Curiosity/DPI/train.py

196 lines
8.8 KiB
Python
Raw Normal View History

2023-03-23 14:05:28 +00:00
import numpy as np
import torch
import argparse
import os
import gym
import time
import json
import dmc2gym
import wandb
import utils
from utils import ReplayBuffer, make_env
from models import ObservationEncoder, ObservationDecoder, TransitionModel, CLUBSample
from logger import Logger
from video import VideoRecorder
#from agent.baseline_agent import BaselineAgent
#from agent.bisim_agent import BisimAgent
#from agent.deepmdp_agent import DeepMDPAgent
#from agents.navigation.carla_env import CarlaEnv
def parse_args():
parser = argparse.ArgumentParser()
# environment
parser.add_argument('--domain_name', default='cheetah')
parser.add_argument('--task_name', default='run')
parser.add_argument('--image_size', default=84, type=int)
parser.add_argument('--channels', default=3, type=int)
parser.add_argument('--action_repeat', default=1, type=int)
parser.add_argument('--frame_stack', default=4, type=int)
parser.add_argument('--resource_files', type=str)
parser.add_argument('--eval_resource_files', type=str)
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
parser.add_argument('--total_frames', default=1000, type=int)
# replay buffer
parser.add_argument('--replay_buffer_capacity', default=100000, type=int)
parser.add_argument('--episode_length', default=1000, type=int)
# train
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
parser.add_argument('--init_steps', default=1000, type=int)
parser.add_argument('--num_train_steps', default=1000, type=int)
parser.add_argument('--batch_size', default=512, type=int)
parser.add_argument('--state_size', default=256, type=int)
parser.add_argument('--hidden_size', default=128, type=int)
parser.add_argument('--history_size', default=128, type=int)
parser.add_argument('--k', default=3, type=int, help='number of steps for inverse model')
parser.add_argument('--load_encoder', default=None, type=str)
# eval
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
parser.add_argument('--num_eval_episodes', default=20, type=int)
# critic
parser.add_argument('--critic_lr', default=1e-3, type=float)
parser.add_argument('--critic_beta', default=0.9, type=float)
parser.add_argument('--critic_tau', default=0.005, type=float)
parser.add_argument('--critic_target_update_freq', default=2, type=int)
# actor
parser.add_argument('--actor_lr', default=1e-3, type=float)
parser.add_argument('--actor_beta', default=0.9, type=float)
parser.add_argument('--actor_log_std_min', default=-10, type=float)
parser.add_argument('--actor_log_std_max', default=2, type=float)
parser.add_argument('--actor_update_freq', default=2, type=int)
# encoder/decoder
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
parser.add_argument('--encoder_feature_dim', default=50, type=int)
parser.add_argument('--encoder_lr', default=1e-3, type=float)
parser.add_argument('--encoder_tau', default=0.005, type=float)
parser.add_argument('--encoder_stride', default=1, type=int)
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
parser.add_argument('--decoder_lr', default=1e-3, type=float)
parser.add_argument('--decoder_update_freq', default=1, type=int)
parser.add_argument('--decoder_weight_lambda', default=0.0, type=float)
parser.add_argument('--num_layers', default=4, type=int)
parser.add_argument('--num_filters', default=32, type=int)
# sac
parser.add_argument('--discount', default=0.99, type=float)
parser.add_argument('--init_temperature', default=0.01, type=float)
parser.add_argument('--alpha_lr', default=1e-3, type=float)
parser.add_argument('--alpha_beta', default=0.9, type=float)
# misc
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--seed_steps', default=5000, type=int)
parser.add_argument('--work_dir', default='.', type=str)
parser.add_argument('--save_tb', default=False, action='store_true')
parser.add_argument('--save_model', default=False, action='store_true')
parser.add_argument('--save_buffer', default=False, action='store_true')
parser.add_argument('--save_video', default=False, action='store_true')
parser.add_argument('--transition_model_type', default='', type=str, choices=['', 'deterministic', 'probabilistic', 'ensemble'])
parser.add_argument('--render', default=False, action='store_true')
parser.add_argument('--port', default=2000, type=int)
args = parser.parse_args()
return args
class DPI:
def __init__(self, args):
# wandb config
#run = wandb.init(project="dpi")
self.args = args
# environment setup
self.env = make_env(self.args)
self.env.seed(self.args.seed)
# stack several consecutive frames together
if self.args.encoder_type.startswith('pixel'):
self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
# create replay buffer
self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity,
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size),
action_size=self.env.action_space.shape[0],
seq_len=self.args.episode_length,
batch_size=args.batch_size)
# create work directory
utils.make_dir(self.args.work_dir)
video_dir = utils.make_dir(os.path.join(self.args.work_dir, 'video'))
model_dir = utils.make_dir(os.path.join(self.args.work_dir, 'model'))
buffer_dir = utils.make_dir(os.path.join(self.args.work_dir, 'buffer'))
# create video recorder
#video = VideoRecorder(video_dir if args.save_video else None, resource_files=args.resource_files)
#video.init(enabled=True)
# create models
self.build_models(use_saved=False, saved_model_dir=model_dir)
def build_models(self, use_saved, saved_model_dir=None):
self.obs_encoder = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (12,84,84)
state_size=self.args.state_size # 128
)
self.obs_decoder = ObservationDecoder(
state_size=self.args.state_size, # 128
output_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size) # (12,84,84)
)
self.transition_model = TransitionModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
action_size=self.env.action_space.shape[0], # 6
history_size=self.args.history_size, # 128
)
# model parameters
self.model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_decoder.parameters()) + list(self.transition_model.parameters())
# optimizer
self.optimizer = torch.optim.Adam(self.model_parameters, lr=self.args.encoder_lr)
if use_saved:
self._use_saved_models(saved_model_dir)
def _use_saved_models(self, saved_model_dir):
self.obs_encoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_encoder.pt')))
self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt')))
self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt')))
def collect_random_episodes(self, episodes):
obs = self.env.reset()
done = False
for episode_count in range(episodes):
for i in range(self.args.episode_length):
action = self.env.action_space.sample()
next_obs, _, done, _ = self.env.step(action)
self.data_buffer.add(obs, action, next_obs, episode_count+1, done)
if done:
obs = self.env.reset()
done=False
else:
obs = next_obs
print("Collected {} random episodes".format(episode_count+1))
#if args.save_video:
# video.record(env)
#video.save('%d.mp4' % step)
#video.close()
def upper_bound_minimization(self):
pass
if __name__ == '__main__':
args = parse_args()
dpi = DPI(args)
dpi.collect_random_episodes(episodes=5)