Curiosity/DPI/models.py

324 lines
12 KiB
Python
Raw Normal View History

2023-03-31 15:59:42 +00:00
import numpy as np
2023-03-23 14:05:28 +00:00
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.normal import Normal
class ObservationEncoder(nn.Module):
def __init__(self, obs_shape, state_size, num_layers=4, num_filters=32, stride=None):
super().__init__()
assert len(obs_shape) == 3
self.state_size = state_size
layers = []
for i in range(num_layers):
input_channels = obs_shape[0] if i == 0 else output_channels
output_channels = num_filters * (2 ** i)
layers.append(nn.Conv2d(in_channels=input_channels, out_channels= output_channels, kernel_size=4, stride=2))
layers.append(nn.ReLU())
self.convs = nn.Sequential(*layers)
self.fc = nn.Linear(256 * 3 * 3, 2 * state_size)
def forward(self, x):
x = self.convs(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
# Mean and standard deviation
mean, std = torch.chunk(x, 2, dim=-1)
std = F.softplus(std)
std = torch.clamp(std, min=0.0, max=1e5)
# Normal Distribution
dist = self.get_dist(mean, std)
# Sampling via reparameterization Trick
2023-03-23 14:05:28 +00:00
x = self.reparameterize(mean, std)
encoded_output = {"sample": x, "distribution": dist}
return encoded_output
2023-03-23 14:05:28 +00:00
def reparameterize(self, mu, std):
eps = torch.randn_like(std)
return mu + eps * std
def get_dist(self, mean, std):
distribution = torch.distributions.Normal(mean, std)
distribution = torch.distributions.independent.Independent(distribution, 1)
return distribution
2023-03-23 14:05:28 +00:00
class ObservationDecoder(nn.Module):
def __init__(self, state_size, output_shape):
super().__init__()
self.state_size = state_size
self.output_shape = output_shape
self.input_size = 256 * 3 * 3
self.in_channels = [self.input_size, 256, 128, 64]
self.out_channels = [256, 128, 64, 3]
if output_shape[1] == 84:
self.kernels = [5, 7, 5, 6]
self.output_padding = [1, 1, 1, 0]
elif output_shape[1] == 64:
self.kernels = [5, 5, 6, 6]
self.output_padding = [0, 0, 0, 0]
self.dense = nn.Linear(state_size, self.input_size)
layers = []
for i in range(len(self.kernels)):
layers.append(nn.ConvTranspose2d(in_channels=self.in_channels[i], out_channels=self.out_channels[i],
kernel_size=self.kernels[i], stride=2, output_padding=self.output_padding[i]))
if i!=len(self.kernels)-1:
layers.append(nn.ReLU())
self.convtranspose = nn.Sequential(*layers)
def forward(self, features):
out_batch_shape = features.shape[:-1]
out = self.dense(features)
out = torch.reshape(out, [-1, self.input_size, 1, 1])
out = self.convtranspose(out)
mean = torch.reshape(out, (*out_batch_shape, *self.output_shape))
out_dist = torch.distributions.independent.Independent(torch.distributions.Normal(mean, 1), len(self.output_shape))
return out_dist
2023-03-31 15:59:42 +00:00
class ActionDecoder(nn.Module):
def __init__(self, state_size, hidden_size, action_size, num_layers=5):
super().__init__()
self.state_size = state_size
self.hidden_size = hidden_size
self.action_size = action_size
self.num_layers = num_layers
self._min_std=torch.Tensor([1e-4])[0]
self._init_std=torch.Tensor([5])[0]
self._mean_scale=torch.Tensor([5])[0]
layers = []
for i in range(self.num_layers):
input_channels = state_size if i == 0 else self.hidden_size
output_channels = self.hidden_size if i!= self.num_layers-1 else 2*action_size
layers.append(nn.Linear(input_channels, output_channels))
layers.append(nn.ReLU())
self.action_model = nn.Sequential(*layers)
def get_dist(self, mean, std):
distribution = torch.distributions.Normal(mean, std)
distribution = torch.distributions.transformed_distribution.TransformedDistribution(distribution, TanhBijector())
distribution = torch.distributions.independent.Independent(distribution, 1)
return distribution
def forward(self, features):
out = self.action_model(features)
mean, std = torch.chunk(out, 2, dim=-1)
raw_init_std = torch.log(torch.exp(self._init_std) - 1)
action_mean = self._mean_scale * torch.tanh(mean / self._mean_scale)
action_std = F.softplus(std + raw_init_std) + self._min_std
dist = self.get_dist(action_mean, action_std)
sample = dist.rsample()
return sample
2023-03-31 16:38:51 +00:00
class ValueModel(nn.Module):
def __init__(self, state_size, hidden_size, num_layers=4):
super().__init__()
self.state_size = state_size
self.hidden_size = hidden_size
self.num_layers = num_layers
layers = []
for i in range(self.num_layers):
input_channels = state_size if i == 0 else self.hidden_size
output_channels = self.hidden_size if i!= self.num_layers-1 else 1
layers.append(nn.Linear(input_channels, output_channels))
layers.append(nn.ReLU())
self.value_model = nn.Sequential(*layers)
def forward(self, state):
value = self.value_model(state)
2023-03-31 17:12:46 +00:00
value_dist = torch.distributions.independent.Independent(torch.distributions.Normal(value, 1), 1)
return value_dist
2023-03-31 16:38:51 +00:00
2023-03-31 15:59:42 +00:00
2023-03-23 14:05:28 +00:00
class TransitionModel(nn.Module):
def __init__(self, state_size, hidden_size, action_size, history_size):
super().__init__()
self.state_size = state_size
self.hidden_size = hidden_size
self.action_size = action_size
self.history_size = history_size
self.act_fn = nn.ReLU()
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
self.history_cell = nn.GRUCell(hidden_size + history_size, history_size)
self.fc_state_prior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
self.fc_state_posterior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
def init_states(self, batch_size, device):
self.prev_state = torch.zeros(batch_size, self.state_size).to(device)
self.prev_action = torch.zeros(batch_size, self.action_size).to(device)
self.prev_history = torch.zeros(batch_size, self.history_size).to(device)
def get_dist(self, mean, std):
distribution = torch.distributions.Normal(mean, std)
distribution = torch.distributions.independent.Independent(distribution, 1)
return distribution
def imagine_step(self, prev_state, prev_action, prev_history):
state_action = self.act_fn(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1)))
history = self.history_cell(torch.cat([state_action, prev_history], dim=-1), prev_history)
state_prior = self.fc_state_prior(torch.cat([history, prev_state, prev_action], dim=-1))
state_prior_mean, state_prior_std = torch.chunk(state_prior, 2, dim=-1)
state_prior_std = F.softplus(state_prior_std)
# Normal Distribution
state_prior_dist = self.get_dist(state_prior_mean, state_prior_std)
# Sampling via reparameterization Trick
2023-03-23 14:05:28 +00:00
sample_state_prior = self.reparemeterize(state_prior_mean, state_prior_std)
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": history, "distribution": state_prior_dist}
2023-03-23 14:05:28 +00:00
return prior
2023-04-09 16:23:16 +00:00
def stack_states(self, states, dim=0):
s = dict(
mean = torch.stack([state['mean'] for state in states], dim=dim),
std = torch.stack([state['std'] for state in states], dim=dim),
sample = torch.stack([state['sample'] for state in states], dim=dim),
history = torch.stack([state['history'] for state in states], dim=dim),)
dist = dict(distribution = [state['distribution'] for state in states])
s.update(dist)
return s
def imagine_rollout(self, state, action, history, horizon):
imagined_priors = []
for i in range(horizon):
prior = self.imagine_step(state, action, history)
state = prior["sample"]
history = prior["history"]
imagined_priors.append(prior)
imagined_priors = self.stack_states(imagined_priors, dim=0)
return imagined_priors
2023-03-23 14:05:28 +00:00
def reparemeterize(self, mean, std):
eps = torch.randn_like(std)
return mean + eps * std
2023-03-31 15:59:42 +00:00
class TanhBijector(torch.distributions.Transform):
def __init__(self):
super().__init__()
self.bijective = True
self.domain = torch.distributions.constraints.real
self.codomain = torch.distributions.constraints.interval(-1.0, 1.0)
@property
def sign(self): return 1.
def _call(self, x): return torch.tanh(x)
def atanh(self, x):
return 0.5 * torch.log((1 + x) / (1 - x))
def _inverse(self, y: torch.Tensor):
y = torch.where(
(torch.abs(y) <= 1.),
torch.clamp(y, -0.99999997, 0.99999997),
y)
y = self.atanh(y)
return y
def log_abs_det_jacobian(self, x, y):
#return 2. * (np.log(2) - x - F.softplus(-2. * x))
return 2.0 * (torch.log(torch.tensor([2.0])) - x - F.softplus(-2.0 * x))
2023-03-23 14:05:28 +00:00
2023-04-02 16:52:26 +00:00
class ProjectionHead(nn.Module):
def __init__(self, state_size, action_size, hidden_size):
super(ProjectionHead, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.hidden_size = hidden_size
self.projection_model = nn.Sequential(
nn.Linear(state_size + action_size, hidden_size),
nn.LayerNorm(hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.LayerNorm(hidden_size),
)
def forward(self, state, action):
x = torch.cat([state, action], dim=-1)
x = self.projection_model(x)
return x
class ContrastiveHead(nn.Module):
def __init__(self, hidden_size, temperature=1):
super(ContrastiveHead, self).__init__()
self.hidden_size = hidden_size
self.temperature = temperature
self.W = nn.Parameter(torch.rand(self.hidden_size, self.hidden_size))
def forward(self, z_a, z_pos):
Wz = torch.matmul(self.W, z_pos.T) # (z_dim,B)
logits = torch.matmul(z_a, Wz) # (B,B)
logits = logits - torch.max(logits, 1)[0][:, None]
logits = logits * self.temperature
2023-04-09 16:23:16 +00:00
return logits
class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
def __init__(self, last_states, current_states, negative_current_states, predicted_current_states):
super(CLUBSample, self).__init__()
self.last_states = last_states
self.current_states = current_states
self.negative_current_states = negative_current_states
self.predicted_current_states = predicted_current_states
def get_mu_var_samples(self, state_dict):
dist = state_dict["distribution"]
sample = dist.sample() # Use state_dict["sample"] if you want to use the same sample for all the losses
mu = dist.mean
var = dist.variance
return mu, var, sample
def loglikeli(self):
_, _, pred_sample = self.get_mu_var_samples(self.predicted_current_states)
mu_curr, var_curr, _ = self.get_mu_var_samples(self.current_states)
logvar_curr = torch.log(var_curr)
return (-(mu_curr - pred_sample)**2 /var_curr-logvar_curr).sum(dim=1).mean(dim=0)
def forward(self):
_, _, pred_sample = self.get_mu_var_samples(self.predicted_current_states)
mu_curr, var_curr, _ = self.get_mu_var_samples(self.current_states)
mu_neg, var_neg, _ = self.get_mu_var_samples(self.negative_current_states)
pos = (-(mu_curr - pred_sample)**2 /var_curr).sum(dim=1).mean(dim=0)
neg = (-(mu_neg - pred_sample)**2 /var_neg).sum(dim=1).mean(dim=0)
upper_bound = pos - neg
return upper_bound/2
def learning_loss(self):
return - self.loglikeli()
if "__name__ == __main__":
pass