pypsa-eur/scripts/solve_network.py

399 lines
17 KiB
Python
Raw Normal View History

"""
2019-08-11 20:34:18 +00:00
Solves linear optimal power flow for a network iteratively while updating reactances.
2019-08-11 09:40:47 +00:00
Relevant Settings
-----------------
2019-08-11 11:17:36 +00:00
.. code:: yaml
(electricity:)
(BAU_mincapacities:)
(SAFE_reservemargin:)
solving:
tmpdir:
options:
formulation:
clip_p_max_pu:
load_shedding:
noisy_costs:
nhours:
min_iterations:
max_iterations:
solver:
name:
(solveroptions):
2019-08-11 11:17:36 +00:00
(plotting:)
(conv_techs:)
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`electricity_cf`, :ref:`solving_cf`, :ref:`plotting_cf`
2019-08-11 09:40:47 +00:00
Inputs
------
2019-08-11 20:34:18 +00:00
- ``networks/{network}_s{simpl}_{clusters}_l{ll}_{opts}.nc``: confer :ref:`prepare`
2019-08-11 09:40:47 +00:00
Outputs
-------
2019-08-12 17:01:53 +00:00
- ``results/networks/{network}_s{simpl}_{clusters}_l{ll}_{opts}.nc``: Solved PyPSA network including optimisation results
2019-08-11 20:34:18 +00:00
.. image:: ../img/results.png
2019-08-14 08:35:41 +00:00
:scale: 40 %
2019-08-11 09:40:47 +00:00
Description
-----------
2019-08-14 09:07:52 +00:00
Total annual system costs are minimised with PyPSA. The full formulation of the
linear optimal power flow (plus investment planning
is provided in the
`documentation of PyPSA <https://pypsa.readthedocs.io/en/latest/optimal_power_flow.html#linear-optimal-power-flow>`_.
Additionaly some extra constraints from :mod:`prepare_network` are added.
Solving the network in multiple iterations is motivated through the dependence of transmission line capacities and impedances.
As lines are expanded their electrical parameters change, which renders the optimisation bilinear even if the power flow
equations are linearized.
To retain the computational advantage of continuous linear programming, a sequential linear programming technique
is used, where in between iterations the line impedances are updated.
Details (and errors made through this heuristic) are discussed in the paper
- Fabian Neumann and Tom Brown. `Heuristics for Transmission Expansion Planning in Low-Carbon Energy System Models <https://arxiv.org/abs/1907.10548>`_), *16th International Conference on the European Energy Market*, 2019. `arXiv:1907.10548 <https://arxiv.org/abs/1907.10548>`_.
.. warning::
Capital costs of existing network components are not included in the objective function,
since for the optimisation problem they are just a constant term (no influence on optimal result).
Therefore, these capital costs are not included in ``network.objective``!
If you want to calculate the full total annual system costs add these to the objective value.
2019-08-11 20:34:18 +00:00
.. tip::
The rule :mod:`solve_all_networks` runs
2019-08-11 20:34:18 +00:00
for all ``scenario`` s in the configuration file
the rule :mod:`solve_network`.
2019-08-11 20:34:18 +00:00
"""
import numpy as np
import pandas as pd
import logging
logger = logging.getLogger(__name__)
import gc
import os
import pypsa
from pypsa.descriptors import free_output_series_dataframes
# Suppress logging of the slack bus choices
pypsa.pf.logger.setLevel(logging.WARNING)
from vresutils.benchmark import memory_logger
2018-02-01 11:42:56 +00:00
def patch_pyomo_tmpdir(tmpdir):
# PYOMO should write its lp files into tmp here
import os
if not os.path.isdir(tmpdir):
os.mkdir(tmpdir)
from pyutilib.services import TempfileManager
TempfileManager.tempdir = tmpdir
2018-02-01 11:42:56 +00:00
def prepare_network(n, solve_opts=None):
if solve_opts is None:
solve_opts = snakemake.config['solving']['options']
if 'clip_p_max_pu' in solve_opts:
for df in (n.generators_t.p_max_pu, n.storage_units_t.inflow):
df.where(df>solve_opts['clip_p_max_pu'], other=0., inplace=True)
if solve_opts.get('load_shedding'):
n.add("Carrier", "Load")
n.madd("Generator", n.buses.index, " load",
bus=n.buses.index,
carrier='load',
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
marginal_cost=1e2, # Eur/kWh
# intersect between macroeconomic and surveybased
# willingness to pay
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full
p_nom=1e9 # kW
)
if solve_opts.get('noisy_costs'):
for t in n.iterate_components(n.one_port_components):
#if 'capital_cost' in t.df:
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
if 'marginal_cost' in t.df:
t.df['marginal_cost'] += 1e-2 + 2e-3*(np.random.random(len(t.df)) - 0.5)
for t in n.iterate_components(['Line', 'Link']):
t.df['capital_cost'] += (1e-1 + 2e-2*(np.random.random(len(t.df)) - 0.5)) * t.df['length']
if solve_opts.get('nhours'):
nhours = solve_opts['nhours']
n.set_snapshots(n.snapshots[:nhours])
n.snapshot_weightings[:] = 8760./nhours
return n
2018-02-01 11:42:56 +00:00
def add_opts_constraints(n, opts=None):
if opts is None:
opts = snakemake.wildcards.opts.split('-')
2018-02-01 11:42:56 +00:00
if 'BAU' in opts:
mincaps = snakemake.config['electricity']['BAU_mincapacities']
def bau_mincapacities_rule(model, carrier):
gens = n.generators.index[n.generators.p_nom_extendable & (n.generators.carrier == carrier)]
return sum(model.generator_p_nom[gen] for gen in gens) >= mincaps[carrier]
n.model.bau_mincapacities = pypsa.opt.Constraint(list(mincaps), rule=bau_mincapacities_rule)
if 'SAFE' in opts:
peakdemand = (1. + snakemake.config['electricity']['SAFE_reservemargin']) * n.loads_t.p_set.sum(axis=1).max()
conv_techs = snakemake.config['plotting']['conv_techs']
exist_conv_caps = n.generators.loc[n.generators.carrier.isin(conv_techs) & ~n.generators.p_nom_extendable, 'p_nom'].sum()
ext_gens_i = n.generators.index[n.generators.carrier.isin(conv_techs) & n.generators.p_nom_extendable]
n.model.safe_peakdemand = pypsa.opt.Constraint(expr=sum(n.model.generator_p_nom[gen] for gen in ext_gens_i) >= peakdemand - exist_conv_caps)
# Add constraints on the per-carrier capacity in each country
if 'CCL' in opts:
agg_p_nom_limits = snakemake.config['electricity'].get('agg_p_nom_limits')
try:
agg_p_nom_minmax = pd.read_csv(agg_p_nom_limits, index_col=list(range(2)))
except IOError:
logger.exception("Need to specify the path to a .csv file containing aggregate capacity limits per country in config['electricity']['agg_p_nom_limit'].")
logger.info("Adding per carrier generation capacity constraints for individual countries")
gen_country = n.generators.bus.map(n.buses.country)
def agg_p_nom_min_rule(model, country, carrier):
min = agg_p_nom_minmax.at[(country, carrier), 'min']
return ((sum(model.generator_p_nom[gen]
for gen in n.generators.index[(gen_country == country) & (n.generators.carrier == carrier)])
2019-06-18 06:27:04 +00:00
>= min)
if np.isfinite(min) else pypsa.opt.Constraint.Skip)
def agg_p_nom_max_rule(model, country, carrier):
max = agg_p_nom_minmax.at[(country, carrier), 'max']
return ((sum(model.generator_p_nom[gen]
for gen in n.generators.index[(gen_country == country) & (n.generators.carrier == carrier)])
<= max)
if np.isfinite(max) else pypsa.opt.Constraint.Skip)
n.model.agg_p_nom_min = pypsa.opt.Constraint(list(agg_p_nom_minmax.index), rule=agg_p_nom_min_rule)
n.model.agg_p_nom_max = pypsa.opt.Constraint(list(agg_p_nom_minmax.index), rule=agg_p_nom_max_rule)
2018-02-01 11:42:56 +00:00
def add_lv_constraint(n):
line_volume = getattr(n, 'line_volume_limit', None)
2018-02-01 11:42:56 +00:00
if line_volume is not None and not np.isinf(line_volume):
links_dc_ext_i = n.links.index[(n.links.carrier == 'DC') & n.links.p_nom_extendable] if not n.links.empty else pd.Index([])
2018-02-01 11:42:56 +00:00
n.model.line_volume_constraint = pypsa.opt.Constraint(
expr=((sum(n.model.passive_branch_s_nom["Line",line]*n.lines.at[line,"length"]
for line in n.lines.index[n.lines.s_nom_extendable]) +
sum(n.model.link_p_nom[link]*n.links.at[link,"length"]
for link in links_dc_ext_i))
2018-02-01 11:42:56 +00:00
<= line_volume)
)
def add_lc_constraint(n):
line_cost = getattr(n, 'line_cost_limit', None)
if line_cost is not None and not np.isinf(line_cost):
links_dc_ext_i = n.links.index[(n.links.carrier == 'DC') & n.links.p_nom_extendable] if not n.links.empty else pd.Index([])
n.model.line_cost_constraint = pypsa.opt.Constraint(
expr=((sum(n.model.passive_branch_s_nom["Line",line]*n.lines.at[line,"capital_cost_lc"]
for line in n.lines.index[n.lines.s_nom_extendable]) +
sum(n.model.link_p_nom[link]*n.links.at[link,"capital_cost_lc"]
for link in links_dc_ext_i))
<= line_cost)
)
2018-02-01 11:42:56 +00:00
def add_eps_storage_constraint(n):
if not hasattr(n, 'epsilon'):
n.epsilon = 1e-5
fix_sus_i = n.storage_units.index[~ n.storage_units.p_nom_extendable]
n.model.objective.expr += sum(n.epsilon * n.model.state_of_charge[su, n.snapshots[0]] for su in fix_sus_i)
def fix_branches(n, lines_s_nom=None, links_p_nom=None):
if lines_s_nom is not None and len(lines_s_nom) > 0:
for l, s_nom in lines_s_nom.iteritems():
n.model.passive_branch_s_nom["Line", l].fix(s_nom)
if isinstance(n.opt, pypsa.opf.PersistentSolver):
n.opt.update_var(n.model.passive_branch_s_nom)
if links_p_nom is not None and len(links_p_nom) > 0:
for l, p_nom in links_p_nom.iteritems():
n.model.link_p_nom[l].fix(p_nom)
if isinstance(n.opt, pypsa.opf.PersistentSolver):
n.opt.update_var(n.model.link_p_nom)
def solve_network(n, config=None, solver_log=None, opts=None, callback=None,
skip_iterating=False,
extra_functionality=None, extra_functionality_args=None,
extra_postprocessing=None):
if config is None:
config = snakemake.config['solving']
solve_opts = config['options']
solver_options = config['solver'].copy()
if solver_log is None:
solver_log = snakemake.log.solver
solver_name = solver_options.pop('name')
if extra_postprocessing is None:
def get_line_limit_duals(n, snapshots, duals):
if hasattr(n, 'line_volume_limit') and hasattr(n.model, 'line_volume_constraint'):
cdata = pd.Series(list(n.model.line_volume_constraint.values()),
index=list(n.model.line_volume_constraint.keys()))
n.line_volume_limit_dual = -cdata.map(duals).sum()
if hasattr(n, 'line_cost_limit') and hasattr(n.model, 'line_cost_constraint'):
cdata = pd.Series(list(n.model.line_cost_constraint.values()),
index=list(n.model.line_cost_constraint.keys()))
n.line_cost_limit_dual = -cdata.map(duals).sum()
extra_postprocessing = get_line_limit_duals
def run_lopf(n, allow_warning_status=False, fix_ext_lines=False):
free_output_series_dataframes(n)
pypsa.opf.network_lopf_build_model(n, formulation=solve_opts['formulation'])
2019-06-17 14:14:01 +00:00
add_opts_constraints(n, opts)
2019-06-17 14:14:01 +00:00
if not fix_ext_lines:
add_lv_constraint(n)
add_lc_constraint(n)
if extra_functionality is not None:
extra_functionality(n, n.snapshots, *extra_functionality_args)
pypsa.opf.network_lopf_prepare_solver(n, solver_name=solver_name)
2018-02-01 11:42:56 +00:00
if fix_ext_lines:
fix_branches(n,
lines_s_nom=n.lines.loc[n.lines.s_nom_extendable, 's_nom_opt'],
links_p_nom=n.links.loc[n.links.p_nom_extendable, 'p_nom_opt'])
# Firing up solve will increase memory consumption tremendously, so
# make sure we freed everything we can
gc.collect()
status, termination_condition = \
pypsa.opf.network_lopf_solve(n,
solver_logfile=solver_log,
solver_options=solver_options,
2018-02-01 11:42:56 +00:00
formulation=solve_opts['formulation'],
extra_postprocessing=extra_postprocessing
#free_memory={'pypsa'}
)
assert status == "ok" or allow_warning_status and status == 'warning', \
("network_lopf did abort with status={} "
"and termination_condition={}"
.format(status, termination_condition))
return status, termination_condition
if not skip_iterating:
iteration = 0
lines_ext_b = n.lines.s_nom_extendable
if lines_ext_b.any():
# puh: ok, we need to iterate, since there is a relation
# between s/p_nom and r, x for branches.
msq_threshold = 0.01
lines = pd.DataFrame(n.lines[['r', 'x', 'type', 'num_parallel']])
lines['s_nom'] = (
np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) *
n.lines.bus0.map(n.buses.v_nom)
).where(n.lines.type != '', n.lines['s_nom'])
lines_ext_typed_b = (n.lines.type != '') & lines_ext_b
lines_ext_untyped_b = (n.lines.type == '') & lines_ext_b
def update_line_parameters(n, zero_lines_below=10):
if zero_lines_below > 0:
n.lines.loc[n.lines.s_nom_opt < zero_lines_below, 's_nom_opt'] = 0.
n.links.loc[n.links.p_nom_opt < zero_lines_below, 'p_nom_opt'] = 0.
if lines_ext_untyped_b.any():
for attr in ('r', 'x'):
n.lines.loc[lines_ext_untyped_b, attr] = (
lines[attr].multiply(lines['s_nom']/n.lines['s_nom_opt'])
)
if lines_ext_typed_b.any():
n.lines.loc[lines_ext_typed_b, 'num_parallel'] = (
n.lines['s_nom_opt']/lines['s_nom']
)
logger.debug("lines.num_parallel={}".format(n.lines.loc[lines_ext_typed_b, 'num_parallel']))
iteration += 1
lines['s_nom_opt'] = lines['s_nom'] * n.lines['num_parallel'].where(n.lines.type != '', 1.)
status, termination_condition = run_lopf(n, allow_warning_status=True)
if callback is not None: callback(n, iteration, status)
def msq_diff(n):
lines_err = np.sqrt(((n.lines['s_nom_opt'] - lines['s_nom_opt'])**2).mean())/lines['s_nom_opt'].mean()
logger.info("Mean square difference after iteration {} is {}".format(iteration, lines_err))
return lines_err
min_iterations = solve_opts.get('min_iterations', 2)
max_iterations = solve_opts.get('max_iterations', 999)
while msq_diff(n) > msq_threshold or iteration < min_iterations:
if iteration >= max_iterations:
logger.info("Iteration {} beyond max_iterations {}. Stopping ...".format(iteration, max_iterations))
break
update_line_parameters(n)
lines['s_nom_opt'] = n.lines['s_nom_opt']
iteration += 1
2018-02-01 11:42:56 +00:00
status, termination_condition = run_lopf(n, allow_warning_status=True)
if callback is not None: callback(n, iteration, status)
update_line_parameters(n, zero_lines_below=100)
logger.info("Starting last run with fixed extendable lines")
iteration += 1
status, termination_condition = run_lopf(n, fix_ext_lines=True)
else:
status, termination_condition = run_lopf(n, fix_ext_lines=False)
if callback is not None: callback(n, iteration, status)
return n
if __name__ == "__main__":
2018-01-30 22:09:06 +00:00
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake, Dict
snakemake = MockSnakemake(
wildcards=dict(network='elec', simpl='', clusters='45', lv='1.0', opts='Co2L-3H'),
input=["networks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}.nc"],
2018-01-30 22:09:06 +00:00
output=["results/networks/s{simpl}_{clusters}_lv{lv}_{opts}.nc"],
log=dict(solver="logs/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_solver.log",
python="logs/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_python.log")
2018-01-30 22:09:06 +00:00
)
2018-02-01 11:42:56 +00:00
tmpdir = snakemake.config['solving'].get('tmpdir')
if tmpdir is not None:
patch_pyomo_tmpdir(tmpdir)
logging.basicConfig(filename=snakemake.log.python,
level=snakemake.config['logging_level'])
with memory_logger(filename=getattr(snakemake.log, 'memory', None), interval=30.) as mem:
n = pypsa.Network(snakemake.input[0])
n = prepare_network(n)
n = solve_network(n)
n.export_to_netcdf(snakemake.output[0])
logger.info("Maximum memory usage: {}".format(mem.mem_usage))