state_cost + control_l2_norm * self._control_cost_coef)
|
||||
|
||||
def get_evaluation(self, physics):
|
||||
"""Returns a sparse evaluation reward that is not used for learning."""
|
||||
return float(physics.state_norm() <= 0.01)
|
||||
|
||||
def get_termination(self, physics):
|
||||
"""Terminates when the state norm is smaller than epsilon."""
|
||||
if physics.state_norm() < self._TERMINAL_TOL:
|
||||
return 0.0
|
26
DPI/local_dm_control_suite/lqr.xml
Executable file
26
DPI/local_dm_control_suite/lqr.xml
Executable file
@ -0,0 +1,26 @@
|
||||
<mujoco model="LQR">
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
|
||||
<option timestep=".03"/>
|
||||
|
||||
<default>
|
||||
<joint type="slide" axis="0 1 0"/>
|
||||
<geom type="sphere" size=".1" material="self"/>
|
||||
<site size=".01"/>
|
||||
<tendon width=".02" material="self"/>
|
||||
</default>
|
||||
|
||||
<option>
|
||||
<flag constraint="disable"/>
|
||||
</option>
|
||||
|
||||
<worldbody>
|
||||
<light name="light" pos="0 0 2"/>
|
||||
<camera name="cam0" pos="-1.428 -0.311 0.856" xyaxes="0.099 -0.995 0.000 0.350 0.035 0.936"/>
|
||||
<camera name="cam1" pos="1.787 2.452 4.331" xyaxes="-1 0 0 0 -0.868 0.497"/>
|
||||
<geom name="floor" size="4 1 .2" type="plane" material="grid"/>
|
||||
<geom name="origin" pos="2 0 .05" size="2 .003 .05" type="box" rgba=".5 .5 .5 .5"/>
|
||||
</worldbody>
|
||||
</mujoco>
|
142
DPI/local_dm_control_suite/lqr_solver.py
Executable file
142
DPI/local_dm_control_suite/lqr_solver.py
Executable file
@ -0,0 +1,142 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
r"""Optimal policy for LQR levels.
|
||||
|
||||
LQR control problem is described in
|
||||
https://en.wikipedia.org/wiki/Linear-quadratic_regulator#Infinite-horizon.2C_discrete-time_LQR
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl import logging
|
||||
from dm_control.mujoco import wrapper
|
||||
import numpy as np
|
||||
from six.moves import range
|
||||
|
||||
try:
|
||||
import scipy.linalg as sp # pylint: disable=g-import-not-at-top
|
||||
except ImportError:
|
||||
sp = None
|
||||
|
||||
|
||||
def _solve_dare(a, b, q, r):
|
||||
"""Solves the Discrete-time Algebraic Riccati Equation (DARE) by iteration.
|
||||
|
||||
Algebraic Riccati Equation:
|
||||
```none
|
||||
P_{t-1} = Q + A' * P_{t} * A -
|
||||
A' * P_{t} * B * (R + B' * P_{t} * B)^{-1} * B' * P_{t} * A
|
||||
```
|
||||
|
||||
Args:
|
||||
a: A 2 dimensional numpy array, transition matrix A.
|
||||
b: A 2 dimensional numpy array, control matrix B.
|
||||
q: A 2 dimensional numpy array, symmetric positive definite cost matrix.
|
||||
r: A 2 dimensional numpy array, symmetric positive definite cost matrix
|
||||
|
||||
Returns:
|
||||
A numpy array, a real symmetric matrix P which is the solution to DARE.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the computed P matrix is not symmetric and
|
||||
positive-definite.
|
||||
"""
|
||||
p = np.eye(len(a))
|
||||
for _ in range(1000000):
|
||||
a_p = a.T.dot(p) # A' * P_t
|
||||
a_p_b = np.dot(a_p, b) # A' * P_t * B
|
||||
# Algebraic Riccati Equation.
|
||||
p_next = q + np.dot(a_p, a) - a_p_b.dot(
|
||||
np.linalg.solve(b.T.dot(p.dot(b)) + r, a_p_b.T))
|
||||
p_next += p_next.T
|
||||
p_next *= .5
|
||||
if np.abs(p - p_next).max() < 1e-12:
|
||||
break
|
||||
p = p_next
|
||||
else:
|
||||
logging.warning('DARE solver did not converge')
|
||||
try:
|
||||
# Check that the result is symmetric and positive-definite.
|
||||
np.linalg.cholesky(p_next)
|
||||
except np.linalg.LinAlgError:
|
||||
raise RuntimeError('ARE solver failed: P matrix is not symmetric and '
|
||||
'positive-definite.')
|
||||
return p_next
|
||||
|
||||
|
||||
def solve(env):
|
||||
"""Returns the optimal value and policy for LQR problem.
|
||||
|
||||
Args:
|
||||
env: An instance of `control.EnvironmentV2` with LQR level.
|
||||
|
||||
Returns:
|
||||
p: A numpy array, the Hessian of the optimal total cost-to-go (value
|
||||
function at state x) is V(x) = .5 * x' * p * x.
|
||||
k: A numpy array which gives the optimal linear policy u = k * x.
|
||||
beta: The maximum eigenvalue of (a + b * k). Under optimal policy, at
|
||||
timestep n the state tends to 0 like beta^n.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the controlled system is unstable.
|
||||
"""
|
||||
n = env.physics.model.nq # number of DoFs
|
||||
m = env.physics.model.nu # number of controls
|
||||
|
||||
# Compute the mass matrix.
|
||||
mass = np.zeros((n, n))
|
||||
wrapper.mjbindings.mjlib.mj_fullM(env.physics.model.ptr, mass,
|
||||
env.physics.data.qM)
|
||||
|
||||
# Compute input matrices a, b, q and r to the DARE solvers.
|
||||
# State transition matrix a.
|
||||
stiffness = np.diag(env.physics.model.jnt_stiffness.ravel())
|
||||
damping = np.diag(env.physics.model.dof_damping.ravel())
|
||||
dt = env.physics.model.opt.timestep
|
||||
|
||||
j = np.linalg.solve(-mass, np.hstack((stiffness, damping)))
|
||||
a = np.eye(2 * n) + dt * np.vstack(
|
||||
(dt * j + np.hstack((np.zeros((n, n)), np.eye(n))), j))
|
||||
|
||||
# Control transition matrix b.
|
||||
b = env.physics.data.actuator_moment.T
|
||||
bc = np.linalg.solve(mass, b)
|
||||
b = dt * np.vstack((dt * bc, bc))
|
||||
|
||||
# State cost Hessian q.
|
||||
q = np.diag(np.hstack([np.ones(n), np.zeros(n)]))
|
||||
|
||||
# Control cost Hessian r.
|
||||
r = env.task.control_cost_coef * np.eye(m)
|
||||
|
||||
if sp:
|
||||
# Use scipy's faster DARE solver if available.
|
||||
solve_dare = sp.solve_discrete_are
|
||||
else:
|
||||
# Otherwise fall back on a slower internal implementation.
|
||||
solve_dare = _solve_dare
|
||||
|
||||
# Solve the discrete algebraic Riccati equation.
|
||||
p = solve_dare(a, b, q, r)
|
||||
k = -np.linalg.solve(b.T.dot(p.dot(b)) + r, b.T.dot(p.dot(a)))
|
||||
|
||||
# Under optimal policy, state tends to 0 like beta^n_timesteps
|
||||
beta = np.abs(np.linalg.eigvals(a + b.dot(k))).max()
|
||||
if beta >= 1.0:
|
||||
raise RuntimeError('Controlled system is unstable.')
|
||||
return p, k, beta
|
290
DPI/local_dm_control_suite/manipulator.py
Executable file
290
DPI/local_dm_control_suite/manipulator.py
Executable file
@ -0,0 +1,290 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Planar Manipulator domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
from dm_control.utils import xml_tools
|
||||
|
||||
from lxml import etree
|
||||
import numpy as np
|
||||
|
||||
_CLOSE = .01 # (Meters) Distance below which a thing is considered close.
|
||||
_CONTROL_TIMESTEP = .01 # (Seconds)
|
||||
_TIME_LIMIT = 10 # (Seconds)
|
||||
_P_IN_HAND = .1 # Probabillity of object-in-hand initial state
|
||||
_P_IN_TARGET = .1 # Probabillity of object-in-target initial state
|
||||
_ARM_JOINTS = ['arm_root', 'arm_shoulder', 'arm_elbow', 'arm_wrist',
|
||||
'finger', 'fingertip', 'thumb', 'thumbtip']
|
||||
_ALL_PROPS = frozenset(['ball', 'target_ball', 'cup',
|
||||
'peg', 'target_peg', 'slot'])
|
||||
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def make_model(use_peg, insert):
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
xml_string = common.read_model('manipulator.xml')
|
||||
parser = etree.XMLParser(remove_blank_text=True)
|
||||
mjcf = etree.XML(xml_string, parser)
|
||||
|
||||
# Select the desired prop.
|
||||
if use_peg:
|
||||
required_props = ['peg', 'target_peg']
|
||||
if insert:
|
||||
required_props += ['slot']
|
||||
else:
|
||||
required_props = ['ball', 'target_ball']
|
||||
if insert:
|
||||
required_props += ['cup']
|
||||
|
||||
# Remove unused props
|
||||
for unused_prop in _ALL_PROPS.difference(required_props):
|
||||
prop = xml_tools.find_element(mjcf, 'body', unused_prop)
|
||||
prop.getparent().remove(prop)
|
||||
|
||||
return etree.tostring(mjcf, pretty_print=True), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking', 'hard')
|
||||
def bring_ball(fully_observable=True, time_limit=_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns manipulator bring task with the ball prop."""
|
||||
use_peg = False
|
||||
insert = False
|
||||
physics = Physics.from_xml_string(*make_model(use_peg, insert))
|
||||
task = Bring(use_peg=use_peg, insert=insert,
|
||||
fully_observable=fully_observable, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('hard')
|
||||
def bring_peg(fully_observable=True, time_limit=_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns manipulator bring task with the peg prop."""
|
||||
use_peg = True
|
||||
insert = False
|
||||
physics = Physics.from_xml_string(*make_model(use_peg, insert))
|
||||
task = Bring(use_peg=use_peg, insert=insert,
|
||||
fully_observable=fully_observable, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('hard')
|
||||
def insert_ball(fully_observable=True, time_limit=_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns manipulator insert task with the ball prop."""
|
||||
use_peg = False
|
||||
insert = True
|
||||
physics = Physics.from_xml_string(*make_model(use_peg, insert))
|
||||
task = Bring(use_peg=use_peg, insert=insert,
|
||||
fully_observable=fully_observable, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('hard')
|
||||
def insert_peg(fully_observable=True, time_limit=_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns manipulator insert task with the peg prop."""
|
||||
use_peg = True
|
||||
insert = True
|
||||
physics = Physics.from_xml_string(*make_model(use_peg, insert))
|
||||
task = Bring(use_peg=use_peg, insert=insert,
|
||||
fully_observable=fully_observable, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics with additional features for the Planar Manipulator domain."""
|
||||
|
||||
def bounded_joint_pos(self, joint_names):
|
||||
"""Returns joint positions as (sin, cos) values."""
|
||||
joint_pos = self.named.data.qpos[joint_names]
|
||||
return np.vstack([np.sin(joint_pos), np.cos(joint_pos)]).T
|
||||
|
||||
def joint_vel(self, joint_names):
|
||||
"""Returns joint velocities."""
|
||||
return self.named.data.qvel[joint_names]
|
||||
|
||||
def body_2d_pose(self, body_names, orientation=True):
|
||||
"""Returns positions and/or orientations of bodies."""
|
||||
if not isinstance(body_names, str):
|
||||
body_names = np.array(body_names).reshape(-1, 1) # Broadcast indices.
|
||||
pos = self.named.data.xpos[body_names, ['x', 'z']]
|
||||
if orientation:
|
||||
ori = self.named.data.xquat[body_names, ['qw', 'qy']]
|
||||
return np.hstack([pos, ori])
|
||||
else:
|
||||
return pos
|
||||
|
||||
def touch(self):
|
||||
return np.log1p(self.data.sensordata)
|
||||
|
||||
def site_distance(self, site1, site2):
|
||||
site1_to_site2 = np.diff(self.named.data.site_xpos[[site2, site1]], axis=0)
|
||||
return np.linalg.norm(site1_to_site2)
|
||||
|
||||
|
||||
class Bring(base.Task):
|
||||
"""A Bring `Task`: bring the prop to the target."""
|
||||
|
||||
def __init__(self, use_peg, insert, fully_observable, random=None):
|
||||
"""Initialize an instance of the `Bring` task.
|
||||
|
||||
Args:
|
||||
use_peg: A `bool`, whether to replace the ball prop with the peg prop.
|
||||
insert: A `bool`, whether to insert the prop in a receptacle.
|
||||
fully_observable: A `bool`, whether the observation should contain the
|
||||
position and velocity of the object being manipulated and the target
|
||||
location.
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
self._use_peg = use_peg
|
||||
self._target = 'target_peg' if use_peg else 'target_ball'
|
||||
self._object = 'peg' if self._use_peg else 'ball'
|
||||
self._object_joints = ['_'.join([self._object, dim]) for dim in 'xzy']
|
||||
self._receptacle = 'slot' if self._use_peg else 'cup'
|
||||
self._insert = insert
|
||||
self._fully_observable = fully_observable
|
||||
super(Bring, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
# Local aliases
|
||||
choice = self.random.choice
|
||||
uniform = self.random.uniform
|
||||
model = physics.named.model
|
||||
data = physics.named.data
|
||||
|
||||
# Find a collision-free random initial configuration.
|
||||
penetrating = True
|
||||
while penetrating:
|
||||
|
||||
# Randomise angles of arm joints.
|
||||
is_limited = model.jnt_limited[_ARM_JOINTS].astype(np.bool)
|
||||
joint_range = model.jnt_range[_ARM_JOINTS]
|
||||
lower_limits = np.where(is_limited, joint_range[:, 0], -np.pi)
|
||||
upper_limits = np.where(is_limited, joint_range[:, 1], np.pi)
|
||||
angles = uniform(lower_limits, upper_limits)
|
||||
data.qpos[_ARM_JOINTS] = angles
|
||||
|
||||
# Symmetrize hand.
|
||||
data.qpos['finger'] = data.qpos['thumb']
|
||||
|
||||
# Randomise target location.
|
||||
target_x = uniform(-.4, .4)
|
||||
target_z = uniform(.1, .4)
|
||||
if self._insert:
|
||||
target_angle = uniform(-np.pi/3, np.pi/3)
|
||||
model.body_pos[self._receptacle, ['x', 'z']] = target_x, target_z
|
||||
model.body_quat[self._receptacle, ['qw', 'qy']] = [
|
||||
np.cos(target_angle/2), np.sin(target_angle/2)]
|
||||
else:
|
||||
target_angle = uniform(-np.pi, np.pi)
|
||||
|
||||
model.body_pos[self._target, ['x', 'z']] = target_x, target_z
|
||||
model.body_quat[self._target, ['qw', 'qy']] = [
|
||||
np.cos(target_angle/2), np.sin(target_angle/2)]
|
||||
|
||||
# Randomise object location.
|
||||
object_init_probs = [_P_IN_HAND, _P_IN_TARGET, 1-_P_IN_HAND-_P_IN_TARGET]
|
||||
init_type = choice(['in_hand', 'in_target', 'uniform'],
|
||||
p=object_init_probs)
|
||||
if init_type == 'in_target':
|
||||
object_x = target_x
|
||||
object_z = target_z
|
||||
object_angle = target_angle
|
||||
elif init_type == 'in_hand':
|
||||
physics.after_reset()
|
||||
object_x = data.site_xpos['grasp', 'x']
|
||||
object_z = data.site_xpos['grasp', 'z']
|
||||
grasp_direction = data.site_xmat['grasp', ['xx', 'zx']]
|
||||
object_angle = np.pi-np.arctan2(grasp_direction[1], grasp_direction[0])
|
||||
else:
|
||||
object_x = uniform(-.5, .5)
|
||||
object_z = uniform(0, .7)
|
||||
object_angle = uniform(0, 2*np.pi)
|
||||
data.qvel[self._object + '_x'] = uniform(-5, 5)
|
||||
|
||||
data.qpos[self._object_joints] = object_x, object_z, object_angle
|
||||
|
||||
# Check for collisions.
|
||||
physics.after_reset()
|
||||
penetrating = physics.data.ncon > 0
|
||||
|
||||
super(Bring, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns either features or only sensors (to be used with pixels)."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['arm_pos'] = physics.bounded_joint_pos(_ARM_JOINTS)
|
||||
obs['arm_vel'] = physics.joint_vel(_ARM_JOINTS)
|
||||
obs['touch'] = physics.touch()
|
||||
if self._fully_observable:
|
||||
obs['hand_pos'] = physics.body_2d_pose('hand')
|
||||
obs['object_pos'] = physics.body_2d_pose(self._object)
|
||||
obs['object_vel'] = physics.joint_vel(self._object_joints)
|
||||
obs['target_pos'] = physics.body_2d_pose(self._target)
|
||||
return obs
|
||||
|
||||
def _is_close(self, distance):
|
||||
return rewards.tolerance(distance, (0, _CLOSE), _CLOSE*2)
|
||||
|
||||
def _peg_reward(self, physics):
|
||||
"""Returns a reward for bringing the peg prop to the target."""
|
||||
grasp = self._is_close(physics.site_distance('peg_grasp', 'grasp'))
|
||||
pinch = self._is_close(physics.site_distance('peg_pinch', 'pinch'))
|
||||
grasping = (grasp + pinch) / 2
|
||||
bring = self._is_close(physics.site_distance('peg', 'target_peg'))
|
||||
bring_tip = self._is_close(physics.site_distance('target_peg_tip',
|
||||
'peg_tip'))
|
||||
bringing = (bring + bring_tip) / 2
|
||||
return max(bringing, grasping/3)
|
||||
|
||||
def _ball_reward(self, physics):
|
||||
"""Returns a reward for bringing the ball prop to the target."""
|
||||
return self._is_close(physics.site_distance('ball', 'target_ball'))
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a reward to the agent."""
|
||||
if self._use_peg:
|
||||
return self._peg_reward(physics)
|
||||
else:
|
||||
return self._ball_reward(physics)
|
211
DPI/local_dm_control_suite/manipulator.xml
Executable file
211
DPI/local_dm_control_suite/manipulator.xml
Executable file
@ -0,0 +1,211 @@
|
||||
<mujoco model="planar manipulator">
|
||||
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
<asset>
|
||||
<texture name="background" builtin="flat" type="2d" mark="random" markrgb="1 1 1" width="800" height="800" rgb1=".2 .3 .4"/>
|
||||
<material name="background" texture="background" texrepeat="1 1" texuniform="true"/>
|
||||
</asset>
|
||||
|
||||
<visual>
|
||||
<map shadowclip=".5"/>
|
||||
<quality shadowsize="2048"/>
|
||||
</visual>>
|
||||
|
||||
<option timestep="0.001" cone="elliptic"/>
|
||||
|
||||
<default>
|
||||
<geom friction=".7" solimp="0.9 0.97 0.001" solref=".005 1"/>
|
||||
<joint solimplimit="0 0.99 0.01" solreflimit=".005 1"/>
|
||||
<general ctrllimited="true"/>
|
||||
<tendon width="0.01"/>
|
||||
<site size=".003 .003 .003" material="site" group="3"/>
|
||||
|
||||
<default class="arm">
|
||||
<geom type="capsule" material="self" density="500"/>
|
||||
<joint type="hinge" pos="0 0 0" axis="0 -1 0" limited="true"/>
|
||||
<default class="hand">
|
||||
<joint damping=".5" range="-10 60"/>
|
||||
<geom size=".008"/>
|
||||
<site type="box" size=".018 .005 .005" pos=".022 0 -.002" euler="0 15 0" group="4"/>
|
||||
<default class="fingertip">
|
||||
<geom type="sphere" size=".008" material="effector"/>
|
||||
<joint damping=".01" stiffness=".01" range="-40 20"/>
|
||||
<site size=".012 .005 .008" pos=".003 0 .003" group="4" euler="0 0 0"/>
|
||||
</default>
|
||||
</default>
|
||||
</default>
|
||||
|
||||
<default class="object">
|
||||
<geom material="self"/>
|
||||
</default>
|
||||
|
||||
<default class="task">
|
||||
<site rgba="0 0 0 0"/>
|
||||
</default>
|
||||
|
||||
<default class="obstacle">
|
||||
<geom material="decoration" friction="0"/>
|
||||
</default>
|
||||
|
||||
<default class="ghost">
|
||||
<geom material="target" contype="0" conaffinity="0"/>
|
||||
</default>
|
||||
</default>
|
||||
|
||||
<worldbody>
|
||||
<!-- Arena -->
|
||||
<light name="light" directional="true" diffuse=".6 .6 .6" pos="0 0 1" specular=".3 .3 .3"/>
|
||||
<geom name="floor" type="plane" pos="0 0 0" size=".4 .2 10" material="grid"/>
|
||||
<geom name="wall1" type="plane" pos="-.682843 0 .282843" size=".4 .2 10" material="grid" zaxis="1 0 1"/>
|
||||
<geom name="wall2" type="plane" pos=".682843 0 .282843" size=".4 .2 10" material="grid" zaxis="-1 0 1"/>
|
||||
<geom name="background" type="plane" pos="0 .2 .5" size="1 .5 10" material="background" zaxis="0 -1 0"/>
|
||||
<camera name="fixed" pos="0 -16 .4" xyaxes="1 0 0 0 0 1" fovy="4"/>
|
||||
|
||||
<!-- Arm -->
|
||||
<geom name="arm_root" type="cylinder" fromto="0 -.022 .4 0 .022 .4" size=".024"
|
||||
material="decoration" contype="0" conaffinity="0"/>
|
||||
<body name="upper_arm" pos="0 0 .4" childclass="arm">
|
||||
<joint name="arm_root" damping="2" limited="false"/>
|
||||
<geom name="upper_arm" size=".02" fromto="0 0 0 0 0 .18"/>
|
||||
<body name="middle_arm" pos="0 0 .18" childclass="arm">
|
||||
<joint name="arm_shoulder" damping="1.5" range="-160 160"/>
|
||||
<geom name="middle_arm" size=".017" fromto="0 0 0 0 0 .15"/>
|
||||
<body name="lower_arm" pos="0 0 .15">
|
||||
<joint name="arm_elbow" damping="1" range="-160 160"/>
|
||||
<geom name="lower_arm" size=".014" fromto="0 0 0 0 0 .12"/>
|
||||
<body name="hand" pos="0 0 .12">
|
||||
<joint name="arm_wrist" damping=".5" range="-140 140" />
|
||||
<geom name="hand" size=".011" fromto="0 0 0 0 0 .03"/>
|
||||
<geom name="palm1" fromto="0 0 .03 .03 0 .045" class="hand"/>
|
||||
<geom name="palm2" fromto="0 0 .03 -.03 0 .045" class="hand"/>
|
||||
<site name="grasp" pos="0 0 .065"/>
|
||||
<body name="pinch site" pos="0 0 .090">
|
||||
<site name="pinch"/>
|
||||
<inertial pos="0 0 0" mass="1e-6" diaginertia="1e-12 1e-12 1e-12"/>
|
||||
<camera name="hand" pos="0 -.3 0" xyaxes="1 0 0 0 0 1" mode="track"/>
|
||||
</body>
|
||||
<site name="palm_touch" type="box" group="4" size=".025 .005 .008" pos="0 0 .043"/>
|
||||
|
||||
<body name="thumb" pos=".03 0 .045" euler="0 -90 0" childclass="hand">
|
||||
<joint name="thumb"/>
|
||||
<geom name="thumb1" fromto="0 0 0 .02 0 -.01" size=".007"/>
|
||||
<geom name="thumb2" fromto=".02 0 -.01 .04 0 -.01" size=".007"/>
|
||||
<site name="thumb_touch" group="4"/>
|
||||
<body name="thumbtip" pos=".05 0 -.01" childclass="fingertip">
|
||||
<joint name="thumbtip"/>
|
||||
<geom name="thumbtip1" pos="-.003 0 0" />
|
||||
<geom name="thumbtip2" pos=".003 0 0" />
|
||||
<site name="thumbtip_touch" group="4"/>
|
||||
</body>
|
||||
</body>
|
||||
|
||||
<body name="finger" pos="-.03 0 .045" euler="0 90 180" childclass="hand">
|
||||
<joint name="finger"/>
|
||||
<geom name="finger1" fromto="0 0 0 .02 0 -.01" size=".007" />
|
||||
<geom name="finger2" fromto=".02 0 -.01 .04 0 -.01" size=".007"/>
|
||||
<site name="finger_touch"/>
|
||||
<body name="fingertip" pos=".05 0 -.01" childclass="fingertip">
|
||||
<joint name="fingertip"/>
|
||||
<geom name="fingertip1" pos="-.003 0 0" />
|
||||
<geom name="fingertip2" pos=".003 0 0" />
|
||||
<site name="fingertip_touch"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
|
||||
<!-- props -->
|
||||
<body name="ball" pos=".4 0 .4" childclass="object">
|
||||
<joint name="ball_x" type="slide" axis="1 0 0" ref=".4"/>
|
||||
<joint name="ball_z" type="slide" axis="0 0 1" ref=".4"/>
|
||||
<joint name="ball_y" type="hinge" axis="0 1 0"/>
|
||||
<geom name="ball" type="sphere" size=".022" />
|
||||
<site name="ball" type="sphere"/>
|
||||
</body>
|
||||
|
||||
<body name="peg" pos="-.4 0 .4" childclass="object">
|
||||
<joint name="peg_x" type="slide" axis="1 0 0" ref="-.4"/>
|
||||
<joint name="peg_z" type="slide" axis="0 0 1" ref=".4"/>
|
||||
<joint name="peg_y" type="hinge" axis="0 1 0"/>
|
||||
<geom name="blade" type="capsule" size=".005" fromto="0 0 -.013 0 0 -.113"/>
|
||||
<geom name="guard" type="capsule" size=".005" fromto="-.017 0 -.043 .017 0 -.043"/>
|
||||
<body name="pommel" pos="0 0 -.013">
|
||||
<geom name="pommel" type="sphere" size=".009"/>
|
||||
</body>
|
||||
<site name="peg" type="box" pos="0 0 -.063"/>
|
||||
<site name="peg_pinch" type="box" pos="0 0 -.025"/>
|
||||
<site name="peg_grasp" type="box" pos="0 0 0"/>
|
||||
<site name="peg_tip" type="box" pos="0 0 -.113"/>
|
||||
</body>
|
||||
|
||||
<!-- receptacles -->
|
||||
<body name="slot" pos="-.405 0 .2" euler="0 20 0" childclass="obstacle">
|
||||
<geom name="slot_0" type="box" pos="-.0252 0 -.083" size=".0198 .01 .035"/>
|
||||
<geom name="slot_1" type="box" pos=" .0252 0 -.083" size=".0198 .01 .035"/>
|
||||
<geom name="slot_2" type="box" pos=" 0 0 -.138" size=".045 .01 .02"/>
|
||||
<site name="slot" type="box" pos="0 0 0"/>
|
||||
<site name="slot_end" type="box" pos="0 0 -.05"/>
|
||||
</body>
|
||||
|
||||
<body name="cup" pos=".3 0 .4" euler="0 -15 0" childclass="obstacle">
|
||||
<geom name="cup_0" type="capsule" size=".008" fromto="-.03 0 .06 -.03 0 -.015" />
|
||||
<geom name="cup_1" type="capsule" size=".008" fromto="-.03 0 -.015 0 0 -.04" />
|
||||
<geom name="cup_2" type="capsule" size=".008" fromto="0 0 -.04 .03 0 -.015" />
|
||||
<geom name="cup_3" type="capsule" size=".008" fromto=".03 0 -.015 .03 0 .06" />
|
||||
<site name="cup" size=".005"/>
|
||||
</body>
|
||||
|
||||
<!-- targets -->
|
||||
<body name="target_ball" pos=".4 .001 .4" childclass="ghost">
|
||||
<geom name="target_ball" type="sphere" size=".02" />
|
||||
<site name="target_ball" type="sphere"/>
|
||||
</body>
|
||||
|
||||
<body name="target_peg" pos="-.2 .001 .4" childclass="ghost">
|
||||
<geom name="target_blade" type="capsule" size=".005" fromto="0 0 -.013 0 0 -.113"/>
|
||||
<geom name="target_guard" type="capsule" size=".005" fromto="-.017 0 -.043 .017 0 -.043"/>
|
||||
<geom name="target_pommel" type="sphere" size=".009" pos="0 0 -.013"/>
|
||||
<site name="target_peg" type="box" pos="0 0 -.063"/>
|
||||
<site name="target_peg_pinch" type="box" pos="0 0 -.025"/>
|
||||
<site name="target_peg_grasp" type="box" pos="0 0 0"/>
|
||||
<site name="target_peg_tip" type="box" pos="0 0 -.113"/>
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<tendon>
|
||||
<fixed name="grasp">
|
||||
<joint joint="thumb" coef=".5"/>
|
||||
<joint joint="finger" coef=".5"/>
|
||||
</fixed>
|
||||
<fixed name="coupling">
|
||||
<joint joint="thumb" coef="-.5"/>
|
||||
<joint joint="finger" coef=".5"/>
|
||||
</fixed>
|
||||
</tendon>
|
||||
|
||||
<equality>
|
||||
<tendon name="coupling" tendon1="coupling" solimp="0.95 0.99 0.001" solref=".005 .5"/>
|
||||
</equality>
|
||||
|
||||
<sensor>
|
||||
<touch name="palm_touch" site="palm_touch"/>
|
||||
<touch name="finger_touch" site="finger_touch"/>
|
||||
<touch name="thumb_touch" site="thumb_touch"/>
|
||||
<touch name="fingertip_touch" site="fingertip_touch"/>
|
||||
<touch name="thumbtip_touch" site="thumbtip_touch"/>
|
||||
</sensor>
|
||||
|
||||
<actuator>
|
||||
<motor name="root" joint="arm_root" ctrlrange="-1 1" gear="12"/>
|
||||
<motor name="shoulder" joint="arm_shoulder" ctrlrange="-1 1" gear="8"/>
|
||||
<motor name="elbow" joint="arm_elbow" ctrlrange="-1 1" gear="4"/>
|
||||
<motor name="wrist" joint="arm_wrist" ctrlrange="-1 1" gear="2"/>
|
||||
<motor name="grasp" tendon="grasp" ctrlrange="-1 1" gear="2"/>
|
||||
</actuator>
|
||||
|
||||
</mujoco>
|
114
DPI/local_dm_control_suite/pendulum.py
Executable file
114
DPI/local_dm_control_suite/pendulum.py
Executable file
@ -0,0 +1,114 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Pendulum domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
import numpy as np
|
||||
|
||||
|
||||
_DEFAULT_TIME_LIMIT = 20
|
||||
_ANGLE_BOUND = 8
|
||||
_COSINE_BOUND = np.cos(np.deg2rad(_ANGLE_BOUND))
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def get_model_and_assets():
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
return common.read_model('pendulum.xml'), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def swingup(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns pendulum swingup task ."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = SwingUp(random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, **environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the Pendulum domain."""
|
||||
|
||||
def pole_vertical(self):
|
||||
"""Returns vertical (z) component of pole frame."""
|
||||
return self.named.data.xmat['pole', 'zz']
|
||||
|
||||
def angular_velocity(self):
|
||||
"""Returns the angular velocity of the pole."""
|
||||
return self.named.data.qvel['hinge'].copy()
|
||||
|
||||
def pole_orientation(self):
|
||||
"""Returns both horizontal and vertical components of pole frame."""
|
||||
return self.named.data.xmat['pole', ['zz', 'xz']]
|
||||
|
||||
|
||||
class SwingUp(base.Task):
|
||||
"""A Pendulum `Task` to swing up and balance the pole."""
|
||||
|
||||
def __init__(self, random=None):
|
||||
"""Initialize an instance of `Pendulum`.
|
||||
|
||||
Args:
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
super(SwingUp, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode.
|
||||
|
||||
Pole is set to a random angle between [-pi, pi).
|
||||
|
||||
Args:
|
||||
physics: An instance of `Physics`.
|
||||
|
||||
"""
|
||||
physics.named.data.qpos['hinge'] = self.random.uniform(-np.pi, np.pi)
|
||||
super(SwingUp, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation.
|
||||
|
||||
Observations are states concatenating pole orientation and angular velocity
|
||||
and pixels from fixed camera.
|
||||
|
||||
Args:
|
||||
physics: An instance of `physics`, Pendulum physics.
|
||||
|
||||
Returns:
|
||||
A `dict` of observation.
|
||||
"""
|
||||
obs = collections.OrderedDict()
|
||||
obs['orientation'] = physics.pole_orientation()
|
||||
obs['velocity'] = physics.angular_velocity()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
return rewards.tolerance(physics.pole_vertical(), (_COSINE_BOUND, 1))
|
26
DPI/local_dm_control_suite/pendulum.xml
Executable file
26
DPI/local_dm_control_suite/pendulum.xml
Executable file
@ -0,0 +1,26 @@
|
||||
<mujoco model="pendulum">
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
|
||||
<option timestep="0.02">
|
||||
<flag contact="disable" energy="enable"/>
|
||||
</option>
|
||||
|
||||
<worldbody>
|
||||
<light name="light" pos="0 0 2"/>
|
||||
<geom name="floor" size="2 2 .2" type="plane" material="grid"/>
|
||||
<camera name="fixed" pos="0 -1.5 2" xyaxes='1 0 0 0 1 1'/>
|
||||
<camera name="lookat" mode="targetbodycom" target="pole" pos="0 -2 1"/>
|
||||
<body name="pole" pos="0 0 .6">
|
||||
<joint name="hinge" type="hinge" axis="0 1 0" damping="0.1"/>
|
||||
<geom name="base" material="decoration" type="cylinder" fromto="0 -.03 0 0 .03 0" size="0.021" mass="0"/>
|
||||
<geom name="pole" material="self" type="capsule" fromto="0 0 0 0 0 0.5" size="0.02" mass="0"/>
|
||||
<geom name="mass" material="effector" type="sphere" pos="0 0 0.5" size="0.05" mass="1"/>
|
||||
</body>
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<motor name="torque" joint="hinge" gear="1" ctrlrange="-1 1" ctrllimited="true"/>
|
||||
</actuator>
|
||||
</mujoco>
|
130
DPI/local_dm_control_suite/point_mass.py
Executable file
130
DPI/local_dm_control_suite/point_mass.py
Executable file
@ -0,0 +1,130 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Point-mass domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.suite.utils import randomizers
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
import numpy as np
|
||||
|
||||
_DEFAULT_TIME_LIMIT = 20
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def get_model_and_assets():
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
return common.read_model('point_mass.xml'), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking', 'easy')
|
||||
def easy(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the easy point_mass task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = PointMass(randomize_gains=False, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, **environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add()
|
||||
def hard(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the hard point_mass task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = PointMass(randomize_gains=True, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, **environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""physics for the point_mass domain."""
|
||||
|
||||
def mass_to_target(self):
|
||||
"""Returns the vector from mass to target in global coordinate."""
|
||||
return (self.named.data.geom_xpos['target'] -
|
||||
self.named.data.geom_xpos['pointmass'])
|
||||
|
||||
def mass_to_target_dist(self):
|
||||
"""Returns the distance from mass to the target."""
|
||||
return np.linalg.norm(self.mass_to_target())
|
||||
|
||||
|
||||
class PointMass(base.Task):
|
||||
"""A point_mass `Task` to reach target with smooth reward."""
|
||||
|
||||
def __init__(self, randomize_gains, random=None):
|
||||
"""Initialize an instance of `PointMass`.
|
||||
|
||||
Args:
|
||||
randomize_gains: A `bool`, whether to randomize the actuator gains.
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
self._randomize_gains = randomize_gains
|
||||
super(PointMass, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode.
|
||||
|
||||
If _randomize_gains is True, the relationship between the controls and
|
||||
the joints is randomized, so that each control actuates a random linear
|
||||
combination of joints.
|
||||
|
||||
Args:
|
||||
physics: An instance of `mujoco.Physics`.
|
||||
"""
|
||||
randomizers.randomize_limited_and_rotational_joints(physics, self.random)
|
||||
if self._randomize_gains:
|
||||
dir1 = self.random.randn(2)
|
||||
dir1 /= np.linalg.norm(dir1)
|
||||
# Find another actuation direction that is not 'too parallel' to dir1.
|
||||
parallel = True
|
||||
while parallel:
|
||||
dir2 = self.random.randn(2)
|
||||
dir2 /= np.linalg.norm(dir2)
|
||||
parallel = abs(np.dot(dir1, dir2)) > 0.9
|
||||
physics.model.wrap_prm[[0, 1]] = dir1
|
||||
physics.model.wrap_prm[[2, 3]] = dir2
|
||||
super(PointMass, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation of the state."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['position'] = physics.position()
|
||||
obs['velocity'] = physics.velocity()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a reward to the agent."""
|
||||
target_size = physics.named.model.geom_size['target', 0]
|
||||
near_target = rewards.tolerance(physics.mass_to_target_dist(),
|
||||
bounds=(0, target_size), margin=target_size)
|
||||
control_reward = rewards.tolerance(physics.control(), margin=1,
|
||||
value_at_margin=0,
|
||||
sigmoid='quadratic').mean()
|
||||
small_control = (control_reward + 4) / 5
|
||||
return near_target * small_control
|
49
DPI/local_dm_control_suite/point_mass.xml
Executable file
49
DPI/local_dm_control_suite/point_mass.xml
Executable file
@ -0,0 +1,49 @@
|
||||
<mujoco model="planar point mass">
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
|
||||
<option timestep="0.02">
|
||||
<flag contact="disable"/>
|
||||
</option>
|
||||
|
||||
<default>
|
||||
<joint type="hinge" axis="0 0 1" limited="true" range="-.29 .29" damping="1"/>
|
||||
<motor gear=".1" ctrlrange="-1 1" ctrllimited="true"/>
|
||||
</default>
|
||||
|
||||
<worldbody>
|
||||
<light name="light" pos="0 0 1"/>
|
||||
<camera name="fixed" pos="0 0 .75" quat="1 0 0 0"/>
|
||||
<geom name="ground" type="plane" pos="0 0 0" size=".3 .3 .1" material="grid"/>
|
||||
<geom name="wall_x" type="plane" pos="-.3 0 .02" zaxis="1 0 0" size=".02 .3 .02" material="decoration"/>
|
||||
<geom name="wall_y" type="plane" pos="0 -.3 .02" zaxis="0 1 0" size=".3 .02 .02" material="decoration"/>
|
||||
<geom name="wall_neg_x" type="plane" pos=".3 0 .02" zaxis="-1 0 0" size=".02 .3 .02" material="decoration"/>
|
||||
<geom name="wall_neg_y" type="plane" pos="0 .3 .02" zaxis="0 -1 0" size=".3 .02 .02" material="decoration"/>
|
||||
|
||||
<body name="pointmass" pos="0 0 .01">
|
||||
<camera name="cam0" pos="0 -0.3 0.3" xyaxes="1 0 0 0 0.7 0.7"/>
|
||||
<joint name="root_x" type="slide" pos="0 0 0" axis="1 0 0" />
|
||||
<joint name="root_y" type="slide" pos="0 0 0" axis="0 1 0" />
|
||||
<geom name="pointmass" type="sphere" size=".01" material="self" mass=".3"/>
|
||||
</body>
|
||||
|
||||
<geom name="target" pos="0 0 .01" material="target" type="sphere" size=".015"/>
|
||||
</worldbody>
|
||||
|
||||
<tendon>
|
||||
<fixed name="t1">
|
||||
<joint joint="root_x" coef="1"/>
|
||||
<joint joint="root_y" coef="0"/>
|
||||
</fixed>
|
||||
<fixed name="t2">
|
||||
<joint joint="root_x" coef="0"/>
|
||||
<joint joint="root_y" coef="1"/>
|
||||
</fixed>
|
||||
</tendon>
|
||||
|
||||
<actuator>
|
||||
<motor name="t1" tendon="t1"/>
|
||||
<motor name="t2" tendon="t2"/>
|
||||
</actuator>
|
||||
</mujoco>
|
480
DPI/local_dm_control_suite/quadruped.py
Executable file
480
DPI/local_dm_control_suite/quadruped.py
Executable file
@ -0,0 +1,480 @@
|
||||
# Copyright 2019 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Quadruped Domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.mujoco.wrapper import mjbindings
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
from dm_control.utils import xml_tools
|
||||
|
||||
from lxml import etree
|
||||
import numpy as np
|
||||
from scipy import ndimage
|
||||
|
||||
enums = mjbindings.enums
|
||||
mjlib = mjbindings.mjlib
|
||||
|
||||
|
||||
_DEFAULT_TIME_LIMIT = 20
|
||||
_CONTROL_TIMESTEP = .02
|
||||
|
||||
# Horizontal speeds above which the move reward is 1.
|
||||
_RUN_SPEED = 5
|
||||
_WALK_SPEED = 0.5
|
||||
|
||||
# Constants related to terrain generation.
|
||||
_HEIGHTFIELD_ID = 0
|
||||
_TERRAIN_SMOOTHNESS = 0.15 # 0.0: maximally bumpy; 1.0: completely smooth.
|
||||
_TERRAIN_BUMP_SCALE = 2 # Spatial scale of terrain bumps (in meters).
|
||||
|
||||
# Named model elements.
|
||||
_TOES = ['toe_front_left', 'toe_back_left', 'toe_back_right', 'toe_front_right']
|
||||
_WALLS = ['wall_px', 'wall_py', 'wall_nx', 'wall_ny']
|
||||
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def make_model(floor_size=None, terrain=False, rangefinders=False,
|
||||
walls_and_ball=False):
|
||||
"""Returns the model XML string."""
|
||||
xml_string = common.read_model('quadruped.xml')
|
||||
parser = etree.XMLParser(remove_blank_text=True)
|
||||
mjcf = etree.XML(xml_string, parser)
|
||||
|
||||
# Set floor size.
|
||||
if floor_size is not None:
|
||||
floor_geom = mjcf.find('.//geom[@name={!r}]'.format('floor'))
|
||||
floor_geom.attrib['size'] = '{} {} .5'.format(floor_size, floor_size)
|
||||
|
||||
# Remove walls, ball and target.
|
||||
if not walls_and_ball:
|
||||
for wall in _WALLS:
|
||||
wall_geom = xml_tools.find_element(mjcf, 'geom', wall)
|
||||
wall_geom.getparent().remove(wall_geom)
|
||||
|
||||
# Remove ball.
|
||||
ball_body = xml_tools.find_element(mjcf, 'body', 'ball')
|
||||
ball_body.getparent().remove(ball_body)
|
||||
|
||||
# Remove target.
|
||||
target_site = xml_tools.find_element(mjcf, 'site', 'target')
|
||||
target_site.getparent().remove(target_site)
|
||||
|
||||
# Remove terrain.
|
||||
if not terrain:
|
||||
terrain_geom = xml_tools.find_element(mjcf, 'geom', 'terrain')
|
||||
terrain_geom.getparent().remove(terrain_geom)
|
||||
|
||||
# Remove rangefinders if they're not used, as range computations can be
|
||||
# expensive, especially in a scene with heightfields.
|
||||
if not rangefinders:
|
||||
rangefinder_sensors = mjcf.findall('.//rangefinder')
|
||||
for rf in rangefinder_sensors:
|
||||
rf.getparent().remove(rf)
|
||||
|
||||
return etree.tostring(mjcf, pretty_print=True)
|
||||
|
||||
|
||||
@SUITE.add()
|
||||
def walk(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Walk task."""
|
||||
xml_string = make_model(floor_size=_DEFAULT_TIME_LIMIT * _WALK_SPEED)
|
||||
physics = Physics.from_xml_string(xml_string, common.ASSETS)
|
||||
task = Move(desired_speed=_WALK_SPEED, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(physics, task, time_limit=time_limit,
|
||||
control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add()
|
||||
def run(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Run task."""
|
||||
xml_string = make_model(floor_size=_DEFAULT_TIME_LIMIT * _RUN_SPEED)
|
||||
physics = Physics.from_xml_string(xml_string, common.ASSETS)
|
||||
task = Move(desired_speed=_RUN_SPEED, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(physics, task, time_limit=time_limit,
|
||||
control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add()
|
||||
def escape(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns the Escape task."""
|
||||
xml_string = make_model(floor_size=40, terrain=True, rangefinders=True)
|
||||
physics = Physics.from_xml_string(xml_string, common.ASSETS)
|
||||
task = Escape(random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(physics, task, time_limit=time_limit,
|
||||
control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add()
|
||||
def fetch(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Fetch task."""
|
||||
xml_string = make_model(walls_and_ball=True)
|
||||
physics = Physics.from_xml_string(xml_string, common.ASSETS)
|
||||
task = Fetch(random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(physics, task, time_limit=time_limit,
|
||||
control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the Quadruped domain."""
|
||||
|
||||
def _reload_from_data(self, data):
|
||||
super(Physics, self)._reload_from_data(data)
|
||||
# Clear cached sensor names when the physics is reloaded.
|
||||
self._sensor_types_to_names = {}
|
||||
self._hinge_names = []
|
||||
|
||||
def _get_sensor_names(self, *sensor_types):
|
||||
try:
|
||||
sensor_names = self._sensor_types_to_names[sensor_types]
|
||||
except KeyError:
|
||||
[sensor_ids] = np.where(np.in1d(self.model.sensor_type, sensor_types))
|
||||
sensor_names = [self.model.id2name(s_id, 'sensor') for s_id in sensor_ids]
|
||||
self._sensor_types_to_names[sensor_types] = sensor_names
|
||||
return sensor_names
|
||||
|
||||
def torso_upright(self):
|
||||
"""Returns the dot-product of the torso z-axis and the global z-axis."""
|
||||
return np.asarray(self.named.data.xmat['torso', 'zz'])
|
||||
|
||||
def torso_velocity(self):
|
||||
"""Returns the velocity of the torso, in the local frame."""
|
||||
return self.named.data.sensordata['velocimeter'].copy()
|
||||
|
||||
def egocentric_state(self):
|
||||
"""Returns the state without global orientation or position."""
|
||||
if not self._hinge_names:
|
||||
[hinge_ids] = np.nonzero(self.model.jnt_type ==
|
||||
enums.mjtJoint.mjJNT_HINGE)
|
||||
self._hinge_names = [self.model.id2name(j_id, 'joint')
|
||||
for j_id in hinge_ids]
|
||||
return np.hstack((self.named.data.qpos[self._hinge_names],
|
||||
self.named.data.qvel[self._hinge_names],
|
||||
self.data.act))
|
||||
|
||||
def toe_positions(self):
|
||||
"""Returns toe positions in egocentric frame."""
|
||||
torso_frame = self.named.data.xmat['torso'].reshape(3, 3)
|
||||
torso_pos = self.named.data.xpos['torso']
|
||||
torso_to_toe = self.named.data.xpos[_TOES] - torso_pos
|
||||
return torso_to_toe.dot(torso_frame)
|
||||
|
||||
def force_torque(self):
|
||||
"""Returns scaled force/torque sensor readings at the toes."""
|
||||
force_torque_sensors = self._get_sensor_names(enums.mjtSensor.mjSENS_FORCE,
|
||||
enums.mjtSensor.mjSENS_TORQUE)
|
||||
return np.arcsinh(self.named.data.sensordata[force_torque_sensors])
|
||||
|
||||
def imu(self):
|
||||
"""Returns IMU-like sensor readings."""
|
||||
imu_sensors = self._get_sensor_names(enums.mjtSensor.mjSENS_GYRO,
|
||||
enums.mjtSensor.mjSENS_ACCELEROMETER)
|
||||
return self.named.data.sensordata[imu_sensors]
|
||||
|
||||
def rangefinder(self):
|
||||
"""Returns scaled rangefinder sensor readings."""
|
||||
rf_sensors = self._get_sensor_names(enums.mjtSensor.mjSENS_RANGEFINDER)
|
||||
rf_readings = self.named.data.sensordata[rf_sensors]
|
||||
no_intersection = -1.0
|
||||
return np.where(rf_readings == no_intersection, 1.0, np.tanh(rf_readings))
|
||||
|
||||
def origin_distance(self):
|
||||
"""Returns the distance from the origin to the workspace."""
|
||||
return np.asarray(np.linalg.norm(self.named.data.site_xpos['workspace']))
|
||||
|
||||
def origin(self):
|
||||
"""Returns origin position in the torso frame."""
|
||||
torso_frame = self.named.data.xmat['torso'].reshape(3, 3)
|
||||
torso_pos = self.named.data.xpos['torso']
|
||||
return -torso_pos.dot(torso_frame)
|
||||
|
||||
def ball_state(self):
|
||||
"""Returns ball position and velocity relative to the torso frame."""
|
||||
data = self.named.data
|
||||
torso_frame = data.xmat['torso'].reshape(3, 3)
|
||||
ball_rel_pos = data.xpos['ball'] - data.xpos['torso']
|
||||
ball_rel_vel = data.qvel['ball_root'][:3] - data.qvel['root'][:3]
|
||||
ball_rot_vel = data.qvel['ball_root'][3:]
|
||||
ball_state = np.vstack((ball_rel_pos, ball_rel_vel, ball_rot_vel))
|
||||
return ball_state.dot(torso_frame).ravel()
|
||||
|
||||
def target_position(self):
|
||||
"""Returns target position in torso frame."""
|
||||
torso_frame = self.named.data.xmat['torso'].reshape(3, 3)
|
||||
torso_pos = self.named.data.xpos['torso']
|
||||
torso_to_target = self.named.data.site_xpos['target'] - torso_pos
|
||||
return torso_to_target.dot(torso_frame)
|
||||
|
||||
def ball_to_target_distance(self):
|
||||
"""Returns horizontal distance from the ball to the target."""
|
||||
ball_to_target = (self.named.data.site_xpos['target'] -
|
||||
self.named.data.xpos['ball'])
|
||||
return np.linalg.norm(ball_to_target[:2])
|
||||
|
||||
def self_to_ball_distance(self):
|
||||
"""Returns horizontal distance from the quadruped workspace to the ball."""
|
||||
self_to_ball = (self.named.data.site_xpos['workspace']
|
||||
-self.named.data.xpos['ball'])
|
||||
return np.linalg.norm(self_to_ball[:2])
|
||||
|
||||
|
||||
def _find_non_contacting_height(physics, orientation, x_pos=0.0, y_pos=0.0):
|
||||
"""Find a height with no contacts given a body orientation.
|
||||
|
||||
Args:
|
||||
physics: An instance of `Physics`.
|
||||
orientation: A quaternion.
|
||||
x_pos: A float. Position along global x-axis.
|
||||
y_pos: A float. Position along global y-axis.
|
||||
Raises:
|
||||
RuntimeError: If a non-contacting configuration has not been found after
|
||||
10,000 attempts.
|
||||
"""
|
||||
z_pos = 0.0 # Start embedded in the floor.
|
||||
num_contacts = 1
|
||||
num_attempts = 0
|
||||
# Move up in 1cm increments until no contacts.
|
||||
while num_contacts > 0:
|
||||
try:
|
||||
with physics.reset_context():
|
||||
physics.named.data.qpos['root'][:3] = x_pos, y_pos, z_pos
|
||||
physics.named.data.qpos['root'][3:] = orientation
|
||||
except control.PhysicsError:
|
||||
# We may encounter a PhysicsError here due to filling the contact
|
||||
# buffer, in which case we simply increment the height and continue.
|
||||
pass
|
||||
num_contacts = physics.data.ncon
|
||||
z_pos += 0.01
|
||||
num_attempts += 1
|
||||
if num_attempts > 10000:
|
||||
raise RuntimeError('Failed to find a non-contacting configuration.')
|
||||
|
||||
|
||||
def _common_observations(physics):
|
||||
"""Returns the observations common to all tasks."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['egocentric_state'] = physics.egocentric_state()
|
||||
obs['torso_velocity'] = physics.torso_velocity()
|
||||
obs['torso_upright'] = physics.torso_upright()
|
||||
obs['imu'] = physics.imu()
|
||||
obs['force_torque'] = physics.force_torque()
|
||||
return obs
|
||||
|
||||
|
||||
def _upright_reward(physics, deviation_angle=0):
|
||||
"""Returns a reward proportional to how upright the torso is.
|
||||
|
||||
Args:
|
||||
physics: an instance of `Physics`.
|
||||
deviation_angle: A float, in degrees. The reward is 0 when the torso is
|
||||
exactly upside-down and 1 when the torso's z-axis is less than
|
||||
`deviation_angle` away from the global z-axis.
|
||||
"""
|
||||
deviation = np.cos(np.deg2rad(deviation_angle))
|
||||
return rewards.tolerance(
|
||||
physics.torso_upright(),
|
||||
bounds=(deviation, float('inf')),
|
||||
sigmoid='linear',
|
||||
margin=1 + deviation,
|
||||
value_at_margin=0)
|
||||
|
||||
|
||||
class Move(base.Task):
|
||||
"""A quadruped task solved by moving forward at a designated speed."""
|
||||
|
||||
def __init__(self, desired_speed, random=None):
|
||||
"""Initializes an instance of `Move`.
|
||||
|
||||
Args:
|
||||
desired_speed: A float. If this value is zero, reward is given simply
|
||||
for standing upright. Otherwise this specifies the horizontal velocity
|
||||
at which the velocity-dependent reward component is maximized.
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
self._desired_speed = desired_speed
|
||||
super(Move, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode.
|
||||
|
||||
Args:
|
||||
physics: An instance of `Physics`.
|
||||
|
||||
"""
|
||||
# Initial configuration.
|
||||
orientation = self.random.randn(4)
|
||||
orientation /= np.linalg.norm(orientation)
|
||||
_find_non_contacting_height(physics, orientation)
|
||||
super(Move, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation to the agent."""
|
||||
return _common_observations(physics)
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a reward to the agent."""
|
||||
|
||||
# Move reward term.
|
||||
move_reward = rewards.tolerance(
|
||||
physics.torso_velocity()[0],
|
||||
bounds=(self._desired_speed, float('inf')),
|
||||
margin=self._desired_speed,
|
||||
value_at_margin=0.5,
|
||||
sigmoid='linear')
|
||||
|
||||
return _upright_reward(physics) * move_reward
|
||||
|
||||
|
||||
class Escape(base.Task):
|
||||
"""A quadruped task solved by escaping a bowl-shaped terrain."""
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode.
|
||||
|
||||
Args:
|
||||
physics: An instance of `Physics`.
|
||||
|
||||
"""
|
||||
# Get heightfield resolution, assert that it is square.
|
||||
res = physics.model.hfield_nrow[_HEIGHTFIELD_ID]
|
||||
assert res == physics.model.hfield_ncol[_HEIGHTFIELD_ID]
|
||||
# Sinusoidal bowl shape.
|
||||
row_grid, col_grid = np.ogrid[-1:1:res*1j, -1:1:res*1j]
|
||||
radius = np.clip(np.sqrt(col_grid**2 + row_grid**2), .04, 1)
|
||||
bowl_shape = .5 - np.cos(2*np.pi*radius)/2
|
||||
# Random smooth bumps.
|
||||
terrain_size = 2 * physics.model.hfield_size[_HEIGHTFIELD_ID, 0]
|
||||
bump_res = int(terrain_size / _TERRAIN_BUMP_SCALE)
|
||||
bumps = self.random.uniform(_TERRAIN_SMOOTHNESS, 1, (bump_res, bump_res))
|
||||
smooth_bumps = ndimage.zoom(bumps, res / float(bump_res))
|
||||
# Terrain is elementwise product.
|
||||
terrain = bowl_shape * smooth_bumps
|
||||
start_idx = physics.model.hfield_adr[_HEIGHTFIELD_ID]
|
||||
physics.model.hfield_data[start_idx:start_idx+res**2] = terrain.ravel()
|
||||
super(Escape, self).initialize_episode(physics)
|
||||
|
||||
# If we have a rendering context, we need to re-upload the modified
|
||||
# heightfield data.
|
||||
if physics.contexts:
|
||||
with physics.contexts.gl.make_current() as ctx:
|
||||
ctx.call(mjlib.mjr_uploadHField,
|
||||
physics.model.ptr,
|
||||
physics.contexts.mujoco.ptr,
|
||||
_HEIGHTFIELD_ID)
|
||||
|
||||
# Initial configuration.
|
||||
orientation = self.random.randn(4)
|
||||
orientation /= np.linalg.norm(orientation)
|
||||
_find_non_contacting_height(physics, orientation)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation to the agent."""
|
||||
obs = _common_observations(physics)
|
||||
obs['origin'] = physics.origin()
|
||||
obs['rangefinder'] = physics.rangefinder()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a reward to the agent."""
|
||||
|
||||
# Escape reward term.
|
||||
terrain_size = physics.model.hfield_size[_HEIGHTFIELD_ID, 0]
|
||||
escape_reward = rewards.tolerance(
|
||||
physics.origin_distance(),
|
||||
bounds=(terrain_size, float('inf')),
|
||||
margin=terrain_size,
|
||||
value_at_margin=0,
|
||||
sigmoid='linear')
|
||||
|
||||
return _upright_reward(physics, deviation_angle=20) * escape_reward
|
||||
|
||||
|
||||
class Fetch(base.Task):
|
||||
"""A quadruped task solved by bringing a ball to the origin."""
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode.
|
||||
|
||||
Args:
|
||||
physics: An instance of `Physics`.
|
||||
|
||||
"""
|
||||
# Initial configuration, random azimuth and horizontal position.
|
||||
azimuth = self.random.uniform(0, 2*np.pi)
|
||||
orientation = np.array((np.cos(azimuth/2), 0, 0, np.sin(azimuth/2)))
|
||||
spawn_radius = 0.9 * physics.named.model.geom_size['floor', 0]
|
||||
x_pos, y_pos = self.random.uniform(-spawn_radius, spawn_radius, size=(2,))
|
||||
_find_non_contacting_height(physics, orientation, x_pos, y_pos)
|
||||
|
||||
# Initial ball state.
|
||||
physics.named.data.qpos['ball_root'][:2] = self.random.uniform(
|
||||
-spawn_radius, spawn_radius, size=(2,))
|
||||
physics.named.data.qpos['ball_root'][2] = 2
|
||||
physics.named.data.qvel['ball_root'][:2] = 5*self.random.randn(2)
|
||||
super(Fetch, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation to the agent."""
|
||||
obs = _common_observations(physics)
|
||||
obs['ball_state'] = physics.ball_state()
|
||||
obs['target_position'] = physics.target_position()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a reward to the agent."""
|
||||
|
||||
# Reward for moving close to the ball.
|
||||
arena_radius = physics.named.model.geom_size['floor', 0] * np.sqrt(2)
|
||||
workspace_radius = physics.named.model.site_size['workspace', 0]
|
||||
ball_radius = physics.named.model.geom_size['ball', 0]
|
||||
reach_reward = rewards.tolerance(
|
||||
physics.self_to_ball_distance(),
|
||||
bounds=(0, workspace_radius+ball_radius),
|
||||
sigmoid='linear',
|
||||
margin=arena_radius, value_at_margin=0)
|
||||
|
||||
# Reward for bringing the ball to the target.
|
||||
target_radius = physics.named.model.site_size['target', 0]
|
||||
fetch_reward = rewards.tolerance(
|
||||
physics.ball_to_target_distance(),
|
||||
bounds=(0, target_radius),
|
||||
sigmoid='linear',
|
||||
margin=arena_radius, value_at_margin=0)
|
||||
|
||||
reach_then_fetch = reach_reward * (0.5 + 0.5*fetch_reward)
|
||||
|
||||
return _upright_reward(physics) * reach_then_fetch
|
329
DPI/local_dm_control_suite/quadruped.xml
Executable file
329
DPI/local_dm_control_suite/quadruped.xml
Executable file
@ -0,0 +1,329 @@
|
||||
<mujoco model="quadruped">
|
||||
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
|
||||
<visual>
|
||||
<rgba rangefinder="1 1 0.1 0.1"/>
|
||||
<map znear=".005" zfar="20"/>
|
||||
</visual>
|
||||
|
||||
<asset>
|
||||
<hfield name="terrain" ncol="201" nrow="201" size="30 30 5 .1"/>
|
||||
</asset>
|
||||
|
||||
<option timestep=".005"/>
|
||||
|
||||
<default>
|
||||
<geom solimp=".9 .99 .003" solref=".01 1"/>
|
||||
<default class="body">
|
||||
<geom type="capsule" size=".08" condim="1" material="self" density="500"/>
|
||||
<joint type="hinge" damping="30" armature=".01"
|
||||
limited="true" solimplimit="0 .99 .01"/>
|
||||
<default class="hip">
|
||||
<default class="yaw">
|
||||
<joint axis="0 0 1" range="-50 50"/>
|
||||
</default>
|
||||
<default class="pitch">
|
||||
<joint axis="0 1 0" range="-20 60"/>
|
||||
</default>
|
||||
<geom fromto="0 0 0 .3 0 .11"/>
|
||||
</default>
|
||||
<default class="knee">
|
||||
<joint axis="0 1 0" range="-60 50"/>
|
||||
<geom size=".065" fromto="0 0 0 .25 0 -.25"/>
|
||||
</default>
|
||||
<default class="ankle">
|
||||
<joint axis="0 1 0" range="-45 55"/>
|
||||
<geom size=".055" fromto="0 0 0 0 0 -.25"/>
|
||||
</default>
|
||||
<default class="toe">
|
||||
<geom type="sphere" size=".08" material="effector" friction="1.5"/>
|
||||
<site type="sphere" size=".084" material="site" group="4"/>
|
||||
</default>
|
||||
</default>
|
||||
<default class="rangefinder">
|
||||
<site type="capsule" size=".005 .1" material="site" group="4"/>
|
||||
</default>
|
||||
<default class="wall">
|
||||
<geom type="plane" material="decoration"/>
|
||||
</default>
|
||||
|
||||
<default class="coupling">
|
||||
<equality solimp="0.95 0.99 0.01" solref=".005 .5"/>
|
||||
</default>
|
||||
|
||||
<general ctrllimited="true" gainprm="1000" biasprm="0 -1000" biastype="affine" dyntype="filter" dynprm=".1"/>
|
||||
<default class="yaw_act">
|
||||
<general ctrlrange="-1 1"/>
|
||||
</default>
|
||||
<default class="lift_act">
|
||||
<general ctrlrange="-1 1.1"/>
|
||||
</default>
|
||||
<default class="extend_act">
|
||||
<general ctrlrange="-.8 .8"/>
|
||||
</default>
|
||||
</default>
|
||||
|
||||
<asset>
|
||||
<texture name="ball" builtin="checker" mark="cross" width="151" height="151"
|
||||
rgb1="0.1 0.1 0.1" rgb2="0.9 0.9 0.9" markrgb="1 1 1"/>
|
||||
<material name="ball" texture="ball" />
|
||||
</asset>
|
||||
|
||||
|
||||
<worldbody>
|
||||
<geom name="floor" type="plane" size="15 15 .5" material="grid"/>
|
||||
<geom name="wall_px" class="wall" pos="-15.7 0 .7" zaxis="1 0 1" size="1 15 .5"/>
|
||||
<geom name="wall_py" class="wall" pos="0 -15.7 .7" zaxis="0 1 1" size="15 1 .5"/>
|
||||
<geom name="wall_nx" class="wall" pos="15.7 0 .7" zaxis="-1 0 1" size="1 15 .5"/>
|
||||
<geom name="wall_ny" class="wall" pos="0 15.7 .7" zaxis="0 -1 1" size="15 1 .5"/>
|
||||
<site name="target" type="cylinder" size=".4 .06" pos="0 0 .05" material="target"/>
|
||||
|
||||
<geom name="terrain" type="hfield" hfield="terrain" rgba=".2 .3 .4 1" pos="0 0 -.01"/>
|
||||
|
||||
<camera name="global" pos="-10 10 10" xyaxes="-1 -1 0 1 0 1" mode="trackcom"/>
|
||||
<body name="torso" childclass="body" pos="0 0 .57">
|
||||
<freejoint name="root"/>
|
||||
|
||||
<camera name="x" pos="-1.7 0 1" xyaxes="0 -1 0 .75 0 1" mode="trackcom"/>
|
||||
<camera name="y" pos="0 4 2" xyaxes="-1 0 0 0 -.5 1" mode="trackcom"/>
|
||||
<camera name="egocentric" pos=".3 0 .11" xyaxes="0 -1 0 .4 0 1" fovy="60"/>
|
||||
<light name="light" pos="0 0 4" mode="trackcom"/>
|
||||
|
||||
<geom name="eye_r" type="cylinder" size=".05" fromto=".1 -.07 .12 .31 -.07 .08" mass="0"/>
|
||||
<site name="pupil_r" type="sphere" size=".033" pos=".3 -.07 .08" zaxis="1 0 0" material="eye"/>
|
||||
<geom name="eye_l" type="cylinder" size=".05" fromto=".1 .07 .12 .31 .07 .08" mass="0"/>
|
||||
<site name="pupil_l" type="sphere" size=".033" pos=".3 .07 .08" zaxis="1 0 0" material="eye"/>
|
||||
<site name="workspace" type="sphere" size=".3 .3 .3" material="site" pos=".8 0 -.2" group="3"/>
|
||||
|
||||
<site name="rf_00" class="rangefinder" fromto=".41 -.02 .11 .34 0 .115"/>
|
||||
<site name="rf_01" class="rangefinder" fromto=".41 -.01 .11 .34 0 .115"/>
|
||||
<site name="rf_02" class="rangefinder" fromto=".41 0 .11 .34 0 .115"/>
|
||||
<site name="rf_03" class="rangefinder" fromto=".41 .01 .11 .34 0 .115"/>
|
||||
<site name="rf_04" class="rangefinder" fromto=".41 .02 .11 .34 0 .115"/>
|
||||
<site name="rf_10" class="rangefinder" fromto=".41 -.02 .1 .36 0 .11"/>
|
||||
<site name="rf_11" class="rangefinder" fromto=".41 -.02 .1 .36 0 .11"/>
|
||||
<site name="rf_12" class="rangefinder" fromto=".41 0 .1 .36 0 .11"/>
|
||||
<site name="rf_13" class="rangefinder" fromto=".41 .01 .1 .36 0 .11"/>
|
||||
<site name="rf_14" class="rangefinder" fromto=".41 .02 .1 .36 0 .11"/>
|
||||
<site name="rf_20" class="rangefinder" fromto=".41 -.02 .09 .38 0 .105"/>
|
||||
<site name="rf_21" class="rangefinder" fromto=".41 -.01 .09 .38 0 .105"/>
|
||||
<site name="rf_22" class="rangefinder" fromto=".41 0 .09 .38 0 .105"/>
|
||||
<site name="rf_23" class="rangefinder" fromto=".41 .01 .09 .38 0 .105"/>
|
||||
<site name="rf_24" class="rangefinder" fromto=".41 .02 .09 .38 0 .105"/>
|
||||
<site name="rf_30" class="rangefinder" fromto=".41 -.02 .08 .4 0 .1"/>
|
||||
<site name="rf_31" class="rangefinder" fromto=".41 -.01 .08 .4 0 .1"/>
|
||||
<site name="rf_32" class="rangefinder" fromto=".41 0 .08 .4 0 .1"/>
|
||||
<site name="rf_33" class="rangefinder" fromto=".41 .01 .08 .4 0 .1"/>
|
||||
<site name="rf_34" class="rangefinder" fromto=".41 .02 .08 .4 0 .1"/>
|
||||
|
||||
<geom name="torso" type="ellipsoid" size=".3 .27 .2" density="1000"/>
|
||||
<site name="torso_touch" type="box" size=".26 .26 .26" rgba="0 0 1 0"/>
|
||||
<site name="torso" size=".05" rgba="1 0 0 1" />
|
||||
|
||||
<body name="hip_front_left" pos=".2 .2 0" euler="0 0 45" childclass="hip">
|
||||
<joint name="yaw_front_left" class="yaw"/>
|
||||
<joint name="pitch_front_left" class="pitch"/>
|
||||
<geom name="thigh_front_left"/>
|
||||
<body name="knee_front_left" pos=".3 0 .11" childclass="knee">
|
||||
<joint name="knee_front_left"/>
|
||||
<geom name="shin_front_left"/>
|
||||
<body name="ankle_front_left" pos=".25 0 -.25" childclass="ankle">
|
||||
<joint name="ankle_front_left"/>
|
||||
<geom name="foot_front_left"/>
|
||||
<body name="toe_front_left" pos="0 0 -.3" childclass="toe">
|
||||
<geom name="toe_front_left"/>
|
||||
<site name="toe_front_left"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
|
||||
<body name="hip_front_right" pos=".2 -.2 0" euler="0 0 -45" childclass="hip">
|
||||
<joint name="yaw_front_right" class="yaw"/>
|
||||
<joint name="pitch_front_right" class="pitch"/>
|
||||
<geom name="thigh_front_right"/>
|
||||
<body name="knee_front_right" pos=".3 0 .11" childclass="knee">
|
||||
<joint name="knee_front_right"/>
|
||||
<geom name="shin_front_right"/>
|
||||
<body name="ankle_front_right" pos=".25 0 -.25" childclass="ankle">
|
||||
<joint name="ankle_front_right"/>
|
||||
<geom name="foot_front_right"/>
|
||||
<body name="toe_front_right" pos="0 0 -.3" childclass="toe">
|
||||
<geom name="toe_front_right"/>
|
||||
<site name="toe_front_right"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
|
||||
<body name="hip_back_right" pos="-.2 -.2 0" euler="0 0 -135" childclass="hip">
|
||||
<joint name="yaw_back_right" class="yaw"/>
|
||||
<joint name="pitch_back_right" class="pitch"/>
|
||||
<geom name="thigh_back_right"/>
|
||||
<body name="knee_back_right" pos=".3 0 .11" childclass="knee">
|
||||
<joint name="knee_back_right"/>
|
||||
<geom name="shin_back_right"/>
|
||||
<body name="ankle_back_right" pos=".25 0 -.25" childclass="ankle">
|
||||
<joint name="ankle_back_right"/>
|
||||
<geom name="foot_back_right"/>
|
||||
<body name="toe_back_right" pos="0 0 -.3" childclass="toe">
|
||||
<geom name="toe_back_right"/>
|
||||
<site name="toe_back_right"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
|
||||
<body name="hip_back_left" pos="-.2 .2 0" euler="0 0 135" childclass="hip">
|
||||
<joint name="yaw_back_left" class="yaw"/>
|
||||
<joint name="pitch_back_left" class="pitch"/>
|
||||
<geom name="thigh_back_left"/>
|
||||
<body name="knee_back_left" pos=".3 0 .11" childclass="knee">
|
||||
<joint name="knee_back_left"/>
|
||||
<geom name="shin_back_left"/>
|
||||
<body name="ankle_back_left" pos=".25 0 -.25" childclass="ankle">
|
||||
<joint name="ankle_back_left"/>
|
||||
<geom name="foot_back_left"/>
|
||||
<body name="toe_back_left" pos="0 0 -.3" childclass="toe">
|
||||
<geom name="toe_back_left"/>
|
||||
<site name="toe_back_left"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
|
||||
<body name="ball" pos="0 0 3">
|
||||
<freejoint name="ball_root"/>
|
||||
<geom name="ball" size=".15" material="ball" priority="1" condim="6" friction=".7 .005 .005"
|
||||
solref="-10000 -30"/>
|
||||
<light name="ball_light" pos="0 0 4" mode="trackcom"/>
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<tendon>
|
||||
<fixed name="coupling_front_left">
|
||||
<joint joint="pitch_front_left" coef=".333"/>
|
||||
<joint joint="knee_front_left" coef=".333"/>
|
||||
<joint joint="ankle_front_left" coef=".333"/>
|
||||
</fixed>
|
||||
<fixed name="coupling_front_right">
|
||||
<joint joint="pitch_front_right" coef=".333"/>
|
||||
<joint joint="knee_front_right" coef=".333"/>
|
||||
<joint joint="ankle_front_right" coef=".333"/>
|
||||
</fixed>
|
||||
<fixed name="coupling_back_right">
|
||||
<joint joint="pitch_back_right" coef=".333"/>
|
||||
<joint joint="knee_back_right" coef=".333"/>
|
||||
<joint joint="ankle_back_right" coef=".333"/>
|
||||
</fixed>
|
||||
<fixed name="coupling_back_left">
|
||||
<joint joint="pitch_back_left" coef=".333"/>
|
||||
<joint joint="knee_back_left" coef=".333"/>
|
||||
<joint joint="ankle_back_left" coef=".333"/>
|
||||
</fixed>
|
||||
|
||||
<fixed name="extend_front_left">
|
||||
<joint joint="pitch_front_left" coef=".25"/>
|
||||
<joint joint="knee_front_left" coef="-.5"/>
|
||||
<joint joint="ankle_front_left" coef=".25"/>
|
||||
</fixed>
|
||||
<fixed name="lift_front_left">
|
||||
<joint joint="pitch_front_left" coef=".5"/>
|
||||
<joint joint="ankle_front_left" coef="-.5"/>
|
||||
</fixed>
|
||||
|
||||
<fixed name="extend_front_right">
|
||||
<joint joint="pitch_front_right" coef=".25"/>
|
||||
<joint joint="knee_front_right" coef="-.5"/>
|
||||
<joint joint="ankle_front_right" coef=".25"/>
|
||||
</fixed>
|
||||
<fixed name="lift_front_right">
|
||||
<joint joint="pitch_front_right" coef=".5"/>
|
||||
<joint joint="ankle_front_right" coef="-.5"/>
|
||||
</fixed>
|
||||
|
||||
<fixed name="extend_back_right">
|
||||
<joint joint="pitch_back_right" coef=".25"/>
|
||||
<joint joint="knee_back_right" coef="-.5"/>
|
||||
<joint joint="ankle_back_right" coef=".25"/>
|
||||
</fixed>
|
||||
<fixed name="lift_back_right">
|
||||
<joint joint="pitch_back_right" coef=".5"/>
|
||||
<joint joint="ankle_back_right" coef="-.5"/>
|
||||
</fixed>
|
||||
|
||||
<fixed name="extend_back_left">
|
||||
<joint joint="pitch_back_left" coef=".25"/>
|
||||
<joint joint="knee_back_left" coef="-.5"/>
|
||||
<joint joint="ankle_back_left" coef=".25"/>
|
||||
</fixed>
|
||||
<fixed name="lift_back_left">
|
||||
<joint joint="pitch_back_left" coef=".5"/>
|
||||
<joint joint="ankle_back_left" coef="-.5"/>
|
||||
</fixed>
|
||||
</tendon>
|
||||
|
||||
<equality>
|
||||
<tendon name="coupling_front_left" tendon1="coupling_front_left" class="coupling"/>
|
||||
<tendon name="coupling_front_right" tendon1="coupling_front_right" class="coupling"/>
|
||||
<tendon name="coupling_back_right" tendon1="coupling_back_right" class="coupling"/>
|
||||
<tendon name="coupling_back_left" tendon1="coupling_back_left" class="coupling"/>
|
||||
</equality>
|
||||
|
||||
<actuator>
|
||||
<general name="yaw_front_left" class="yaw_act" joint="yaw_front_left"/>
|
||||
<general name="lift_front_left" class="lift_act" tendon="lift_front_left"/>
|
||||
<general name="extend_front_left" class="extend_act" tendon="extend_front_left"/>
|
||||
<general name="yaw_front_right" class="yaw_act" joint="yaw_front_right"/>
|
||||
<general name="lift_front_right" class="lift_act" tendon="lift_front_right"/>
|
||||
<general name="extend_front_right" class="extend_act" tendon="extend_front_right"/>
|
||||
<general name="yaw_back_right" class="yaw_act" joint="yaw_back_right"/>
|
||||
<general name="lift_back_right" class="lift_act" tendon="lift_back_right"/>
|
||||
<general name="extend_back_right" class="extend_act" tendon="extend_back_right"/>
|
||||
<general name="yaw_back_left" class="yaw_act" joint="yaw_back_left"/>
|
||||
<general name="lift_back_left" class="lift_act" tendon="lift_back_left"/>
|
||||
<general name="extend_back_left" class="extend_act" tendon="extend_back_left"/>
|
||||
</actuator>
|
||||
|
||||
<sensor>
|
||||
<accelerometer name="imu_accel" site="torso"/>
|
||||
<gyro name="imu_gyro" site="torso"/>
|
||||
<velocimeter name="velocimeter" site="torso"/>
|
||||
<force name="force_toe_front_left" site="toe_front_left"/>
|
||||
<force name="force_toe_front_right" site="toe_front_right"/>
|
||||
<force name="force_toe_back_right" site="toe_back_right"/>
|
||||
<force name="force_toe_back_left" site="toe_back_left"/>
|
||||
<torque name="torque_toe_front_left" site="toe_front_left"/>
|
||||
<torque name="torque_toe_front_right" site="toe_front_right"/>
|
||||
<torque name="torque_toe_back_right" site="toe_back_right"/>
|
||||
<torque name="torque_toe_back_left" site="toe_back_left"/>
|
||||
<subtreecom name="center_of_mass" body="torso"/>
|
||||
<rangefinder name="rf_00" site="rf_00"/>
|
||||
<rangefinder name="rf_01" site="rf_01"/>
|
||||
<rangefinder name="rf_02" site="rf_02"/>
|
||||
<rangefinder name="rf_03" site="rf_03"/>
|
||||
<rangefinder name="rf_04" site="rf_04"/>
|
||||
<rangefinder name="rf_10" site="rf_10"/>
|
||||
<rangefinder name="rf_11" site="rf_11"/>
|
||||
<rangefinder name="rf_12" site="rf_12"/>
|
||||
<rangefinder name="rf_13" site="rf_13"/>
|
||||
<rangefinder name="rf_14" site="rf_14"/>
|
||||
<rangefinder name="rf_20" site="rf_20"/>
|
||||
<rangefinder name="rf_21" site="rf_21"/>
|
||||
<rangefinder name="rf_22" site="rf_22"/>
|
||||
<rangefinder name="rf_23" site="rf_23"/>
|
||||
<rangefinder name="rf_24" site="rf_24"/>
|
||||
<rangefinder name="rf_30" site="rf_30"/>
|
||||
<rangefinder name="rf_31" site="rf_31"/>
|
||||
<rangefinder name="rf_32" site="rf_32"/>
|
||||
<rangefinder name="rf_33" site="rf_33"/>
|
||||
<rangefinder name="rf_34" site="rf_34"/>
|
||||
</sensor>
|
||||
|
||||
</mujoco>
|
||||
|
116
DPI/local_dm_control_suite/reacher.py
Executable file
116
DPI/local_dm_control_suite/reacher.py
Executable file
@ -0,0 +1,116 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Reacher domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.suite.utils import randomizers
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
import numpy as np
|
||||
|
||||
SUITE = containers.TaggedTasks()
|
||||
_DEFAULT_TIME_LIMIT = 20
|
||||
_BIG_TARGET = .05
|
||||
_SMALL_TARGET = .015
|
||||
|
||||
|
||||
def get_model_and_assets():
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
return common.read_model('reacher.xml'), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking', 'easy')
|
||||
def easy(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns reacher with sparse reward with 5e-2 tol and randomized target."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Reacher(target_size=_BIG_TARGET, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, **environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def hard(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns reacher with sparse reward with 1e-2 tol and randomized target."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = Reacher(target_size=_SMALL_TARGET, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, **environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the Reacher domain."""
|
||||
|
||||
def finger_to_target(self):
|
||||
"""Returns the vector from target to finger in global coordinates."""
|
||||
return (self.named.data.geom_xpos['target', :2] -
|
||||
self.named.data.geom_xpos['finger', :2])
|
||||
|
||||
def finger_to_target_dist(self):
|
||||
"""Returns the signed distance between the finger and target surface."""
|
||||
return np.linalg.norm(self.finger_to_target())
|
||||
|
||||
|
||||
class Reacher(base.Task):
|
||||
"""A reacher `Task` to reach the target."""
|
||||
|
||||
def __init__(self, target_size, random=None):
|
||||
"""Initialize an instance of `Reacher`.
|
||||
|
||||
Args:
|
||||
target_size: A `float`, tolerance to determine whether finger reached the
|
||||
target.
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
self._target_size = target_size
|
||||
super(Reacher, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
physics.named.model.geom_size['target', 0] = self._target_size
|
||||
randomizers.randomize_limited_and_rotational_joints(physics, self.random)
|
||||
|
||||
# Randomize target position
|
||||
angle = self.random.uniform(0, 2 * np.pi)
|
||||
radius = self.random.uniform(.05, .20)
|
||||
physics.named.model.geom_pos['target', 'x'] = radius * np.sin(angle)
|
||||
physics.named.model.geom_pos['target', 'y'] = radius * np.cos(angle)
|
||||
|
||||
super(Reacher, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation of the state and the target position."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['position'] = physics.position()
|
||||
obs['to_target'] = physics.finger_to_target()
|
||||
obs['velocity'] = physics.velocity()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
radii = physics.named.model.geom_size[['target', 'finger'], 0].sum()
|
||||
return rewards.tolerance(physics.finger_to_target_dist(), (0, radii))
|
47
DPI/local_dm_control_suite/reacher.xml
Executable file
47
DPI/local_dm_control_suite/reacher.xml
Executable file
@ -0,0 +1,47 @@
|
||||
<mujoco model="two-link planar reacher">
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
|
||||
<option timestep="0.02">
|
||||
<flag contact="disable"/>
|
||||
</option>
|
||||
|
||||
<default>
|
||||
<joint type="hinge" axis="0 0 1" damping="0.01"/>
|
||||
<motor gear=".05" ctrlrange="-1 1" ctrllimited="true"/>
|
||||
</default>
|
||||
|
||||
<worldbody>
|
||||
<light name="light" pos="0 0 1"/>
|
||||
<camera name="fixed" pos="0 0 .75" quat="1 0 0 0"/>
|
||||
<!-- Arena -->
|
||||
<geom name="ground" type="plane" pos="0 0 0" size=".3 .3 10" material="grid"/>
|
||||
<geom name="wall_x" type="plane" pos="-.3 0 .02" zaxis="1 0 0" size=".02 .3 .02" material="decoration"/>
|
||||
<geom name="wall_y" type="plane" pos="0 -.3 .02" zaxis="0 1 0" size=".3 .02 .02" material="decoration"/>
|
||||
<geom name="wall_neg_x" type="plane" pos=".3 0 .02" zaxis="-1 0 0" size=".02 .3 .02" material="decoration"/>
|
||||
<geom name="wall_neg_y" type="plane" pos="0 .3 .02" zaxis="0 -1 0" size=".3 .02 .02" material="decoration"/>
|
||||
|
||||
<!-- Arm -->
|
||||
<geom name="root" type="cylinder" fromto="0 0 0 0 0 0.02" size=".011" material="decoration"/>
|
||||
<body name="arm" pos="0 0 .01">
|
||||
<geom name="arm" type="capsule" fromto="0 0 0 0.12 0 0" size=".01" material="self"/>
|
||||
<joint name="shoulder"/>
|
||||
<body name="hand" pos=".12 0 0">
|
||||
<geom name="hand" type="capsule" fromto="0 0 0 0.1 0 0" size=".01" material="self"/>
|
||||
<joint name="wrist" limited="true" range="-160 160"/>
|
||||
<body name="finger" pos=".12 0 0">
|
||||
<camera name="hand" pos="0 0 .2" mode="track"/>
|
||||
<geom name="finger" type="sphere" size=".01" material="effector"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
<!-- Target -->
|
||||
<geom name="target" pos="0 0 .01" material="target" type="sphere" size=".05"/>
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<motor name="shoulder" joint="shoulder"/>
|
||||
<motor name="wrist" joint="wrist"/>
|
||||
</actuator>
|
||||
</mujoco>
|
208
DPI/local_dm_control_suite/stacker.py
Executable file
208
DPI/local_dm_control_suite/stacker.py
Executable file
@ -0,0 +1,208 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Planar Stacker domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
from dm_control.utils import xml_tools
|
||||
|
||||
from lxml import etree
|
||||
import numpy as np
|
||||
|
||||
|
||||
_CLOSE = .01 # (Meters) Distance below which a thing is considered close.
|
||||
_CONTROL_TIMESTEP = .01 # (Seconds)
|
||||
_TIME_LIMIT = 10 # (Seconds)
|
||||
_ARM_JOINTS = ['arm_root', 'arm_shoulder', 'arm_elbow', 'arm_wrist',
|
||||
'finger', 'fingertip', 'thumb', 'thumbtip']
|
||||
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def make_model(n_boxes):
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
xml_string = common.read_model('stacker.xml')
|
||||
parser = etree.XMLParser(remove_blank_text=True)
|
||||
mjcf = etree.XML(xml_string, parser)
|
||||
|
||||
# Remove unused boxes
|
||||
for b in range(n_boxes, 4):
|
||||
box = xml_tools.find_element(mjcf, 'body', 'box' + str(b))
|
||||
box.getparent().remove(box)
|
||||
|
||||
return etree.tostring(mjcf, pretty_print=True), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('hard')
|
||||
def stack_2(fully_observable=True, time_limit=_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns stacker task with 2 boxes."""
|
||||
n_boxes = 2
|
||||
physics = Physics.from_xml_string(*make_model(n_boxes=n_boxes))
|
||||
task = Stack(n_boxes=n_boxes,
|
||||
fully_observable=fully_observable,
|
||||
random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('hard')
|
||||
def stack_4(fully_observable=True, time_limit=_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns stacker task with 4 boxes."""
|
||||
n_boxes = 4
|
||||
physics = Physics.from_xml_string(*make_model(n_boxes=n_boxes))
|
||||
task = Stack(n_boxes=n_boxes,
|
||||
fully_observable=fully_observable,
|
||||
random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics with additional features for the Planar Manipulator domain."""
|
||||
|
||||
def bounded_joint_pos(self, joint_names):
|
||||
"""Returns joint positions as (sin, cos) values."""
|
||||
joint_pos = self.named.data.qpos[joint_names]
|
||||
return np.vstack([np.sin(joint_pos), np.cos(joint_pos)]).T
|
||||
|
||||
def joint_vel(self, joint_names):
|
||||
"""Returns joint velocities."""
|
||||
return self.named.data.qvel[joint_names]
|
||||
|
||||
def body_2d_pose(self, body_names, orientation=True):
|
||||
"""Returns positions and/or orientations of bodies."""
|
||||
if not isinstance(body_names, str):
|
||||
body_names = np.array(body_names).reshape(-1, 1) # Broadcast indices.
|
||||
pos = self.named.data.xpos[body_names, ['x', 'z']]
|
||||
if orientation:
|
||||
ori = self.named.data.xquat[body_names, ['qw', 'qy']]
|
||||
return np.hstack([pos, ori])
|
||||
else:
|
||||
return pos
|
||||
|
||||
def touch(self):
|
||||
return np.log1p(self.data.sensordata)
|
||||
|
||||
def site_distance(self, site1, site2):
|
||||
site1_to_site2 = np.diff(self.named.data.site_xpos[[site2, site1]], axis=0)
|
||||
return np.linalg.norm(site1_to_site2)
|
||||
|
||||
|
||||
class Stack(base.Task):
|
||||
"""A Stack `Task`: stack the boxes."""
|
||||
|
||||
def __init__(self, n_boxes, fully_observable, random=None):
|
||||
"""Initialize an instance of the `Stack` task.
|
||||
|
||||
Args:
|
||||
n_boxes: An `int`, number of boxes to stack.
|
||||
fully_observable: A `bool`, whether the observation should contain the
|
||||
positions and velocities of the boxes and the location of the target.
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
self._n_boxes = n_boxes
|
||||
self._box_names = ['box' + str(b) for b in range(n_boxes)]
|
||||
self._box_joint_names = []
|
||||
for name in self._box_names:
|
||||
for dim in 'xyz':
|
||||
self._box_joint_names.append('_'.join([name, dim]))
|
||||
self._fully_observable = fully_observable
|
||||
super(Stack, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
# Local aliases
|
||||
randint = self.random.randint
|
||||
uniform = self.random.uniform
|
||||
model = physics.named.model
|
||||
data = physics.named.data
|
||||
|
||||
# Find a collision-free random initial configuration.
|
||||
penetrating = True
|
||||
while penetrating:
|
||||
|
||||
# Randomise angles of arm joints.
|
||||
is_limited = model.jnt_limited[_ARM_JOINTS].astype(np.bool)
|
||||
joint_range = model.jnt_range[_ARM_JOINTS]
|
||||
lower_limits = np.where(is_limited, joint_range[:, 0], -np.pi)
|
||||
upper_limits = np.where(is_limited, joint_range[:, 1], np.pi)
|
||||
angles = uniform(lower_limits, upper_limits)
|
||||
data.qpos[_ARM_JOINTS] = angles
|
||||
|
||||
# Symmetrize hand.
|
||||
data.qpos['finger'] = data.qpos['thumb']
|
||||
|
||||
# Randomise target location.
|
||||
target_height = 2*randint(self._n_boxes) + 1
|
||||
box_size = model.geom_size['target', 0]
|
||||
model.body_pos['target', 'z'] = box_size * target_height
|
||||
model.body_pos['target', 'x'] = uniform(-.37, .37)
|
||||
|
||||
# Randomise box locations.
|
||||
for name in self._box_names:
|
||||
data.qpos[name + '_x'] = uniform(.1, .3)
|
||||
data.qpos[name + '_z'] = uniform(0, .7)
|
||||
data.qpos[name + '_y'] = uniform(0, 2*np.pi)
|
||||
|
||||
# Check for collisions.
|
||||
physics.after_reset()
|
||||
penetrating = physics.data.ncon > 0
|
||||
|
||||
super(Stack, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns either features or only sensors (to be used with pixels)."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['arm_pos'] = physics.bounded_joint_pos(_ARM_JOINTS)
|
||||
obs['arm_vel'] = physics.joint_vel(_ARM_JOINTS)
|
||||
obs['touch'] = physics.touch()
|
||||
if self._fully_observable:
|
||||
obs['hand_pos'] = physics.body_2d_pose('hand')
|
||||
obs['box_pos'] = physics.body_2d_pose(self._box_names)
|
||||
obs['box_vel'] = physics.joint_vel(self._box_joint_names)
|
||||
obs['target_pos'] = physics.body_2d_pose('target', orientation=False)
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a reward to the agent."""
|
||||
box_size = physics.named.model.geom_size['target', 0]
|
||||
min_box_to_target_distance = min(physics.site_distance(name, 'target')
|
||||
for name in self._box_names)
|
||||
box_is_close = rewards.tolerance(min_box_to_target_distance,
|
||||
margin=2*box_size)
|
||||
hand_to_target_distance = physics.site_distance('grasp', 'target')
|
||||
hand_is_far = rewards.tolerance(hand_to_target_distance,
|
||||
bounds=(.1, float('inf')),
|
||||
margin=_CLOSE)
|
||||
return box_is_close * hand_is_far
|
193
DPI/local_dm_control_suite/stacker.xml
Executable file
193
DPI/local_dm_control_suite/stacker.xml
Executable file
@ -0,0 +1,193 @@
|
||||
<mujoco model="planar stacker">
|
||||
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/materials_white_floor.xml"/>
|
||||
<asset>
|
||||
<texture name="background" builtin="flat" type="2d" mark="random" markrgb="1 1 1" width="800" height="800" rgb1=".2 .3 .4"/>
|
||||
<material name="background" texture="background" texrepeat="1 1" texuniform="true"/>
|
||||
</asset>
|
||||
|
||||
<visual>
|
||||
<map shadowclip=".5"/>
|
||||
<quality shadowsize="2048"/>
|
||||
</visual>>
|
||||
|
||||
<option timestep="0.001" cone="elliptic"/>
|
||||
|
||||
<default>
|
||||
<geom friction=".7" solimp="0.9 0.97 0.001" solref=".01 1"/>
|
||||
<joint solimplimit="0 0.99 0.01" solreflimit=".005 1"/>
|
||||
<general ctrllimited="true"/>
|
||||
<tendon width="0.01"/>
|
||||
<site size=".003 .003 .003" material="site" group="3"/>
|
||||
|
||||
<default class="arm">
|
||||
<geom type="capsule" material="self" density="500"/>
|
||||
<joint type="hinge" pos="0 0 0" axis="0 -1 0" limited="true"/>
|
||||
<default class="hand">
|
||||
<joint damping=".5" range="-10 60"/>
|
||||
<geom size=".008"/>
|
||||
<site type="box" size=".018 .005 .005" pos=".022 0 -.002" euler="0 15 0" group="4"/>
|
||||
<default class="fingertip">
|
||||
<geom type="sphere" size=".008" material="effector"/>
|
||||
<joint damping=".01" stiffness=".01" range="-40 20"/>
|
||||
<site size=".012 .005 .008" pos=".003 0 .003" group="4" euler="0 0 0"/>
|
||||
</default>
|
||||
</default>
|
||||
</default>
|
||||
|
||||
<default class="object">
|
||||
<geom material="self"/>
|
||||
</default>
|
||||
|
||||
<default class="task">
|
||||
<site rgba="0 0 0 0"/>
|
||||
</default>
|
||||
|
||||
<default class="obstacle">
|
||||
<geom material="decoration" friction="0"/>
|
||||
</default>
|
||||
|
||||
<default class="ghost">
|
||||
<geom material="target" contype="0" conaffinity="0"/>
|
||||
</default>
|
||||
</default>
|
||||
|
||||
<worldbody>
|
||||
<!-- Arena -->
|
||||
<light name="light" directional="true" diffuse=".6 .6 .6" pos="0 0 1" specular=".3 .3 .3"/>
|
||||
<geom name="floor" type="plane" pos="0 0 0" size=".4 .2 10" material="grid"/>
|
||||
<geom name="wall1" type="plane" pos="-.682843 0 .282843" size=".4 .2 10" material="grid" zaxis="1 0 1"/>
|
||||
<geom name="wall2" type="plane" pos=".682843 0 .282843" size=".4 .2 10" material="grid" zaxis="-1 0 1"/>
|
||||
<geom name="background" type="plane" pos="0 .2 .5" size="1 .5 10" material="background" zaxis="0 -1 0"/>
|
||||
<camera name="fixed" pos="0 -16 .4" xyaxes="1 0 0 0 0 1" fovy="4"/>
|
||||
|
||||
<!-- Arm -->
|
||||
<geom name="arm_root" type="cylinder" fromto="0 -.022 .4 0 .022 .4" size=".024"
|
||||
material="decoration" contype="0" conaffinity="0"/>
|
||||
<body name="upper_arm" pos="0 0 .4" childclass="arm">
|
||||
<joint name="arm_root" damping="2" limited="false"/>
|
||||
<geom name="upper_arm" size=".02" fromto="0 0 0 0 0 .18"/>
|
||||
<body name="middle_arm" pos="0 0 .18" childclass="arm">
|
||||
<joint name="arm_shoulder" damping="1.5" range="-160 160"/>
|
||||
<geom name="middle_arm" size=".017" fromto="0 0 0 0 0 .15"/>
|
||||
<body name="lower_arm" pos="0 0 .15">
|
||||
<joint name="arm_elbow" damping="1" range="-160 160"/>
|
||||
<geom name="lower_arm" size=".014" fromto="0 0 0 0 0 .12"/>
|
||||
<body name="hand" pos="0 0 .12">
|
||||
<joint name="arm_wrist" damping=".5" range="-140 140" />
|
||||
<geom name="hand" size=".011" fromto="0 0 0 0 0 .03"/>
|
||||
<geom name="palm1" fromto="0 0 .03 .03 0 .045" class="hand"/>
|
||||
<geom name="palm2" fromto="0 0 .03 -.03 0 .045" class="hand"/>
|
||||
<site name="grasp" pos="0 0 .065"/>
|
||||
<body name="pinch site" pos="0 0 .090">
|
||||
<site name="pinch"/>
|
||||
<inertial pos="0 0 0" mass="1e-6" diaginertia="1e-12 1e-12 1e-12"/>
|
||||
<camera name="hand" pos="0 -.3 0" xyaxes="1 0 0 0 0 1" mode="track"/>
|
||||
</body>
|
||||
<site name="palm_touch" type="box" group="4" size=".025 .005 .008" pos="0 0 .043"/>
|
||||
|
||||
<body name="thumb" pos=".03 0 .045" euler="0 -90 0" childclass="hand">
|
||||
<joint name="thumb"/>
|
||||
<geom name="thumb1" fromto="0 0 0 .02 0 -.01" size=".007"/>
|
||||
<geom name="thumb2" fromto=".02 0 -.01 .04 0 -.01" size=".007"/>
|
||||
<site name="thumb_touch" group="4"/>
|
||||
<body name="thumbtip" pos=".05 0 -.01" childclass="fingertip">
|
||||
<joint name="thumbtip"/>
|
||||
<geom name="thumbtip1" pos="-.003 0 0" />
|
||||
<geom name="thumbtip2" pos=".003 0 0" />
|
||||
<site name="thumbtip_touch" group="4"/>
|
||||
</body>
|
||||
</body>
|
||||
|
||||
<body name="finger" pos="-.03 0 .045" euler="0 90 180" childclass="hand">
|
||||
<joint name="finger"/>
|
||||
<geom name="finger1" fromto="0 0 0 .02 0 -.01" size=".007" />
|
||||
<geom name="finger2" fromto=".02 0 -.01 .04 0 -.01" size=".007"/>
|
||||
<site name="finger_touch"/>
|
||||
<body name="fingertip" pos=".05 0 -.01" childclass="fingertip">
|
||||
<joint name="fingertip"/>
|
||||
<geom name="fingertip1" pos="-.003 0 0" />
|
||||
<geom name="fingertip2" pos=".003 0 0" />
|
||||
<site name="fingertip_touch"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
|
||||
<!-- props -->
|
||||
<body name="box0" pos=".5 0 .4" childclass="object">
|
||||
<joint name="box0_x" type="slide" axis="1 0 0" ref=".5"/>
|
||||
<joint name="box0_z" type="slide" axis="0 0 1" ref=".4"/>
|
||||
<joint name="box0_y" type="hinge" axis="0 1 0"/>
|
||||
<geom name="box0" type="box" size=".022 .022 .022" />
|
||||
<site name="box0" type="sphere"/>
|
||||
</body>
|
||||
|
||||
<body name="box1" pos=".4 0 .4" childclass="object">
|
||||
<joint name="box1_x" type="slide" axis="1 0 0" ref=".4"/>
|
||||
<joint name="box1_z" type="slide" axis="0 0 1" ref=".4"/>
|
||||
<joint name="box1_y" type="hinge" axis="0 1 0"/>
|
||||
<geom name="box1" type="box" size=".022 .022 .022" />
|
||||
<site name="box1" type="sphere"/>
|
||||
</body>
|
||||
|
||||
<body name="box2" pos=".3 0 .4" childclass="object">
|
||||
<joint name="box2_x" type="slide" axis="1 0 0" ref=".3"/>
|
||||
<joint name="box2_z" type="slide" axis="0 0 1" ref=".4"/>
|
||||
<joint name="box2_y" type="hinge" axis="0 1 0"/>
|
||||
<geom name="box2" type="box" size=".022 .022 .022" />
|
||||
<site name="box2" type="sphere"/>
|
||||
</body>
|
||||
|
||||
<body name="box3" pos=".2 0 .4" childclass="object">
|
||||
<joint name="box3_x" type="slide" axis="1 0 0" ref=".2"/>
|
||||
<joint name="box3_z" type="slide" axis="0 0 1" ref=".4"/>
|
||||
<joint name="box3_y" type="hinge" axis="0 1 0"/>
|
||||
<geom name="box3" type="box" size=".022 .022 .022" />
|
||||
<site name="box3" type="sphere"/>
|
||||
</body>
|
||||
|
||||
|
||||
<!-- targets -->
|
||||
<body name="target" pos="0 .001 .022" childclass="ghost">
|
||||
<geom name="target" type="box" size=".022 .022 .022" />
|
||||
<site name="target" type="sphere"/>
|
||||
</body>
|
||||
</worldbody>
|
||||
|
||||
<tendon>
|
||||
<fixed name="grasp">
|
||||
<joint joint="thumb" coef=".5"/>
|
||||
<joint joint="finger" coef=".5"/>
|
||||
</fixed>
|
||||
<fixed name="coupling">
|
||||
<joint joint="thumb" coef="-.5"/>
|
||||
<joint joint="finger" coef=".5"/>
|
||||
</fixed>
|
||||
</tendon>
|
||||
|
||||
<equality>
|
||||
<tendon name="coupling" tendon1="coupling" solimp="0.95 0.99 0.001" solref=".005 .5"/>
|
||||
</equality>
|
||||
|
||||
<sensor>
|
||||
<touch name="palm_touch" site="palm_touch"/>
|
||||
<touch name="finger_touch" site="finger_touch"/>
|
||||
<touch name="thumb_touch" site="thumb_touch"/>
|
||||
<touch name="fingertip_touch" site="fingertip_touch"/>
|
||||
<touch name="thumbtip_touch" site="thumbtip_touch"/>
|
||||
</sensor>
|
||||
|
||||
<actuator>
|
||||
<motor name="root" joint="arm_root" ctrlrange="-1 1" gear="12"/>
|
||||
<motor name="shoulder" joint="arm_shoulder" ctrlrange="-1 1" gear="8"/>
|
||||
<motor name="elbow" joint="arm_elbow" ctrlrange="-1 1" gear="4"/>
|
||||
<motor name="wrist" joint="arm_wrist" ctrlrange="-1 1" gear="2"/>
|
||||
<motor name="grasp" tendon="grasp" ctrlrange="-1 1" gear="2"/>
|
||||
</actuator>
|
||||
|
||||
</mujoco>
|
215
DPI/local_dm_control_suite/swimmer.py
Executable file
215
DPI/local_dm_control_suite/swimmer.py
Executable file
@ -0,0 +1,215 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Procedurally generated Swimmer domain."""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.suite.utils import randomizers
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
from lxml import etree
|
||||
import numpy as np
|
||||
from six.moves import range
|
||||
|
||||
_DEFAULT_TIME_LIMIT = 30
|
||||
_CONTROL_TIMESTEP = .03 # (Seconds)
|
||||
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def get_model_and_assets(n_joints):
|
||||
"""Returns a tuple containing the model XML string and a dict of assets.
|
||||
|
||||
Args:
|
||||
n_joints: An integer specifying the number of joints in the swimmer.
|
||||
|
||||
Returns:
|
||||
A tuple `(model_xml_string, assets)`, where `assets` is a dict consisting of
|
||||
`{filename: contents_string}` pairs.
|
||||
"""
|
||||
return _make_model(n_joints), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def swimmer6(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns a 6-link swimmer."""
|
||||
return _make_swimmer(6, time_limit, random=random,
|
||||
environment_kwargs=environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def swimmer15(time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns a 15-link swimmer."""
|
||||
return _make_swimmer(15, time_limit, random=random,
|
||||
environment_kwargs=environment_kwargs)
|
||||
|
||||
|
||||
def swimmer(n_links=3, time_limit=_DEFAULT_TIME_LIMIT,
|
||||
random=None, environment_kwargs=None):
|
||||
"""Returns a swimmer with n links."""
|
||||
return _make_swimmer(n_links, time_limit, random=random,
|
||||
environment_kwargs=environment_kwargs)
|
||||
|
||||
|
||||
def _make_swimmer(n_joints, time_limit=_DEFAULT_TIME_LIMIT, random=None,
|
||||
environment_kwargs=None):
|
||||
"""Returns a swimmer control environment."""
|
||||
model_string, assets = get_model_and_assets(n_joints)
|
||||
physics = Physics.from_xml_string(model_string, assets=assets)
|
||||
task = Swimmer(random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
def _make_model(n_bodies):
|
||||
"""Generates an xml string defining a swimmer with `n_bodies` bodies."""
|
||||
if n_bodies < 3:
|
||||
raise ValueError('At least 3 bodies required. Received {}'.format(n_bodies))
|
||||
mjcf = etree.fromstring(common.read_model('swimmer.xml'))
|
||||
head_body = mjcf.find('./worldbody/body')
|
||||
actuator = etree.SubElement(mjcf, 'actuator')
|
||||
sensor = etree.SubElement(mjcf, 'sensor')
|
||||
|
||||
parent = head_body
|
||||
for body_index in range(n_bodies - 1):
|
||||
site_name = 'site_{}'.format(body_index)
|
||||
child = _make_body(body_index=body_index)
|
||||
child.append(etree.Element('site', name=site_name))
|
||||
joint_name = 'joint_{}'.format(body_index)
|
||||
joint_limit = 360.0/n_bodies
|
||||
joint_range = '{} {}'.format(-joint_limit, joint_limit)
|
||||
child.append(etree.Element('joint', {'name': joint_name,
|
||||
'range': joint_range}))
|
||||
motor_name = 'motor_{}'.format(body_index)
|
||||
actuator.append(etree.Element('motor', name=motor_name, joint=joint_name))
|
||||
velocimeter_name = 'velocimeter_{}'.format(body_index)
|
||||
sensor.append(etree.Element('velocimeter', name=velocimeter_name,
|
||||
site=site_name))
|
||||
gyro_name = 'gyro_{}'.format(body_index)
|
||||
sensor.append(etree.Element('gyro', name=gyro_name, site=site_name))
|
||||
parent.append(child)
|
||||
parent = child
|
||||
|
||||
# Move tracking cameras further away from the swimmer according to its length.
|
||||
cameras = mjcf.findall('./worldbody/body/camera')
|
||||
scale = n_bodies / 6.0
|
||||
for cam in cameras:
|
||||
if cam.get('mode') == 'trackcom':
|
||||
old_pos = cam.get('pos').split(' ')
|
||||
new_pos = ' '.join([str(float(dim) * scale) for dim in old_pos])
|
||||
cam.set('pos', new_pos)
|
||||
|
||||
return etree.tostring(mjcf, pretty_print=True)
|
||||
|
||||
|
||||
def _make_body(body_index):
|
||||
"""Generates an xml string defining a single physical body."""
|
||||
body_name = 'segment_{}'.format(body_index)
|
||||
visual_name = 'visual_{}'.format(body_index)
|
||||
inertial_name = 'inertial_{}'.format(body_index)
|
||||
body = etree.Element('body', name=body_name)
|
||||
body.set('pos', '0 .1 0')
|
||||
etree.SubElement(body, 'geom', {'class': 'visual', 'name': visual_name})
|
||||
etree.SubElement(body, 'geom', {'class': 'inertial', 'name': inertial_name})
|
||||
return body
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the swimmer domain."""
|
||||
|
||||
def nose_to_target(self):
|
||||
"""Returns a vector from nose to target in local coordinate of the head."""
|
||||
nose_to_target = (self.named.data.geom_xpos['target'] -
|
||||
self.named.data.geom_xpos['nose'])
|
||||
head_orientation = self.named.data.xmat['head'].reshape(3, 3)
|
||||
return nose_to_target.dot(head_orientation)[:2]
|
||||
|
||||
def nose_to_target_dist(self):
|
||||
"""Returns the distance from the nose to the target."""
|
||||
return np.linalg.norm(self.nose_to_target())
|
||||
|
||||
def body_velocities(self):
|
||||
"""Returns local body velocities: x,y linear, z rotational."""
|
||||
xvel_local = self.data.sensordata[12:].reshape((-1, 6))
|
||||
vx_vy_wz = [0, 1, 5] # Indices for linear x,y vels and rotational z vel.
|
||||
return xvel_local[:, vx_vy_wz].ravel()
|
||||
|
||||
def joints(self):
|
||||
"""Returns all internal joint angles (excluding root joints)."""
|
||||
return self.data.qpos[3:].copy()
|
||||
|
||||
|
||||
class Swimmer(base.Task):
|
||||
"""A swimmer `Task` to reach the target or just swim."""
|
||||
|
||||
def __init__(self, random=None):
|
||||
"""Initializes an instance of `Swimmer`.
|
||||
|
||||
Args:
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
super(Swimmer, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode.
|
||||
|
||||
Initializes the swimmer orientation to [-pi, pi) and the relative joint
|
||||
angle of each joint uniformly within its range.
|
||||
|
||||
Args:
|
||||
physics: An instance of `Physics`.
|
||||
"""
|
||||
# Random joint angles:
|
||||
randomizers.randomize_limited_and_rotational_joints(physics, self.random)
|
||||
# Random target position.
|
||||
close_target = self.random.rand() < .2 # Probability of a close target.
|
||||
target_box = .3 if close_target else 2
|
||||
xpos, ypos = self.random.uniform(-target_box, target_box, size=2)
|
||||
physics.named.model.geom_pos['target', 'x'] = xpos
|
||||
physics.named.model.geom_pos['target', 'y'] = ypos
|
||||
physics.named.model.light_pos['target_light', 'x'] = xpos
|
||||
physics.named.model.light_pos['target_light', 'y'] = ypos
|
||||
|
||||
super(Swimmer, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation of joint angles, body velocities and target."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['joints'] = physics.joints()
|
||||
obs['to_target'] = physics.nose_to_target()
|
||||
obs['body_velocities'] = physics.body_velocities()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a smooth reward."""
|
||||
target_size = physics.named.model.geom_size['target', 0]
|
||||
return rewards.tolerance(physics.nose_to_target_dist(),
|
||||
bounds=(0, target_size),
|
||||
margin=5*target_size,
|
||||
sigmoid='long_tail')
|
57
DPI/local_dm_control_suite/swimmer.xml
Executable file
57
DPI/local_dm_control_suite/swimmer.xml
Executable file
@ -0,0 +1,57 @@
|
||||
<mujoco model="swimmer">
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/materials.xml"/>
|
||||
|
||||
<option timestep="0.002" density="3000">
|
||||
<flag contact="disable"/>
|
||||
</option>
|
||||
|
||||
<default>
|
||||
<default class="swimmer">
|
||||
<joint type="hinge" pos="0 -.05 0" axis="0 0 1" limited="true" solreflimit=".05 1" solimplimit="0 .8 .1" armature="1e-6"/>
|
||||
<default class="inertial">
|
||||
<geom type="box" size=".001 .05 .01" rgba="0 0 0 0" mass=".01"/>
|
||||
</default>
|
||||
<default class="visual">
|
||||
<geom type="capsule" size=".01" fromto="0 -.05 0 0 .05 0" material="self" mass="0"/>
|
||||
</default>
|
||||
<site size=".01" rgba="0 0 0 0"/>
|
||||
</default>
|
||||
<default class="free">
|
||||
<joint limited="false" stiffness="0" armature="0"/>
|
||||
</default>
|
||||
<motor gear="5e-4" ctrllimited="true" ctrlrange="-1 1"/>
|
||||
</default>
|
||||
|
||||
<worldbody>
|
||||
<geom name="ground" type="plane" size="2 2 0.1" material="grid"/>
|
||||
<body name="head" pos="0 0 .05" childclass="swimmer">
|
||||
<light name="light_1" diffuse=".8 .8 .8" pos="0 0 1.5"/>
|
||||
<geom name="head" type="ellipsoid" size=".02 .04 .017" pos="0 -.022 0" material="self" mass="0"/>
|
||||
<geom name="nose" type="sphere" pos="0 -.06 0" size=".004" material="effector" mass="0"/>
|
||||
<geom name="eyes" type="capsule" fromto="-.006 -.054 .005 .006 -.054 .005" size=".004" material="eye" mass="0"/>
|
||||
<camera name="tracking1" pos="0 -.2 .5" xyaxes="1 0 0 0 1 1" mode="trackcom" fovy="60"/>
|
||||
<camera name="tracking2" pos="-.9 .5 .15" xyaxes="0 -1 0 .3 0 1" mode="trackcom" fovy="60"/>
|
||||
<camera name="eyes" pos="0 -.058 .005" xyaxes="-1 0 0 0 0 1"/>
|
||||
<joint name="rootx" class="free" type="slide" axis="1 0 0" pos="0 -.05 0"/>
|
||||
<joint name="rooty" class="free" type="slide" axis="0 1 0" pos="0 -.05 0"/>
|
||||
<joint name="rootz" class="free" type="hinge" axis="0 0 1" pos="0 -.05 0"/>
|
||||
<geom name="inertial" class="inertial"/>
|
||||
<geom name="visual" class="visual"/>
|
||||
<site name="head"/>
|
||||
</body>
|
||||
<geom name="target" type="sphere" pos="1 1 .05" size=".1" material="target"/>
|
||||
<light name="target_light" diffuse="1 1 1" pos="1 1 1.5"/>
|
||||
</worldbody>
|
||||
|
||||
<sensor>
|
||||
<framepos name="nose_pos" objtype="geom" objname="nose"/>
|
||||
<framepos name="target_pos" objtype="geom" objname="target"/>
|
||||
<framexaxis name="head_xaxis" objtype="xbody" objname="head"/>
|
||||
<frameyaxis name="head_yaxis" objtype="xbody" objname="head"/>
|
||||
<velocimeter name="head_vel" site="head"/>
|
||||
<gyro name="head_gyro" site="head"/>
|
||||
</sensor>
|
||||
|
||||
</mujoco>
|
292
DPI/local_dm_control_suite/tests/domains_test.py
Executable file
292
DPI/local_dm_control_suite/tests/domains_test.py
Executable file
@ -0,0 +1,292 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Tests for dm_control.suite domains."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
# Internal dependencies.
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
from dm_control import suite
|
||||
from dm_control.rl import control
|
||||
import mock
|
||||
import numpy as np
|
||||
import six
|
||||
from six.moves import range
|
||||
from six.moves import zip
|
||||
|
||||
|
||||
def uniform_random_policy(action_spec, random=None):
|
||||
lower_bounds = action_spec.minimum
|
||||
upper_bounds = action_spec.maximum
|
||||
# Draw values between -1 and 1 for unbounded actions.
|
||||
lower_bounds = np.where(np.isinf(lower_bounds), -1.0, lower_bounds)
|
||||
upper_bounds = np.where(np.isinf(upper_bounds), 1.0, upper_bounds)
|
||||
random_state = np.random.RandomState(random)
|
||||
def policy(time_step):
|
||||
del time_step # Unused.
|
||||
return random_state.uniform(lower_bounds, upper_bounds)
|
||||
return policy
|
||||
|
||||
|
||||
def step_environment(env, policy, num_episodes=5, max_steps_per_episode=10):
|
||||
for _ in range(num_episodes):
|
||||
step_count = 0
|
||||
time_step = env.reset()
|
||||
yield time_step
|
||||
while not time_step.last():
|
||||
action = policy(time_step)
|
||||
time_step = env.step(action)
|
||||
step_count += 1
|
||||
yield time_step
|
||||
if step_count >= max_steps_per_episode:
|
||||
break
|
||||
|
||||
|
||||
def make_trajectory(domain, task, seed, **trajectory_kwargs):
|
||||
env = suite.load(domain, task, task_kwargs={'random': seed})
|
||||
policy = uniform_random_policy(env.action_spec(), random=seed)
|
||||
return step_environment(env, policy, **trajectory_kwargs)
|
||||
|
||||
|
||||
class DomainTest(parameterized.TestCase):
|
||||
"""Tests run on all the tasks registered."""
|
||||
|
||||
def test_constants(self):
|
||||
num_tasks = sum(len(tasks) for tasks in
|
||||
six.itervalues(suite.TASKS_BY_DOMAIN))
|
||||
|
||||
self.assertLen(suite.ALL_TASKS, num_tasks)
|
||||
|
||||
def _validate_observation(self, observation_dict, observation_spec):
|
||||
obs = observation_dict.copy()
|
||||
for name, spec in six.iteritems(observation_spec):
|
||||
arr = obs.pop(name)
|
||||
self.assertEqual(arr.shape, spec.shape)
|
||||
self.assertEqual(arr.dtype, spec.dtype)
|
||||
self.assertTrue(
|
||||
np.all(np.isfinite(arr)),
|
||||
msg='{!r} has non-finite value(s): {!r}'.format(name, arr))
|
||||
self.assertEmpty(
|
||||
obs,
|
||||
msg='Observation contains arrays(s) that are not in the spec: {!r}'
|
||||
.format(obs))
|
||||
|
||||
def _validate_reward_range(self, time_step):
|
||||
if time_step.first():
|
||||
self.assertIsNone(time_step.reward)
|
||||
else:
|
||||
self.assertIsInstance(time_step.reward, float)
|
||||
self.assertBetween(time_step.reward, 0, 1)
|
||||
|
||||
def _validate_discount(self, time_step):
|
||||
if time_step.first():
|
||||
self.assertIsNone(time_step.discount)
|
||||
else:
|
||||
self.assertIsInstance(time_step.discount, float)
|
||||
self.assertBetween(time_step.discount, 0, 1)
|
||||
|
||||
def _validate_control_range(self, lower_bounds, upper_bounds):
|
||||
for b in lower_bounds:
|
||||
self.assertEqual(b, -1.0)
|
||||
for b in upper_bounds:
|
||||
self.assertEqual(b, 1.0)
|
||||
|
||||
@parameterized.parameters(*suite.ALL_TASKS)
|
||||
def test_components_have_names(self, domain, task):
|
||||
env = suite.load(domain, task)
|
||||
model = env.physics.model
|
||||
|
||||
object_types_and_size_fields = [
|
||||
('body', 'nbody'),
|
||||
('joint', 'njnt'),
|
||||
('geom', 'ngeom'),
|
||||
('site', 'nsite'),
|
||||
('camera', 'ncam'),
|
||||
('light', 'nlight'),
|
||||
('mesh', 'nmesh'),
|
||||
('hfield', 'nhfield'),
|
||||
('texture', 'ntex'),
|
||||
('material', 'nmat'),
|
||||
('equality', 'neq'),
|
||||
('tendon', 'ntendon'),
|
||||
('actuator', 'nu'),
|
||||
('sensor', 'nsensor'),
|
||||
('numeric', 'nnumeric'),
|
||||
('text', 'ntext'),
|
||||
('tuple', 'ntuple'),
|
||||
]
|
||||
for object_type, size_field in object_types_and_size_fields:
|
||||
for idx in range(getattr(model, size_field)):
|
||||
object_name = model.id2name(idx, object_type)
|
||||
self.assertNotEqual(object_name, '',
|
||||
msg='Model {!r} contains unnamed {!r} with ID {}.'
|
||||
.format(model.name, object_type, idx))
|
||||
|
||||
@parameterized.parameters(*suite.ALL_TASKS)
|
||||
def test_model_has_at_least_2_cameras(self, domain, task):
|
||||
env = suite.load(domain, task)
|
||||
model = env.physics.model
|
||||
self.assertGreaterEqual(model.ncam, 2,
|
||||
'Model {!r} should have at least 2 cameras, has {}.'
|
||||
.format(model.name, model.ncam))
|
||||
|
||||
@parameterized.parameters(*suite.ALL_TASKS)
|
||||
def test_task_conforms_to_spec(self, domain, task):
|
||||
"""Tests that the environment timesteps conform to specifications."""
|
||||
is_benchmark = (domain, task) in suite.BENCHMARKING
|
||||
env = suite.load(domain, task)
|
||||
observation_spec = env.observation_spec()
|
||||
action_spec = env.action_spec()
|
||||
|
||||
# Check action bounds.
|
||||
if is_benchmark:
|
||||
self._validate_control_range(action_spec.minimum, action_spec.maximum)
|
||||
|
||||
# Step through the environment, applying random actions sampled within the
|
||||
# valid range and check the observations, rewards, and discounts.
|
||||
policy = uniform_random_policy(action_spec)
|
||||
for time_step in step_environment(env, policy):
|
||||
self._validate_observation(time_step.observation, observation_spec)
|
||||
self._validate_discount(time_step)
|
||||
if is_benchmark:
|
||||
self._validate_reward_range(time_step)
|
||||
|
||||
@parameterized.parameters(*suite.ALL_TASKS)
|
||||
def test_environment_is_deterministic(self, domain, task):
|
||||
"""Tests that identical seeds and actions produce identical trajectories."""
|
||||
seed = 0
|
||||
# Iterate over two trajectories generated using identical sequences of
|
||||
# random actions, and with identical task random states. Check that the
|
||||
# observations, rewards, discounts and step types are identical.
|
||||
trajectory1 = make_trajectory(domain=domain, task=task, seed=seed)
|
||||
trajectory2 = make_trajectory(domain=domain, task=task, seed=seed)
|
||||
for time_step1, time_step2 in zip(trajectory1, trajectory2):
|
||||
self.assertEqual(time_step1.step_type, time_step2.step_type)
|
||||
self.assertEqual(time_step1.reward, time_step2.reward)
|
||||
self.assertEqual(time_step1.discount, time_step2.discount)
|
||||
for key in six.iterkeys(time_step1.observation):
|
||||
np.testing.assert_array_equal(
|
||||
time_step1.observation[key], time_step2.observation[key],
|
||||
err_msg='Observation {!r} is not equal.'.format(key))
|
||||
|
||||
def assertCorrectColors(self, physics, reward):
|
||||
colors = physics.named.model.mat_rgba
|
||||
for material_name in ('self', 'effector', 'target'):
|
||||
highlight = colors[material_name + '_highlight']
|
||||
default = colors[material_name + '_default']
|
||||
blend_coef = reward ** 4
|
||||
expected = blend_coef * highlight + (1.0 - blend_coef) * default
|
||||
actual = colors[material_name]
|
||||
err_msg = ('Material {!r} has unexpected color.\nExpected: {!r}\n'
|
||||
'Actual: {!r}'.format(material_name, expected, actual))
|
||||
np.testing.assert_array_almost_equal(expected, actual, err_msg=err_msg)
|
||||
|
||||
@parameterized.parameters(*suite.ALL_TASKS)
|
||||
def test_visualize_reward(self, domain, task):
|
||||
env = suite.load(domain, task)
|
||||
env.task.visualize_reward = True
|
||||
action = np.zeros(env.action_spec().shape)
|
||||
|
||||
with mock.patch.object(env.task, 'get_reward') as mock_get_reward:
|
||||
mock_get_reward.return_value = -3.0 # Rewards < 0 should be clipped.
|
||||
env.reset()
|
||||
mock_get_reward.assert_called_with(env.physics)
|
||||
self.assertCorrectColors(env.physics, reward=0.0)
|
||||
|
||||
mock_get_reward.reset_mock()
|
||||
mock_get_reward.return_value = 0.5
|
||||
env.step(action)
|
||||
mock_get_reward.assert_called_with(env.physics)
|
||||
self.assertCorrectColors(env.physics, reward=mock_get_reward.return_value)
|
||||
|
||||
mock_get_reward.reset_mock()
|
||||
mock_get_reward.return_value = 2.0 # Rewards > 1 should be clipped.
|
||||
env.step(action)
|
||||
mock_get_reward.assert_called_with(env.physics)
|
||||
self.assertCorrectColors(env.physics, reward=1.0)
|
||||
|
||||
mock_get_reward.reset_mock()
|
||||
mock_get_reward.return_value = 0.25
|
||||
env.reset()
|
||||
mock_get_reward.assert_called_with(env.physics)
|
||||
self.assertCorrectColors(env.physics, reward=mock_get_reward.return_value)
|
||||
|
||||
@parameterized.parameters(*suite.ALL_TASKS)
|
||||
def test_task_supports_environment_kwargs(self, domain, task):
|
||||
env = suite.load(domain, task,
|
||||
environment_kwargs=dict(flat_observation=True))
|
||||
# Check that the kwargs are actually passed through to the environment.
|
||||
self.assertSetEqual(set(env.observation_spec()),
|
||||
{control.FLAT_OBSERVATION_KEY})
|
||||
|
||||
@parameterized.parameters(*suite.ALL_TASKS)
|
||||
def test_observation_arrays_dont_share_memory(self, domain, task):
|
||||
env = suite.load(domain, task)
|
||||
first_timestep = env.reset()
|
||||
action = np.zeros(env.action_spec().shape)
|
||||
second_timestep = env.step(action)
|
||||
for name, first_array in six.iteritems(first_timestep.observation):
|
||||
second_array = second_timestep.observation[name]
|
||||
self.assertFalse(
|
||||
np.may_share_memory(first_array, second_array),
|
||||
msg='Consecutive observations of {!r} may share memory.'.format(name))
|
||||
|
||||
@parameterized.parameters(*suite.ALL_TASKS)
|
||||
def test_observations_dont_contain_constant_elements(self, domain, task):
|
||||
env = suite.load(domain, task)
|
||||
trajectory = make_trajectory(domain=domain, task=task, seed=0,
|
||||
num_episodes=2, max_steps_per_episode=1000)
|
||||
observations = {name: [] for name in env.observation_spec()}
|
||||
for time_step in trajectory:
|
||||
for name, array in six.iteritems(time_step.observation):
|
||||
observations[name].append(array)
|
||||
|
||||
failures = []
|
||||
|
||||
for name, array_list in six.iteritems(observations):
|
||||
# Sampling random uniform actions generally isn't sufficient to trigger
|
||||
# these touch sensors.
|
||||
if (domain in ('manipulator', 'stacker') and name == 'touch' or
|
||||
domain == 'quadruped' and name == 'force_torque'):
|
||||
continue
|
||||
stacked_arrays = np.array(array_list)
|
||||
is_constant = np.all(stacked_arrays == stacked_arrays[0], axis=0)
|
||||
has_constant_elements = (
|
||||
is_constant if np.isscalar(is_constant) else np.any(is_constant))
|
||||
if has_constant_elements:
|
||||
failures.append((name, is_constant))
|
||||
|
||||
self.assertEmpty(
|
||||
failures,
|
||||
msg='The following observation(s) contain constant elements:\n{}'
|
||||
.format('\n'.join(':\t'.join([name, str(is_constant)])
|
||||
for (name, is_constant) in failures)))
|
||||
|
||||
@parameterized.parameters(*suite.ALL_TASKS)
|
||||
def test_initial_state_is_randomized(self, domain, task):
|
||||
env = suite.load(domain, task, task_kwargs={'random': 42})
|
||||
obs1 = env.reset().observation
|
||||
obs2 = env.reset().observation
|
||||
self.assertFalse(
|
||||
all(np.all(obs1[k] == obs2[k]) for k in obs1),
|
||||
'Two consecutive initial states have identical observations.\n'
|
||||
'First: {}\nSecond: {}'.format(obs1, obs2))
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
52
DPI/local_dm_control_suite/tests/loader_test.py
Executable file
52
DPI/local_dm_control_suite/tests/loader_test.py
Executable file
@ -0,0 +1,52 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Tests for the dm_control.suite loader."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
# Internal dependencies.
|
||||
|
||||
from absl.testing import absltest
|
||||
|
||||
from dm_control import suite
|
||||
from dm_control.rl import control
|
||||
|
||||
|
||||
class LoaderTest(absltest.TestCase):
|
||||
|
||||
def test_load_without_kwargs(self):
|
||||
env = suite.load('cartpole', 'swingup')
|
||||
self.assertIsInstance(env, control.Environment)
|
||||
|
||||
def test_load_with_kwargs(self):
|
||||
env = suite.load('cartpole', 'swingup',
|
||||
task_kwargs={'time_limit': 40, 'random': 99})
|
||||
self.assertIsInstance(env, control.Environment)
|
||||
|
||||
|
||||
class LoaderConstantsTest(absltest.TestCase):
|
||||
|
||||
def testSuiteConstants(self):
|
||||
self.assertNotEmpty(suite.BENCHMARKING)
|
||||
self.assertNotEmpty(suite.EASY)
|
||||
self.assertNotEmpty(suite.HARD)
|
||||
self.assertNotEmpty(suite.EXTRA)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
88
DPI/local_dm_control_suite/tests/lqr_test.py
Executable file
88
DPI/local_dm_control_suite/tests/lqr_test.py
Executable file
@ -0,0 +1,88 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Tests specific to the LQR domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
import unittest
|
||||
|
||||
# Internal dependencies.
|
||||
from absl import logging
|
||||
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
|
||||
from local_dm_control_suite import lqr
|
||||
from local_dm_control_suite import lqr_solver
|
||||
|
||||
import numpy as np
|
||||
from six.moves import range
|
||||
|
||||
|
||||
class LqrTest(parameterized.TestCase):
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('lqr_2_1', lqr.lqr_2_1),
|
||||
('lqr_6_2', lqr.lqr_6_2))
|
||||
def test_lqr_optimal_policy(self, make_env):
|
||||
env = make_env()
|
||||
p, k, beta = lqr_solver.solve(env)
|
||||
self.assertPolicyisOptimal(env, p, k, beta)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('lqr_2_1', lqr.lqr_2_1),
|
||||
('lqr_6_2', lqr.lqr_6_2))
|
||||
@unittest.skipUnless(
|
||||
condition=lqr_solver.sp,
|
||||
reason='scipy is not available, so non-scipy DARE solver is the default.')
|
||||
def test_lqr_optimal_policy_no_scipy(self, make_env):
|
||||
env = make_env()
|
||||
old_sp = lqr_solver.sp
|
||||
try:
|
||||
lqr_solver.sp = None # Force the solver to use the non-scipy code path.
|
||||
p, k, beta = lqr_solver.solve(env)
|
||||
finally:
|
||||
lqr_solver.sp = old_sp
|
||||
self.assertPolicyisOptimal(env, p, k, beta)
|
||||
|
||||
def assertPolicyisOptimal(self, env, p, k, beta):
|
||||
tolerance = 1e-3
|
||||
n_steps = int(math.ceil(math.log10(tolerance) / math.log10(beta)))
|
||||
logging.info('%d timesteps for %g convergence.', n_steps, tolerance)
|
||||
total_loss = 0.0
|
||||
|
||||
timestep = env.reset()
|
||||
initial_state = np.hstack((timestep.observation['position'],
|
||||
timestep.observation['velocity']))
|
||||
logging.info('Measuring total cost over %d steps.', n_steps)
|
||||
for _ in range(n_steps):
|
||||
x = np.hstack((timestep.observation['position'],
|
||||
timestep.observation['velocity']))
|
||||
# u = k*x is the optimal policy
|
||||
u = k.dot(x)
|
||||
total_loss += 1 - (timestep.reward or 0.0)
|
||||
timestep = env.step(u)
|
||||
|
||||
logging.info('Analytical expected total cost is .5*x^T*p*x.')
|
||||
expected_loss = .5 * initial_state.T.dot(p).dot(initial_state)
|
||||
logging.info('Comparing measured and predicted costs.')
|
||||
np.testing.assert_allclose(expected_loss, total_loss, rtol=tolerance)
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
16
DPI/local_dm_control_suite/utils/__init__.py
Executable file
16
DPI/local_dm_control_suite/utils/__init__.py
Executable file
@ -0,0 +1,16 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Utility functions used in the control suite."""
|
251
DPI/local_dm_control_suite/utils/parse_amc.py
Executable file
251
DPI/local_dm_control_suite/utils/parse_amc.py
Executable file
@ -0,0 +1,251 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Parse and convert amc motion capture data."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control.mujoco.wrapper import mjbindings
|
||||
import numpy as np
|
||||
from scipy import interpolate
|
||||
from six.moves import range
|
||||
|
||||
mjlib = mjbindings.mjlib
|
||||
|
||||
MOCAP_DT = 1.0/120.0
|
||||
CONVERSION_LENGTH = 0.056444
|
||||
|
||||
_CMU_MOCAP_JOINT_ORDER = (
|
||||
'root0', 'root1', 'root2', 'root3', 'root4', 'root5', 'lowerbackrx',
|
||||
'lowerbackry', 'lowerbackrz', 'upperbackrx', 'upperbackry', 'upperbackrz',
|
||||
'thoraxrx', 'thoraxry', 'thoraxrz', 'lowerneckrx', 'lowerneckry',
|
||||
'lowerneckrz', 'upperneckrx', 'upperneckry', 'upperneckrz', 'headrx',
|
||||
'headry', 'headrz', 'rclaviclery', 'rclaviclerz', 'rhumerusrx',
|
||||
'rhumerusry', 'rhumerusrz', 'rradiusrx', 'rwristry', 'rhandrx', 'rhandrz',
|
||||
'rfingersrx', 'rthumbrx', 'rthumbrz', 'lclaviclery', 'lclaviclerz',
|
||||
'lhumerusrx', 'lhumerusry', 'lhumerusrz', 'lradiusrx', 'lwristry',
|
||||
'lhandrx', 'lhandrz', 'lfingersrx', 'lthumbrx', 'lthumbrz', 'rfemurrx',
|
||||
'rfemurry', 'rfemurrz', 'rtibiarx', 'rfootrx', 'rfootrz', 'rtoesrx',
|
||||
'lfemurrx', 'lfemurry', 'lfemurrz', 'ltibiarx', 'lfootrx', 'lfootrz',
|
||||
'ltoesrx'
|
||||
)
|
||||
|
||||
Converted = collections.namedtuple('Converted',
|
||||
['qpos', 'qvel', 'time'])
|
||||
|
||||
|
||||
def convert(file_name, physics, timestep):
|
||||
"""Converts the parsed .amc values into qpos and qvel values and resamples.
|
||||
|
||||
Args:
|
||||
file_name: The .amc file to be parsed and converted.
|
||||
physics: The corresponding physics instance.
|
||||
timestep: Desired output interval between resampled frames.
|
||||
|
||||
Returns:
|
||||
A namedtuple with fields:
|
||||
`qpos`, a numpy array containing converted positional variables.
|
||||
`qvel`, a numpy array containing converted velocity variables.
|
||||
`time`, a numpy array containing the corresponding times.
|
||||
"""
|
||||
frame_values = parse(file_name)
|
||||
joint2index = {}
|
||||
for name in physics.named.data.qpos.axes.row.names:
|
||||
joint2index[name] = physics.named.data.qpos.axes.row.convert_key_item(name)
|
||||
index2joint = {}
|
||||
for joint, index in joint2index.items():
|
||||
if isinstance(index, slice):
|
||||
indices = range(index.start, index.stop)
|
||||
else:
|
||||
indices = [index]
|
||||
for ii in indices:
|
||||
index2joint[ii] = joint
|
||||
|
||||
# Convert frame_values to qpos
|
||||
amcvals2qpos_transformer = Amcvals2qpos(index2joint, _CMU_MOCAP_JOINT_ORDER)
|
||||
qpos_values = []
|
||||
for frame_value in frame_values:
|
||||
qpos_values.append(amcvals2qpos_transformer(frame_value))
|
||||
qpos_values = np.stack(qpos_values) # Time by nq
|
||||
|
||||
# Interpolate/resample.
|
||||
# Note: interpolate quaternions rather than euler angles (slerp).
|
||||
# see https://en.wikipedia.org/wiki/Slerp
|
||||
qpos_values_resampled = []
|
||||
time_vals = np.arange(0, len(frame_values)*MOCAP_DT - 1e-8, MOCAP_DT)
|
||||
time_vals_new = np.arange(0, len(frame_values)*MOCAP_DT, timestep)
|
||||
while time_vals_new[-1] > time_vals[-1]:
|
||||
time_vals_new = time_vals_new[:-1]
|
||||
|
||||
for i in range(qpos_values.shape[1]):
|
||||
f = interpolate.splrep(time_vals, qpos_values[:, i])
|
||||
qpos_values_resampled.append(interpolate.splev(time_vals_new, f))
|
||||
|
||||
qpos_values_resampled = np.stack(qpos_values_resampled) # nq by ntime
|
||||
|
||||
qvel_list = []
|
||||
for t in range(qpos_values_resampled.shape[1]-1):
|
||||
p_tp1 = qpos_values_resampled[:, t + 1]
|
||||
p_t = qpos_values_resampled[:, t]
|
||||
qvel = [(p_tp1[:3]-p_t[:3])/ timestep,
|
||||
mj_quat2vel(mj_quatdiff(p_t[3:7], p_tp1[3:7]), timestep),
|
||||
(p_tp1[7:]-p_t[7:])/ timestep]
|
||||
qvel_list.append(np.concatenate(qvel))
|
||||
|
||||
qvel_values_resampled = np.vstack(qvel_list).T
|
||||
|
||||
return Converted(qpos_values_resampled, qvel_values_resampled, time_vals_new)
|
||||
|
||||
|
||||
def parse(file_name):
|
||||
"""Parses the amc file format."""
|
||||
values = []
|
||||
fid = open(file_name, 'r')
|
||||
line = fid.readline().strip()
|
||||
frame_ind = 1
|
||||
first_frame = True
|
||||
while True:
|
||||
# Parse first frame.
|
||||
if first_frame and line[0] == str(frame_ind):
|
||||
first_frame = False
|
||||
frame_ind += 1
|
||||
frame_vals = []
|
||||
while True:
|
||||
line = fid.readline().strip()
|
||||
if not line or line == str(frame_ind):
|
||||
values.append(np.array(frame_vals, dtype=np.float))
|
||||
break
|
||||
tokens = line.split()
|
||||
frame_vals.extend(tokens[1:])
|
||||
# Parse other frames.
|
||||
elif line == str(frame_ind):
|
||||
frame_ind += 1
|
||||
frame_vals = []
|
||||
while True:
|
||||
line = fid.readline().strip()
|
||||
if not line or line == str(frame_ind):
|
||||
values.append(np.array(frame_vals, dtype=np.float))
|
||||
break
|
||||
tokens = line.split()
|
||||
frame_vals.extend(tokens[1:])
|
||||
else:
|
||||
line = fid.readline().strip()
|
||||
if not line:
|
||||
break
|
||||
return values
|
||||
|
||||
|
||||
class Amcvals2qpos(object):
|
||||
"""Callable that converts .amc values for a frame and to MuJoCo qpos format.
|
||||
"""
|
||||
|
||||
def __init__(self, index2joint, joint_order):
|
||||
"""Initializes a new Amcvals2qpos instance.
|
||||
|
||||
Args:
|
||||
index2joint: List of joint angles in .amc file.
|
||||
joint_order: List of joint names in MuJoco MJCF.
|
||||
"""
|
||||
# Root is x,y,z, then quat.
|
||||
# need to get indices of qpos that order for amc default order
|
||||
self.qpos_root_xyz_ind = [0, 1, 2]
|
||||
self.root_xyz_ransform = np.array(
|
||||
[[1, 0, 0], [0, 0, -1], [0, 1, 0]]) * CONVERSION_LENGTH
|
||||
self.qpos_root_quat_ind = [3, 4, 5, 6]
|
||||
amc2qpos_transform = np.zeros((len(index2joint), len(joint_order)))
|
||||
for i in range(len(index2joint)):
|
||||
for j in range(len(joint_order)):
|
||||
if index2joint[i] == joint_order[j]:
|
||||
if 'rx' in index2joint[i]:
|
||||
amc2qpos_transform[i][j] = 1
|
||||
elif 'ry' in index2joint[i]:
|
||||
amc2qpos_transform[i][j] = 1
|
||||
elif 'rz' in index2joint[i]:
|
||||
amc2qpos_transform[i][j] = 1
|
||||
self.amc2qpos_transform = amc2qpos_transform
|
||||
|
||||
def __call__(self, amc_val):
|
||||
"""Converts a `.amc` frame to MuJoCo qpos format."""
|
||||
amc_val_rad = np.deg2rad(amc_val)
|
||||
qpos = np.dot(self.amc2qpos_transform, amc_val_rad)
|
||||
|
||||
# Root.
|
||||
qpos[:3] = np.dot(self.root_xyz_ransform, amc_val[:3])
|
||||
qpos_quat = euler2quat(amc_val[3], amc_val[4], amc_val[5])
|
||||
qpos_quat = mj_quatprod(euler2quat(90, 0, 0), qpos_quat)
|
||||
|
||||
for i, ind in enumerate(self.qpos_root_quat_ind):
|
||||
qpos[ind] = qpos_quat[i]
|
||||
|
||||
return qpos
|
||||
|
||||
|
||||
def euler2quat(ax, ay, az):
|
||||
"""Converts euler angles to a quaternion.
|
||||
|
||||
Note: rotation order is zyx
|
||||
|
||||
Args:
|
||||
ax: Roll angle (deg)
|
||||
ay: Pitch angle (deg).
|
||||
az: Yaw angle (deg).
|
||||
|
||||
Returns:
|
||||
A numpy array representing the rotation as a quaternion.
|
||||
"""
|
||||
r1 = az
|
||||
r2 = ay
|
||||
r3 = ax
|
||||
|
||||
c1 = np.cos(np.deg2rad(r1 / 2))
|
||||
s1 = np.sin(np.deg2rad(r1 / 2))
|
||||
c2 = np.cos(np.deg2rad(r2 / 2))
|
||||
s2 = np.sin(np.deg2rad(r2 / 2))
|
||||
c3 = np.cos(np.deg2rad(r3 / 2))
|
||||
s3 = np.sin(np.deg2rad(r3 / 2))
|
||||
|
||||
q0 = c1 * c2 * c3 + s1 * s2 * s3
|
||||
q1 = c1 * c2 * s3 - s1 * s2 * c3
|
||||
q2 = c1 * s2 * c3 + s1 * c2 * s3
|
||||
q3 = s1 * c2 * c3 - c1 * s2 * s3
|
||||
|
||||
return np.array([q0, q1, q2, q3])
|
||||
|
||||
|
||||
def mj_quatprod(q, r):
|
||||
quaternion = np.zeros(4)
|
||||
mjlib.mju_mulQuat(quaternion, np.ascontiguousarray(q),
|
||||
np.ascontiguousarray(r))
|
||||
return quaternion
|
||||
|
||||
|
||||
def mj_quat2vel(q, dt):
|
||||
vel = np.zeros(3)
|
||||
mjlib.mju_quat2Vel(vel, np.ascontiguousarray(q), dt)
|
||||
return vel
|
||||
|
||||
|
||||
def mj_quatneg(q):
|
||||
quaternion = np.zeros(4)
|
||||
mjlib.mju_negQuat(quaternion, np.ascontiguousarray(q))
|
||||
return quaternion
|
||||
|
||||
|
||||
def mj_quatdiff(source, target):
|
||||
return mj_quatprod(mj_quatneg(source), np.ascontiguousarray(target))
|
68
DPI/local_dm_control_suite/utils/parse_amc_test.py
Executable file
68
DPI/local_dm_control_suite/utils/parse_amc_test.py
Executable file
@ -0,0 +1,68 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Tests for parse_amc utility."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
# Internal dependencies.
|
||||
|
||||
from absl.testing import absltest
|
||||
from local_dm_control_suite import humanoid_CMU
|
||||
from dm_control.suite.utils import parse_amc
|
||||
|
||||
from dm_control.utils import io as resources
|
||||
|
||||
_TEST_AMC_PATH = resources.GetResourceFilename(
|
||||
os.path.join(os.path.dirname(__file__), '../demos/zeros.amc'))
|
||||
|
||||
|
||||
class ParseAMCTest(absltest.TestCase):
|
||||
|
||||
def test_sizes_of_parsed_data(self):
|
||||
|
||||
# Instantiate the humanoid environment.
|
||||
env = humanoid_CMU.stand()
|
||||
|
||||
# Parse and convert specified clip.
|
||||
converted = parse_amc.convert(
|
||||
_TEST_AMC_PATH, env.physics, env.control_timestep())
|
||||
|
||||
self.assertEqual(converted.qpos.shape[0], 63)
|
||||
self.assertEqual(converted.qvel.shape[0], 62)
|
||||
self.assertEqual(converted.time.shape[0], converted.qpos.shape[1])
|
||||
self.assertEqual(converted.qpos.shape[1],
|
||||
converted.qvel.shape[1] + 1)
|
||||
|
||||
# Parse and convert specified clip -- WITH SMALLER TIMESTEP
|
||||
converted2 = parse_amc.convert(
|
||||
_TEST_AMC_PATH, env.physics, 0.5 * env.control_timestep())
|
||||
|
||||
self.assertEqual(converted2.qpos.shape[0], 63)
|
||||
self.assertEqual(converted2.qvel.shape[0], 62)
|
||||
self.assertEqual(converted2.time.shape[0], converted2.qpos.shape[1])
|
||||
self.assertEqual(converted.qpos.shape[1],
|
||||
converted.qvel.shape[1] + 1)
|
||||
|
||||
# Compare sizes of parsed objects for different timesteps
|
||||
self.assertEqual(converted.qpos.shape[1] * 2, converted2.qpos.shape[1])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
91
DPI/local_dm_control_suite/utils/randomizers.py
Executable file
91
DPI/local_dm_control_suite/utils/randomizers.py
Executable file
@ -0,0 +1,91 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Randomization functions."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from dm_control.mujoco.wrapper import mjbindings
|
||||
import numpy as np
|
||||
from six.moves import range
|
||||
|
||||
|
||||
def random_limited_quaternion(random, limit):
|
||||
"""Generates a random quaternion limited to the specified rotations."""
|
||||
axis = random.randn(3)
|
||||
axis /= np.linalg.norm(axis)
|
||||
angle = random.rand() * limit
|
||||
|
||||
quaternion = np.zeros(4)
|
||||
mjbindings.mjlib.mju_axisAngle2Quat(quaternion, axis, angle)
|
||||
|
||||
return quaternion
|
||||
|
||||
|
||||
def randomize_limited_and_rotational_joints(physics, random=None):
|
||||
"""Randomizes the positions of joints defined in the physics body.
|
||||
|
||||
The following randomization rules apply:
|
||||
- Bounded joints (hinges or sliders) are sampled uniformly in the bounds.
|
||||
- Unbounded hinges are samples uniformly in [-pi, pi]
|
||||
- Quaternions for unlimited free joints and ball joints are sampled
|
||||
uniformly on the unit 3-sphere.
|
||||
- Quaternions for limited ball joints are sampled uniformly on a sector
|
||||
of the unit 3-sphere.
|
||||
- The linear degrees of freedom of free joints are not randomized.
|
||||
|
||||
Args:
|
||||
physics: Instance of 'Physics' class that holds a loaded model.
|
||||
random: Optional instance of 'np.random.RandomState'. Defaults to the global
|
||||
NumPy random state.
|
||||
"""
|
||||
random = random or np.random
|
||||
|
||||
hinge = mjbindings.enums.mjtJoint.mjJNT_HINGE
|
||||
slide = mjbindings.enums.mjtJoint.mjJNT_SLIDE
|
||||
ball = mjbindings.enums.mjtJoint.mjJNT_BALL
|
||||
free = mjbindings.enums.mjtJoint.mjJNT_FREE
|
||||
|
||||
qpos = physics.named.data.qpos
|
||||
|
||||
for joint_id in range(physics.model.njnt):
|
||||
joint_name = physics.model.id2name(joint_id, 'joint')
|
||||
joint_type = physics.model.jnt_type[joint_id]
|
||||
is_limited = physics.model.jnt_limited[joint_id]
|
||||
range_min, range_max = physics.model.jnt_range[joint_id]
|
||||
|
||||
if is_limited:
|
||||
if joint_type == hinge or joint_type == slide:
|
||||
qpos[joint_name] = random.uniform(range_min, range_max)
|
||||
|
||||
elif joint_type == ball:
|
||||
qpos[joint_name] = random_limited_quaternion(random, range_max)
|
||||
|
||||
else:
|
||||
if joint_type == hinge:
|
||||
qpos[joint_name] = random.uniform(-np.pi, np.pi)
|
||||
|
||||
elif joint_type == ball:
|
||||
quat = random.randn(4)
|
||||
quat /= np.linalg.norm(quat)
|
||||
qpos[joint_name] = quat
|
||||
|
||||
elif joint_type == free:
|
||||
quat = random.rand(4)
|
||||
quat /= np.linalg.norm(quat)
|
||||
qpos[joint_name][3:] = quat
|
||||
|
164
DPI/local_dm_control_suite/utils/randomizers_test.py
Executable file
164
DPI/local_dm_control_suite/utils/randomizers_test.py
Executable file
@ -0,0 +1,164 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Tests for randomizers.py."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
# Internal dependencies.
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
from dm_control import mujoco
|
||||
from dm_control.mujoco.wrapper import mjbindings
|
||||
from dm_control.suite.utils import randomizers
|
||||
import numpy as np
|
||||
from six.moves import range
|
||||
|
||||
mjlib = mjbindings.mjlib
|
||||
|
||||
|
||||
class RandomizeUnlimitedJointsTest(parameterized.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
self.rand = np.random.RandomState(100)
|
||||
|
||||
def test_single_joint_of_each_type(self):
|
||||
physics = mujoco.Physics.from_xml_string("""<mujoco>
|
||||
<default>
|
||||
<joint range="0 90" />
|
||||
</default>
|
||||
<worldbody>
|
||||
<body>
|
||||
<geom type="box" size="1 1 1"/>
|
||||
<joint name="free" type="free"/>
|
||||
</body>
|
||||
<body>
|
||||
<geom type="box" size="1 1 1"/>
|
||||
<joint name="limited_hinge" type="hinge" limited="true"/>
|
||||
<joint name="slide" type="slide"/>
|
||||
<joint name="limited_slide" type="slide" limited="true"/>
|
||||
<joint name="hinge" type="hinge"/>
|
||||
</body>
|
||||
<body>
|
||||
<geom type="box" size="1 1 1"/>
|
||||
<joint name="ball" type="ball"/>
|
||||
</body>
|
||||
<body>
|
||||
<geom type="box" size="1 1 1"/>
|
||||
<joint name="limited_ball" type="ball" limited="true"/>
|
||||
</body>
|
||||
</worldbody>
|
||||
</mujoco>""")
|
||||
|
||||
randomizers.randomize_limited_and_rotational_joints(physics, self.rand)
|
||||
self.assertNotEqual(0., physics.named.data.qpos['hinge'])
|
||||
self.assertNotEqual(0., physics.named.data.qpos['limited_hinge'])
|
||||
self.assertNotEqual(0., physics.named.data.qpos['limited_slide'])
|
||||
|
||||
self.assertNotEqual(0., np.sum(physics.named.data.qpos['ball']))
|
||||
self.assertNotEqual(0., np.sum(physics.named.data.qpos['limited_ball']))
|
||||
|
||||
self.assertNotEqual(0., np.sum(physics.named.data.qpos['free'][3:]))
|
||||
|
||||
# Unlimited slide and the positional part of the free joint remains
|
||||
# uninitialized.
|
||||
self.assertEqual(0., physics.named.data.qpos['slide'])
|
||||
self.assertEqual(0., np.sum(physics.named.data.qpos['free'][:3]))
|
||||
|
||||
def test_multiple_joints_of_same_type(self):
|
||||
physics = mujoco.Physics.from_xml_string("""<mujoco>
|
||||
<worldbody>
|
||||
<body>
|
||||
<geom type="box" size="1 1 1"/>
|
||||
<joint name="hinge_1" type="hinge"/>
|
||||
<joint name="hinge_2" type="hinge"/>
|
||||
<joint name="hinge_3" type="hinge"/>
|
||||
</body>
|
||||
</worldbody>
|
||||
</mujoco>""")
|
||||
|
||||
randomizers.randomize_limited_and_rotational_joints(physics, self.rand)
|
||||
self.assertNotEqual(0., physics.named.data.qpos['hinge_1'])
|
||||
self.assertNotEqual(0., physics.named.data.qpos['hinge_2'])
|
||||
self.assertNotEqual(0., physics.named.data.qpos['hinge_3'])
|
||||
|
||||
self.assertNotEqual(physics.named.data.qpos['hinge_1'],
|
||||
physics.named.data.qpos['hinge_2'])
|
||||
|
||||
self.assertNotEqual(physics.named.data.qpos['hinge_2'],
|
||||
physics.named.data.qpos['hinge_3'])
|
||||
|
||||
self.assertNotEqual(physics.named.data.qpos['hinge_1'],
|
||||
physics.named.data.qpos['hinge_3'])
|
||||
|
||||
def test_unlimited_hinge_randomization_range(self):
|
||||
physics = mujoco.Physics.from_xml_string("""<mujoco>
|
||||
<worldbody>
|
||||
<body>
|
||||
<geom type="box" size="1 1 1"/>
|
||||
<joint name="hinge" type="hinge"/>
|
||||
</body>
|
||||
</worldbody>
|
||||
</mujoco>""")
|
||||
|
||||
for _ in range(10):
|
||||
randomizers.randomize_limited_and_rotational_joints(physics, self.rand)
|
||||
self.assertBetween(physics.named.data.qpos['hinge'], -np.pi, np.pi)
|
||||
|
||||
def test_limited_1d_joint_limits_are_respected(self):
|
||||
physics = mujoco.Physics.from_xml_string("""<mujoco>
|
||||
<default>
|
||||
<joint limited="true"/>
|
||||
</default>
|
||||
<worldbody>
|
||||
<body>
|
||||
<geom type="box" size="1 1 1"/>
|
||||
<joint name="hinge" type="hinge" range="0 10"/>
|
||||
<joint name="slide" type="slide" range="30 50"/>
|
||||
</body>
|
||||
</worldbody>
|
||||
</mujoco>""")
|
||||
|
||||
for _ in range(10):
|
||||
randomizers.randomize_limited_and_rotational_joints(physics, self.rand)
|
||||
self.assertBetween(physics.named.data.qpos['hinge'],
|
||||
np.deg2rad(0), np.deg2rad(10))
|
||||
self.assertBetween(physics.named.data.qpos['slide'], 30, 50)
|
||||
|
||||
def test_limited_ball_joint_are_respected(self):
|
||||
physics = mujoco.Physics.from_xml_string("""<mujoco>
|
||||
<worldbody>
|
||||
<body name="body" zaxis="1 0 0">
|
||||
<geom type="box" size="1 1 1"/>
|
||||
<joint name="ball" type="ball" limited="true" range="0 60"/>
|
||||
</body>
|
||||
</worldbody>
|
||||
</mujoco>""")
|
||||
|
||||
body_axis = np.array([1., 0., 0.])
|
||||
joint_axis = np.zeros(3)
|
||||
for _ in range(10):
|
||||
randomizers.randomize_limited_and_rotational_joints(physics, self.rand)
|
||||
|
||||
quat = physics.named.data.qpos['ball']
|
||||
mjlib.mju_rotVecQuat(joint_axis, body_axis, quat)
|
||||
angle_cos = np.dot(body_axis, joint_axis)
|
||||
self.assertGreater(angle_cos, 0.5) # cos(60) = 0.5
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
158
DPI/local_dm_control_suite/walker.py
Executable file
158
DPI/local_dm_control_suite/walker.py
Executable file
@ -0,0 +1,158 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Planar Walker Domain."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from local_dm_control_suite import base
|
||||
from local_dm_control_suite import common
|
||||
from dm_control.suite.utils import randomizers
|
||||
from dm_control.utils import containers
|
||||
from dm_control.utils import rewards
|
||||
|
||||
|
||||
_DEFAULT_TIME_LIMIT = 25
|
||||
_CONTROL_TIMESTEP = .025
|
||||
|
||||
# Minimal height of torso over foot above which stand reward is 1.
|
||||
_STAND_HEIGHT = 1.2
|
||||
|
||||
# Horizontal speeds (meters/second) above which move reward is 1.
|
||||
_WALK_SPEED = 1
|
||||
_RUN_SPEED = 8
|
||||
|
||||
|
||||
SUITE = containers.TaggedTasks()
|
||||
|
||||
|
||||
def get_model_and_assets():
|
||||
"""Returns a tuple containing the model XML string and a dict of assets."""
|
||||
return common.read_model('walker.xml'), common.ASSETS
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def stand(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Stand task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = PlanarWalker(move_speed=0, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def walk(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Walk task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = PlanarWalker(move_speed=_WALK_SPEED, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
@SUITE.add('benchmarking')
|
||||
def run(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
|
||||
"""Returns the Run task."""
|
||||
physics = Physics.from_xml_string(*get_model_and_assets())
|
||||
task = PlanarWalker(move_speed=_RUN_SPEED, random=random)
|
||||
environment_kwargs = environment_kwargs or {}
|
||||
return control.Environment(
|
||||
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
|
||||
**environment_kwargs)
|
||||
|
||||
|
||||
class Physics(mujoco.Physics):
|
||||
"""Physics simulation with additional features for the Walker domain."""
|
||||
|
||||
def torso_upright(self):
|
||||
"""Returns projection from z-axes of torso to the z-axes of world."""
|
||||
return self.named.data.xmat['torso', 'zz']
|
||||
|
||||
def torso_height(self):
|
||||
"""Returns the height of the torso."""
|
||||
return self.named.data.xpos['torso', 'z']
|
||||
|
||||
def horizontal_velocity(self):
|
||||
"""Returns the horizontal velocity of the center-of-mass."""
|
||||
return self.named.data.sensordata['torso_subtreelinvel'][0]
|
||||
|
||||
def orientations(self):
|
||||
"""Returns planar orientations of all bodies."""
|
||||
return self.named.data.xmat[1:, ['xx', 'xz']].ravel()
|
||||
|
||||
|
||||
class PlanarWalker(base.Task):
|
||||
"""A planar walker task."""
|
||||
|
||||
def __init__(self, move_speed, random=None):
|
||||
"""Initializes an instance of `PlanarWalker`.
|
||||
|
||||
Args:
|
||||
move_speed: A float. If this value is zero, reward is given simply for
|
||||
standing up. Otherwise this specifies a target horizontal velocity for
|
||||
the walking task.
|
||||
random: Optional, either a `numpy.random.RandomState` instance, an
|
||||
integer seed for creating a new `RandomState`, or None to select a seed
|
||||
automatically (default).
|
||||
"""
|
||||
self._move_speed = move_speed
|
||||
super(PlanarWalker, self).__init__(random=random)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode.
|
||||
|
||||
In 'standing' mode, use initial orientation and small velocities.
|
||||
In 'random' mode, randomize joint angles and let fall to the floor.
|
||||
|
||||
Args:
|
||||
physics: An instance of `Physics`.
|
||||
|
||||
"""
|
||||
randomizers.randomize_limited_and_rotational_joints(physics, self.random)
|
||||
super(PlanarWalker, self).initialize_episode(physics)
|
||||
|
||||
def get_observation(self, physics):
|
||||
"""Returns an observation of body orientations, height and velocites."""
|
||||
obs = collections.OrderedDict()
|
||||
obs['orientations'] = physics.orientations()
|
||||
obs['height'] = physics.torso_height()
|
||||
obs['velocity'] = physics.velocity()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
"""Returns a reward to the agent."""
|
||||
standing = rewards.tolerance(physics.torso_height(),
|
||||
bounds=(_STAND_HEIGHT, float('inf')),
|
||||
margin=_STAND_HEIGHT/2)
|
||||
upright = (1 + physics.torso_upright()) / 2
|
||||
stand_reward = (3*standing + upright) / 4
|
||||
if self._move_speed == 0:
|
||||
return stand_reward
|
||||
else:
|
||||
move_reward = rewards.tolerance(physics.horizontal_velocity(),
|
||||
bounds=(self._move_speed, float('inf')),
|
||||
margin=self._move_speed/2,
|
||||
value_at_margin=0.5,
|
||||
sigmoid='linear')
|
||||
return stand_reward * (5*move_reward + 1) / 6
|
70
DPI/local_dm_control_suite/walker.xml
Executable file
70
DPI/local_dm_control_suite/walker.xml
Executable file
@ -0,0 +1,70 @@
|
||||
<mujoco model="planar walker">
|
||||
<include file="./common/visual.xml"/>
|
||||
<include file="./common/skybox.xml"/>
|
||||
<include file="./common/materials_white_floor.xml"/>
|
||||
|
||||
<option timestep="0.0025"/>
|
||||
|
||||
<statistic extent="2" center="0 0 1"/>
|
||||
|
||||
<default>
|
||||
<joint damping=".1" armature="0.01" limited="true" solimplimit="0 .99 .01"/>
|
||||
<geom contype="1" conaffinity="0" friction=".7 .1 .1"/>
|
||||
<motor ctrlrange="-1 1" ctrllimited="true"/>
|
||||
<site size="0.01"/>
|
||||
<default class="walker">
|
||||
<geom material="self" type="capsule"/>
|
||||
<joint axis="0 -1 0"/>
|
||||
</default>
|
||||
</default>
|
||||
|
||||
<worldbody>
|
||||
<geom name="floor" type="plane" conaffinity="1" pos="248 0 0" size="250 .8 .2" material="grid" zaxis="0 0 1"/>
|
||||
<body name="torso" pos="0 0 1.3" childclass="walker">
|
||||
<light name="light" pos="0 0 2" mode="trackcom"/>
|
||||
<camera name="side" pos="0 -2 .7" euler="60 0 0" mode="trackcom"/>
|
||||
<camera name="back" pos="-2 0 .5" xyaxes="0 -1 0 1 0 3" mode="trackcom"/>
|
||||
<joint name="rootz" axis="0 0 1" type="slide" limited="false" armature="0" damping="0"/>
|
||||
<joint name="rootx" axis="1 0 0" type="slide" limited="false" armature="0" damping="0"/>
|
||||
<joint name="rooty" axis="0 1 0" type="hinge" limited="false" armature="0" damping="0"/>
|
||||
<geom name="torso" size="0.07 0.3"/>
|
||||
<body name="right_thigh" pos="0 -.05 -0.3">
|
||||
<joint name="right_hip" range="-20 100"/>
|
||||
<geom name="right_thigh" pos="0 0 -0.225" size="0.05 0.225"/>
|
||||
<body name="right_leg" pos="0 0 -0.7">
|
||||
<joint name="right_knee" pos="0 0 0.25" range="-150 0"/>
|
||||
<geom name="right_leg" size="0.04 0.25"/>
|
||||
<body name="right_foot" pos="0.06 0 -0.25">
|
||||
<joint name="right_ankle" pos="-0.06 0 0" range="-45 45"/>
|
||||
<geom name="right_foot" zaxis="1 0 0" size="0.05 0.1"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
<body name="left_thigh" pos="0 .05 -0.3" >
|
||||
<joint name="left_hip" range="-20 100"/>
|
||||
<geom name="left_thigh" pos="0 0 -0.225" size="0.05 0.225"/>
|
||||
<body name="left_leg" pos="0 0 -0.7">
|
||||
<joint name="left_knee" pos="0 0 0.25" range="-150 0"/>
|
||||
<geom name="left_leg" size="0.04 0.25"/>
|
||||
<body name="left_foot" pos="0.06 0 -0.25">
|
||||
<joint name="left_ankle" pos="-0.06 0 0" range="-45 45"/>
|
||||
<geom name="left_foot" zaxis="1 0 0" size="0.05 0.1"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</worldbody>
|
||||
|
||||
<sensor>
|
||||
<subtreelinvel name="torso_subtreelinvel" body="torso"/>
|
||||
</sensor>
|
||||
|
||||
<actuator>
|
||||
<motor name="right_hip" joint="right_hip" gear="100"/>
|
||||
<motor name="right_knee" joint="right_knee" gear="50"/>
|
||||
<motor name="right_ankle" joint="right_ankle" gear="20"/>
|
||||
<motor name="left_hip" joint="left_hip" gear="100"/>
|
||||
<motor name="left_knee" joint="left_knee" gear="50"/>
|
||||
<motor name="left_ankle" joint="left_ankle" gear="20"/>
|
||||
</actuator>
|
||||
</mujoco>
|
16
DPI/local_dm_control_suite/wrappers/__init__.py
Executable file
16
DPI/local_dm_control_suite/wrappers/__init__.py
Executable file
@ -0,0 +1,16 @@
|
||||
# Copyright 2018 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Environment wrappers used to extend or modify environment behaviour."""
|
74
DPI/local_dm_control_suite/wrappers/action_noise.py
Executable file
74
DPI/local_dm_control_suite/wrappers/action_noise.py
Executable file
@ -0,0 +1,74 @@
|
||||
# Copyright 2018 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Wrapper control suite environments that adds Gaussian noise to actions."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import dm_env
|
||||
import numpy as np
|
||||
|
||||
|
||||
_BOUNDS_MUST_BE_FINITE = (
|
||||
'All bounds in `env.action_spec()` must be finite, got: {action_spec}')
|
||||
|
||||
|
||||
class Wrapper(dm_env.Environment):
|
||||
"""Wraps a control environment and adds Gaussian noise to actions."""
|
||||
|
||||
def __init__(self, env, scale=0.01):
|
||||
"""Initializes a new action noise Wrapper.
|
||||
|
||||
Args:
|
||||
env: The control suite environment to wrap.
|
||||
scale: The standard deviation of the noise, expressed as a fraction
|
||||
of the max-min range for each action dimension.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the action dimensions of the wrapped environment are
|
||||
unbounded.
|
||||
"""
|
||||
action_spec = env.action_spec()
|
||||
if not (np.all(np.isfinite(action_spec.minimum)) and
|
||||
np.all(np.isfinite(action_spec.maximum))):
|
||||
raise ValueError(_BOUNDS_MUST_BE_FINITE.format(action_spec=action_spec))
|
||||
self._minimum = action_spec.minimum
|
||||
self._maximum = action_spec.maximum
|
||||
self._noise_std = scale * (action_spec.maximum - action_spec.minimum)
|
||||
self._env = env
|
||||
|
||||
def step(self, action):
|
||||
noisy_action = action + self._env.task.random.normal(scale=self._noise_std)
|
||||
# Clip the noisy actions in place so that they fall within the bounds
|
||||
# specified by the `action_spec`. Note that MuJoCo implicitly clips out-of-
|
||||
# bounds control inputs, but we also clip here in case the actions do not
|
||||
# correspond directly to MuJoCo actuators, or if there are other wrapper
|
||||
# layers that expect the actions to be within bounds.
|
||||
np.clip(noisy_action, self._minimum, self._maximum, out=noisy_action)
|
||||
return self._env.step(noisy_action)
|
||||
|
||||
def reset(self):
|
||||
return self._env.reset()
|
||||
|
||||
def observation_spec(self):
|
||||
return self._env.observation_spec()
|
||||
|
||||
def action_spec(self):
|
||||
return self._env.action_spec()
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
136
DPI/local_dm_control_suite/wrappers/action_noise_test.py
Executable file
136
DPI/local_dm_control_suite/wrappers/action_noise_test.py
Executable file
@ -0,0 +1,136 @@
|
||||
# Copyright 2018 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Tests for the action noise wrapper."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
# Internal dependencies.
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
from dm_control.rl import control
|
||||
from dm_control.suite.wrappers import action_noise
|
||||
from dm_env import specs
|
||||
import mock
|
||||
import numpy as np
|
||||
|
||||
|
||||
class ActionNoiseTest(parameterized.TestCase):
|
||||
|
||||
def make_action_spec(self, lower=(-1.,), upper=(1.,)):
|
||||
lower, upper = np.broadcast_arrays(lower, upper)
|
||||
return specs.BoundedArray(
|
||||
shape=lower.shape, dtype=float, minimum=lower, maximum=upper)
|
||||
|
||||
def make_mock_env(self, action_spec=None):
|
||||
action_spec = action_spec or self.make_action_spec()
|
||||
env = mock.Mock(spec=control.Environment)
|
||||
env.action_spec.return_value = action_spec
|
||||
return env
|
||||
|
||||
def assertStepCalledOnceWithCorrectAction(self, env, expected_action):
|
||||
# NB: `assert_called_once_with()` doesn't support numpy arrays.
|
||||
env.step.assert_called_once()
|
||||
actual_action = env.step.call_args_list[0][0][0]
|
||||
np.testing.assert_array_equal(expected_action, actual_action)
|
||||
|
||||
@parameterized.parameters([
|
||||
dict(lower=np.r_[-1., 0.], upper=np.r_[1., 2.], scale=0.05),
|
||||
dict(lower=np.r_[-1., 0.], upper=np.r_[1., 2.], scale=0.),
|
||||
dict(lower=np.r_[-1., 0.], upper=np.r_[-1., 0.], scale=0.05),
|
||||
])
|
||||
def test_step(self, lower, upper, scale):
|
||||
seed = 0
|
||||
std = scale * (upper - lower)
|
||||
expected_noise = np.random.RandomState(seed).normal(scale=std)
|
||||
action = np.random.RandomState(seed).uniform(lower, upper)
|
||||
expected_noisy_action = np.clip(action + expected_noise, lower, upper)
|
||||
task = mock.Mock(spec=control.Task)
|
||||
task.random = np.random.RandomState(seed)
|
||||
action_spec = self.make_action_spec(lower=lower, upper=upper)
|
||||
env = self.make_mock_env(action_spec=action_spec)
|
||||
env.task = task
|
||||
wrapped_env = action_noise.Wrapper(env, scale=scale)
|
||||
time_step = wrapped_env.step(action)
|
||||
self.assertStepCalledOnceWithCorrectAction(env, expected_noisy_action)
|
||||
self.assertIs(time_step, env.step(expected_noisy_action))
|
||||
|
||||
@parameterized.named_parameters([
|
||||
dict(testcase_name='within_bounds', action=np.r_[-1.], noise=np.r_[0.1]),
|
||||
dict(testcase_name='below_lower', action=np.r_[-1.], noise=np.r_[-0.1]),
|
||||
dict(testcase_name='above_upper', action=np.r_[1.], noise=np.r_[0.1]),
|
||||
])
|
||||
def test_action_clipping(self, action, noise):
|
||||
lower = -1.
|
||||
upper = 1.
|
||||
expected_noisy_action = np.clip(action + noise, lower, upper)
|
||||
task = mock.Mock(spec=control.Task)
|
||||
task.random = mock.Mock(spec=np.random.RandomState)
|
||||
task.random.normal.return_value = noise
|
||||
action_spec = self.make_action_spec(lower=lower, upper=upper)
|
||||
env = self.make_mock_env(action_spec=action_spec)
|
||||
env.task = task
|
||||
wrapped_env = action_noise.Wrapper(env)
|
||||
time_step = wrapped_env.step(action)
|
||||
self.assertStepCalledOnceWithCorrectAction(env, expected_noisy_action)
|
||||
self.assertIs(time_step, env.step(expected_noisy_action))
|
||||
|
||||
@parameterized.parameters([
|
||||
dict(lower=np.r_[-1., 0.], upper=np.r_[1., np.inf]),
|
||||
dict(lower=np.r_[np.nan, 0.], upper=np.r_[1., 2.]),
|
||||
])
|
||||
def test_error_if_action_bounds_non_finite(self, lower, upper):
|
||||
action_spec = self.make_action_spec(lower=lower, upper=upper)
|
||||
env = self.make_mock_env(action_spec=action_spec)
|
||||
with self.assertRaisesWithLiteralMatch(
|
||||
ValueError,
|
||||
action_noise._BOUNDS_MUST_BE_FINITE.format(action_spec=action_spec)):
|
||||
_ = action_noise.Wrapper(env)
|
||||
|
||||
def test_reset(self):
|
||||
env = self.make_mock_env()
|
||||
wrapped_env = action_noise.Wrapper(env)
|
||||
time_step = wrapped_env.reset()
|
||||
env.reset.assert_called_once_with()
|
||||
self.assertIs(time_step, env.reset())
|
||||
|
||||
def test_observation_spec(self):
|
||||
env = self.make_mock_env()
|
||||
wrapped_env = action_noise.Wrapper(env)
|
||||
observation_spec = wrapped_env.observation_spec()
|
||||
env.observation_spec.assert_called_once_with()
|
||||
self.assertIs(observation_spec, env.observation_spec())
|
||||
|
||||
def test_action_spec(self):
|
||||
env = self.make_mock_env()
|
||||
wrapped_env = action_noise.Wrapper(env)
|
||||
# `env.action_spec()` is called in `Wrapper.__init__()`
|
||||
env.action_spec.reset_mock()
|
||||
action_spec = wrapped_env.action_spec()
|
||||
env.action_spec.assert_called_once_with()
|
||||
self.assertIs(action_spec, env.action_spec())
|
||||
|
||||
@parameterized.parameters(['task', 'physics', 'control_timestep'])
|
||||
def test_getattr(self, attribute_name):
|
||||
env = self.make_mock_env()
|
||||
wrapped_env = action_noise.Wrapper(env)
|
||||
attr = getattr(wrapped_env, attribute_name)
|
||||
self.assertIs(attr, getattr(env, attribute_name))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
120
DPI/local_dm_control_suite/wrappers/pixels.py
Executable file
120
DPI/local_dm_control_suite/wrappers/pixels.py
Executable file
@ -0,0 +1,120 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Wrapper that adds pixel observations to a control environment."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
import dm_env
|
||||
from dm_env import specs
|
||||
|
||||
STATE_KEY = 'state'
|
||||
|
||||
|
||||
class Wrapper(dm_env.Environment):
|
||||
"""Wraps a control environment and adds a rendered pixel observation."""
|
||||
|
||||
def __init__(self, env, pixels_only=True, render_kwargs=None,
|
||||
observation_key='pixels'):
|
||||
"""Initializes a new pixel Wrapper.
|
||||
|
||||
Args:
|
||||
env: The environment to wrap.
|
||||
pixels_only: If True (default), the original set of 'state' observations
|
||||
returned by the wrapped environment will be discarded, and the
|
||||
`OrderedDict` of observations will only contain pixels. If False, the
|
||||
`OrderedDict` will contain the original observations as well as the
|
||||
pixel observations.
|
||||
render_kwargs: Optional `dict` containing keyword arguments passed to the
|
||||
`mujoco.Physics.render` method.
|
||||
observation_key: Optional custom string specifying the pixel observation's
|
||||
key in the `OrderedDict` of observations. Defaults to 'pixels'.
|
||||
|
||||
Raises:
|
||||
ValueError: If `env`'s observation spec is not compatible with the
|
||||
wrapper. Supported formats are a single array, or a dict of arrays.
|
||||
ValueError: If `env`'s observation already contains the specified
|
||||
`observation_key`.
|
||||
"""
|
||||
if render_kwargs is None:
|
||||
render_kwargs = {}
|
||||
|
||||
wrapped_observation_spec = env.observation_spec()
|
||||
|
||||
if isinstance(wrapped_observation_spec, specs.Array):
|
||||
self._observation_is_dict = False
|
||||
invalid_keys = set([STATE_KEY])
|
||||
elif isinstance(wrapped_observation_spec, collections.MutableMapping):
|
||||
self._observation_is_dict = True
|
||||
invalid_keys = set(wrapped_observation_spec.keys())
|
||||
else:
|
||||
raise ValueError('Unsupported observation spec structure.')
|
||||
|
||||
if not pixels_only and observation_key in invalid_keys:
|
||||
raise ValueError('Duplicate or reserved observation key {!r}.'
|
||||
.format(observation_key))
|
||||
|
||||
if pixels_only:
|
||||
self._observation_spec = collections.OrderedDict()
|
||||
elif self._observation_is_dict:
|
||||
self._observation_spec = wrapped_observation_spec.copy()
|
||||
else:
|
||||
self._observation_spec = collections.OrderedDict()
|
||||
self._observation_spec[STATE_KEY] = wrapped_observation_spec
|
||||
|
||||
# Extend observation spec.
|
||||
pixels = env.physics.render(**render_kwargs)
|
||||
pixels_spec = specs.Array(
|
||||
shape=pixels.shape, dtype=pixels.dtype, name=observation_key)
|
||||
self._observation_spec[observation_key] = pixels_spec
|
||||
|
||||
self._env = env
|
||||
self._pixels_only = pixels_only
|
||||
self._render_kwargs = render_kwargs
|
||||
self._observation_key = observation_key
|
||||
|
||||
def reset(self):
|
||||
time_step = self._env.reset()
|
||||
return self._add_pixel_observation(time_step)
|
||||
|
||||
def step(self, action):
|
||||
time_step = self._env.step(action)
|
||||
return self._add_pixel_observation(time_step)
|
||||
|
||||
def observation_spec(self):
|
||||
return self._observation_spec
|
||||
|
||||
def action_spec(self):
|
||||
return self._env.action_spec()
|
||||
|
||||
def _add_pixel_observation(self, time_step):
|
||||
if self._pixels_only:
|
||||
observation = collections.OrderedDict()
|
||||
elif self._observation_is_dict:
|
||||
observation = type(time_step.observation)(time_step.observation)
|
||||
else:
|
||||
observation = collections.OrderedDict()
|
||||
observation[STATE_KEY] = time_step.observation
|
||||
|
||||
pixels = self._env.physics.render(**self._render_kwargs)
|
||||
observation[self._observation_key] = pixels
|
||||
return time_step._replace(observation=observation)
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
133
DPI/local_dm_control_suite/wrappers/pixels_test.py
Executable file
133
DPI/local_dm_control_suite/wrappers/pixels_test.py
Executable file
@ -0,0 +1,133 @@
|
||||
# Copyright 2017 The dm_control Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Tests for the pixel wrapper."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
# Internal dependencies.
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
from local_dm_control_suite import cartpole
|
||||
from dm_control.suite.wrappers import pixels
|
||||
import dm_env
|
||||
from dm_env import specs
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class FakePhysics(object):
|
||||
|
||||
def render(self, *args, **kwargs):
|
||||
del args
|
||||
del kwargs
|
||||
return np.zeros((4, 5, 3), dtype=np.uint8)
|
||||
|
||||
|
||||
class FakeArrayObservationEnvironment(dm_env.Environment):
|
||||
|
||||
def __init__(self):
|
||||
self.physics = FakePhysics()
|
||||
|
||||
def reset(self):
|
||||
return dm_env.restart(np.zeros((2,)))
|
||||
|
||||
def step(self, action):
|
||||
del action
|
||||
return dm_env.transition(0.0, np.zeros((2,)))
|
||||
|
||||
def action_spec(self):
|
||||
pass
|
||||
|
||||
def observation_spec(self):
|
||||
return specs.Array(shape=(2,), dtype=np.float)
|
||||
|
||||
|
||||
class PixelsTest(parameterized.TestCase):
|
||||
|
||||
@parameterized.parameters(True, False)
|
||||
def test_dict_observation(self, pixels_only):
|
||||
pixel_key = 'rgb'
|
||||
|
||||
env = cartpole.swingup()
|
||||
|
||||
# Make sure we are testing the right environment for the test.
|
||||
observation_spec = env.observation_spec()
|
||||
self.assertIsInstance(observation_spec, collections.OrderedDict)
|
||||
|
||||
width = 320
|
||||
height = 240
|
||||
|
||||
# The wrapper should only add one observation.
|
||||
wrapped = pixels.Wrapper(env,
|
||||
observation_key=pixel_key,
|
||||
pixels_only=pixels_only,
|
||||
render_kwargs={'width': width, 'height': height})
|
||||
|
||||
wrapped_observation_spec = wrapped.observation_spec()
|
||||
self.assertIsInstance(wrapped_observation_spec, collections.OrderedDict)
|
||||
|
||||
if pixels_only:
|
||||
self.assertLen(wrapped_observation_spec, 1)
|
||||
self.assertEqual([pixel_key], list(wrapped_observation_spec.keys()))
|
||||
else:
|
||||
expected_length = len(observation_spec) + 1
|
||||
self.assertLen(wrapped_observation_spec, expected_length)
|
||||
expected_keys = list(observation_spec.keys()) + [pixel_key]
|
||||
self.assertEqual(expected_keys, list(wrapped_observation_spec.keys()))
|
||||
|
||||
# Check that the added spec item is consistent with the added observation.
|
||||
time_step = wrapped.reset()
|
||||
rgb_observation = time_step.observation[pixel_key]
|
||||
wrapped_observation_spec[pixel_key].validate(rgb_observation)
|
||||
|
||||
self.assertEqual(rgb_observation.shape, (height, width, 3))
|
||||
self.assertEqual(rgb_observation.dtype, np.uint8)
|
||||
|
||||
@parameterized.parameters(True, False)
|
||||
def test_single_array_observation(self, pixels_only):
|
||||
pixel_key = 'depth'
|
||||
|
||||
env = FakeArrayObservationEnvironment()
|
||||
observation_spec = env.observation_spec()
|
||||
self.assertIsInstance(observation_spec, specs.Array)
|
||||
|
||||
wrapped = pixels.Wrapper(env, observation_key=pixel_key,
|
||||
pixels_only=pixels_only)
|
||||
wrapped_observation_spec = wrapped.observation_spec()
|
||||
self.assertIsInstance(wrapped_observation_spec, collections.OrderedDict)
|
||||
|
||||
if pixels_only:
|
||||
self.assertLen(wrapped_observation_spec, 1)
|
||||
self.assertEqual([pixel_key], list(wrapped_observation_spec.keys()))
|
||||
else:
|
||||
self.assertLen(wrapped_observation_spec, 2)
|
||||
self.assertEqual([pixels.STATE_KEY, pixel_key],
|
||||
list(wrapped_observation_spec.keys()))
|
||||
|
||||
time_step = wrapped.reset()
|
||||
|
||||
depth_observation = time_step.observation[pixel_key]
|
||||
wrapped_observation_spec[pixel_key].validate(depth_observation)
|
||||
|
||||
self.assertEqual(depth_observation.shape, (4, 5, 3))
|
||||
self.assertEqual(depth_observation.dtype, np.uint8)
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
BIN
DPI/log/video/999.mp4
Normal file
BIN
DPI/log/video/999.mp4
Normal file
Binary file not shown.
170
DPI/logger.py
Normal file
170
DPI/logger.py
Normal file
@ -0,0 +1,170 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from collections import defaultdict
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
import torch
|
||||
import torchvision
|
||||
import numpy as np
|
||||
from termcolor import colored
|
||||
|
||||
FORMAT_CONFIG = {
|
||||
'rl': {
|
||||
'train': [
|
||||
('episode', 'E', 'int'), ('step', 'S', 'int'),
|
||||
('duration', 'D', 'time'), ('episode_reward', 'R', 'float'),
|
||||
('batch_reward', 'BR', 'float'), ('actor_loss', 'ALOSS', 'float'),
|
||||
('critic_loss', 'CLOSS', 'float'), ('ae_loss', 'RLOSS', 'float'),
|
||||
('max_rat', 'MR', 'float')
|
||||
],
|
||||
'eval': [('step', 'S', 'int'), ('episode_reward', 'ER', 'float')]
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class AverageMeter(object):
|
||||
def __init__(self):
|
||||
self._sum = 0
|
||||
self._count = 0
|
||||
|
||||
def update(self, value, n=1):
|
||||
self._sum += value
|
||||
self._count += n
|
||||
|
||||
def value(self):
|
||||
return self._sum / max(1, self._count)
|
||||
|
||||
|
||||
class MetersGroup(object):
|
||||
def __init__(self, file_name, formating):
|
||||
self._file_name = file_name
|
||||
if os.path.exists(file_name):
|
||||
os.remove(file_name)
|
||||
self._formating = formating
|
||||
self._meters = defaultdict(AverageMeter)
|
||||
|
||||
def log(self, key, value, n=1):
|
||||
self._meters[key].update(value, n)
|
||||
|
||||
def _prime_meters(self):
|
||||
data = dict()
|
||||
for key, meter in self._meters.items():
|
||||
if key.startswith('train'):
|
||||
key = key[len('train') + 1:]
|
||||
else:
|
||||
key = key[len('eval') + 1:]
|
||||
key = key.replace('/', '_')
|
||||
data[key] = meter.value()
|
||||
return data
|
||||
|
||||
def _dump_to_file(self, data):
|
||||
with open(self._file_name, 'a') as f:
|
||||
f.write(json.dumps(data) + '\n')
|
||||
|
||||
def _format(self, key, value, ty):
|
||||
template = '%s: '
|
||||
if ty == 'int':
|
||||
template += '%d'
|
||||
elif ty == 'float':
|
||||
template += '%.04f'
|
||||
elif ty == 'time':
|
||||
template += '%.01f s'
|
||||
else:
|
||||
raise 'invalid format type: %s' % ty
|
||||
return template % (key, value)
|
||||
|
||||
def _dump_to_console(self, data, prefix):
|
||||
prefix = colored(prefix, 'yellow' if prefix == 'train' else 'green')
|
||||
pieces = ['{:5}'.format(prefix)]
|
||||
for key, disp_key, ty in self._formating:
|
||||
value = data.get(key, 0)
|
||||
pieces.append(self._format(disp_key, value, ty))
|
||||
print('| %s' % (' | '.join(pieces)))
|
||||
|
||||
def dump(self, step, prefix):
|
||||
if len(self._meters) == 0:
|
||||
return
|
||||
data = self._prime_meters()
|
||||
data['step'] = step
|
||||
self._dump_to_file(data)
|
||||
self._dump_to_console(data, prefix)
|
||||
self._meters.clear()
|
||||
|
||||
|
||||
class Logger(object):
|
||||
def __init__(self, log_dir, use_tb=True, config='rl'):
|
||||
self._log_dir = log_dir
|
||||
if use_tb:
|
||||
tb_dir = os.path.join(log_dir, 'tb')
|
||||
if os.path.exists(tb_dir):
|
||||
shutil.rmtree(tb_dir)
|
||||
self._sw = SummaryWriter(tb_dir)
|
||||
else:
|
||||
self._sw = None
|
||||
self._train_mg = MetersGroup(
|
||||
os.path.join(log_dir, 'train.log'),
|
||||
formating=FORMAT_CONFIG[config]['train']
|
||||
)
|
||||
self._eval_mg = MetersGroup(
|
||||
os.path.join(log_dir, 'eval.log'),
|
||||
formating=FORMAT_CONFIG[config]['eval']
|
||||
)
|
||||
|
||||
def _try_sw_log(self, key, value, step):
|
||||
if self._sw is not None:
|
||||
self._sw.add_scalar(key, value, step)
|
||||
|
||||
def _try_sw_log_image(self, key, image, step):
|
||||
if self._sw is not None:
|
||||
assert image.dim() == 3
|
||||
grid = torchvision.utils.make_grid(image.unsqueeze(1))
|
||||
self._sw.add_image(key, grid, step)
|
||||
|
||||
def _try_sw_log_video(self, key, frames, step):
|
||||
if self._sw is not None:
|
||||
frames = torch.from_numpy(np.array(frames))
|
||||
frames = frames.unsqueeze(0)
|
||||
self._sw.add_video(key, frames, step, fps=30)
|
||||
|
||||
def _try_sw_log_histogram(self, key, histogram, step):
|
||||
if self._sw is not None:
|
||||
self._sw.add_histogram(key, histogram, step)
|
||||
|
||||
def log(self, key, value, step, n=1):
|
||||
assert key.startswith('train') or key.startswith('eval')
|
||||
if type(value) == torch.Tensor:
|
||||
value = value.item()
|
||||
self._try_sw_log(key, value / n, step)
|
||||
mg = self._train_mg if key.startswith('train') else self._eval_mg
|
||||
mg.log(key, value, n)
|
||||
|
||||
def log_param(self, key, param, step):
|
||||
self.log_histogram(key + '_w', param.weight.data, step)
|
||||
if hasattr(param.weight, 'grad') and param.weight.grad is not None:
|
||||
self.log_histogram(key + '_w_g', param.weight.grad.data, step)
|
||||
if hasattr(param, 'bias'):
|
||||
self.log_histogram(key + '_b', param.bias.data, step)
|
||||
if hasattr(param.bias, 'grad') and param.bias.grad is not None:
|
||||
self.log_histogram(key + '_b_g', param.bias.grad.data, step)
|
||||
|
||||
def log_image(self, key, image, step):
|
||||
assert key.startswith('train') or key.startswith('eval')
|
||||
self._try_sw_log_image(key, image, step)
|
||||
|
||||
def log_video(self, key, frames, step):
|
||||
assert key.startswith('train') or key.startswith('eval')
|
||||
self._try_sw_log_video(key, frames, step)
|
||||
|
||||
def log_histogram(self, key, histogram, step):
|
||||
assert key.startswith('train') or key.startswith('eval')
|
||||
self._try_sw_log_histogram(key, histogram, step)
|
||||
|
||||
def dump(self, step):
|
||||
self._train_mg.dump(step, 'train')
|
||||
self._eval_mg.dump(step, 'eval')
|
183
DPI/models.py
Normal file
183
DPI/models.py
Normal file
@ -0,0 +1,183 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.distributions.normal import Normal
|
||||
|
||||
|
||||
class ObservationEncoder(nn.Module):
|
||||
def __init__(self, obs_shape, state_size, num_layers=4, num_filters=32, stride=None):
|
||||
super().__init__()
|
||||
|
||||
assert len(obs_shape) == 3
|
||||
|
||||
self.state_size = state_size
|
||||
|
||||
layers = []
|
||||
for i in range(num_layers):
|
||||
input_channels = obs_shape[0] if i == 0 else output_channels
|
||||
output_channels = num_filters * (2 ** i)
|
||||
layers.append(nn.Conv2d(in_channels=input_channels, out_channels= output_channels, kernel_size=4, stride=2))
|
||||
layers.append(nn.ReLU())
|
||||
|
||||
self.convs = nn.Sequential(*layers)
|
||||
|
||||
self.fc = nn.Linear(256 * 3 * 3, 2 * state_size)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.convs(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
x = self.fc(x)
|
||||
|
||||
# Mean and standard deviation
|
||||
mean, std = torch.chunk(x, 2, dim=-1)
|
||||
std = F.softplus(std)
|
||||
std = torch.clamp(std, min=0.0, max=1e5)
|
||||
|
||||
# Normal Distribution
|
||||
x = self.reparameterize(mean, std)
|
||||
return x
|
||||
|
||||
def reparameterize(self, mu, std):
|
||||
eps = torch.randn_like(std)
|
||||
return mu + eps * std
|
||||
|
||||
|
||||
class ObservationDecoder(nn.Module):
|
||||
def __init__(self, state_size, output_shape):
|
||||
super().__init__()
|
||||
|
||||
self.state_size = state_size
|
||||
self.output_shape = output_shape
|
||||
self.input_size = 256 * 3 * 3
|
||||
self.in_channels = [self.input_size, 256, 128, 64]
|
||||
self.out_channels = [256, 128, 64, 3]
|
||||
|
||||
if output_shape[1] == 84:
|
||||
self.kernels = [5, 7, 5, 6]
|
||||
self.output_padding = [1, 1, 1, 0]
|
||||
elif output_shape[1] == 64:
|
||||
self.kernels = [5, 5, 6, 6]
|
||||
self.output_padding = [0, 0, 0, 0]
|
||||
|
||||
self.dense = nn.Linear(state_size, self.input_size)
|
||||
|
||||
layers = []
|
||||
for i in range(len(self.kernels)):
|
||||
layers.append(nn.ConvTranspose2d(in_channels=self.in_channels[i], out_channels=self.out_channels[i],
|
||||
kernel_size=self.kernels[i], stride=2, output_padding=self.output_padding[i]))
|
||||
if i!=len(self.kernels)-1:
|
||||
layers.append(nn.ReLU())
|
||||
|
||||
self.convtranspose = nn.Sequential(*layers)
|
||||
|
||||
|
||||
def forward(self, features):
|
||||
out_batch_shape = features.shape[:-1]
|
||||
out = self.dense(features)
|
||||
out = torch.reshape(out, [-1, self.input_size, 1, 1])
|
||||
out = self.convtranspose(out)
|
||||
|
||||
mean = torch.reshape(out, (*out_batch_shape, *self.output_shape))
|
||||
out_dist = torch.distributions.independent.Independent(torch.distributions.Normal(mean, 1), len(self.output_shape))
|
||||
return out_dist
|
||||
|
||||
|
||||
class TransitionModel(nn.Module):
|
||||
def __init__(self, state_size, hidden_size, action_size, history_size):
|
||||
super().__init__()
|
||||
|
||||
self.state_size = state_size
|
||||
self.hidden_size = hidden_size
|
||||
self.action_size = action_size
|
||||
self.history_size = history_size
|
||||
self.act_fn = nn.ReLU()
|
||||
|
||||
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
|
||||
self.history_cell = nn.GRUCell(hidden_size + history_size, history_size)
|
||||
self.fc_state_prior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
|
||||
self.fc_state_posterior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
|
||||
|
||||
def init_states(self, batch_size, device):
|
||||
self.prev_state = torch.zeros(batch_size, self.state_size).to(device)
|
||||
self.prev_action = torch.zeros(batch_size, self.action_size).to(device)
|
||||
self.prev_history = torch.zeros(batch_size, self.history_size).to(device)
|
||||
|
||||
|
||||
def get_dist(self, mean, std):
|
||||
distribution = torch.distributions.Normal(mean, std)
|
||||
distribution = torch.distributions.independent.Independent(distribution, 1)
|
||||
return distribution
|
||||
|
||||
def imagine_step(self, prev_state, prev_action, prev_history):
|
||||
state_action = self.act_fn(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1)))
|
||||
history = self.history_cell(torch.cat([state_action, prev_history], dim=-1), prev_history)
|
||||
|
||||
state_prior = self.fc_state_prior(torch.cat([history, prev_state, prev_action], dim=-1))
|
||||
state_prior_mean, state_prior_std = torch.chunk(state_prior, 2, dim=-1)
|
||||
state_prior_std = F.softplus(state_prior_std)
|
||||
|
||||
sample_state_prior = self.reparemeterize(state_prior_mean, state_prior_std)
|
||||
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": history}
|
||||
return prior
|
||||
|
||||
def reparemeterize(self, mean, std):
|
||||
eps = torch.randn_like(std)
|
||||
return mean + eps * std
|
||||
|
||||
|
||||
class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
|
||||
def __init__(self, x_dim, y_dim, hidden_size):
|
||||
super(CLUBSample, self).__init__()
|
||||
self.p_mu = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_size//2, y_dim))
|
||||
|
||||
self.p_logvar = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_size//2, y_dim),
|
||||
nn.Tanh())
|
||||
|
||||
def get_mu_logvar(self, x_samples):
|
||||
mu = self.p_mu(x_samples)
|
||||
logvar = self.p_logvar(x_samples)
|
||||
return mu, logvar
|
||||
|
||||
|
||||
def loglikeli(self, x_samples, y_samples):
|
||||
mu, logvar = self.get_mu_logvar(x_samples)
|
||||
return (-(mu - y_samples)**2 /logvar.exp()-logvar).sum(dim=1).mean(dim=0)
|
||||
|
||||
|
||||
def forward(self, x_samples, y_samples):
|
||||
mu, logvar = self.get_mu_logvar(x_samples)
|
||||
|
||||
sample_size = x_samples.shape[0]
|
||||
#random_index = torch.randint(sample_size, (sample_size,)).long()
|
||||
random_index = torch.randperm(sample_size).long()
|
||||
|
||||
positive = - (mu - y_samples)**2 / logvar.exp()
|
||||
negative = - (mu - y_samples[random_index])**2 / logvar.exp()
|
||||
upper_bound = (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
|
||||
return upper_bound/2.
|
||||
|
||||
def learning_loss(self, x_samples, y_samples):
|
||||
return - self.loglikeli(x_samples, y_samples)
|
||||
|
||||
if __name__ == "__main__":
|
||||
encoder = ObservationEncoder((12,84,84), 256)
|
||||
x = torch.randn(100, 12, 84, 84)
|
||||
print(encoder(x).shape)
|
||||
|
||||
club = CLUBSample(256, 256 , 512)
|
||||
x = torch.randn(100, 256)
|
||||
y = torch.randn(100, 256)
|
||||
print(club.learning_loss(x, y))
|
||||
|
||||
x = torch.randn(100, 12, 84, 84)
|
||||
y = torch.randn(100, 12, 84, 84)
|
||||
x_enc = encoder(x)
|
||||
y_enc = encoder(y)
|
||||
print(x_enc.shape)
|
||||
print(y_enc.shape)
|
||||
print(club.learning_loss(x_enc, y_enc))
|
||||
|
196
DPI/train.py
Normal file
196
DPI/train.py
Normal file
@ -0,0 +1,196 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import argparse
|
||||
import os
|
||||
import gym
|
||||
import time
|
||||
import json
|
||||
import dmc2gym
|
||||
|
||||
import wandb
|
||||
import utils
|
||||
from utils import ReplayBuffer, make_env
|
||||
from models import ObservationEncoder, ObservationDecoder, TransitionModel, CLUBSample
|
||||
from logger import Logger
|
||||
from video import VideoRecorder
|
||||
|
||||
#from agent.baseline_agent import BaselineAgent
|
||||
#from agent.bisim_agent import BisimAgent
|
||||
#from agent.deepmdp_agent import DeepMDPAgent
|
||||
#from agents.navigation.carla_env import CarlaEnv
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
# environment
|
||||
parser.add_argument('--domain_name', default='cheetah')
|
||||
parser.add_argument('--task_name', default='run')
|
||||
parser.add_argument('--image_size', default=84, type=int)
|
||||
parser.add_argument('--channels', default=3, type=int)
|
||||
parser.add_argument('--action_repeat', default=1, type=int)
|
||||
parser.add_argument('--frame_stack', default=4, type=int)
|
||||
parser.add_argument('--resource_files', type=str)
|
||||
parser.add_argument('--eval_resource_files', type=str)
|
||||
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
|
||||
parser.add_argument('--total_frames', default=1000, type=int)
|
||||
# replay buffer
|
||||
parser.add_argument('--replay_buffer_capacity', default=100000, type=int)
|
||||
parser.add_argument('--episode_length', default=1000, type=int)
|
||||
# train
|
||||
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
|
||||
parser.add_argument('--init_steps', default=1000, type=int)
|
||||
parser.add_argument('--num_train_steps', default=1000, type=int)
|
||||
parser.add_argument('--batch_size', default=512, type=int)
|
||||
parser.add_argument('--state_size', default=256, type=int)
|
||||
parser.add_argument('--hidden_size', default=128, type=int)
|
||||
parser.add_argument('--history_size', default=128, type=int)
|
||||
parser.add_argument('--k', default=3, type=int, help='number of steps for inverse model')
|
||||
parser.add_argument('--load_encoder', default=None, type=str)
|
||||
# eval
|
||||
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
|
||||
parser.add_argument('--num_eval_episodes', default=20, type=int)
|
||||
# critic
|
||||
parser.add_argument('--critic_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--critic_beta', default=0.9, type=float)
|
||||
parser.add_argument('--critic_tau', default=0.005, type=float)
|
||||
parser.add_argument('--critic_target_update_freq', default=2, type=int)
|
||||
# actor
|
||||
parser.add_argument('--actor_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--actor_beta', default=0.9, type=float)
|
||||
parser.add_argument('--actor_log_std_min', default=-10, type=float)
|
||||
parser.add_argument('--actor_log_std_max', default=2, type=float)
|
||||
parser.add_argument('--actor_update_freq', default=2, type=int)
|
||||
# encoder/decoder
|
||||
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
|
||||
parser.add_argument('--encoder_feature_dim', default=50, type=int)
|
||||
parser.add_argument('--encoder_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--encoder_tau', default=0.005, type=float)
|
||||
parser.add_argument('--encoder_stride', default=1, type=int)
|
||||
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
|
||||
parser.add_argument('--decoder_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--decoder_update_freq', default=1, type=int)
|
||||
parser.add_argument('--decoder_weight_lambda', default=0.0, type=float)
|
||||
parser.add_argument('--num_layers', default=4, type=int)
|
||||
parser.add_argument('--num_filters', default=32, type=int)
|
||||
# sac
|
||||
parser.add_argument('--discount', default=0.99, type=float)
|
||||
parser.add_argument('--init_temperature', default=0.01, type=float)
|
||||
parser.add_argument('--alpha_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--alpha_beta', default=0.9, type=float)
|
||||
# misc
|
||||
parser.add_argument('--seed', default=1, type=int)
|
||||
parser.add_argument('--seed_steps', default=5000, type=int)
|
||||
parser.add_argument('--work_dir', default='.', type=str)
|
||||
parser.add_argument('--save_tb', default=False, action='store_true')
|
||||
parser.add_argument('--save_model', default=False, action='store_true')
|
||||
parser.add_argument('--save_buffer', default=False, action='store_true')
|
||||
parser.add_argument('--save_video', default=False, action='store_true')
|
||||
parser.add_argument('--transition_model_type', default='', type=str, choices=['', 'deterministic', 'probabilistic', 'ensemble'])
|
||||
parser.add_argument('--render', default=False, action='store_true')
|
||||
parser.add_argument('--port', default=2000, type=int)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class DPI:
|
||||
def __init__(self, args):
|
||||
# wandb config
|
||||
#run = wandb.init(project="dpi")
|
||||
|
||||
self.args = args
|
||||
|
||||
# environment setup
|
||||
self.env = make_env(self.args)
|
||||
self.env.seed(self.args.seed)
|
||||
|
||||
# stack several consecutive frames together
|
||||
if self.args.encoder_type.startswith('pixel'):
|
||||
self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
|
||||
|
||||
# create replay buffer
|
||||
self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity,
|
||||
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size),
|
||||
action_size=self.env.action_space.shape[0],
|
||||
seq_len=self.args.episode_length,
|
||||
batch_size=args.batch_size)
|
||||
|
||||
# create work directory
|
||||
utils.make_dir(self.args.work_dir)
|
||||
video_dir = utils.make_dir(os.path.join(self.args.work_dir, 'video'))
|
||||
model_dir = utils.make_dir(os.path.join(self.args.work_dir, 'model'))
|
||||
buffer_dir = utils.make_dir(os.path.join(self.args.work_dir, 'buffer'))
|
||||
|
||||
# create video recorder
|
||||
#video = VideoRecorder(video_dir if args.save_video else None, resource_files=args.resource_files)
|
||||
#video.init(enabled=True)
|
||||
|
||||
# create models
|
||||
self.build_models(use_saved=False, saved_model_dir=model_dir)
|
||||
|
||||
def build_models(self, use_saved, saved_model_dir=None):
|
||||
self.obs_encoder = ObservationEncoder(
|
||||
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (12,84,84)
|
||||
state_size=self.args.state_size # 128
|
||||
)
|
||||
|
||||
self.obs_decoder = ObservationDecoder(
|
||||
state_size=self.args.state_size, # 128
|
||||
output_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size) # (12,84,84)
|
||||
)
|
||||
|
||||
self.transition_model = TransitionModel(
|
||||
state_size=self.args.state_size, # 128
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
action_size=self.env.action_space.shape[0], # 6
|
||||
history_size=self.args.history_size, # 128
|
||||
)
|
||||
|
||||
# model parameters
|
||||
self.model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_decoder.parameters()) + list(self.transition_model.parameters())
|
||||
|
||||
# optimizer
|
||||
self.optimizer = torch.optim.Adam(self.model_parameters, lr=self.args.encoder_lr)
|
||||
|
||||
if use_saved:
|
||||
self._use_saved_models(saved_model_dir)
|
||||
|
||||
def _use_saved_models(self, saved_model_dir):
|
||||
self.obs_encoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_encoder.pt')))
|
||||
self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt')))
|
||||
self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt')))
|
||||
|
||||
def collect_random_episodes(self, episodes):
|
||||
obs = self.env.reset()
|
||||
done = False
|
||||
|
||||
for episode_count in range(episodes):
|
||||
for i in range(self.args.episode_length):
|
||||
action = self.env.action_space.sample()
|
||||
next_obs, _, done, _ = self.env.step(action)
|
||||
|
||||
self.data_buffer.add(obs, action, next_obs, episode_count+1, done)
|
||||
if done:
|
||||
obs = self.env.reset()
|
||||
done=False
|
||||
else:
|
||||
obs = next_obs
|
||||
print("Collected {} random episodes".format(episode_count+1))
|
||||
#if args.save_video:
|
||||
# video.record(env)
|
||||
#video.save('%d.mp4' % step)
|
||||
#video.close()
|
||||
|
||||
def upper_bound_minimization(self):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
|
||||
dpi = DPI(args)
|
||||
dpi.collect_random_episodes(episodes=5)
|
170
DPI/utils.py
Normal file
170
DPI/utils.py
Normal file
@ -0,0 +1,170 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import os
|
||||
import torch
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
|
||||
import gym
|
||||
import dmc2gym
|
||||
|
||||
import random
|
||||
from collections import deque
|
||||
|
||||
|
||||
class eval_mode(object):
|
||||
def __init__(self, *models):
|
||||
self.models = models
|
||||
|
||||
def __enter__(self):
|
||||
self.prev_states = []
|
||||
for model in self.models:
|
||||
self.prev_states.append(model.training)
|
||||
model.train(False)
|
||||
|
||||
def __exit__(self, *args):
|
||||
for model, state in zip(self.models, self.prev_states):
|
||||
model.train(state)
|
||||
return False
|
||||
|
||||
|
||||
def soft_update_params(net, target_net, tau):
|
||||
for param, target_param in zip(net.parameters(), target_net.parameters()):
|
||||
target_param.data.copy_(
|
||||
tau * param.data + (1 - tau) * target_param.data
|
||||
)
|
||||
|
||||
|
||||
def set_seed_everywhere(seed):
|
||||
torch.manual_seed(seed)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
np.random.seed(seed)
|
||||
random.seed(seed)
|
||||
|
||||
|
||||
def module_hash(module):
|
||||
result = 0
|
||||
for tensor in module.state_dict().values():
|
||||
result += tensor.sum().item()
|
||||
return result
|
||||
|
||||
|
||||
def make_dir(dir_path):
|
||||
try:
|
||||
os.mkdir(dir_path)
|
||||
except OSError:
|
||||
pass
|
||||
return dir_path
|
||||
|
||||
|
||||
def preprocess_obs(obs, bits=5):
|
||||
"""Preprocessing image, see https://arxiv.org/abs/1807.03039."""
|
||||
bins = 2**bits
|
||||
assert obs.dtype == torch.float32
|
||||
if bits < 8:
|
||||
obs = torch.floor(obs / 2**(8 - bits))
|
||||
obs = obs / bins
|
||||
obs = obs + torch.rand_like(obs) / bins
|
||||
obs = obs - 0.5
|
||||
return obs
|
||||
|
||||
|
||||
class FrameStack(gym.Wrapper):
|
||||
def __init__(self, env, k):
|
||||
gym.Wrapper.__init__(self, env)
|
||||
self._k = k
|
||||
self._frames = deque([], maxlen=k)
|
||||
shp = env.observation_space.shape
|
||||
self.observation_space = gym.spaces.Box(
|
||||
low=0,
|
||||
high=1,
|
||||
shape=((shp[0] * k,) + shp[1:]),
|
||||
dtype=env.observation_space.dtype
|
||||
)
|
||||
self._max_episode_steps = env._max_episode_steps
|
||||
|
||||
def reset(self):
|
||||
obs = self.env.reset()
|
||||
for _ in range(self._k):
|
||||
self._frames.append(obs)
|
||||
return self._get_obs()
|
||||
|
||||
def step(self, action):
|
||||
obs, reward, done, info = self.env.step(action)
|
||||
self._frames.append(obs)
|
||||
return self._get_obs(), reward, done, info
|
||||
|
||||
def _get_obs(self):
|
||||
assert len(self._frames) == self._k
|
||||
return np.concatenate(list(self._frames), axis=0)
|
||||
|
||||
|
||||
class ReplayBuffer:
|
||||
def __init__(self, size, obs_shape, action_size, seq_len, batch_size):
|
||||
self.size = size
|
||||
self.obs_shape = obs_shape
|
||||
self.action_size = action_size
|
||||
self.seq_len = seq_len
|
||||
self.batch_size = batch_size
|
||||
self.idx = 0
|
||||
self.full = False
|
||||
self.observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
||||
self.actions = np.empty((size, action_size), dtype=np.float32)
|
||||
self.next_observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
||||
self.episode_count = np.zeros((size,), dtype=np.uint8)
|
||||
self.terminals = np.empty((size,), dtype=np.float32)
|
||||
self.steps, self.episodes = 0, 0
|
||||
|
||||
def add(self, obs, ac, next_obs, episode_count, done):
|
||||
self.observations[self.idx] = obs
|
||||
self.actions[self.idx] = ac
|
||||
self.next_observations[self.idx] = next_obs
|
||||
self.episode_count[self.idx] = episode_count
|
||||
self.terminals[self.idx] = done
|
||||
self.idx = (self.idx + 1) % self.size
|
||||
self.full = self.full or self.idx == 0
|
||||
self.steps += 1
|
||||
self.episodes = self.episodes + (1 if done else 0)
|
||||
|
||||
def _sample_idx(self, L):
|
||||
valid_idx = False
|
||||
while not valid_idx:
|
||||
idx = np.random.randint(0, self.size if self.full else self.idx - L)
|
||||
idxs = np.arange(idx, idx + L) % self.size
|
||||
valid_idx = not self.idx in idxs[1:]
|
||||
return idxs
|
||||
|
||||
def _retrieve_batch(self, idxs, n, L):
|
||||
vec_idxs = idxs.transpose().reshape(-1) # Unroll indices
|
||||
observations = self.observations[vec_idxs]
|
||||
next_observations = self.next_observations[vec_idxs]
|
||||
return observations.reshape(L, n, *observations.shape[1:]), self.actions[vec_idxs].reshape(L, n, -1), observations.reshape(L, n, *next_observations.shape[1:]), \
|
||||
self.rewards[vec_idxs].reshape(L, n), self.terminals[vec_idxs].reshape(L, n)
|
||||
|
||||
def sample(self):
|
||||
n = self.batch_size
|
||||
l = self.seq_len
|
||||
obs,acs,rews,terms= self._retrieve_batch(np.asarray([self._sample_idx(l) for _ in range(n)]), n, l)
|
||||
return obs,acs,rews,terms
|
||||
|
||||
|
||||
def make_env(args):
|
||||
env = dmc2gym.make(
|
||||
domain_name=args.domain_name,
|
||||
task_name=args.task_name,
|
||||
resource_files=args.resource_files,
|
||||
img_source=args.img_source,
|
||||
total_frames=args.total_frames,
|
||||
seed=args.seed,
|
||||
visualize_reward=False,
|
||||
from_pixels=(args.encoder_type == 'pixel'),
|
||||
height=args.image_size,
|
||||
width=args.image_size,
|
||||
frame_skip=args.action_repeat
|
||||
)
|
||||
return env
|
60
DPI/video.py
Normal file
60
DPI/video.py
Normal file
@ -0,0 +1,60 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import imageio
|
||||
import os
|
||||
import numpy as np
|
||||
import glob
|
||||
|
||||
from dmc2gym.natural_imgsource import RandomVideoSource
|
||||
|
||||
|
||||
class VideoRecorder(object):
|
||||
def __init__(self, dir_name, resource_files=None, height=256, width=256, camera_id=0, fps=30):
|
||||
self.dir_name = dir_name
|
||||
self.height = height
|
||||
self.width = width
|
||||
self.camera_id = camera_id
|
||||
self.fps = fps
|
||||
self.frames = []
|
||||
self.resource_files = resource_files
|
||||
if resource_files:
|
||||
files = glob.glob(os.path.expanduser(resource_files))
|
||||
self._bg_source = RandomVideoSource((height, width), files, grayscale=False, total_frames=1000)
|
||||
else:
|
||||
self._bg_source = None
|
||||
|
||||
def init(self, enabled=True):
|
||||
self.frames = []
|
||||
self.enabled = self.dir_name is not None and enabled
|
||||
|
||||
def record(self, env):
|
||||
if self.enabled:
|
||||
frame = env.render(
|
||||
mode='rgb_array',
|
||||
height=self.height,
|
||||
width=self.width,
|
||||
camera_id=self.camera_id
|
||||
)
|
||||
if self._bg_source:
|
||||
mask = np.logical_and((frame[:, :, 2] > frame[:, :, 1]), (frame[:, :, 2] > frame[:, :, 0])) # hardcoded for dmc
|
||||
bg = self._bg_source.get_image()
|
||||
frame[mask] = bg[mask]
|
||||
self.frames.append(frame)
|
||||
|
||||
def record_from_obs(self, obs):
|
||||
if self.enabled:
|
||||
frame = obs
|
||||
if self._bg_source:
|
||||
mask = np.logical_and((frame[:, :, 2] > frame[:, :, 1]), (frame[:, :, 2] > frame[:, :, 0]))
|
||||
bg = self._bg_source.get_image()
|
||||
frame[mask] = bg[mask]
|
||||
self.frames.append(frame.transpose(1, 2, 0))
|
||||
|
||||
def save(self, file_name):
|
||||
if self.enabled:
|
||||
path = os.path.join(self.dir_name, file_name)
|
||||
imageio.mimsave(path, self.frames, fps=self.fps)
|
Loading…
Reference in New Issue
Block a user