pypsa-eur/doc/configtables/industry.csv
Fabian Neumann 56f2b581bf
Add emissions and fuel consumption from fuel refinieries (#1253)
* Add emissions and fuel consumption from fuel refinieries

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-08-30 18:06:41 +02:00

7.0 KiB
Raw Permalink Blame History

1UnitValuesDescription
2St_primary_fraction--Dictionary with planning horizons as keys.The fraction of steel produced via primary route versus secondary route (scrap+EAF). Current fraction is 0.6
3DRI_fraction--Dictionary with planning horizons as keys.The fraction of the primary route DRI + EAF
4
5H2_DRI--floatThe hydrogen consumption in Direct Reduced Iron (DRI) Mwh_H2 LHV/ton_Steel from 51kgH2/tSt in `Vogl et al (2018) <https://doi.org/10.1016/j.jclepro.2018.08.279>`_
6elec_DRIMWh/tStfloatThe electricity consumed in Direct Reduced Iron (DRI) shaft. From `HYBRIT brochure <https://ssabwebsitecdn.azureedge.net/-/media/hybrit/files/hybrit_brochure.pdf>`_
7Al_primary_fraction--Dictionary with planning horizons as keys.The fraction of aluminium produced via the primary route versus scrap. Current fraction is 0.4
8MWh_NH3_per_tNH3LHVfloatThe energy amount per ton of ammonia.
9MWh_CH4_per_tNH3_SMR--floatThe energy amount of methane needed to produce a ton of ammonia using steam methane reforming (SMR). Value derived from 2012's demand from `Center for European Policy Studies (2008) <https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf>`_
10MWh_elec_per_tNH3_SMR--floatThe energy amount of electricity needed to produce a ton of ammonia using steam methane reforming (SMR). same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3
11Mwh_H2_per_tNH3 _electrolysis--floatThe energy amount of hydrogen needed to produce a ton of ammonia using HaberBosch process. From `Wang et al (2018) <https://doi.org/10.1016/j.joule.2018.04.017>`_, Base value assumed around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy)
12Mwh_elec_per_tNH3 _electrolysis--floatThe energy amount of electricity needed to produce a ton of ammonia using HaberBosch process. From `Wang et al (2018) <https://doi.org/10.1016/j.joule.2018.04.017>`_, Table 13 (air separation and HB)
13Mwh_NH3_per_MWh _H2_cracker--floatThe energy amount of amonia needed to produce an energy amount hydrogen using ammonia cracker
14NH3_process_emissionsMtCO2/afloatThe emission of ammonia production from steam methane reforming (SMR). From UNFCCC for 2015 for EU28
15petrochemical_process _emissionsMtCO2/afloatThe emission of petrochemical production. From UNFCCC for 2015 for EU28
16HVC_primary_fraction--floatThe fraction of high value chemicals (HVC) produced via primary route
17HVC_mechanical_recycling _fraction--floatThe fraction of high value chemicals (HVC) produced using mechanical recycling
18HVC_chemical_recycling _fraction--floatThe fraction of high value chemicals (HVC) produced using chemical recycling
19HVC_environment_sequestration_fraction--floatThe fraction of high value chemicals (HVC) put into landfill resulting in additional carbon sequestration. The default value is 0.
20waste_to_energy--boolSwitch to enable expansion of waste to energy CHPs for conversion of plastics. Default is false.
21waste_to_energy_cc--boolSwitch to enable expansion of waste to energy CHPs for conversion of plastics with carbon capture. Default is false.
22
23sector_ratios_fraction_future--Dictionary with planning horizons as keys.The fraction of total progress in fuel and process switching achieved in the industry sector.
24basic_chemicals_without_NH3_production_todayMt/afloatThe amount of basic chemicals produced without ammonia (= 86 Mtethylene-equiv - 17 MtNH3).
25HVC_production_todayMtHVC/afloatThe amount of high value chemicals (HVC) produced. This includes ethylene, propylene and BTX. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, Figure 16, page 107
26Mwh_elec_per_tHVC _mechanical_recyclingMWh/tHVCfloatThe energy amount of electricity needed to produce a ton of high value chemical (HVC) using mechanical recycling. From SI of `Meys et al (2020) <https://doi.org/10.1016/j.resconrec.2020.105010>`_, Table S5, for HDPE, PP, PS, PET. LDPE would be 0.756.
27Mwh_elec_per_tHVC _chemical_recyclingMWh/tHVCfloatThe energy amount of electricity needed to produce a ton of high value chemical (HVC) using chemical recycling. The default value is based on pyrolysis and electric steam cracking. From `Material Economics (2019) <https://materialeconomics.com/latest-updates/industrial-transformation-2050>`_, page 125
28
29chlorine_production _todayMtCl/afloatThe amount of chlorine produced. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, Table 7, page 43
30MWh_elec_per_tClMWh/tClfloatThe energy amount of electricity needed to produce a ton of chlorine. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, Table 6 page 43
31MWh_H2_per_tClMWhH2/tClfloatThe energy amount of hydrogen needed to produce a ton of chlorine. The value is negative since hydrogen produced in chloralkali process. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 43
32methanol_production _todayMtMeOH/afloatThe amount of methanol produced. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 62
33MWh_elec_per_tMeOHMWh/tMeOHfloatThe energy amount of electricity needed to produce a ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, Table 14, page 65
34MWh_CH4_per_tMeOHMWhCH4/tMeOHfloatThe energy amount of methane needed to produce a ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, Table 14, page 65
35MWh_MeOH_per_tMeOHLHVfloatThe energy amount per ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 74.
36hotmaps_locate_missing--{true,false}Locate industrial sites without valid locations based on city and countries.
37reference_yearyearYYYYThe year used as the baseline for industrial energy demand and production. Data extracted from `JRC-IDEES 2015 <https://data.jrc.ec.europa.eu/dataset/jrc-10110-10001>`_
38oil_refining_emissionstCO2/MWhfloatThe emissions from oil fuel processing (e.g. oil in petrochemical refinieries). The default value of 0.013 tCO2/MWh is based on DE statistics for 2019; the EU value is very similar.