Adding after some changes
This commit is contained in:
parent
e7f5533ee6
commit
02a66cfb33
306
DPI/train.py
306
DPI/train.py
@ -9,7 +9,7 @@ import numpy as np
|
||||
from collections import OrderedDict
|
||||
|
||||
import utils
|
||||
from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image
|
||||
from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image, shuffle_along_axis, Logger
|
||||
from replay_buffer import ReplayBuffer
|
||||
from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample
|
||||
from video import VideoRecorder
|
||||
@ -50,11 +50,11 @@ def parse_args():
|
||||
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
|
||||
parser.add_argument('--init_steps', default=10000, type=int)
|
||||
parser.add_argument('--num_train_steps', default=100000, type=int)
|
||||
parser.add_argument('--update_steps', default=1, type=int)
|
||||
parser.add_argument('--update_steps', default=100, type=int)
|
||||
parser.add_argument('--batch_size', default=64, type=int) #512
|
||||
parser.add_argument('--state_size', default=50, type=int)
|
||||
parser.add_argument('--hidden_size', default=512, type=int)
|
||||
parser.add_argument('--history_size', default=128, type=int)
|
||||
parser.add_argument('--history_size', default=256, type=int)
|
||||
parser.add_argument('--episode_collection', default=5, type=int)
|
||||
parser.add_argument('--episodes_buffer', default=5, type=int, help='Initial number of episodes to store in the buffer')
|
||||
parser.add_argument('--num-units', type=int, default=50, help='num hidden units for reward/value/discount models')
|
||||
@ -66,11 +66,11 @@ def parse_args():
|
||||
parser.add_argument('--num_eval_episodes', default=20, type=int)
|
||||
parser.add_argument('--evaluation_interval', default=10000, type=int) # TODO: master had 10000
|
||||
# value
|
||||
parser.add_argument('--value_lr', default=8e-6, type=float)
|
||||
parser.add_argument('--value_lr', default=1e-6, type=float)
|
||||
parser.add_argument('--value_target_update_freq', default=100, type=int)
|
||||
parser.add_argument('--td_lambda', default=0.95, type=int)
|
||||
# actor
|
||||
parser.add_argument('--actor_lr', default=8e-6, type=float)
|
||||
parser.add_argument('--actor_lr', default=1e-6, type=float)
|
||||
parser.add_argument('--actor_beta', default=0.9, type=float)
|
||||
parser.add_argument('--actor_log_std_min', default=-10, type=float)
|
||||
parser.add_argument('--actor_log_std_max', default=2, type=float)
|
||||
@ -78,13 +78,15 @@ def parse_args():
|
||||
# world/encoder/decoder
|
||||
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
|
||||
parser.add_argument('--world_model_lr', default=1e-5, type=float)
|
||||
parser.add_argument('--encoder_tau', default=0.001 , type=float)
|
||||
parser.add_argument('--decoder_lr', default=1e-5, type=float)
|
||||
parser.add_argument('--reward_lr', default=1e-5, type=float)
|
||||
parser.add_argument('--encoder_tau', default=0.001, type=float)
|
||||
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
|
||||
parser.add_argument('--num_layers', default=4, type=int)
|
||||
parser.add_argument('--num_filters', default=32, type=int)
|
||||
parser.add_argument('--aug', action='store_true')
|
||||
# sac
|
||||
parser.add_argument('--discount', default=0.95, type=float)
|
||||
parser.add_argument('--discount', default=0.99, type=float)
|
||||
# misc
|
||||
parser.add_argument('--seed', default=1, type=int)
|
||||
parser.add_argument('--logging_freq', default=100, type=int)
|
||||
@ -131,15 +133,14 @@ class DPI:
|
||||
self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
|
||||
self.env = utils.ActionRepeat(self.env, self.args.action_repeat)
|
||||
self.env = utils.NormalizeActions(self.env)
|
||||
self.env = utils.TimeLimit(self.env, 1000 / args.action_repeat)
|
||||
self.env = utils.TimeLimit(self.env, 1000 // args.action_repeat)
|
||||
|
||||
# create replay buffer
|
||||
self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity,
|
||||
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size),
|
||||
action_size=self.env.action_space.shape[0],
|
||||
seq_len=self.args.episode_length,
|
||||
batch_size=args.batch_size,
|
||||
args=self.args)
|
||||
self.data_buffer = ReplayBuffer(self.args.replay_buffer_capacity,
|
||||
self.env.observation_space.shape,
|
||||
self.env.action_space.shape[0],
|
||||
self.args.episode_length,
|
||||
self.args.batch_size)
|
||||
|
||||
# create work directory
|
||||
utils.make_dir(self.args.work_dir)
|
||||
@ -180,7 +181,7 @@ class DPI:
|
||||
hidden_size=self.args.hidden_size, # 256,
|
||||
action_size=self.env.action_space.shape[0], # 6
|
||||
).to(device)
|
||||
self.actor_model.apply(self.init_weights)
|
||||
#self.actor_model.apply(self.init_weights)
|
||||
|
||||
|
||||
# Value Models
|
||||
@ -225,22 +226,23 @@ class DPI:
|
||||
|
||||
# model parameters
|
||||
self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.prjoection_head.parameters()) + \
|
||||
list(self.transition_model.parameters()) + list(self.obs_decoder.parameters()) + \
|
||||
list(self.reward_model.parameters()) + list(self.club_sample.parameters())
|
||||
list(self.transition_model.parameters()) + list(self.club_sample.parameters()) + \
|
||||
list(self.contrastive_head.parameters())
|
||||
self.past_transition_parameters = self.transition_model.parameters()
|
||||
|
||||
# optimizers
|
||||
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr)
|
||||
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr)
|
||||
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr)
|
||||
#self.reward_opt = torch.optim.Adam(self.reward_model.parameters(), 1e-5)
|
||||
#self.decoder_opt = torch.optim.Adam(self.obs_decoder.parameters(), 1e-4)
|
||||
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr,eps=1e-6)
|
||||
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr,eps=1e-6)
|
||||
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr,eps=1e-6)
|
||||
self.decoder_opt = torch.optim.Adam(self.obs_decoder.parameters(), self.args.decoder_lr,eps=1e-6)
|
||||
self.reward_opt = torch.optim.Adam(self.reward_model.parameters(), self.args.reward_lr,eps=1e-6)
|
||||
|
||||
# Create Modules
|
||||
self.world_model_modules = [self.obs_encoder, self.prjoection_head, self.transition_model, self.obs_decoder, self.reward_model, self.club_sample]
|
||||
self.world_model_modules = [self.obs_encoder, self.prjoection_head, self.transition_model, self.club_sample, self.contrastive_head]
|
||||
self.value_modules = [self.value_model]
|
||||
self.actor_modules = [self.actor_model]
|
||||
#self.reward_modules = [self.reward_model]
|
||||
self.decoder_modules = [self.obs_decoder]
|
||||
self.reward_modules = [self.reward_model]
|
||||
#self.decoder_modules = [self.obs_decoder]
|
||||
|
||||
if use_saved:
|
||||
@ -251,105 +253,156 @@ class DPI:
|
||||
self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt')))
|
||||
self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt')))
|
||||
|
||||
def collect_random_sequences(self, episodes):
|
||||
def collect_random_sequences(self, seed_steps):
|
||||
obs = self.env.reset()
|
||||
done = False
|
||||
|
||||
all_rews = []
|
||||
for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'):
|
||||
self.global_episodes += 1
|
||||
epi_reward = 0
|
||||
while not done:
|
||||
action = self.env.action_space.sample()
|
||||
next_obs, rew, done, _ = self.env.step(action)
|
||||
self.data_buffer.add(obs, action, next_obs, rew, done, self.global_episodes)
|
||||
obs = next_obs
|
||||
epi_reward += rew
|
||||
obs = self.env.reset()
|
||||
done=False
|
||||
all_rews.append(epi_reward)
|
||||
self.global_episodes += 1
|
||||
epi_reward = 0
|
||||
for _ in tqdm.tqdm(range(seed_steps), desc='Collecting episodes'):
|
||||
action = self.env.action_space.sample()
|
||||
next_obs, rew, done, _ = self.env.step(action)
|
||||
self.data_buffer.add(obs, action, next_obs, rew, done)
|
||||
obs = next_obs
|
||||
epi_reward += rew
|
||||
if done:
|
||||
obs = self.env.reset()
|
||||
done=False
|
||||
all_rews.append(epi_reward)
|
||||
epi_reward = 0
|
||||
return all_rews
|
||||
|
||||
def collect_sequences(self, episodes, actor_model):
|
||||
def collect_sequences(self, collect_steps, actor_model):
|
||||
obs = self.env.reset()
|
||||
done = False
|
||||
all_rews = []
|
||||
for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'):
|
||||
self.global_episodes += 1
|
||||
epi_reward = 0
|
||||
while not done:
|
||||
with torch.no_grad():
|
||||
obs = torch.tensor(obs.copy(), dtype=torch.float32).to(device).unsqueeze(0)
|
||||
state = self.get_features(obs)["distribution"].rsample()
|
||||
action = self.actor_model(state)
|
||||
action = actor_model.add_exploration(action).cpu().numpy()[0]
|
||||
print(action)
|
||||
obs = obs.cpu().numpy()[0]
|
||||
next_obs, rew, done, _ = self.env.step(action)
|
||||
self.data_buffer.add(obs, action, next_obs, rew, done, self.global_episodes)
|
||||
obs = next_obs
|
||||
self.global_episodes += 1
|
||||
epi_reward = 0
|
||||
for episode_count in tqdm.tqdm(range(collect_steps), desc='Collecting episodes'):
|
||||
with torch.no_grad():
|
||||
obs_ = torch.tensor(obs.copy(), dtype=torch.float32)
|
||||
obs_ = preprocess_obs(obs_).to(device)
|
||||
state = self.get_features(obs_)["distribution"].rsample().unsqueeze(0)
|
||||
action = actor_model(state)
|
||||
action = actor_model.add_exploration(action)
|
||||
action = action.cpu().numpy()[0]
|
||||
next_obs, rew, done, _ = self.env.step(action)
|
||||
self.data_buffer.add(obs, action, next_obs, rew, done)
|
||||
|
||||
if done:
|
||||
obs = self.env.reset()
|
||||
done = False
|
||||
all_rews.append(epi_reward)
|
||||
epi_reward = 0
|
||||
else:
|
||||
obs = next_obs
|
||||
epi_reward += rew
|
||||
obs = self.env.reset()
|
||||
done=False
|
||||
all_rews.append(epi_reward)
|
||||
return all_rews
|
||||
|
||||
def train(self, step, total_steps):
|
||||
episodic_rews = self.collect_random_sequences(self.args.episodes_buffer)
|
||||
global_step = self.data_buffer.steps
|
||||
|
||||
# logger
|
||||
logs = OrderedDict()
|
||||
logdir = os.path.dirname(os.path.realpath(__file__)) + "/log/logs/"
|
||||
if not(os.path.exists(logdir)):
|
||||
os.makedirs(logdir)
|
||||
initial_logs = OrderedDict()
|
||||
logger = Logger(logdir)
|
||||
|
||||
while global_step < total_steps:
|
||||
step += 1
|
||||
for update_steps in range(self.args.update_steps):
|
||||
model_loss, actor_loss, value_loss = self.update((step-1)*args.update_steps + update_steps)
|
||||
episodic_rews = self.collect_sequences(self.args.episode_collection, actor_model=self.actor_model, encoder_model=self.obs_encoder)
|
||||
|
||||
logs.update({
|
||||
'model_loss' : model_loss,
|
||||
'actor_loss': actor_loss,
|
||||
'value_loss': value_loss,
|
||||
'train_avg_reward':np.mean(episodic_rews),
|
||||
episodic_rews = self.collect_random_sequences(5000//args.action_repeat)
|
||||
self.global_step = self.data_buffer.steps
|
||||
|
||||
initial_logs.update({
|
||||
'train_avg_reward':np.mean(episodic_rews),
|
||||
'train_max_reward': np.max(episodic_rews),
|
||||
'train_min_reward': np.min(episodic_rews),
|
||||
'train_std_reward':np.std(episodic_rews),
|
||||
})
|
||||
logger.log_scalars(initial_logs, step=0)
|
||||
logger.flush()
|
||||
|
||||
|
||||
print("########## Global Step: ", global_step, " ##########")
|
||||
for key, value in logs.items():
|
||||
while self.global_step < total_steps:
|
||||
logs = OrderedDict()
|
||||
step += 1
|
||||
for update_steps in range(self.args.update_steps):
|
||||
model_loss, actor_loss, value_loss, actor_model = self.update((step-1)*args.update_steps + update_steps)
|
||||
|
||||
initial_logs.update({
|
||||
'model_loss' : model_loss,
|
||||
'actor_loss': actor_loss,
|
||||
'value_loss': value_loss,
|
||||
'train_avg_reward':np.mean(episodic_rews),
|
||||
'train_max_reward': np.max(episodic_rews),
|
||||
'train_min_reward': np.min(episodic_rews),
|
||||
'train_std_reward':np.std(episodic_rews),
|
||||
})
|
||||
logger.log_scalars(logs, self.global_step)
|
||||
|
||||
|
||||
print("########## Global Step:", self.global_step, " ##########")
|
||||
for key, value in initial_logs.items():
|
||||
print(key, " : ", value)
|
||||
|
||||
episodic_rews = self.collect_sequences(1000//self.args.action_repeat, actor_model)
|
||||
|
||||
print(global_step)
|
||||
if global_step % 3150 == 0 and self.data_buffer.steps!=0: #self.args.evaluation_interval == 0:
|
||||
if self.global_step % 3150 == 0 and self.data_buffer.steps!=0: #self.args.evaluation_interval == 0:
|
||||
print("Saving model")
|
||||
path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
|
||||
self.save_models(path)
|
||||
self.evaluate()
|
||||
|
||||
global_step = self.data_buffer.steps
|
||||
self.global_step = self.data_buffer.steps * self.args.action_repeat
|
||||
|
||||
"""
|
||||
# collect experience
|
||||
if step !=0:
|
||||
encoder = self.obs_encoder
|
||||
actor = self.actor_model
|
||||
all_rews = self.collect_sequences(self.args.episode_collection, actor_model=actor, encoder_model=encoder)
|
||||
"""
|
||||
|
||||
def collect_batch(self):
|
||||
obs_, acs_, nxt_obs_, rews_, terms_ = self.data_buffer.sample()
|
||||
obs = torch.tensor(obs_, dtype=torch.float32)[1:]
|
||||
last_obs = torch.tensor(obs_, dtype=torch.float32)[:-1]
|
||||
nxt_obs = torch.tensor(nxt_obs_, dtype=torch.float32)[1:]
|
||||
acs = torch.tensor(acs_, dtype=torch.float32)[:-1].to(device)
|
||||
nxt_acs = torch.tensor(acs_, dtype=torch.float32)[1:].to(device)
|
||||
rews = torch.tensor(rews_, dtype=torch.float32)[:-1].to(device).unsqueeze(-1)
|
||||
nonterms = torch.tensor((1.0-terms_), dtype=torch.float32)[:-1].to(device).unsqueeze(-1)
|
||||
|
||||
last_obs = preprocess_obs(last_obs).to(device)
|
||||
obs = preprocess_obs(obs).to(device)
|
||||
nxt_obs = preprocess_obs(nxt_obs).to(device)
|
||||
|
||||
return last_obs, obs, nxt_obs, acs, rews, nxt_acs, nonterms
|
||||
|
||||
def update(self, step):
|
||||
last_observations, current_observations, next_observations, actions, next_actions, rewards = self.select_one_batch()
|
||||
last_observations, current_observations, next_observations, actions, rewards, next_actions, nonterms = self.collect_batch()
|
||||
|
||||
#last_observations, current_observations, next_observations, actions, next_actions, rewards = self.select_one_batch()
|
||||
|
||||
|
||||
world_loss, enc_loss, rew_loss, dec_loss, ub_loss, lb_loss = self.world_model_losses(last_observations,
|
||||
current_observations,
|
||||
next_observations,
|
||||
actions,
|
||||
next_actions,
|
||||
rewards)
|
||||
current_observations,
|
||||
next_observations,
|
||||
actions,
|
||||
next_actions,
|
||||
rewards,
|
||||
nonterms)
|
||||
self.world_model_opt.zero_grad()
|
||||
world_loss.backward()
|
||||
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
|
||||
self.world_model_opt.step()
|
||||
|
||||
self.decoder_opt.zero_grad()
|
||||
dec_loss.backward()
|
||||
nn.utils.clip_grad_norm_(self.obs_decoder.parameters(), self.args.grad_clip_norm)
|
||||
self.decoder_opt.step()
|
||||
|
||||
self.reward_opt.zero_grad()
|
||||
rew_loss.backward()
|
||||
nn.utils.clip_grad_norm_(self.reward_model.parameters(), self.args.grad_clip_norm)
|
||||
self.reward_opt.step()
|
||||
|
||||
actor_loss = self.actor_model_losses()
|
||||
self.actor_opt.zero_grad()
|
||||
@ -368,8 +421,8 @@ class DPI:
|
||||
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
|
||||
|
||||
# update target value networks
|
||||
if step % self.args.value_target_update_freq == 0:
|
||||
self.target_value_model = copy.deepcopy(self.value_model)
|
||||
#if step % self.args.value_target_update_freq == 0:
|
||||
# self.target_value_model = copy.deepcopy(self.value_model)
|
||||
|
||||
if step % self.args.logging_freq:
|
||||
writer.add_scalar('World Loss/World Loss', world_loss.detach().item(), step)
|
||||
@ -379,14 +432,15 @@ class DPI:
|
||||
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss.detach().item(), step)
|
||||
writer.add_scalar('Actor Critic Loss/Reward Loss', rew_loss.detach().item(), step)
|
||||
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss.detach().item(), step)
|
||||
writer.add_scalar('Bound Loss/Lower Bound Loss', lb_loss.detach().item(), step)
|
||||
writer.add_scalar('Bound Loss/Lower Bound Loss', -lb_loss.detach().item(), step)
|
||||
|
||||
return world_loss.item(), actor_loss.item(), value_loss.item()
|
||||
return world_loss.item(), actor_loss.item(), value_loss.item(), self.actor_model
|
||||
|
||||
def world_model_losses(self, last_obs, curr_obs, nxt_obs, actions, nxt_actions, rewards):
|
||||
def world_model_losses(self, last_obs, curr_obs, nxt_obs, actions, nxt_actions, rewards, nonterms):
|
||||
# get features
|
||||
self.last_state_feat = self.get_features(last_obs)
|
||||
self.curr_state_feat = self.get_features(curr_obs)
|
||||
self.nxt_state_feat = self.get_features(nxt_obs)
|
||||
self.nxt_state_feat = self.get_features(nxt_obs, momentum=True)
|
||||
|
||||
# states
|
||||
self.last_state_enc = self.last_state_feat["sample"]
|
||||
@ -394,42 +448,37 @@ class DPI:
|
||||
self.nxt_state_enc = self.nxt_state_feat["sample"]
|
||||
|
||||
# actions
|
||||
actions = actions
|
||||
nxt_actions = nxt_actions
|
||||
actions = actions.clone()
|
||||
nxt_actions = nxt_actions.clone()
|
||||
|
||||
# rewards
|
||||
rewards = rewards
|
||||
rewards = rewards.clone()
|
||||
|
||||
# predict next states
|
||||
self.transition_model.init_states(self.args.batch_size, device) # (N,128)
|
||||
self.observed_rollout = self.transition_model.observe_rollout(self.last_state_enc, actions, self.transition_model.prev_history)
|
||||
self.observed_rollout = self.transition_model.observe_rollout(self.last_state_enc, actions, self.transition_model.prev_history, nonterms)
|
||||
self.pred_curr_state_dist = self.transition_model.get_dist(self.observed_rollout["mean"], self.observed_rollout["std"])
|
||||
self.pred_curr_state_enc = self.pred_curr_state_dist.mean
|
||||
|
||||
#print(torch.nn.MSELoss()(self.curr_state_enc, self.pred_curr_state_enc))
|
||||
#print(torch.distributions.kl_divergence(self.curr_state_feat["distribution"], self.pred_curr_state_dist).mean(),0)
|
||||
|
||||
|
||||
# encoder loss
|
||||
enc_loss = torch.nn.MSELoss()(self.curr_state_enc, self.pred_curr_state_enc)
|
||||
#self._encoder_loss(self.curr_state_feat["distribution"], self.pred_curr_state_dist)
|
||||
enc_loss = self._encoder_loss(self.curr_state_feat["distribution"], self.pred_curr_state_dist)
|
||||
|
||||
# reward loss
|
||||
rew_dist = self.reward_model(self.curr_state_enc)
|
||||
rew_loss = -torch.mean(rew_dist.log_prob(rewards.unsqueeze(-1)))
|
||||
rew_loss = -torch.mean(rew_dist.log_prob(rewards))
|
||||
|
||||
# decoder loss
|
||||
dec_dist = self.obs_decoder(self.nxt_state_enc)
|
||||
dec_loss = -torch.mean(dec_dist.log_prob(nxt_obs))
|
||||
|
||||
# upper bound loss
|
||||
likelihood_loss, ub_loss = self._upper_bound_minimization(self.curr_state_enc,
|
||||
_, ub_loss = self._upper_bound_minimization(self.curr_state_enc,
|
||||
self.pred_curr_state_enc)
|
||||
|
||||
|
||||
# lower bound loss
|
||||
# contrastive projection
|
||||
vec_anchor = self.pred_curr_state_enc
|
||||
vec_positive = self.nxt_state_enc
|
||||
vec_anchor = self.pred_curr_state_enc.detach()
|
||||
vec_positive = self.nxt_state_enc.detach()
|
||||
z_anchor = self.prjoection_head(vec_anchor, nxt_actions)
|
||||
z_positive = self.prjoection_head_momentum(vec_positive, nxt_actions)
|
||||
|
||||
@ -440,40 +489,39 @@ class DPI:
|
||||
labels = torch.arange(logits.shape[0]).long().to(device)
|
||||
lb_loss = F.cross_entropy(logits, labels) + past_lb_loss
|
||||
past_lb_loss = lb_loss.detach().item()
|
||||
lb_loss = lb_loss/(z_anchor.shape[0])
|
||||
lb_loss = -0.1 * lb_loss/(z_anchor.shape[0])
|
||||
|
||||
world_loss = enc_loss + rew_loss + dec_loss * 1e-4 + ub_loss * 10 + lb_loss
|
||||
world_loss = enc_loss + ub_loss + lb_loss
|
||||
|
||||
return world_loss, enc_loss , rew_loss, dec_loss * 1e-4, ub_loss * 10, lb_loss
|
||||
return world_loss, enc_loss , rew_loss, dec_loss, ub_loss, lb_loss
|
||||
|
||||
def actor_model_losses(self):
|
||||
with torch.no_grad():
|
||||
curr_state_enc = self.transition_model.seq_to_batch(self.curr_state_feat, "sample")["sample"]
|
||||
curr_state_hist = self.transition_model.seq_to_batch(self.observed_rollout, "history")["sample"]
|
||||
|
||||
with FreezeParameters(self.world_model_modules):
|
||||
with FreezeParameters(self.world_model_modules + self.decoder_modules + self.reward_modules):
|
||||
imagine_horizon = self.args.imagine_horizon
|
||||
action = self.actor_model(curr_state_enc)
|
||||
self.imagined_rollout = self.transition_model.imagine_rollout(curr_state_enc,
|
||||
action, curr_state_hist,
|
||||
imagine_horizon)
|
||||
|
||||
with FreezeParameters(self.world_model_modules + self.value_modules):
|
||||
with FreezeParameters(self.world_model_modules + self.value_modules + self.decoder_modules + self.reward_modules):
|
||||
imag_rewards = self.reward_model(self.imagined_rollout["sample"]).mean
|
||||
imag_values = self.target_value_model(self.imagined_rollout["sample"]).mean
|
||||
discounts = self.args.discount * torch.ones_like(imag_rewards).detach()
|
||||
imag_values = self.value_model(self.imagined_rollout["sample"]).mean
|
||||
discounts = self.args.discount * torch.ones_like(imag_rewards).detach()
|
||||
|
||||
self.returns = self._compute_lambda_return(imag_rewards[:-1],
|
||||
imag_values[:-1],
|
||||
discounts[:-1] ,
|
||||
self.args.td_lambda,
|
||||
imag_values[-1])
|
||||
|
||||
imag_values[:-1],
|
||||
discounts[:-1] ,
|
||||
self.args.td_lambda,
|
||||
imag_values[-1])
|
||||
discounts = torch.cat([torch.ones_like(discounts[:1]), discounts[1:-1]], 0)
|
||||
self.discounts = torch.cumprod(discounts, 0).detach()
|
||||
actor_loss = -torch.mean(self.discounts * self.returns)
|
||||
return actor_loss
|
||||
|
||||
|
||||
def value_model_losses(self):
|
||||
# value loss
|
||||
with torch.no_grad():
|
||||
@ -483,7 +531,6 @@ class DPI:
|
||||
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
|
||||
return value_loss
|
||||
|
||||
|
||||
def select_one_batch(self):
|
||||
# collect sequences
|
||||
non_zero_indices = np.nonzero(self.data_buffer.episode_count)[0]
|
||||
@ -530,9 +577,6 @@ class DPI:
|
||||
|
||||
return last_observations, current_observations, next_observations, actions, next_actions, rewards
|
||||
|
||||
|
||||
|
||||
|
||||
def evaluate(self, eval_episodes=10):
|
||||
path = path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
|
||||
self.restore_checkpoint(path)
|
||||
@ -608,7 +652,9 @@ class DPI:
|
||||
return torch.tensor(transposed_array).float()
|
||||
|
||||
def _upper_bound_minimization(self, current_states, predicted_current_states):
|
||||
club_loss = self.club_sample(current_states, predicted_current_states, current_states)
|
||||
current_negative_states = shuffle_along_axis(current_states.clone(), axis=0)
|
||||
current_negative_states = shuffle_along_axis(current_negative_states, axis=1)
|
||||
club_loss = self.club_sample(current_states, predicted_current_states, current_negative_states)
|
||||
likelihood_loss = 0
|
||||
return likelihood_loss, club_loss
|
||||
|
||||
@ -645,6 +691,24 @@ class DPI:
|
||||
returns = torch.flip(torch.stack(rets), [0])
|
||||
return returns
|
||||
|
||||
def lambda_return(self,imged_reward, value_pred, bootstrap, discount=0.99, lambda_=0.95):
|
||||
# Setting lambda=1 gives a discounted Monte Carlo return.
|
||||
# Setting lambda=0 gives a fixed 1-step return.
|
||||
next_values = torch.cat([value_pred[1:], bootstrap[None]], 0)
|
||||
discount_tensor = discount * torch.ones_like(imged_reward) # pcont
|
||||
inputs = imged_reward + discount_tensor * next_values * (1 - lambda_)
|
||||
last = bootstrap
|
||||
indices = reversed(range(len(inputs)))
|
||||
outputs = []
|
||||
for index in indices:
|
||||
inp, disc = inputs[index], discount_tensor[index]
|
||||
last = inp + disc * lambda_ * last
|
||||
outputs.append(last)
|
||||
outputs = list(reversed(outputs))
|
||||
outputs = torch.stack(outputs, 0)
|
||||
returns = outputs
|
||||
return returns
|
||||
|
||||
def save_models(self, save_path):
|
||||
torch.save(
|
||||
{'rssm' : self.transition_model.state_dict(),
|
||||
|
155
DPI/utils.py
155
DPI/utils.py
@ -1,10 +1,13 @@
|
||||
import os
|
||||
import random
|
||||
import pickle
|
||||
import numpy as np
|
||||
from collections import deque
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
|
||||
import gym
|
||||
import dmc2gym
|
||||
@ -144,8 +147,90 @@ class NormalizeActions:
|
||||
original = np.where(self._mask, original, action)
|
||||
return self._env.step(original)
|
||||
|
||||
class TimeLimit:
|
||||
|
||||
def __init__(self, env, duration):
|
||||
self._env = env
|
||||
self._duration = duration
|
||||
self._step = None
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
def step(self, action):
|
||||
assert self._step is not None, 'Must reset environment.'
|
||||
obs, reward, done, info = self._env.step(action)
|
||||
self._step += 1
|
||||
if self._step >= self._duration:
|
||||
done = True
|
||||
if 'discount' not in info:
|
||||
info['discount'] = np.array(1.0).astype(np.float32)
|
||||
self._step = None
|
||||
return obs, reward, done, info
|
||||
|
||||
def reset(self):
|
||||
self._step = 0
|
||||
return self._env.reset()
|
||||
|
||||
|
||||
class ReplayBuffer:
|
||||
|
||||
def __init__(self, size, obs_shape, action_size, seq_len, batch_size, args):
|
||||
|
||||
self.size = size
|
||||
self.obs_shape = obs_shape
|
||||
self.action_size = action_size
|
||||
self.seq_len = seq_len
|
||||
self.batch_size = batch_size
|
||||
self.idx = 0
|
||||
self.full = False
|
||||
self.observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
||||
self.next_observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
||||
self.actions = np.empty((size, action_size), dtype=np.float32)
|
||||
self.rewards = np.empty((size,), dtype=np.float32)
|
||||
self.terminals = np.empty((size,), dtype=np.float32)
|
||||
self.steps, self.episodes = 0, 0
|
||||
self.episode_count = np.zeros((size,), dtype=np.int32)
|
||||
|
||||
def add(self, obs, ac, next_obs, rew, done, episode_count):
|
||||
self.observations[self.idx] = obs
|
||||
self.next_observations[self.idx] = next_obs
|
||||
self.actions[self.idx] = ac
|
||||
self.rewards[self.idx] = rew
|
||||
self.terminals[self.idx] = done
|
||||
self.full = self.full or self.idx == 0
|
||||
self.steps += 1
|
||||
self.episodes = self.episodes + (1 if done else 0)
|
||||
self.episode_count[self.idx] = episode_count
|
||||
self.idx = (self.idx + 1) % self.size
|
||||
|
||||
def _sample_idx(self, L):
|
||||
valid_idx = False
|
||||
while not valid_idx:
|
||||
idx = np.random.randint(0, self.size if self.full else self.idx - L)
|
||||
idxs = np.arange(idx, idx + L) % self.size
|
||||
valid_idx = not self.idx in idxs[1:]
|
||||
return idxs
|
||||
|
||||
def _retrieve_batch(self, idxs, n, L):
|
||||
vec_idxs = idxs.transpose().reshape(-1) # Unroll indices
|
||||
observations = self.observations[vec_idxs]
|
||||
next_obs = self.next_observations[vec_idxs]
|
||||
obs = observations.reshape(L, n, *observations.shape[1:])
|
||||
next_obs = next_obs.reshape(L, n, *next_obs.shape[1:])
|
||||
acs = self.actions[vec_idxs].reshape(L, n, -1)
|
||||
rew = self.rewards[vec_idxs].reshape(L, n)
|
||||
term = self.terminals[vec_idxs].reshape(L, n)
|
||||
return obs, acs, next_obs, rew, term
|
||||
|
||||
def sample(self):
|
||||
n = self.batch_size
|
||||
l = self.seq_len
|
||||
obs,acs,next_obs,rews,terms= self._retrieve_batch(np.asarray([self._sample_idx(l) for _ in range(n)]), n, l)
|
||||
return obs,acs,next_obs,rews,terms
|
||||
|
||||
|
||||
class ReplayBuffer1:
|
||||
def __init__(self, size, obs_shape, action_size, seq_len, batch_size, args):
|
||||
self.size = size
|
||||
self.obs_shape = obs_shape
|
||||
@ -199,8 +284,11 @@ class ReplayBuffer:
|
||||
def group_steps(self, buffer, variable, obs=True):
|
||||
variable = getattr(buffer, variable)
|
||||
non_zero_indices = np.nonzero(buffer.episode_count)[0]
|
||||
print(buffer.episode_count)
|
||||
variable = variable[non_zero_indices]
|
||||
|
||||
print(variable.shape)
|
||||
exit()
|
||||
|
||||
if obs:
|
||||
variable = variable.reshape(-1, self.args.episode_length,
|
||||
self.args.frame_stack*self.args.channels,
|
||||
@ -215,8 +303,9 @@ class ReplayBuffer:
|
||||
self.args.image_size,self.args.image_size)
|
||||
return variable
|
||||
|
||||
def sample_random_idx(self, buffer_length):
|
||||
random_indices = random.sample(range(0, buffer_length), self.args.batch_size)
|
||||
def sample_random_idx(self, buffer_length, last=False):
|
||||
init = 0 if last else buffer_length - self.args.batch_size
|
||||
random_indices = random.sample(range(init, buffer_length), self.args.batch_size)
|
||||
return random_indices
|
||||
|
||||
def group_and_sample_random_batch(self, buffer, variable_name, device, random_indices, is_obs=True, offset=0):
|
||||
@ -248,19 +337,23 @@ def make_env(args):
|
||||
)
|
||||
return env
|
||||
|
||||
def shuffle_along_axis(a, axis):
|
||||
idx = np.random.rand(*a.shape).argsort(axis=axis)
|
||||
return np.take_along_axis(a,idx,axis=axis)
|
||||
|
||||
def preprocess_obs(obs):
|
||||
obs = obs/255.0 - 0.5
|
||||
obs = (obs/255.0) - 0.5
|
||||
return obs
|
||||
|
||||
def soft_update_params(net, target_net, tau):
|
||||
for param, target_param in zip(net.parameters(), target_net.parameters()):
|
||||
target_param.data.copy_(
|
||||
tau * param.data + (1 - tau) * target_param.data
|
||||
tau * param.detach().data + (1 - tau) * target_param.data
|
||||
)
|
||||
|
||||
def save_image(array, filename):
|
||||
array = array.transpose(1, 2, 0)
|
||||
array = (array * 255).astype(np.uint8)
|
||||
array = ((array+0.5) * 255).astype(np.uint8)
|
||||
image = Image.fromarray(array)
|
||||
image.save(filename)
|
||||
|
||||
@ -353,4 +446,52 @@ class FreezeParameters:
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
for i, param in enumerate(get_parameters(self.modules)):
|
||||
param.requires_grad = self.param_states[i]
|
||||
param.requires_grad = self.param_states[i]
|
||||
|
||||
class Logger:
|
||||
|
||||
def __init__(self, log_dir, n_logged_samples=10, summary_writer=None):
|
||||
self._log_dir = log_dir
|
||||
print('########################')
|
||||
print('logging outputs to ', log_dir)
|
||||
print('########################')
|
||||
self._n_logged_samples = n_logged_samples
|
||||
self._summ_writer = SummaryWriter(log_dir, flush_secs=1, max_queue=1)
|
||||
|
||||
def log_scalar(self, scalar, name, step_):
|
||||
self._summ_writer.add_scalar('{}'.format(name), scalar, step_)
|
||||
|
||||
def log_scalars(self, scalar_dict, step):
|
||||
for key, value in scalar_dict.items():
|
||||
print('{} : {}'.format(key, value))
|
||||
self.log_scalar(value, key, step)
|
||||
self.dump_scalars_to_pickle(scalar_dict, step)
|
||||
|
||||
def log_videos(self, videos, step, max_videos_to_save=1, fps=20, video_title='video'):
|
||||
|
||||
# max rollout length
|
||||
max_videos_to_save = np.min([max_videos_to_save, videos.shape[0]])
|
||||
max_length = videos[0].shape[0]
|
||||
for i in range(max_videos_to_save):
|
||||
if videos[i].shape[0]>max_length:
|
||||
max_length = videos[i].shape[0]
|
||||
|
||||
# pad rollouts to all be same length
|
||||
for i in range(max_videos_to_save):
|
||||
if videos[i].shape[0]<max_length:
|
||||
padding = np.tile([videos[i][-1]], (max_length-videos[i].shape[0],1,1,1))
|
||||
videos[i] = np.concatenate([videos[i], padding], 0)
|
||||
|
||||
clip = mpy.ImageSequenceClip(list(videos[i]), fps=fps)
|
||||
new_video_title = video_title+'{}_{}'.format(step, i) + '.gif'
|
||||
filename = os.path.join(self._log_dir, new_video_title)
|
||||
video.write_gif(filename, fps =fps)
|
||||
|
||||
|
||||
def dump_scalars_to_pickle(self, metrics, step, log_title=None):
|
||||
log_path = os.path.join(self._log_dir, "scalar_data.pkl" if log_title is None else log_title)
|
||||
with open(log_path, 'ab') as f:
|
||||
pickle.dump({'step': step, **dict(metrics)}, f)
|
||||
|
||||
def flush(self):
|
||||
self._summ_writer.flush()
|
Loading…
Reference in New Issue
Block a user