Curiosity/DPI/utils.py

500 lines
17 KiB
Python
Raw Normal View History

2023-03-23 14:05:28 +00:00
import os
import random
2023-04-22 11:07:22 +00:00
import pickle
2023-03-23 14:05:28 +00:00
import numpy as np
from collections import deque
import torch
2023-03-23 14:05:28 +00:00
import torch.nn as nn
2023-04-22 11:07:22 +00:00
from torch.utils.tensorboard import SummaryWriter
2023-03-23 14:05:28 +00:00
import gym
import dmc2gym
import cv2
2023-03-24 19:39:14 +00:00
from PIL import Image
2023-04-10 18:17:44 +00:00
from typing import Iterable
2023-03-23 14:05:28 +00:00
class eval_mode(object):
def __init__(self, *models):
self.models = models
def __enter__(self):
self.prev_states = []
for model in self.models:
self.prev_states.append(model.training)
model.train(False)
def __exit__(self, *args):
for model, state in zip(self.models, self.prev_states):
model.train(state)
return False
def soft_update_params(net, target_net, tau):
for param, target_param in zip(net.parameters(), target_net.parameters()):
target_param.data.copy_(
tau * param.data + (1 - tau) * target_param.data
)
def set_seed_everywhere(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def module_hash(module):
result = 0
for tensor in module.state_dict().values():
result += tensor.sum().item()
return result
def make_dir(dir_path):
try:
os.mkdir(dir_path)
except OSError:
pass
return dir_path
class FrameStack(gym.Wrapper):
def __init__(self, env, k):
gym.Wrapper.__init__(self, env)
self._k = k
self._frames = deque([], maxlen=k)
shp = env.observation_space.shape
self.observation_space = gym.spaces.Box(
low=0,
high=1,
shape=((shp[0] * k,) + shp[1:]),
dtype=env.observation_space.dtype
)
self._max_episode_steps = env._max_episode_steps
def reset(self):
obs = self.env.reset()
for _ in range(self._k):
self._frames.append(obs)
return self._get_obs()
def step(self, action):
obs, reward, done, info = self.env.step(action)
self._frames.append(obs)
return self._get_obs(), reward, done, info
def _get_obs(self):
assert len(self._frames) == self._k
return np.concatenate(list(self._frames), axis=0)
class ActionRepeat:
def __init__(self, env, amount):
self._env = env
self._amount = amount
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
done = False
total_reward = 0
current_step = 0
while current_step < self._amount and not done:
obs, reward, done, info = self._env.step(action)
total_reward += reward
current_step += 1
return obs, total_reward, done, info
class NormalizeActions:
def __init__(self, env):
self._env = env
self._mask = np.logical_and(
np.isfinite(env.action_space.low),
np.isfinite(env.action_space.high))
self._low = np.where(self._mask, env.action_space.low, -1)
self._high = np.where(self._mask, env.action_space.high, 1)
def __getattr__(self, name):
return getattr(self._env, name)
@property
def action_space(self):
low = np.where(self._mask, -np.ones_like(self._low), self._low)
high = np.where(self._mask, np.ones_like(self._low), self._high)
return gym.spaces.Box(low, high, dtype=np.float32)
def step(self, action):
original = (action + 1) / 2 * (self._high - self._low) + self._low
original = np.where(self._mask, original, action)
return self._env.step(original)
2023-04-22 11:07:22 +00:00
class TimeLimit:
def __init__(self, env, duration):
self._env = env
self._duration = duration
self._step = None
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
assert self._step is not None, 'Must reset environment.'
obs, reward, done, info = self._env.step(action)
self._step += 1
if self._step >= self._duration:
done = True
if 'discount' not in info:
info['discount'] = np.array(1.0).astype(np.float32)
self._step = None
return obs, reward, done, info
def reset(self):
self._step = 0
return self._env.reset()
2023-03-23 14:05:28 +00:00
class ReplayBuffer:
2023-04-22 11:07:22 +00:00
def __init__(self, size, obs_shape, action_size, seq_len, batch_size, args):
self.size = size
self.obs_shape = obs_shape
self.action_size = action_size
self.seq_len = seq_len
self.batch_size = batch_size
self.idx = 0
self.full = False
self.observations = np.empty((size, *obs_shape), dtype=np.uint8)
self.next_observations = np.empty((size, *obs_shape), dtype=np.uint8)
self.actions = np.empty((size, action_size), dtype=np.float32)
self.rewards = np.empty((size,), dtype=np.float32)
self.terminals = np.empty((size,), dtype=np.float32)
self.steps, self.episodes = 0, 0
self.episode_count = np.zeros((size,), dtype=np.int32)
def add(self, obs, ac, next_obs, rew, done, episode_count):
self.observations[self.idx] = obs
self.next_observations[self.idx] = next_obs
self.actions[self.idx] = ac
self.rewards[self.idx] = rew
self.terminals[self.idx] = done
self.full = self.full or self.idx == 0
self.steps += 1
self.episodes = self.episodes + (1 if done else 0)
self.episode_count[self.idx] = episode_count
self.idx = (self.idx + 1) % self.size
def _sample_idx(self, L):
valid_idx = False
while not valid_idx:
idx = np.random.randint(0, self.size if self.full else self.idx - L)
idxs = np.arange(idx, idx + L) % self.size
valid_idx = not self.idx in idxs[1:]
return idxs
def _retrieve_batch(self, idxs, n, L):
vec_idxs = idxs.transpose().reshape(-1) # Unroll indices
observations = self.observations[vec_idxs]
next_obs = self.next_observations[vec_idxs]
obs = observations.reshape(L, n, *observations.shape[1:])
next_obs = next_obs.reshape(L, n, *next_obs.shape[1:])
acs = self.actions[vec_idxs].reshape(L, n, -1)
rew = self.rewards[vec_idxs].reshape(L, n)
term = self.terminals[vec_idxs].reshape(L, n)
return obs, acs, next_obs, rew, term
def sample(self):
n = self.batch_size
l = self.seq_len
obs,acs,next_obs,rews,terms= self._retrieve_batch(np.asarray([self._sample_idx(l) for _ in range(n)]), n, l)
return obs,acs,next_obs,rews,terms
class ReplayBuffer1:
2023-03-24 19:39:14 +00:00
def __init__(self, size, obs_shape, action_size, seq_len, batch_size, args):
2023-03-23 14:05:28 +00:00
self.size = size
self.obs_shape = obs_shape
self.action_size = action_size
self.seq_len = seq_len
self.batch_size = batch_size
self.idx = 0
self.full = False
2023-03-24 19:39:14 +00:00
self.args = args
2023-03-23 14:05:28 +00:00
self.observations = np.empty((size, *obs_shape), dtype=np.uint8)
self.actions = np.empty((size, action_size), dtype=np.float32)
2023-04-12 07:33:19 +00:00
self.rewards = np.empty((size,1), dtype=np.float32)
2023-03-23 14:05:28 +00:00
self.next_observations = np.empty((size, *obs_shape), dtype=np.uint8)
self.episode_count = np.zeros((size,), dtype=np.uint8)
self.terminals = np.empty((size,), dtype=np.float32)
self.steps, self.episodes = 0, 0
2023-04-12 07:33:19 +00:00
def add(self, obs, ac, next_obs, rew, episode_count, done):
2023-03-23 14:05:28 +00:00
self.observations[self.idx] = obs
self.actions[self.idx] = ac
self.next_observations[self.idx] = next_obs
2023-04-12 07:33:19 +00:00
self.rewards[self.idx] = rew
2023-03-23 14:05:28 +00:00
self.episode_count[self.idx] = episode_count
self.terminals[self.idx] = done
self.idx = (self.idx + 1) % self.size
self.full = self.full or self.idx == 0
self.steps += 1
self.episodes = self.episodes + (1 if done else 0)
def _sample_idx(self, L):
valid_idx = False
while not valid_idx:
idx = np.random.randint(0, self.size if self.full else self.idx - L)
idxs = np.arange(idx, idx + L) % self.size
valid_idx = not self.idx in idxs[1:]
return idxs
def _retrieve_batch(self, idxs, n, L):
vec_idxs = idxs.transpose().reshape(-1) # Unroll indices
observations = self.observations[vec_idxs]
next_observations = self.next_observations[vec_idxs]
return observations.reshape(L, n, *observations.shape[1:]), self.actions[vec_idxs].reshape(L, n, -1), observations.reshape(L, n, *next_observations.shape[1:]), \
self.rewards[vec_idxs].reshape(L, n), self.terminals[vec_idxs].reshape(L, n)
def sample(self):
n = self.batch_size
l = self.seq_len
obs,acs,rews,terms= self._retrieve_batch(np.asarray([self._sample_idx(l) for _ in range(n)]), n, l)
return obs,acs,rews,terms
2023-03-27 17:22:47 +00:00
def group_steps(self, buffer, variable, obs=True):
2023-03-24 19:39:14 +00:00
variable = getattr(buffer, variable)
non_zero_indices = np.nonzero(buffer.episode_count)[0]
2023-04-22 11:07:22 +00:00
print(buffer.episode_count)
2023-03-24 19:39:14 +00:00
variable = variable[non_zero_indices]
2023-04-22 11:07:22 +00:00
print(variable.shape)
exit()
2023-03-27 17:22:47 +00:00
if obs:
variable = variable.reshape(-1, self.args.episode_length,
2023-04-09 16:22:12 +00:00
self.args.frame_stack*self.args.channels,
self.args.image_size,self.args.image_size).transpose(1, 0, 2, 3, 4)
2023-03-27 17:22:47 +00:00
else:
variable = variable.reshape(variable.shape[0]//self.args.episode_length, self.args.episode_length, -1).transpose(1, 0, 2)
2023-03-24 19:39:14 +00:00
return variable
def transform_grouped_steps(self, variable):
variable = variable.transpose((1, 0, 2, 3, 4))
variable = variable.reshape(self.args.batch_size*self.args.episode_length,self.args.frame_stack*self.args.channels,
self.args.image_size,self.args.image_size)
return variable
2023-04-22 11:07:22 +00:00
def sample_random_idx(self, buffer_length, last=False):
init = 0 if last else buffer_length - self.args.batch_size
random_indices = random.sample(range(init, buffer_length), self.args.batch_size)
return random_indices
def group_and_sample_random_batch(self, buffer, variable_name, device, random_indices, is_obs=True, offset=0):
if offset == 0:
variable_tensor = torch.tensor(self.group_steps(buffer,variable_name, is_obs)).float()[:self.args.episode_length-1].to(device)
else:
variable_tensor = torch.tensor(self.group_steps(buffer,variable_name, is_obs)).float()[offset:].to(device)
return variable_tensor[:,random_indices,:,:,:] if is_obs else variable_tensor[:,random_indices,:]
2023-03-23 14:05:28 +00:00
def make_env(args):
# For making ground plane transparent, change rgba to (0, 0, 0, 0) in local_dm_control_suite/{domain_name}.xml,
# else change to (0.5, 0.5, 0.5, 1.0) for default ground plane color
# https://mujoco.readthedocs.io/en/stable/XMLreference.html#body-geom
2023-03-23 14:05:28 +00:00
env = dmc2gym.make(
domain_name=args.domain_name,
task_name=args.task_name,
resource_files=args.resource_files,
img_source=args.img_source,
total_frames=args.total_frames,
seed=args.seed,
visualize_reward=False,
from_pixels=(args.encoder_type == 'pixel'),
height=args.image_size,
width=args.image_size,
frame_skip=args.action_repeat,
video_recording=args.save_video,
video_recording_dir=args.work_dir,
version=args.version,
2023-03-23 14:05:28 +00:00
)
2023-03-24 19:39:14 +00:00
return env
2023-04-22 11:07:22 +00:00
def shuffle_along_axis(a, axis):
2023-04-24 15:42:37 +00:00
idx = np.random.rand(*a.shape).argsort(axis=axis)
return np.take_along_axis(a,idx,axis=axis)
2023-04-22 11:07:22 +00:00
2023-04-12 15:16:47 +00:00
def preprocess_obs(obs):
2023-04-22 11:07:22 +00:00
obs = (obs/255.0) - 0.5
2023-04-12 15:16:47 +00:00
return obs
2023-04-10 18:17:44 +00:00
def soft_update_params(net, target_net, tau):
for param, target_param in zip(net.parameters(), target_net.parameters()):
target_param.data.copy_(
2023-04-22 11:07:22 +00:00
tau * param.detach().data + (1 - tau) * target_param.data
2023-04-10 18:17:44 +00:00
)
2023-03-24 19:39:14 +00:00
def save_image(array, filename):
array = array.transpose(1, 2, 0)
2023-04-22 11:07:22 +00:00
array = ((array+0.5) * 255).astype(np.uint8)
2023-03-24 19:39:14 +00:00
image = Image.fromarray(array)
image.save(filename)
def video_from_array(arr, high_noise, filename):
"""
Save a video from a numpy array of shape (T, H, W, C)
Example:
video_from_array(np.random.rand(100, 64, 64, 1), 'test.mp4')
"""
if arr.shape[-1] == 1:
height, width, channels = arr.shape[1:]
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter('output.mp4', fourcc, 30.0, (width, height))
for i in range(arr.shape[0]):
frame = arr[i]
frame = np.uint8(frame)
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)
out.write(frame)
out.release()
2023-04-24 15:42:37 +00:00
def save_video(images):
"""
Image shape is (T, C, H, W)
Example:(50, 3, 84, 84)
"""
output_file = "output.avi"
fourcc = cv2.VideoWriter_fourcc(*'XVID')
fps = 2
height, width, channels = 84,84,3
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
for image in images:
image = np.uint8(image.transpose((1, 2, 0)))
out.write(image)
out.release()
class CorruptVideos:
def __init__(self, dir_path):
self.dir_path = dir_path
def _is_video_corrupt(self,filepath):
"""
Check if a video file is corrupt.
Args:
2023-03-27 17:22:47 +00:00
dir_path (str): Path to the video file.
Returns:
bool: True if the video is corrupt, False otherwise.
"""
# Open the video file
cap = cv2.VideoCapture(filepath)
if not cap.isOpened():
return True
ret, frame = cap.read()
if not ret:
return True
cap.release()
return False
def _delete_corrupt_video(self, filepath):
os.remove(filepath)
def is_video_corrupt(self, delete=False):
for filename in os.listdir(self.dir_path):
filepath = os.path.join(self.dir_path, filename)
if filepath.endswith(".mp4"):
if self._is_video_corrupt(filepath):
print(f"{filepath} is corrupt.")
if delete:
self._delete_corrupt_video(filepath)
2023-04-10 18:17:44 +00:00
print(f"Deleted {filepath}")
def get_parameters(modules: Iterable[nn.Module]):
"""
Given a list of torch modules, returns a list of their parameters.
:param modules: iterable of modules
:returns: a list of parameters
"""
model_parameters = []
for module in modules:
model_parameters += list(module.parameters())
return model_parameters
class FreezeParameters:
def __init__(self, modules: Iterable[nn.Module]):
"""
Context manager to locally freeze gradients.
In some cases with can speed up computation because gradients aren't calculated for these listed modules.
example:
```
with FreezeParameters([module]):
output_tensor = module(input_tensor)
```
:param modules: iterable of modules. used to call .parameters() to freeze gradients.
"""
self.modules = modules
self.param_states = [p.requires_grad for p in get_parameters(self.modules)]
def __enter__(self):
for param in get_parameters(self.modules):
param.requires_grad = False
def __exit__(self, exc_type, exc_val, exc_tb):
for i, param in enumerate(get_parameters(self.modules)):
2023-04-22 11:07:22 +00:00
param.requires_grad = self.param_states[i]
class Logger:
def __init__(self, log_dir, n_logged_samples=10, summary_writer=None):
self._log_dir = log_dir
print('########################')
print('logging outputs to ', log_dir)
print('########################')
self._n_logged_samples = n_logged_samples
self._summ_writer = SummaryWriter(log_dir, flush_secs=1, max_queue=1)
def log_scalar(self, scalar, name, step_):
self._summ_writer.add_scalar('{}'.format(name), scalar, step_)
def log_scalars(self, scalar_dict, step):
for key, value in scalar_dict.items():
print('{} : {}'.format(key, value))
self.log_scalar(value, key, step)
self.dump_scalars_to_pickle(scalar_dict, step)
def log_videos(self, videos, step, max_videos_to_save=1, fps=20, video_title='video'):
# max rollout length
max_videos_to_save = np.min([max_videos_to_save, videos.shape[0]])
max_length = videos[0].shape[0]
for i in range(max_videos_to_save):
if videos[i].shape[0]>max_length:
max_length = videos[i].shape[0]
# pad rollouts to all be same length
for i in range(max_videos_to_save):
if videos[i].shape[0]<max_length:
padding = np.tile([videos[i][-1]], (max_length-videos[i].shape[0],1,1,1))
videos[i] = np.concatenate([videos[i], padding], 0)
clip = mpy.ImageSequenceClip(list(videos[i]), fps=fps)
new_video_title = video_title+'{}_{}'.format(step, i) + '.gif'
filename = os.path.join(self._log_dir, new_video_title)
video.write_gif(filename, fps =fps)
def dump_scalars_to_pickle(self, metrics, step, log_title=None):
log_path = os.path.join(self._log_dir, "scalar_data.pkl" if log_title is None else log_title)
with open(log_path, 'ab') as f:
pickle.dump({'step': step, **dict(metrics)}, f)
def flush(self):
self._summ_writer.flush()