update exam file

This commit is contained in:
Your Name 2024-06-06 12:21:17 +02:00
parent e04e1cab3c
commit 3d48529b73

View File

@ -46,7 +46,8 @@
"metadata": {},
"source": [
"Name:\n",
"Mat Number:"
"Mat Number:\n",
"Jupyter Username:"
]
},
{
@ -189,7 +190,7 @@
"source": [
"### Question 1: Describing and Testing the Code (4 Points)\n",
"\n",
"Break down and explain each line of the provided code snippet. Additionally, describe the role of the '%' symbol in this context. Why is it necessary within this code?"
"a) Break down and explain each line of the provided code snippet. Additionally, describe the role of the '%' symbol in this context. Why is it necessary within this code?"
]
},
{
@ -218,24 +219,32 @@
" return dataset"
]
},
{
"cell_type": "raw",
"id": "654d26a8-ed35-4c99-b0ab-43c9371a7b21",
"metadata": {},
"source": [
"# add your Answer to a)"
]
},
{
"cell_type": "markdown",
"id": "afa185ff-bd11-4c2b-ae55-277217c63bf8",
"metadata": {},
"source": [
"Test the above code on the *data.csv* and print the result."
"b) Test the above code on the *data.csv* and print the result."
]
},
{
"cell_type": "code",
"execution_count": 61,
"execution_count": 3,
"id": "5d7a7ac6-5a5c-422c-b310-82b2779cd7fe",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# your code"
"# your code for b)"
]
},
{
@ -252,7 +261,7 @@
"metadata": {},
"source": [
"### Question 2: Write a short Function (4 Points)\n",
"Write a short function which calculates the variance of a dataset and returns it. (hint: to perform x² use ** instead of ^, Pandas is not allowed)"
"a) Write **your own** short function which calculates the variance of a dataset and returns it. (hint: to perform x² use ** instead of ^; only core-functions of python are allowed)"
]
},
{
@ -277,14 +286,25 @@
},
{
"cell_type": "code",
"execution_count": 72,
"execution_count": 1,
"id": "8df48b65-79be-4a7f-8f47-cdecaa11d390",
"metadata": {
"tags": []
},
"outputs": [],
"outputs": [
{
"ename": "IndentationError",
"evalue": "expected an indented block after function definition on line 2 (3899112808.py, line 5)",
"output_type": "error",
"traceback": [
"\u001b[0;36m Cell \u001b[0;32mIn[1], line 5\u001b[0;36m\u001b[0m\n\u001b[0;31m def calc_variance(dataset):\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mIndentationError\u001b[0m\u001b[0;31m:\u001b[0m expected an indented block after function definition on line 2\n"
]
}
],
"source": [
"# your function"
"# your function for a)\n",
"def calc_variance(dataset):\n",
" # your Code"
]
},
{
@ -292,19 +312,19 @@
"id": "c7ff344b-f9d2-4ee8-8ad9-ce3be8ecbb33",
"metadata": {},
"source": [
"Test your code on the data.csv table below and print the results:"
"b) Test your code on the **data.csv** table below and print the results:"
]
},
{
"cell_type": "code",
"execution_count": 69,
"execution_count": 4,
"id": "705b0c3b-72a0-438d-a9b7-dbb5600aa9c3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# your test code"
"# your test code for b)"
]
},
{
@ -329,7 +349,7 @@
"id": "36d73f9a-2716-4e39-81e8-bb906380f250",
"metadata": {},
"source": [
"Your Answer:"
"Your Answer for a):"
]
},
{
@ -345,7 +365,7 @@
"id": "61969d27-0b98-410c-bffc-16a1de912972",
"metadata": {},
"source": [
"Your Answer:"
"Your Answer for b):"
]
},
{
@ -362,7 +382,7 @@
"metadata": {},
"source": [
"### Question 4: Databases (6 Points)\n",
"Put the following code into the correct order and run it. Describe each line with comments:"
"Put the following code into a **logical** correct order and run it. Describe each line with comments:"
]
},
{
@ -528,7 +548,7 @@
"metadata": {},
"source": [
"### Question 5: Data Analyzer (4 Points)\n",
"Design a Python class, DataAnalyzer, to facilitate the analysis and visualization of data stored in a database. The class should provide methods to create a SQLite database from a DataFrame and plot the data using Matplotlib."
"a) Design a Python class, DataAnalyzer, to facilitate the analysis and visualization of data stored in a database. The class should provide methods to create a SQLite database from a DataFrame and plot the data using Matplotlib. Write down only the code for the **create_database** method."
]
},
{
@ -541,7 +561,7 @@
"- x_values: A list with x-values.\n",
"- y_values: A list with y-values.\n",
"\n",
"Method: create_database\n",
"**Method: create_database**\n",
"- Connect to the SQLite database specified by database_name.\n",
"- Create a table and insert the x and y values.\n",
"- Print the number of entries in the database after creating.\n",
@ -560,7 +580,7 @@
},
"outputs": [],
"source": [
"# your Class:\n",
"# your Class from a):\n",
"class DataAnalyzer:\n",
" def __init__(self, database_name, x_values, y_values):\n",
" self.database_name = database_name\n",
@ -569,7 +589,6 @@
"\n",
" def create_database(self):\n",
" # Your Code\n",
" pass\n",
"\n",
" def plot_values(self):\n",
" \"\"\"\n",
@ -588,19 +607,19 @@
"id": "30605de1-8eb0-4403-a36b-d22418341e9e",
"metadata": {},
"source": [
"Test your code below on *coordinates.csv*. The name of the database should be your *matr. nr.* You should test both functions! (for import use pandas or csv)"
"b) Test your code below on **coordinates.csv**. The name of the database should be your **matr. nr.** You should test both functions! (for import you can use pandas or csv)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 8,
"id": "6ea4c395-1246-4530-994b-9c764a5c57ed",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# your test code:"
"# your test code from b):"
]
},
{
@ -626,19 +645,19 @@
"id": "f110bc78-13dc-4251-af7a-32bff74ce5bc",
"metadata": {},
"source": [
"a) Describe the following code with comments."
"a) Describe the following code with comments and rename the function. (directly in the code)"
]
},
{
"cell_type": "code",
"execution_count": 47,
"execution_count": 6,
"id": "3f6d6805-5e97-4fbd-b202-4020e9485643",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def function(X, y, factor=0.2):\n",
"def func_q6(X, y, factor=0.2):\n",
" idx = np.arange(X.shape[0])\n",
" np.random.shuffle(idx)\n",
" X = X[idx]\n",
@ -666,7 +685,7 @@
"id": "c9dbe438-5c74-4a02-8ea3-efc0e966e483",
"metadata": {},
"source": [
"b) Why do we need the above code?"
"b) Describe the purpose of the above code?"
]
},
{
@ -674,7 +693,7 @@
"id": "161a52a4-79e2-4401-ba8a-6f680d47771e",
"metadata": {},
"source": [
"Your Answer:"
"Your Answer for b):"
]
},
{
@ -692,7 +711,7 @@
"id": "e998c866-416e-457d-aee8-d1034ae21f84",
"metadata": {},
"source": [
"Your Answer:"
"Your Answer for c):"
]
},
{
@ -708,7 +727,7 @@
"id": "8d3ec404-4508-413c-9d00-9ce1f24c492f",
"metadata": {},
"source": [
"Your Answer:"
"Your Answer for d):"
]
},
{
@ -754,7 +773,7 @@
"id": "d67a67c9-b129-412c-b29b-2869892fcf88",
"metadata": {},
"source": [
"a) Why do we need linear regression?"
"a) Describe the purpose of linear regression?"
]
},
{
@ -762,7 +781,7 @@
"id": "29d16a49-69d4-4c59-921a-33201fa04d95",
"metadata": {},
"source": [
"Your Answer:"
"Your Answer for a):"
]
},
{
@ -770,7 +789,7 @@
"id": "43ef5af3-9da0-4dc0-84e1-4731f5687040",
"metadata": {},
"source": [
"b) What is the difference of using scikit-learn for linear regression and your own method?"
"b) How does the result differ when using the scikit-learn library for linear regression and the class above?"
]
},
{
@ -778,7 +797,7 @@
"id": "b6bcafd8-8e89-4fa6-888f-f30a93b019ec",
"metadata": {},
"source": [
"Your Answer:"
"Your Answer for b):"
]
},
{
@ -786,7 +805,7 @@
"id": "fdb3bd28-59ca-47ec-a750-79652cbc7d74",
"metadata": {},
"source": [
"c) Write down the function of the mean squared error? When do you use it?"
"c) Write down the function of the mean squared error (mathematically)? When do you use it?"
]
},
{
@ -794,7 +813,7 @@
"id": "791be49f-75ea-43a0-825a-0567ecf72aa1",
"metadata": {},
"source": [
"Your Answer:"
"Your Answer for c):"
]
},
{
@ -802,7 +821,7 @@
"id": "24b784d2-005e-4537-b0ce-c534f0303ced",
"metadata": {},
"source": [
"d) Describe step per step how you would perform linear regression on a given dataset. (more detailed answer)"
"d) Describe step by step how you would perform linear regression on a given dataset. (more detailed answer)"
]
},
{
@ -810,7 +829,7 @@
"id": "c6b02c04-2ad1-48f2-9719-14df04846d8e",
"metadata": {},
"source": [
"Your Answer:"
"Your Answer for d):"
]
},
{
@ -827,17 +846,17 @@
"metadata": {},
"source": [
"### Question 8: Linear Regression Coding (4 Points)\n",
"Perform linear regression on the *winequality-red.csv* with the target *alcohol* (pandas is allowed). Calculate the mean squared error and print it. Perform the task without preprocessing your data. It is necessary to split the data. "
"a) Perform linear regression on the **winequality-red.csv** with the target **alcohol** (pandas is allowed). Calculate the **mean squared error** and **print** it. Perform the task without preprocessing your data. It is necessary to **split the data**. "
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 7,
"id": "8f36613b-ecb5-40b0-9918-4119cb8943e2",
"metadata": {},
"outputs": [],
"source": [
"#your Code"
"# your Code for a)"
]
},
{
@ -854,7 +873,7 @@
"metadata": {},
"source": [
"### Question 9: Gaussian Processes (6 Points)\n",
"Fit the names to the different kernels below:"
"a) Fit the names to the different kernels below:"
]
},
{
@ -864,7 +883,7 @@
"tags": []
},
"source": [
"Add the Names:\n",
"Add the Names to the following lines:\n",
"\n",
"1. **... Kernel**: $k(x, x') = \\exp \\left( -2 \\sin^2 \\left( \\frac{\\pi ||x - x'||}{p} \\right) \\right) / \\sigma^2 $\n",
"2. **... Kernel**: $k(x, x') = x^T x' $\n",
@ -877,7 +896,7 @@
"id": "1759762b-5b0a-4e6f-9651-277bc4643fb4",
"metadata": {},
"source": [
"Fit the above numbers to the code below"
"b) Fit the above **numbers** to the lines below."
]
},
{
@ -885,7 +904,7 @@
"id": "0c6ddc30-f804-472c-92d1-8a03d3c3b020",
"metadata": {},
"source": [
"Your Answer:\n",
"Your Answer for b):\n",
" function1 = ...\n",
" function2 = ...\n",
" function3 = ...\n",
@ -989,6 +1008,30 @@
"source": [
"___________________________"
]
},
{
"cell_type": "markdown",
"id": "b5042b38-0752-4e23-aae3-3651a5f367cf",
"metadata": {},
"source": [
"### How to submit your file:\n",
"1) Save your file in the Jupyter Notebook (Floppy Disk Symbol)\n",
"2) Download only your jupyter-file (right-click and download)\n",
"3) Change the window to Moodle again (bottom-left corner)\n",
"4) Upload your file on Moodle\n",
"5) Submit your full exam\n",
" - Finish attempt ...\n",
" - Submit all and finish (First Time)\n",
" - Submit all and finish (Second Time)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5808cbd3-51da-40fd-a770-057156cd7465",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {