Curiosity/DPI/models.py

597 lines
24 KiB
Python
Raw Permalink Normal View History

2023-03-31 15:59:42 +00:00
import numpy as np
2023-03-23 14:05:28 +00:00
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.normal import Normal
class ObservationEncoder(nn.Module):
def __init__(self, obs_shape, state_size, num_layers=4, num_filters=32, stride=None):
super().__init__()
assert len(obs_shape) == 3
self.state_size = state_size
2023-04-24 15:42:37 +00:00
2023-03-23 14:05:28 +00:00
layers = []
for i in range(num_layers):
input_channels = obs_shape[0] if i == 0 else output_channels
output_channels = num_filters * (2 ** i)
layers.append(nn.Conv2d(in_channels=input_channels, out_channels= output_channels, kernel_size=4, stride=2))
2023-04-10 18:18:39 +00:00
layers.append(nn.LeakyReLU())
2023-03-23 14:05:28 +00:00
self.convs = nn.Sequential(*layers)
2023-04-24 15:42:37 +00:00
self.fc = nn.Linear(256 * obs_shape[0], 2 * state_size) # 9 if 3 frames stacked
2023-03-23 14:05:28 +00:00
def forward(self, x):
2023-04-24 15:42:37 +00:00
x_reshaped = x.reshape(-1, *x.shape[-3:])
x_embed = self.convs(x_reshaped)
x_embed = torch.reshape(x_embed, (*x.shape[:-3], -1))
x = self.fc(x_embed)
2023-03-23 14:05:28 +00:00
# Mean and standard deviation
mean, std = torch.chunk(x, 2, dim=-1)
2023-04-24 15:42:37 +00:00
mean = nn.ELU()(mean)
2023-03-23 14:05:28 +00:00
std = F.softplus(std)
2023-04-24 15:42:37 +00:00
std = torch.clamp(std, min=0.0, max=1e1)
2023-03-23 14:05:28 +00:00
# Normal Distribution
dist = self.get_dist(mean, std)
# Sampling via reparameterization Trick
2023-03-23 14:05:28 +00:00
x = self.reparameterize(mean, std)
encoded_output = {"sample": x, "distribution": dist}
return encoded_output
2023-03-23 14:05:28 +00:00
def reparameterize(self, mu, std):
eps = torch.randn_like(std)
return mu + eps * std
def get_dist(self, mean, std):
distribution = torch.distributions.Normal(mean, std)
distribution = torch.distributions.independent.Independent(distribution, 1)
return distribution
2023-03-23 14:05:28 +00:00
class ObservationDecoder(nn.Module):
def __init__(self, state_size, output_shape):
super().__init__()
self.state_size = state_size
self.output_shape = output_shape
self.input_size = 256 * 3 * 3
self.in_channels = [self.input_size, 256, 128, 64]
2023-04-24 15:42:37 +00:00
self.out_channels = [256, 128, 64, 9]
2023-03-23 14:05:28 +00:00
if output_shape[1] == 84:
self.kernels = [5, 7, 5, 6]
self.output_padding = [1, 1, 1, 0]
elif output_shape[1] == 64:
self.kernels = [5, 5, 6, 6]
self.output_padding = [0, 0, 0, 0]
self.dense = nn.Linear(state_size, self.input_size)
layers = []
for i in range(len(self.kernels)):
layers.append(nn.ConvTranspose2d(in_channels=self.in_channels[i], out_channels=self.out_channels[i],
kernel_size=self.kernels[i], stride=2, output_padding=self.output_padding[i]))
if i!=len(self.kernels)-1:
2023-04-12 16:22:02 +00:00
layers.append(nn.LeakyReLU())
2023-03-23 14:05:28 +00:00
self.convtranspose = nn.Sequential(*layers)
def forward(self, features):
out_batch_shape = features.shape[:-1]
out = self.dense(features)
out = torch.reshape(out, [-1, self.input_size, 1, 1])
out = self.convtranspose(out)
mean = torch.reshape(out, (*out_batch_shape, *self.output_shape))
out_dist = torch.distributions.independent.Independent(torch.distributions.Normal(mean, 1), len(self.output_shape))
return out_dist
class Actor(nn.Module):
2023-04-24 15:42:37 +00:00
def __init__(self, state_size, hidden_size, action_size, num_layers=4, min_std=1e-4, init_std=5, mean_scale=5):
2023-03-31 15:59:42 +00:00
super().__init__()
self.state_size = state_size
self.hidden_size = hidden_size
self.action_size = action_size
self.num_layers = num_layers
2023-04-24 15:42:37 +00:00
self._min_std = min_std
self._init_std = init_std
self._mean_scale = mean_scale
2023-03-31 15:59:42 +00:00
layers = []
for i in range(self.num_layers):
input_channels = state_size if i == 0 else self.hidden_size
2023-04-24 15:42:37 +00:00
layers.append(nn.Linear(input_channels, self.hidden_size))
layers.append(nn.ReLU())
layers.append(nn.Linear(self.hidden_size, 2*self.action_size))
2023-03-31 15:59:42 +00:00
self.action_model = nn.Sequential(*layers)
def get_dist(self, mean, std):
distribution = torch.distributions.Normal(mean, std)
distribution = torch.distributions.transformed_distribution.TransformedDistribution(distribution, TanhBijector())
distribution = torch.distributions.independent.Independent(distribution, 1)
2023-04-24 15:42:37 +00:00
distribution = SampleDist(distribution)
2023-03-31 15:59:42 +00:00
return distribution
2023-04-24 15:42:37 +00:00
def add_exploration(self, action, action_noise=0.3):
return torch.clamp(torch.distributions.Normal(action, action_noise).rsample(), -1, 1)
2023-03-31 15:59:42 +00:00
def forward(self, features):
out = self.action_model(features)
mean, std = torch.chunk(out, 2, dim=-1)
2023-04-24 15:42:37 +00:00
raw_init_std = np.log(np.exp(self._init_std) - 1)
2023-03-31 15:59:42 +00:00
action_mean = self._mean_scale * torch.tanh(mean / self._mean_scale)
action_std = F.softplus(std + raw_init_std) + self._min_std
dist = self.get_dist(action_mean, action_std)
2023-04-24 15:42:37 +00:00
sample = dist.rsample() #self.reparameterize(action_mean, action_std)
2023-03-31 15:59:42 +00:00
return sample
2023-04-24 15:42:37 +00:00
def reparameterize(self, mu, std):
eps = torch.randn_like(std)
return mu + eps * std
2023-03-31 15:59:42 +00:00
2023-03-31 16:38:51 +00:00
class ValueModel(nn.Module):
def __init__(self, state_size, hidden_size, num_layers=4):
super().__init__()
self.state_size = state_size
self.hidden_size = hidden_size
self.num_layers = num_layers
layers = []
2023-04-24 15:42:37 +00:00
for i in range(self.num_layers-1):
2023-03-31 16:38:51 +00:00
input_channels = state_size if i == 0 else self.hidden_size
2023-04-24 15:42:37 +00:00
output_channels = self.hidden_size
2023-03-31 16:38:51 +00:00
layers.append(nn.Linear(input_channels, output_channels))
2023-04-12 16:22:02 +00:00
layers.append(nn.LeakyReLU())
2023-04-24 15:42:37 +00:00
layers.append(nn.Linear(self.hidden_size, int(np.prod(1))))
2023-03-31 16:38:51 +00:00
self.value_model = nn.Sequential(*layers)
def forward(self, state):
value = self.value_model(state)
2023-03-31 17:12:46 +00:00
value_dist = torch.distributions.independent.Independent(torch.distributions.Normal(value, 1), 1)
return value_dist
class RewardModel(nn.Module):
def __init__(self, state_size, hidden_size):
super().__init__()
self.reward_model = nn.Sequential(
nn.Linear(state_size, hidden_size),
2023-04-12 16:22:02 +00:00
nn.LeakyReLU(),
nn.Linear(hidden_size, hidden_size),
2023-04-12 16:22:02 +00:00
nn.LeakyReLU(),
nn.Linear(hidden_size, 1)
)
def forward(self, state):
2023-04-12 07:34:11 +00:00
reward = self.reward_model(state)
return torch.distributions.independent.Independent(
torch.distributions.Normal(reward, 1), 1)
2023-04-24 15:42:37 +00:00
"""
2023-03-23 14:05:28 +00:00
class TransitionModel(nn.Module):
def __init__(self, state_size, hidden_size, action_size, history_size):
super().__init__()
self.state_size = state_size
self.hidden_size = hidden_size
self.action_size = action_size
self.history_size = history_size
2023-04-12 16:22:02 +00:00
self.act_fn = nn.LeakyReLU()
2023-03-23 14:05:28 +00:00
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
2023-04-24 15:42:37 +00:00
self.ln = nn.LayerNorm(hidden_size)
2023-03-23 14:05:28 +00:00
self.history_cell = nn.GRUCell(hidden_size + history_size, history_size)
self.fc_state_prior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
self.fc_state_posterior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
def init_states(self, batch_size, device):
self.prev_state = torch.zeros(batch_size, self.state_size).to(device)
self.prev_action = torch.zeros(batch_size, self.action_size).to(device)
self.prev_history = torch.zeros(batch_size, self.history_size).to(device)
def get_dist(self, mean, std):
distribution = torch.distributions.Normal(mean, std)
distribution = torch.distributions.independent.Independent(distribution, 1)
return distribution
2023-04-24 15:42:37 +00:00
def stack_states(self, states, dim=0):
s = dict(
mean = torch.stack([state['mean'] for state in states], dim=dim),
std = torch.stack([state['std'] for state in states], dim=dim),
sample = torch.stack([state['sample'] for state in states], dim=dim),
history = torch.stack([state['history'] for state in states], dim=dim),)
if 'distribution' in states:
dist = dict(distribution = [state['distribution'] for state in states])
s.update(dist)
return s
def seq_to_batch(self, state, name):
return dict(
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
def imagine_step(self, state, action, history):
state_action = self.ln(self.act_fn(self.fc_state_action(torch.cat([state, action], dim=-1))))
imag_hist = self.history_cell(torch.cat([state_action, history], dim=-1), history)
state_prior = self.fc_state_prior(torch.cat([imag_hist, state, action], dim=-1))
2023-03-23 14:05:28 +00:00
state_prior_mean, state_prior_std = torch.chunk(state_prior, 2, dim=-1)
state_prior_std = F.softplus(state_prior_std)
# Normal Distribution
state_prior_dist = self.get_dist(state_prior_mean, state_prior_std)
# Sampling via reparameterization Trick
2023-03-23 14:05:28 +00:00
sample_state_prior = self.reparemeterize(state_prior_mean, state_prior_std)
2023-04-24 15:42:37 +00:00
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": imag_hist, "distribution": state_prior_dist}
2023-03-23 14:05:28 +00:00
return prior
2023-04-24 15:42:37 +00:00
def imagine_rollout(self, state, action, history, horizon):
imagined_priors = []
for i in range(horizon):
prior = self.imagine_step(state, action, history)
state = prior["sample"]
history = prior["history"]
imagined_priors.append(prior)
imagined_priors = self.stack_states(imagined_priors, dim=0)
return imagined_priors
def observe_step(self, prev_state, prev_action, prev_history, nonterms):
state_action = self.ln(self.act_fn(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))))
current_history = self.history_cell(torch.cat([state_action, prev_history], dim=-1), prev_history)
state_prior = self.fc_state_prior(torch.cat([prev_history, prev_state, prev_action], dim=-1))
state_prior_mean, state_prior_std = torch.chunk(state_prior*nonterms, 2, dim=-1)
state_prior_std = F.softplus(state_prior_std) + 0.1
sample_state_prior = state_prior_mean + torch.randn_like(state_prior_mean) * state_prior_std
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": current_history}
return prior
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
observed_rollout = []
for i in range(rollout_states.shape[0]):
actions = rollout_actions[i] * nonterms[i]
prior = self.observe_step(rollout_states[i], actions, init_history, nonterms[i])
init_history = prior["history"]
observed_rollout.append(prior)
observed_rollout = self.stack_states(observed_rollout, dim=0)
return observed_rollout
def reparemeterize(self, mean, std):
eps = torch.randn_like(std)
return mean + eps * std
"""
class TransitionModel(nn.Module):
def __init__(self, state_size, hidden_size, action_size, history_size):
super().__init__()
self.state_size = state_size
self.hidden_size = hidden_size
self.action_size = action_size
self.history_size = history_size
self.act_fn = nn.ELU()
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
self.history_cell = nn.GRUCell(hidden_size, history_size)
self.fc_state_mu = nn.Linear(history_size + hidden_size, state_size)
self.fc_state_sigma = nn.Linear(history_size + hidden_size, state_size)
self.batch_norm = nn.BatchNorm1d(hidden_size)
self.batch_norm2 = nn.BatchNorm1d(state_size)
self.min_sigma = 1e-4
self.max_sigma = 1e0
def init_states(self, batch_size, device):
self.prev_state = torch.zeros(batch_size, self.state_size).to(device)
self.prev_action = torch.zeros(batch_size, self.action_size).to(device)
self.prev_history = torch.zeros(batch_size, self.history_size).to(device)
def get_dist(self, mean, std):
distribution = torch.distributions.Normal(mean, std)
distribution = torch.distributions.independent.Independent(distribution, 1)
return distribution
def stack_states(self, states, dim=0):
2023-04-09 16:23:16 +00:00
s = dict(
mean = torch.stack([state['mean'] for state in states], dim=dim),
std = torch.stack([state['std'] for state in states], dim=dim),
sample = torch.stack([state['sample'] for state in states], dim=dim),
history = torch.stack([state['history'] for state in states], dim=dim),)
2023-04-24 15:42:37 +00:00
if 'distribution' in states:
dist = dict(distribution = [state['distribution'] for state in states])
s.update(dist)
2023-04-09 16:23:16 +00:00
return s
2023-04-24 15:42:37 +00:00
def seq_to_batch(self, state, name):
return dict(
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
def imagine_step(self, state, action, history):
next_state_action_enc = self.act_fn(self.batch_norm(self.fc_state_action(torch.cat([state, action], dim=-1))))
imag_history = self.history_cell(next_state_action_enc, history)
next_state_mu = self.act_fn(self.batch_norm2(self.fc_state_mu(torch.cat([next_state_action_enc, imag_history], dim=-1))))
next_state_sigma = torch.sigmoid(self.fc_state_sigma(torch.cat([next_state_action_enc, imag_history], dim=-1)))
next_state_sigma = self.min_sigma + (self.max_sigma - self.min_sigma) * next_state_sigma
# Normal Distribution
next_state_dist = self.get_dist(next_state_mu, next_state_sigma)
next_state_sample = self.reparemeterize(next_state_mu, next_state_sigma)
prior = {"mean": next_state_mu, "std": next_state_sigma, "sample": next_state_sample, "history": imag_history, "distribution": next_state_dist}
return prior
2023-04-09 16:23:16 +00:00
def imagine_rollout(self, state, action, history, horizon):
imagined_priors = []
for i in range(horizon):
prior = self.imagine_step(state, action, history)
state = prior["sample"]
history = prior["history"]
imagined_priors.append(prior)
imagined_priors = self.stack_states(imagined_priors, dim=0)
return imagined_priors
2023-04-24 15:42:37 +00:00
def observe_step(self, prev_state, prev_action, prev_history):
state_action_enc = self.act_fn(self.batch_norm(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))))
current_history = self.history_cell(state_action_enc, prev_history)
state_mu = self.act_fn(self.batch_norm2(self.fc_state_mu(torch.cat([state_action_enc, prev_history], dim=-1))))
state_sigma = F.softplus(self.fc_state_sigma(torch.cat([state_action_enc, prev_history], dim=-1)))
sample_state = state_mu + torch.randn_like(state_mu) * state_sigma
state_enc = {"mean": state_mu, "std": state_sigma, "sample": sample_state, "history": current_history}
return state_enc
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
observed_rollout = []
for i in range(rollout_states.shape[0]):
rollout_states_ = rollout_states[i]
rollout_actions_ = rollout_actions[i]
init_history_ = nonterms[i] * init_history
state_enc = self.observe_step(rollout_states_, rollout_actions_, init_history_)
init_history = state_enc["history"]
observed_rollout.append(state_enc)
observed_rollout = self.stack_states(observed_rollout, dim=0)
return observed_rollout
2023-03-23 14:05:28 +00:00
def reparemeterize(self, mean, std):
2023-04-24 15:42:37 +00:00
eps = torch.randn_like(mean)
2023-03-23 14:05:28 +00:00
return mean + eps * std
2023-04-24 15:42:37 +00:00
2023-03-31 15:59:42 +00:00
class TanhBijector(torch.distributions.Transform):
def __init__(self):
super().__init__()
self.bijective = True
self.domain = torch.distributions.constraints.real
self.codomain = torch.distributions.constraints.interval(-1.0, 1.0)
@property
def sign(self): return 1.
def _call(self, x): return torch.tanh(x)
def atanh(self, x):
return 0.5 * torch.log((1 + x) / (1 - x))
def _inverse(self, y: torch.Tensor):
y = torch.where(
(torch.abs(y) <= 1.),
torch.clamp(y, -0.99999997, 0.99999997),
y)
y = self.atanh(y)
return y
def log_abs_det_jacobian(self, x, y):
#return 2. * (np.log(2) - x - F.softplus(-2. * x))
return 2.0 * (torch.log(torch.tensor([2.0])) - x - F.softplus(-2.0 * x))
2023-03-23 14:05:28 +00:00
2023-04-02 16:52:26 +00:00
class ProjectionHead(nn.Module):
def __init__(self, state_size, action_size, hidden_size):
super(ProjectionHead, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.hidden_size = hidden_size
self.projection_model = nn.Sequential(
nn.Linear(state_size + action_size, hidden_size),
nn.LayerNorm(hidden_size),
2023-04-12 16:22:02 +00:00
nn.LeakyReLU(),
2023-04-02 16:52:26 +00:00
nn.Linear(hidden_size, hidden_size),
nn.LayerNorm(hidden_size),
)
def forward(self, state, action):
x = torch.cat([state, action], dim=-1)
x = self.projection_model(x)
return x
class ContrastiveHead(nn.Module):
def __init__(self, hidden_size, temperature=1):
super(ContrastiveHead, self).__init__()
self.hidden_size = hidden_size
self.temperature = temperature
self.W = nn.Parameter(torch.rand(self.hidden_size, self.hidden_size))
def forward(self, z_a, z_pos):
Wz = torch.matmul(self.W, z_pos.T) # (z_dim,B)
logits = torch.matmul(z_a, Wz) # (B,B)
logits = logits - torch.max(logits, 1)[0][:, None]
logits = logits * self.temperature
2023-04-09 16:23:16 +00:00
return logits
2023-04-24 15:42:37 +00:00
"""
2023-04-09 16:23:16 +00:00
class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
def __init__(self, last_states, current_states, negative_current_states, predicted_current_states):
super(CLUBSample, self).__init__()
self.last_states = last_states
self.current_states = current_states
self.negative_current_states = negative_current_states
self.predicted_current_states = predicted_current_states
def get_mu_var_samples(self, state_dict):
dist = state_dict["distribution"]
2023-04-12 07:34:11 +00:00
sample = state_dict["sample"] #dist.sample() # Use state_dict["sample"] if you want to use the same sample for all the losses
2023-04-09 16:23:16 +00:00
mu = dist.mean
var = dist.variance
2023-04-24 15:42:37 +00:00
return mu.detach(), var.detach(), sample.detach()
2023-04-09 16:23:16 +00:00
def loglikeli(self):
_, _, pred_sample = self.get_mu_var_samples(self.predicted_current_states)
mu_curr, var_curr, _ = self.get_mu_var_samples(self.current_states)
2023-04-12 07:34:11 +00:00
logvar_curr = torch.log(var_curr)
2023-04-09 16:23:16 +00:00
return (-(mu_curr - pred_sample)**2 /var_curr-logvar_curr).sum(dim=1).mean(dim=0)
def forward(self):
_, _, pred_sample = self.get_mu_var_samples(self.predicted_current_states)
mu_curr, var_curr, _ = self.get_mu_var_samples(self.current_states)
mu_neg, var_neg, _ = self.get_mu_var_samples(self.negative_current_states)
2023-04-12 07:34:11 +00:00
sample_size = pred_sample.shape[0]
random_index = torch.randperm(sample_size).long()
2023-04-09 16:23:16 +00:00
pos = (-(mu_curr - pred_sample)**2 /var_curr).sum(dim=1).mean(dim=0)
2023-04-24 15:42:37 +00:00
#neg = (-(mu_curr - pred_sample[random_index])**2 /var_curr).sum(dim=1).mean(dim=0)
neg = (-(mu_neg - pred_sample)**2 /var_neg).sum(dim=1).mean(dim=0)
2023-04-09 16:23:16 +00:00
upper_bound = pos - neg
return upper_bound/2
def learning_loss(self):
return - self.loglikeli()
2023-04-24 15:42:37 +00:00
"""
class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
def __init__(self, x_dim, y_dim, hidden_size):
super(CLUBSample, self).__init__()
self.p_mu = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
nn.ReLU(),
nn.Linear(hidden_size//2, y_dim))
self.p_logvar = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
nn.ReLU(),
nn.Linear(hidden_size//2, y_dim),
nn.Tanh())
def get_mu_logvar(self, x_samples):
mu = self.p_mu(x_samples)
logvar = self.p_logvar(x_samples)
return mu, logvar
def loglikeli(self, x_samples, y_samples):
mu, logvar = self.get_mu_logvar(x_samples)
return (-(mu - y_samples)**2 /logvar.exp()-logvar).sum(dim=1).mean(dim=0)
2023-04-09 16:23:16 +00:00
2023-04-24 15:42:37 +00:00
def forward(self, x_samples, y_samples, y_negatives):
mu, logvar = self.get_mu_logvar(x_samples)
sample_size = x_samples.shape[0]
#random_index = torch.randint(sample_size, (sample_size,)).long()
random_index = torch.randperm(sample_size).long()
positive = -(mu - y_samples)**2 / logvar.exp()
#negative = - (mu - y_samples[random_index])**2 / logvar.exp()
negative = -(mu - y_negatives)**2 / logvar.exp()
upper_bound = (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
return upper_bound/2.
def learning_loss(self, x_samples, y_samples):
return -self.loglikeli(x_samples, y_samples)
class QFunction(nn.Module):
"""MLP for q-function."""
def __init__(self, obs_dim, action_dim, hidden_dim):
super().__init__()
self.trunk = nn.Sequential(
nn.Linear(obs_dim + action_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
def forward(self, obs, action):
assert obs.size(0) == action.size(0)
obs_action = torch.cat([obs, action], dim=1)
return self.trunk(obs_action)
class Critic(nn.Module):
"""Critic network, employes two q-functions."""
def __init__(
self, obs_shape, action_shape, hidden_dim, encoder_feature_dim):
super().__init__()
self.Q1 = QFunction(
self.encoder.feature_dim, action_shape[0], hidden_dim
)
self.Q2 = QFunction(
self.encoder.feature_dim, action_shape[0], hidden_dim
)
self.outputs = dict()
def forward(self, obs, action, detach_encoder=False):
# detach_encoder allows to stop gradient propogation to encoder
obs = self.encoder(obs, detach=detach_encoder)
q1 = self.Q1(obs, action)
q2 = self.Q2(obs, action)
self.outputs['q1'] = q1
self.outputs['q2'] = q2
return q1, q2
class SampleDist:
def __init__(self, dist, samples=100):
self._dist = dist
self._samples = samples
@property
def name(self):
return 'SampleDist'
def __getattr__(self, name):
return getattr(self._dist, name)
def mean(self):
sample = self._dist.rsample(self._samples)
return torch.mean(sample, 0)
def mode(self):
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
sample = dist.rsample()
logprob = dist.log_prob(sample)
batch_size = sample.size(1)
feature_size = sample.size(2)
indices = torch.argmax(logprob, dim=0).reshape(1, batch_size, 1).expand(1, batch_size, feature_size)
return torch.gather(sample, 0, indices).squeeze(0)
def entropy(self):
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
sample = dist.rsample()
logprob = dist.log_prob(sample)
return -torch.mean(logprob, 0)
def sample(self):
return self._dist.sample()
2023-04-09 16:23:16 +00:00
if "__name__ == __main__":
2023-04-24 15:42:37 +00:00
tr = TransitionModel(50, 512, 1, 256)