Curiosity/DPI/train.py

777 lines
37 KiB
Python
Raw Normal View History

2023-03-23 14:05:28 +00:00
import os
import gc
import copy
import tqdm
2023-03-23 14:05:28 +00:00
import wandb
import random
import argparse
import numpy as np
2023-04-20 12:55:54 +00:00
from collections import OrderedDict
2023-03-23 14:05:28 +00:00
import utils
2023-04-22 11:07:22 +00:00
from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image, shuffle_along_axis, Logger
2023-04-20 12:55:54 +00:00
from replay_buffer import ReplayBuffer
2023-04-10 18:18:17 +00:00
from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample
2023-03-23 14:05:28 +00:00
from video import VideoRecorder
from dmc2gym.wrappers import set_global_var
2023-03-23 14:05:28 +00:00
import torch
2023-04-10 18:18:17 +00:00
import torch.nn as nn
import torch.nn.functional as F
2023-04-09 16:22:41 +00:00
import torchvision.transforms as T
from torch.utils.tensorboard import SummaryWriter
2023-03-23 14:05:28 +00:00
#from agent.baseline_agent import BaselineAgent
#from agent.bisim_agent import BisimAgent
#from agent.deepmdp_agent import DeepMDPAgent
#from agents.navigation.carla_env import CarlaEnv
def parse_args():
parser = argparse.ArgumentParser()
# environment
parser.add_argument('--domain_name', default='cheetah')
parser.add_argument('--version', default=1, type=int)
2023-03-23 14:05:28 +00:00
parser.add_argument('--task_name', default='run')
parser.add_argument('--image_size', default=84, type=int)
parser.add_argument('--channels', default=3, type=int)
parser.add_argument('--action_repeat', default=2, type=int)
2023-04-09 16:22:41 +00:00
parser.add_argument('--frame_stack', default=3, type=int)
parser.add_argument('--collection_interval', default=100, type=int)
2023-03-23 14:05:28 +00:00
parser.add_argument('--resource_files', type=str)
parser.add_argument('--eval_resource_files', type=str)
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
2023-04-20 12:55:54 +00:00
parser.add_argument('--total_frames', default=5000, type=int) # 10000
parser.add_argument('--high_noise', action='store_true')
2023-03-23 14:05:28 +00:00
# replay buffer
parser.add_argument('--replay_buffer_capacity', default=50000, type=int) #50000
2023-04-20 12:55:54 +00:00
parser.add_argument('--episode_length', default=51, type=int)
2023-03-23 14:05:28 +00:00
# train
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
2023-04-24 15:42:37 +00:00
parser.add_argument('--init_steps', default=5000, type=int)
2023-04-15 15:01:57 +00:00
parser.add_argument('--num_train_steps', default=100000, type=int)
2023-04-22 11:07:22 +00:00
parser.add_argument('--update_steps', default=100, type=int)
2023-04-24 15:42:37 +00:00
parser.add_argument('--batch_size', default=64, type=int)
2023-04-20 12:55:54 +00:00
parser.add_argument('--state_size', default=50, type=int)
parser.add_argument('--hidden_size', default=512, type=int)
2023-04-22 11:07:22 +00:00
parser.add_argument('--history_size', default=256, type=int)
2023-04-18 14:47:30 +00:00
parser.add_argument('--episode_collection', default=5, type=int)
2023-04-20 12:55:54 +00:00
parser.add_argument('--episodes_buffer', default=5, type=int, help='Initial number of episodes to store in the buffer')
parser.add_argument('--num-units', type=int, default=50, help='num hidden units for reward/value/discount models')
2023-03-23 14:05:28 +00:00
parser.add_argument('--load_encoder', default=None, type=str)
2023-04-20 12:55:54 +00:00
parser.add_argument('--imagine_horizon', default=15, type=str)
2023-04-10 18:18:17 +00:00
parser.add_argument('--grad_clip_norm', type=float, default=100.0, help='Gradient clipping norm')
2023-03-23 14:05:28 +00:00
# eval
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
parser.add_argument('--num_eval_episodes', default=20, type=int)
2023-04-15 15:01:57 +00:00
parser.add_argument('--evaluation_interval', default=10000, type=int) # TODO: master had 10000
2023-04-10 18:18:17 +00:00
# value
2023-04-24 15:42:37 +00:00
parser.add_argument('--value_lr', default=8e-5, type=float)
parser.add_argument('--value_target_update_freq', default=100, type=int)
2023-04-12 07:33:42 +00:00
parser.add_argument('--td_lambda', default=0.95, type=int)
2023-03-23 14:05:28 +00:00
# actor
2023-04-24 15:42:37 +00:00
parser.add_argument('--actor_lr', default=8e-5, type=float)
2023-03-23 14:05:28 +00:00
parser.add_argument('--actor_beta', default=0.9, type=float)
parser.add_argument('--actor_log_std_min', default=-10, type=float)
parser.add_argument('--actor_log_std_max', default=2, type=float)
parser.add_argument('--actor_update_freq', default=2, type=int)
2023-04-10 18:18:17 +00:00
# world/encoder/decoder
2023-03-23 14:05:28 +00:00
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
2023-04-24 15:42:37 +00:00
parser.add_argument('--world_model_lr', default=6e-5, type=float)
parser.add_argument('--decoder_lr', default=6e-4, type=float)
parser.add_argument('--reward_lr', default=6e-5, type=float)
2023-04-22 11:07:22 +00:00
parser.add_argument('--encoder_tau', default=0.001, type=float)
2023-03-23 14:05:28 +00:00
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
parser.add_argument('--num_layers', default=4, type=int)
parser.add_argument('--num_filters', default=32, type=int)
2023-04-10 18:18:17 +00:00
parser.add_argument('--aug', action='store_true')
2023-03-23 14:05:28 +00:00
# sac
2023-04-22 11:07:22 +00:00
parser.add_argument('--discount', default=0.99, type=float)
2023-03-23 14:05:28 +00:00
# misc
parser.add_argument('--seed', default=1, type=int)
2023-04-12 07:33:42 +00:00
parser.add_argument('--logging_freq', default=100, type=int)
2023-04-15 15:01:57 +00:00
parser.add_argument('--saving_interval', default=2500, type=int)
2023-03-23 14:05:28 +00:00
parser.add_argument('--work_dir', default='.', type=str)
parser.add_argument('--save_tb', default=False, action='store_true')
parser.add_argument('--save_model', default=False, action='store_true')
parser.add_argument('--save_buffer', default=False, action='store_true')
parser.add_argument('--save_video', default=False, action='store_true')
parser.add_argument('--transition_model_type', default='', type=str, choices=['', 'deterministic', 'probabilistic', 'ensemble'])
parser.add_argument('--render', default=False, action='store_true')
args = parser.parse_args()
return args
class DPI:
def __init__(self, args):
2023-03-23 14:05:28 +00:00
# wandb config
#run = wandb.init(project="dpi")
self.args = args
# set environment noise
set_global_var(self.args.high_noise)
2023-03-23 14:05:28 +00:00
# environment setup
self.env = make_env(self.args)
2023-04-09 16:22:41 +00:00
#self.args.seed = np.random.randint(0, 1000)
2023-03-23 14:05:28 +00:00
self.env.seed(self.args.seed)
2023-04-18 14:47:30 +00:00
self.global_episodes = 0
2023-03-23 14:05:28 +00:00
# noiseless environment setup
self.args.version = 2 # env_id changes to v2
self.args.img_source = None # no image noise
self.args.resource_files = None
2023-03-23 14:05:28 +00:00
# stack several consecutive frames together
if self.args.encoder_type.startswith('pixel'):
self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
self.env = utils.ActionRepeat(self.env, self.args.action_repeat)
self.env = utils.NormalizeActions(self.env)
2023-04-22 11:07:22 +00:00
self.env = utils.TimeLimit(self.env, 1000 // args.action_repeat)
2023-03-23 14:05:28 +00:00
# create replay buffer
2023-04-22 11:07:22 +00:00
self.data_buffer = ReplayBuffer(self.args.replay_buffer_capacity,
self.env.observation_space.shape,
self.env.action_space.shape[0],
self.args.episode_length,
self.args.batch_size)
2023-04-12 07:33:42 +00:00
2023-03-23 14:05:28 +00:00
# create work directory
utils.make_dir(self.args.work_dir)
2023-03-24 19:39:14 +00:00
self.video_dir = utils.make_dir(os.path.join(self.args.work_dir, 'video'))
self.model_dir = utils.make_dir(os.path.join(self.args.work_dir, 'model'))
self.buffer_dir = utils.make_dir(os.path.join(self.args.work_dir, 'buffer'))
2023-03-23 14:05:28 +00:00
# create models
2023-03-24 19:39:14 +00:00
self.build_models(use_saved=False, saved_model_dir=self.model_dir)
2023-03-23 14:05:28 +00:00
def build_models(self, use_saved, saved_model_dir=None):
2023-04-10 18:18:17 +00:00
# World Models
2023-03-23 14:05:28 +00:00
self.obs_encoder = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
2023-03-23 14:05:28 +00:00
state_size=self.args.state_size # 128
).to(device)
2023-04-24 15:42:37 +00:00
self.obs_encoder.apply(self.init_weights)
2023-04-02 16:52:46 +00:00
self.obs_encoder_momentum = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
2023-04-02 16:52:46 +00:00
state_size=self.args.state_size # 128
).to(device)
2023-04-24 15:42:37 +00:00
self.obs_encoder_momentum.apply(self.init_weights)
2023-03-23 14:05:28 +00:00
self.obs_decoder = ObservationDecoder(
state_size=self.args.state_size, # 128
2023-04-18 14:47:30 +00:00
output_shape=(self.args.channels*self.args.channels,self.args.image_size,self.args.image_size) # (3,84,84)
).to(device)
2023-04-24 15:42:37 +00:00
self.obs_decoder.apply(self.init_weights)
2023-03-23 14:05:28 +00:00
self.transition_model = TransitionModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
action_size=self.env.action_space.shape[0], # 6
history_size=self.args.history_size, # 128
).to(device)
2023-04-24 15:42:37 +00:00
self.transition_model.apply(self.init_weights)
2023-04-10 18:18:17 +00:00
# Actor Model
self.actor_model = Actor(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256,
action_size=self.env.action_space.shape[0], # 6
).to(device)
2023-04-24 15:42:37 +00:00
self.actor_model.apply(self.init_weights)
2023-04-18 14:47:30 +00:00
2023-04-10 18:18:17 +00:00
# Value Models
self.value_model = ValueModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
).to(device)
2023-04-24 15:42:37 +00:00
self.value_model.apply(self.init_weights)
self.target_value_model = ValueModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
).to(device)
2023-04-24 15:42:37 +00:00
self.target_value_model.apply(self.init_weights)
self.reward_model = RewardModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
).to(device)
2023-04-24 15:42:37 +00:00
self.reward_model.apply(self.init_weights)
2023-04-10 18:18:17 +00:00
# Contrastive Models
self.prjoection_head = ProjectionHead(
state_size=self.args.state_size, # 128
action_size=self.env.action_space.shape[0], # 6
hidden_size=self.args.hidden_size, # 256
).to(device)
2023-04-10 18:18:17 +00:00
self.prjoection_head_momentum = ProjectionHead(
state_size=self.args.state_size, # 128
action_size=self.env.action_space.shape[0], # 6
hidden_size=self.args.hidden_size, # 256
).to(device)
2023-04-10 18:18:17 +00:00
self.contrastive_head = ContrastiveHead(
hidden_size=self.args.hidden_size, # 256
).to(device)
2023-04-18 14:47:30 +00:00
self.club_sample = CLUBSample(
x_dim=self.args.state_size, # 128
y_dim=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
).to(device)
2023-04-10 18:18:17 +00:00
2023-03-23 14:05:28 +00:00
# model parameters
2023-04-15 15:01:57 +00:00
self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.prjoection_head.parameters()) + \
2023-04-22 11:07:22 +00:00
list(self.transition_model.parameters()) + list(self.club_sample.parameters()) + \
list(self.contrastive_head.parameters())
2023-03-23 14:05:28 +00:00
2023-04-10 18:18:17 +00:00
# optimizers
2023-04-22 11:07:22 +00:00
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr,eps=1e-6)
2023-04-24 15:42:37 +00:00
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr,eps=1e-6, weight_decay=1e-5)
2023-04-22 11:07:22 +00:00
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr,eps=1e-6)
self.decoder_opt = torch.optim.Adam(self.obs_decoder.parameters(), self.args.decoder_lr,eps=1e-6)
2023-04-24 15:42:37 +00:00
self.reward_opt = torch.optim.Adam(self.reward_model.parameters(), self.args.reward_lr,eps=1e-6, weight_decay=1e-5)
2023-04-10 18:18:17 +00:00
# Create Modules
2023-04-24 15:42:37 +00:00
self.world_model_modules = [self.obs_encoder, self.prjoection_head, self.transition_model, self.club_sample, self.contrastive_head,
self.obs_encoder_momentum, self.prjoection_head_momentum]
2023-04-10 18:18:17 +00:00
self.value_modules = [self.value_model]
self.actor_modules = [self.actor_model]
2023-04-22 11:07:22 +00:00
self.decoder_modules = [self.obs_decoder]
self.reward_modules = [self.reward_model]
2023-03-23 14:05:28 +00:00
if use_saved:
self._use_saved_models(saved_model_dir)
def _use_saved_models(self, saved_model_dir):
self.obs_encoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_encoder.pt')))
self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt')))
self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt')))
2023-04-22 11:07:22 +00:00
def collect_random_sequences(self, seed_steps):
2023-03-23 14:05:28 +00:00
obs = self.env.reset()
done = False
all_rews = []
2023-04-22 11:07:22 +00:00
self.global_episodes += 1
epi_reward = 0
for _ in tqdm.tqdm(range(seed_steps), desc='Collecting episodes'):
action = self.env.action_space.sample()
next_obs, rew, done, _ = self.env.step(action)
self.data_buffer.add(obs, action, next_obs, rew, done)
obs = next_obs
epi_reward += rew
if done:
obs = self.env.reset()
done=False
all_rews.append(epi_reward)
epi_reward = 0
2023-04-20 12:55:54 +00:00
return all_rews
2023-04-22 11:07:22 +00:00
def collect_sequences(self, collect_steps, actor_model):
2023-04-20 12:55:54 +00:00
obs = self.env.reset()
done = False
all_rews = []
2023-04-22 11:07:22 +00:00
self.global_episodes += 1
epi_reward = 0
for episode_count in tqdm.tqdm(range(collect_steps), desc='Collecting episodes'):
with torch.no_grad():
obs_ = torch.tensor(obs.copy(), dtype=torch.float32)
obs_ = preprocess_obs(obs_).to(device)
2023-04-24 15:42:37 +00:00
#state = self.get_features(obs_)["sample"].unsqueeze(0)
state = self.get_features(obs_)["distribution"].rsample()
2023-04-22 11:07:22 +00:00
action = actor_model(state)
action = actor_model.add_exploration(action)
action = action.cpu().numpy()[0]
next_obs, rew, done, _ = self.env.step(action)
self.data_buffer.add(obs, action, next_obs, rew, done)
if done:
obs = self.env.reset()
done = False
all_rews.append(epi_reward)
epi_reward = 0
else:
obs = next_obs
epi_reward += rew
return all_rews
2023-03-23 14:05:28 +00:00
def train(self, step, total_steps):
2023-04-20 12:55:54 +00:00
# logger
2023-04-22 11:07:22 +00:00
logdir = os.path.dirname(os.path.realpath(__file__)) + "/log/logs/"
if not(os.path.exists(logdir)):
os.makedirs(logdir)
initial_logs = OrderedDict()
logger = Logger(logdir)
2023-04-24 15:42:37 +00:00
episodic_rews = self.collect_random_sequences(self.args.init_steps//args.action_repeat)
2023-04-22 11:07:22 +00:00
self.global_step = self.data_buffer.steps
initial_logs.update({
'train_avg_reward':np.mean(episodic_rews),
'train_max_reward': np.max(episodic_rews),
'train_min_reward': np.min(episodic_rews),
'train_std_reward':np.std(episodic_rews),
})
logger.log_scalars(initial_logs, step=0)
logger.flush()
2023-04-20 12:55:54 +00:00
2023-04-22 11:07:22 +00:00
while self.global_step < total_steps:
logs = OrderedDict()
2023-04-20 12:55:54 +00:00
step += 1
for update_steps in range(self.args.update_steps):
2023-04-22 11:07:22 +00:00
model_loss, actor_loss, value_loss, actor_model = self.update((step-1)*args.update_steps + update_steps)
initial_logs.update({
2023-04-20 12:55:54 +00:00
'model_loss' : model_loss,
'actor_loss': actor_loss,
'value_loss': value_loss,
2023-04-22 11:07:22 +00:00
'train_avg_reward':np.mean(episodic_rews),
2023-04-20 12:55:54 +00:00
'train_max_reward': np.max(episodic_rews),
'train_min_reward': np.min(episodic_rews),
'train_std_reward':np.std(episodic_rews),
})
2023-04-22 11:07:22 +00:00
logger.log_scalars(logs, self.global_step)
2023-04-20 12:55:54 +00:00
2023-04-22 11:07:22 +00:00
print("########## Global Step:", self.global_step, " ##########")
for key, value in initial_logs.items():
2023-04-20 12:55:54 +00:00
print(key, " : ", value)
2023-04-22 11:07:22 +00:00
episodic_rews = self.collect_sequences(1000//self.args.action_repeat, actor_model)
2023-04-20 12:55:54 +00:00
2023-04-22 11:07:22 +00:00
if self.global_step % 3150 == 0 and self.data_buffer.steps!=0: #self.args.evaluation_interval == 0:
2023-04-18 14:47:30 +00:00
print("Saving model")
path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
self.save_models(path)
self.evaluate()
2023-04-20 12:55:54 +00:00
2023-04-22 11:07:22 +00:00
self.global_step = self.data_buffer.steps * self.args.action_repeat
2023-04-20 12:55:54 +00:00
2023-04-22 11:07:22 +00:00
"""
2023-04-20 12:55:54 +00:00
# collect experience
if step !=0:
encoder = self.obs_encoder
actor = self.actor_model
all_rews = self.collect_sequences(self.args.episode_collection, actor_model=actor, encoder_model=encoder)
2023-04-22 11:07:22 +00:00
"""
def collect_batch(self):
2023-04-24 15:42:37 +00:00
obs_, acs_, nxt_obs_, rews_, terms_ = self.data_buffer.sample()
2023-04-22 11:07:22 +00:00
obs = torch.tensor(obs_, dtype=torch.float32)[1:]
last_obs = torch.tensor(obs_, dtype=torch.float32)[:-1]
nxt_obs = torch.tensor(nxt_obs_, dtype=torch.float32)[1:]
acs = torch.tensor(acs_, dtype=torch.float32)[:-1].to(device)
nxt_acs = torch.tensor(acs_, dtype=torch.float32)[1:].to(device)
rews = torch.tensor(rews_, dtype=torch.float32)[:-1].to(device).unsqueeze(-1)
nonterms = torch.tensor((1.0-terms_), dtype=torch.float32)[:-1].to(device).unsqueeze(-1)
last_obs = preprocess_obs(last_obs).to(device)
obs = preprocess_obs(obs).to(device)
nxt_obs = preprocess_obs(nxt_obs).to(device)
return last_obs, obs, nxt_obs, acs, rews, nxt_acs, nonterms
2023-04-20 12:55:54 +00:00
def update(self, step):
2023-04-22 11:07:22 +00:00
last_observations, current_observations, next_observations, actions, rewards, next_actions, nonterms = self.collect_batch()
#last_observations, current_observations, next_observations, actions, next_actions, rewards = self.select_one_batch()
2023-04-20 12:55:54 +00:00
world_loss, enc_loss, rew_loss, dec_loss, ub_loss, lb_loss = self.world_model_losses(last_observations,
2023-04-22 11:07:22 +00:00
current_observations,
next_observations,
actions,
next_actions,
rewards,
nonterms)
2023-04-20 12:55:54 +00:00
self.world_model_opt.zero_grad()
world_loss.backward()
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
self.world_model_opt.step()
2023-04-22 11:07:22 +00:00
self.decoder_opt.zero_grad()
dec_loss.backward()
nn.utils.clip_grad_norm_(self.obs_decoder.parameters(), self.args.grad_clip_norm)
self.decoder_opt.step()
self.reward_opt.zero_grad()
rew_loss.backward()
nn.utils.clip_grad_norm_(self.reward_model.parameters(), self.args.grad_clip_norm)
self.reward_opt.step()
2023-04-20 12:55:54 +00:00
actor_loss = self.actor_model_losses()
self.actor_opt.zero_grad()
actor_loss.backward()
nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm)
self.actor_opt.step()
value_loss = self.value_model_losses()
self.value_opt.zero_grad()
value_loss.backward()
nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm)
self.value_opt.step()
# update momentum encoder and projection head
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
# update target value networks
2023-04-22 11:07:22 +00:00
#if step % self.args.value_target_update_freq == 0:
# self.target_value_model = copy.deepcopy(self.value_model)
2023-04-20 12:55:54 +00:00
if step % self.args.logging_freq:
writer.add_scalar('World Loss/World Loss', world_loss.detach().item(), step)
writer.add_scalar('Main Models Loss/Encoder Loss', enc_loss.detach().item(), step)
2023-04-24 15:42:37 +00:00
writer.add_scalar('Main Models Loss/Decoder Loss', dec_loss.detach().item(), step)
2023-04-20 12:55:54 +00:00
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss.detach().item(), step)
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss.detach().item(), step)
writer.add_scalar('Actor Critic Loss/Reward Loss', rew_loss.detach().item(), step)
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss.detach().item(), step)
2023-04-22 11:07:22 +00:00
writer.add_scalar('Bound Loss/Lower Bound Loss', -lb_loss.detach().item(), step)
2023-04-20 12:55:54 +00:00
2023-04-22 11:07:22 +00:00
return world_loss.item(), actor_loss.item(), value_loss.item(), self.actor_model
2023-04-20 12:55:54 +00:00
2023-04-22 11:07:22 +00:00
def world_model_losses(self, last_obs, curr_obs, nxt_obs, actions, nxt_actions, rewards, nonterms):
# get features
2023-04-20 12:55:54 +00:00
self.last_state_feat = self.get_features(last_obs)
self.curr_state_feat = self.get_features(curr_obs)
2023-04-24 15:42:37 +00:00
self.nxt_state_feat = self.get_features(nxt_obs)
self.nxt_state_feat_lb = self.get_features(nxt_obs, momentum=True)
2023-04-20 12:55:54 +00:00
# states
2023-04-24 15:42:37 +00:00
self.last_state_enc = self.last_state_feat["distribution"].rsample() #self.last_state_feat["sample"]
self.curr_state_enc = self.curr_state_feat["distribution"].rsample() #self.curr_state_feat["sample"]
self.nxt_state_enc = self.nxt_state_feat["distribution"].rsample() #self.nxt_state_feat["sample"]
self.nxt_state_enc_lb = self.nxt_state_feat_lb["distribution"].rsample() #self.nxt_state_feat_lb["sample"]
2023-04-20 12:55:54 +00:00
# predict next states
self.transition_model.init_states(self.args.batch_size, device) # (N,128)
2023-04-22 11:07:22 +00:00
self.observed_rollout = self.transition_model.observe_rollout(self.last_state_enc, actions, self.transition_model.prev_history, nonterms)
2023-04-20 12:55:54 +00:00
self.pred_curr_state_dist = self.transition_model.get_dist(self.observed_rollout["mean"], self.observed_rollout["std"])
2023-04-24 15:42:37 +00:00
#print(self.observed_rollout["mean"][0][0])
self.pred_curr_state_enc = self.pred_curr_state_dist.rsample() #self.observed_rollout["sample"]
2023-04-20 12:55:54 +00:00
# encoder loss
2023-04-22 11:07:22 +00:00
enc_loss = self._encoder_loss(self.curr_state_feat["distribution"], self.pred_curr_state_dist)
2023-04-20 12:55:54 +00:00
# reward loss
rew_dist = self.reward_model(self.curr_state_enc)
2023-04-24 15:42:37 +00:00
#print(torch.cat([rew_dist.mean[0], rewards[0]],dim=-1))
2023-04-22 11:07:22 +00:00
rew_loss = -torch.mean(rew_dist.log_prob(rewards))
2023-04-20 12:55:54 +00:00
# decoder loss
dec_dist = self.obs_decoder(self.nxt_state_enc)
dec_loss = -torch.mean(dec_dist.log_prob(nxt_obs))
# upper bound loss
2023-04-24 15:42:37 +00:00
past_ub_loss = 0
for i in range(self.curr_state_enc.shape[0]):
_, ub_loss = self._upper_bound_minimization(self.curr_state_enc[i],
self.pred_curr_state_enc[i])
ub_loss = ub_loss + past_ub_loss
past_ub_loss = ub_loss
ub_loss = ub_loss / self.curr_state_enc.shape[0]
ub_loss = 0.01 * ub_loss
2023-04-22 11:07:22 +00:00
2023-04-20 12:55:54 +00:00
# lower bound loss
# contrastive projection
2023-04-22 11:07:22 +00:00
vec_anchor = self.pred_curr_state_enc.detach()
2023-04-24 15:42:37 +00:00
vec_positive = self.nxt_state_enc_lb.detach()
2023-04-20 12:55:54 +00:00
z_anchor = self.prjoection_head(vec_anchor, nxt_actions)
z_positive = self.prjoection_head_momentum(vec_positive, nxt_actions)
# contrastive loss
past_lb_loss = 0
for i in range(z_anchor.shape[0]):
logits = self.contrastive_head(z_anchor[i], z_positive[i])
labels = torch.arange(logits.shape[0]).long().to(device)
lb_loss = F.cross_entropy(logits, labels) + past_lb_loss
past_lb_loss = lb_loss.detach().item()
2023-04-24 15:42:37 +00:00
lb_loss = -0.01 * lb_loss/(z_anchor.shape[0])
2023-04-20 12:55:54 +00:00
2023-04-22 11:07:22 +00:00
world_loss = enc_loss + ub_loss + lb_loss
2023-04-20 12:55:54 +00:00
2023-04-22 11:07:22 +00:00
return world_loss, enc_loss , rew_loss, dec_loss, ub_loss, lb_loss
2023-04-20 12:55:54 +00:00
def actor_model_losses(self):
with torch.no_grad():
2023-04-24 15:42:37 +00:00
#curr_state_enc = self.curr_state_enc.reshape(self.args.episode_length-1,-1) #self.transition_model.seq_to_batch(self.curr_state_feat, "sample")["sample"]
#curr_state_hist = self.observed_rollout["history"].reshape(self.args.episode_length-1,-1) #self.transition_model.seq_to_batch(self.observed_rollout, "history")["sample"]
curr_state_enc = self.curr_state_enc.reshape(-1, self.args.state_size)
curr_state_hist = self.observed_rollout["history"].reshape(-1, self.args.history_size)
2023-04-20 12:55:54 +00:00
2023-04-24 15:42:37 +00:00
with FreezeParameters(self.world_model_modules + self.decoder_modules + self.reward_modules + self.value_modules):
2023-04-20 12:55:54 +00:00
imagine_horizon = self.args.imagine_horizon
2023-04-24 15:42:37 +00:00
action = self.actor_model(curr_state_enc.detach())
2023-04-20 12:55:54 +00:00
self.imagined_rollout = self.transition_model.imagine_rollout(curr_state_enc,
2023-04-24 15:42:37 +00:00
action, curr_state_hist.detach(),
2023-04-20 12:55:54 +00:00
imagine_horizon)
2023-04-24 15:42:37 +00:00
self.pred_nxt_state_dist = self.transition_model.get_dist(self.imagined_rollout["mean"], self.imagined_rollout["std"])
#print(self.imagined_rollout["mean"][0][0])
self.pred_nxt_state_enc = self.pred_nxt_state_dist.rsample() #self.transition_model.reparemeterize(self.imagined_rollout["mean"], self.imagined_rollout["std"])
2023-04-20 12:55:54 +00:00
2023-04-22 11:07:22 +00:00
with FreezeParameters(self.world_model_modules + self.value_modules + self.decoder_modules + self.reward_modules):
2023-04-24 15:42:37 +00:00
imag_rewards_dist = self.reward_model(self.pred_nxt_state_enc)
imag_values_dist = self.value_model(self.pred_nxt_state_enc)
imag_rewards = imag_rewards_dist.mean
imag_values = imag_values_dist.mean
discounts = self.args.discount * torch.ones_like(imag_rewards).detach()
2023-04-22 11:07:22 +00:00
2023-04-20 12:55:54 +00:00
self.returns = self._compute_lambda_return(imag_rewards[:-1],
2023-04-22 11:07:22 +00:00
imag_values[:-1],
discounts[:-1] ,
self.args.td_lambda,
imag_values[-1])
2023-04-20 12:55:54 +00:00
discounts = torch.cat([torch.ones_like(discounts[:1]), discounts[1:-1]], 0)
self.discounts = torch.cumprod(discounts, 0).detach()
actor_loss = -torch.mean(self.discounts * self.returns)
return actor_loss
def value_model_losses(self):
# value loss
with torch.no_grad():
2023-04-24 15:42:37 +00:00
value_feat = self.pred_nxt_state_enc[:-1].detach()
2023-04-20 12:55:54 +00:00
value_targ = self.returns.detach()
value_dist = self.value_model(value_feat)
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
return value_loss
def select_one_batch(self):
# collect sequences
non_zero_indices = np.nonzero(self.data_buffer.episode_count)[0]
current_obs = self.data_buffer.observations[non_zero_indices]
next_obs = self.data_buffer.next_observations[non_zero_indices]
actions_raw = self.data_buffer.actions[non_zero_indices]
rewards = self.data_buffer.rewards[non_zero_indices]
self.terms = np.where(self.data_buffer.terminals[non_zero_indices]!=False)[0]
# group by episodes
current_obs = self.grouped_arrays(current_obs)
next_obs = self.grouped_arrays(next_obs)
actions_raw = self.grouped_arrays(actions_raw)
rewards_ = self.grouped_arrays(rewards)
# select random chunks of episodes
if current_obs.shape[0] < self.args.batch_size:
random_episode_number = np.random.randint(0, current_obs.shape[0], self.args.batch_size)
else:
random_episode_number = random.sample(range(current_obs.shape[0]), self.args.batch_size)
# select random starting points
if current_obs[0].shape[0]-self.args.episode_length < self.args.batch_size:
init_index = np.random.randint(0, current_obs[0].shape[0]-self.args.episode_length-2, self.args.batch_size)
else:
init_index = np.asarray(random.sample(range(current_obs[0].shape[0]-self.args.episode_length), self.args.batch_size))
# shuffle
random.shuffle(random_episode_number)
random.shuffle(init_index)
# select first k elements
last_observations = self.select_first_k(current_obs, init_index, random_episode_number)[:-1]
current_observations = self.select_first_k(current_obs, init_index, random_episode_number)[1:]
next_observations = self.select_first_k(next_obs, init_index, random_episode_number)[:-1]
actions = self.select_first_k(actions_raw, init_index, random_episode_number)[:-1].to(device)
next_actions = self.select_first_k(actions_raw, init_index, random_episode_number)[1:].to(device)
rewards = self.select_first_k(rewards_, init_index, random_episode_number)[:-1].to(device)
# preprocessing
last_observations = preprocess_obs(last_observations).to(device)
current_observations = preprocess_obs(current_observations).to(device)
next_observations = preprocess_obs(next_observations).to(device)
return last_observations, current_observations, next_observations, actions, next_actions, rewards
2023-04-15 15:01:57 +00:00
def evaluate(self, eval_episodes=10):
path = path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
self.restore_checkpoint(path)
2023-04-15 15:01:57 +00:00
obs = self.env.reset()
done = False
2023-04-15 15:01:57 +00:00
#video = VideoRecorder(self.video_dir, resource_files=self.args.resource_files)
if self.args.save_video:
self.env.video.init(enabled=True)
episodic_rewards = []
for episode in range(eval_episodes):
rewards = 0
done = False
while not done:
with torch.no_grad():
2023-04-18 14:47:30 +00:00
obs = torch.tensor(obs.copy(), dtype=torch.float32).unsqueeze(0)
obs_processed = preprocess_obs(obs).to(device)
2023-04-20 12:55:54 +00:00
state = self.get_features(obs_processed)["distribution"].rsample()
2023-04-24 15:42:37 +00:00
action = self.actor_model(state).cpu().detach().numpy().squeeze()
2023-04-15 15:01:57 +00:00
next_obs, rew, done, _ = self.env.step(action)
rewards += rew
2023-04-24 15:42:37 +00:00
obs = next_obs
2023-04-15 15:01:57 +00:00
if self.args.save_video:
self.env.video.record(self.env)
self.env.video.save('/home/vedant/Curiosity/Curiosity/DPI/log/video/learned_model.mp4')
obs = self.env.reset()
episodic_rewards.append(rewards)
print("Episodic rewards: ", episodic_rewards)
print("Average episodic reward: ", np.mean(episodic_rewards))
2023-04-18 14:47:30 +00:00
def init_weights(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
2023-04-15 15:01:57 +00:00
2023-04-09 16:22:41 +00:00
2023-04-18 14:47:30 +00:00
def grouped_arrays(self,array):
indices = [0] + self.terms.tolist()
def subarrays():
for start, end in zip(indices[:-1], indices[1:]):
yield array[start:end]
try:
subarrays = np.stack(list(subarrays()), axis=0)
except ValueError:
subarrays = np.asarray(list(subarrays()))
return subarrays
def select_first_k(self, array, init_index, episode_number):
term_index = init_index + self.args.episode_length
2023-04-20 12:55:54 +00:00
2023-04-18 14:47:30 +00:00
array = array[episode_number]
array_list = []
for i in range(array.shape[0]):
array_list.append(array[i][init_index[i]:term_index[i]])
array = np.asarray(array_list)
if array.ndim == 5:
transposed_array = np.transpose(array, (1, 0, 2, 3, 4))
elif array.ndim == 4:
transposed_array = np.transpose(array, (1, 0, 2, 3))
elif array.ndim == 3:
transposed_array = np.transpose(array, (1, 0, 2))
elif array.ndim == 2:
transposed_array = np.transpose(array, (1, 0))
else:
transposed_array = np.expand_dims(array, axis=0)
2023-04-20 12:55:54 +00:00
#return torch.tensor(array).float()
2023-04-18 14:47:30 +00:00
return torch.tensor(transposed_array).float()
2023-04-20 12:55:54 +00:00
def _upper_bound_minimization(self, current_states, predicted_current_states):
2023-04-22 11:07:22 +00:00
current_negative_states = shuffle_along_axis(current_states.clone(), axis=0)
current_negative_states = shuffle_along_axis(current_negative_states, axis=1)
club_loss = self.club_sample(current_states, predicted_current_states, current_negative_states)
2023-04-18 14:47:30 +00:00
likelihood_loss = 0
2023-04-12 07:33:42 +00:00
return likelihood_loss, club_loss
2023-04-09 16:22:41 +00:00
2023-04-20 12:55:54 +00:00
def _encoder_loss(self, curr_states_dist, predicted_curr_states_dist):
# KL divergence loss
2023-04-18 14:47:30 +00:00
loss = torch.mean(torch.distributions.kl.kl_divergence(curr_states_dist,predicted_curr_states_dist))
2023-03-23 14:05:28 +00:00
return loss
2023-04-09 16:22:41 +00:00
def get_features(self, x, momentum=False):
2023-04-10 18:18:17 +00:00
if self.args.aug:
2023-04-15 15:01:57 +00:00
crop_transform = T.RandomCrop(size=80)
cropped_x = torch.stack([crop_transform(x[i]) for i in range(x.size(0))])
padding = (2, 2, 2, 2)
x = F.pad(cropped_x, padding)
2023-04-09 16:22:41 +00:00
with torch.no_grad():
if momentum:
x = self.obs_encoder_momentum(x)
2023-04-10 18:18:17 +00:00
else:
x = self.obs_encoder(x)
2023-04-09 16:22:41 +00:00
return x
2023-04-12 07:33:42 +00:00
def _compute_lambda_return(self, rewards, values, discounts, td_lam, last_value):
2023-04-24 15:42:37 +00:00
next_values = torch.cat([values[1:], last_value[None]], 0)
target = rewards + discounts * next_values * (1 - td_lam)
timesteps = list(range(rewards.shape[0] - 1, -1, -1))
outputs = []
accumulated_reward = last_value
for t in timesteps:
inp = target[t]
discount_factor = discounts[t]
accumulated_reward = inp + discount_factor * td_lam * accumulated_reward
outputs.append(accumulated_reward)
returns = torch.flip(torch.stack(outputs), [0])
return returns
"""
2023-04-12 07:33:42 +00:00
next_values = torch.cat([values[1:], last_value.unsqueeze(0)],0)
targets = rewards + discounts * next_values * (1-td_lam)
rets =[]
last_rew = last_value
for t in range(rewards.shape[0]-1, -1, -1):
last_rew = targets[t] + discounts[t] * td_lam *(last_rew)
rets.append(last_rew)
returns = torch.flip(torch.stack(rets), [0])
return returns
2023-04-24 15:42:37 +00:00
"""
2023-04-22 11:07:22 +00:00
def lambda_return(self,imged_reward, value_pred, bootstrap, discount=0.99, lambda_=0.95):
# Setting lambda=1 gives a discounted Monte Carlo return.
# Setting lambda=0 gives a fixed 1-step return.
next_values = torch.cat([value_pred[1:], bootstrap[None]], 0)
discount_tensor = discount * torch.ones_like(imged_reward) # pcont
inputs = imged_reward + discount_tensor * next_values * (1 - lambda_)
last = bootstrap
indices = reversed(range(len(inputs)))
outputs = []
for index in indices:
inp, disc = inputs[index], discount_tensor[index]
last = inp + disc * lambda_ * last
outputs.append(last)
outputs = list(reversed(outputs))
outputs = torch.stack(outputs, 0)
returns = outputs
return returns
def save_models(self, save_path):
torch.save(
{'rssm' : self.transition_model.state_dict(),
'actor': self.actor_model.state_dict(),
'reward_model': self.reward_model.state_dict(),
'obs_encoder': self.obs_encoder.state_dict(),
'obs_decoder': self.obs_decoder.state_dict(),
'actor_optimizer': self.actor_opt.state_dict(),
'value_optimizer': self.value_opt.state_dict(),
'world_model_optimizer': self.world_model_opt.state_dict(),}, save_path)
2023-04-15 15:01:57 +00:00
def restore_checkpoint(self, ckpt_path):
checkpoint = torch.load(ckpt_path)
self.transition_model.load_state_dict(checkpoint['rssm'])
self.actor_model.load_state_dict(checkpoint['actor'])
self.reward_model.load_state_dict(checkpoint['reward_model'])
self.obs_encoder.load_state_dict(checkpoint['obs_encoder'])
self.obs_decoder.load_state_dict(checkpoint['obs_decoder'])
self.world_model_opt.load_state_dict(checkpoint['world_model_optimizer'])
self.actor_opt.load_state_dict(checkpoint['actor_optimizer'])
self.value_opt.load_state_dict(checkpoint['value_optimizer'])
2023-03-23 14:05:28 +00:00
if __name__ == '__main__':
args = parse_args()
writer = SummaryWriter()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
2023-03-23 14:05:28 +00:00
step = 0
2023-04-24 15:42:37 +00:00
total_steps = 1000000
dpi = DPI(args)
2023-04-15 15:01:57 +00:00
dpi.train(step,total_steps)
dpi.evaluate()