Replacing Relu with LeakyRelu
This commit is contained in:
parent
c8fdd11d8c
commit
3e9d8f7a9c
@ -79,7 +79,7 @@ class ObservationDecoder(nn.Module):
|
||||
layers.append(nn.ConvTranspose2d(in_channels=self.in_channels[i], out_channels=self.out_channels[i],
|
||||
kernel_size=self.kernels[i], stride=2, output_padding=self.output_padding[i]))
|
||||
if i!=len(self.kernels)-1:
|
||||
layers.append(nn.ReLU())
|
||||
layers.append(nn.LeakyReLU())
|
||||
|
||||
self.convtranspose = nn.Sequential(*layers)
|
||||
|
||||
@ -110,7 +110,7 @@ class Actor(nn.Module):
|
||||
input_channels = state_size if i == 0 else self.hidden_size
|
||||
output_channels = self.hidden_size if i!= self.num_layers-1 else 2*action_size
|
||||
layers.append(nn.Linear(input_channels, output_channels))
|
||||
layers.append(nn.ReLU())
|
||||
layers.append(nn.LeakyReLU())
|
||||
self.action_model = nn.Sequential(*layers)
|
||||
|
||||
def get_dist(self, mean, std):
|
||||
@ -144,7 +144,7 @@ class ValueModel(nn.Module):
|
||||
input_channels = state_size if i == 0 else self.hidden_size
|
||||
output_channels = self.hidden_size if i!= self.num_layers-1 else 1
|
||||
layers.append(nn.Linear(input_channels, output_channels))
|
||||
layers.append(nn.ReLU())
|
||||
layers.append(nn.LeakyReLU())
|
||||
self.value_model = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, state):
|
||||
@ -158,9 +158,9 @@ class RewardModel(nn.Module):
|
||||
super().__init__()
|
||||
self.reward_model = nn.Sequential(
|
||||
nn.Linear(state_size, hidden_size),
|
||||
nn.ReLU(),
|
||||
nn.LeakyReLU(),
|
||||
nn.Linear(hidden_size, hidden_size),
|
||||
nn.ReLU(),
|
||||
nn.LeakyReLU(),
|
||||
nn.Linear(hidden_size, 1)
|
||||
)
|
||||
|
||||
@ -177,7 +177,7 @@ class TransitionModel(nn.Module):
|
||||
self.hidden_size = hidden_size
|
||||
self.action_size = action_size
|
||||
self.history_size = history_size
|
||||
self.act_fn = nn.ReLU()
|
||||
self.act_fn = nn.LeakyReLU()
|
||||
|
||||
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
|
||||
self.history_cell = nn.GRUCell(hidden_size + history_size, history_size)
|
||||
@ -274,7 +274,7 @@ class ProjectionHead(nn.Module):
|
||||
self.projection_model = nn.Sequential(
|
||||
nn.Linear(state_size + action_size, hidden_size),
|
||||
nn.LayerNorm(hidden_size),
|
||||
nn.ReLU(),
|
||||
nn.LeakyReLU(),
|
||||
nn.Linear(hidden_size, hidden_size),
|
||||
nn.LayerNorm(hidden_size),
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user