Curiosity/DPI/train.py

349 lines
17 KiB
Python
Raw Normal View History

2023-03-23 14:05:28 +00:00
import numpy as np
import torch
import argparse
import os
import gym
import time
import json
import dmc2gym
import tqdm
2023-03-23 14:05:28 +00:00
import wandb
import utils
2023-03-24 19:39:14 +00:00
from utils import ReplayBuffer, make_env, save_image
2023-03-23 14:05:28 +00:00
from models import ObservationEncoder, ObservationDecoder, TransitionModel, CLUBSample
from logger import Logger
from video import VideoRecorder
from dmc2gym.wrappers import set_global_var
2023-03-23 14:05:28 +00:00
2023-04-09 16:22:41 +00:00
import torchvision.transforms as T
2023-03-23 14:05:28 +00:00
#from agent.baseline_agent import BaselineAgent
#from agent.bisim_agent import BisimAgent
#from agent.deepmdp_agent import DeepMDPAgent
#from agents.navigation.carla_env import CarlaEnv
def parse_args():
parser = argparse.ArgumentParser()
# environment
parser.add_argument('--domain_name', default='cheetah')
parser.add_argument('--version', default=1, type=int)
2023-03-23 14:05:28 +00:00
parser.add_argument('--task_name', default='run')
parser.add_argument('--image_size', default=84, type=int)
parser.add_argument('--channels', default=3, type=int)
parser.add_argument('--action_repeat', default=1, type=int)
2023-04-09 16:22:41 +00:00
parser.add_argument('--frame_stack', default=3, type=int)
2023-03-23 14:05:28 +00:00
parser.add_argument('--resource_files', type=str)
parser.add_argument('--eval_resource_files', type=str)
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
parser.add_argument('--total_frames', default=1000, type=int) # 10000
parser.add_argument('--high_noise', action='store_true')
2023-03-23 14:05:28 +00:00
# replay buffer
parser.add_argument('--replay_buffer_capacity', default=50000, type=int) #50000
2023-04-09 16:22:41 +00:00
parser.add_argument('--episode_length', default=51, type=int)
2023-03-23 14:05:28 +00:00
# train
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
2023-04-09 16:22:41 +00:00
parser.add_argument('--init_steps', default=10000, type=int)
parser.add_argument('--num_train_steps', default=10000, type=int)
parser.add_argument('--batch_size', default=20, type=int) #512
2023-03-23 14:05:28 +00:00
parser.add_argument('--state_size', default=256, type=int)
parser.add_argument('--hidden_size', default=128, type=int)
parser.add_argument('--history_size', default=128, type=int)
2023-03-31 16:00:07 +00:00
parser.add_argument('--num-units', type=int, default=200, help='num hidden units for reward/value/discount models')
2023-03-23 14:05:28 +00:00
parser.add_argument('--load_encoder', default=None, type=str)
2023-04-09 16:22:41 +00:00
parser.add_argument('--imagine_horizon', default=15, type=str)
2023-03-23 14:05:28 +00:00
# eval
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
parser.add_argument('--num_eval_episodes', default=20, type=int)
# critic
parser.add_argument('--critic_lr', default=1e-3, type=float)
parser.add_argument('--critic_beta', default=0.9, type=float)
parser.add_argument('--critic_tau', default=0.005, type=float)
parser.add_argument('--critic_target_update_freq', default=2, type=int)
# actor
parser.add_argument('--actor_lr', default=1e-3, type=float)
parser.add_argument('--actor_beta', default=0.9, type=float)
parser.add_argument('--actor_log_std_min', default=-10, type=float)
parser.add_argument('--actor_log_std_max', default=2, type=float)
parser.add_argument('--actor_update_freq', default=2, type=int)
# encoder/decoder
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
parser.add_argument('--encoder_feature_dim', default=50, type=int)
parser.add_argument('--encoder_lr', default=1e-3, type=float)
parser.add_argument('--encoder_tau', default=0.005, type=float)
parser.add_argument('--encoder_stride', default=1, type=int)
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
parser.add_argument('--decoder_lr', default=1e-3, type=float)
parser.add_argument('--decoder_update_freq', default=1, type=int)
parser.add_argument('--decoder_weight_lambda', default=0.0, type=float)
parser.add_argument('--num_layers', default=4, type=int)
parser.add_argument('--num_filters', default=32, type=int)
# sac
parser.add_argument('--discount', default=0.99, type=float)
parser.add_argument('--init_temperature', default=0.01, type=float)
parser.add_argument('--alpha_lr', default=1e-3, type=float)
parser.add_argument('--alpha_beta', default=0.9, type=float)
# misc
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--work_dir', default='.', type=str)
parser.add_argument('--save_tb', default=False, action='store_true')
parser.add_argument('--save_model', default=False, action='store_true')
parser.add_argument('--save_buffer', default=False, action='store_true')
parser.add_argument('--save_video', default=False, action='store_true')
parser.add_argument('--transition_model_type', default='', type=str, choices=['', 'deterministic', 'probabilistic', 'ensemble'])
parser.add_argument('--render', default=False, action='store_true')
parser.add_argument('--port', default=2000, type=int)
args = parser.parse_args()
return args
class DPI:
def __init__(self, args):
# wandb config
#run = wandb.init(project="dpi")
self.args = args
# set environment noise
set_global_var(self.args.high_noise)
2023-03-23 14:05:28 +00:00
# environment setup
self.env = make_env(self.args)
2023-04-09 16:22:41 +00:00
#self.args.seed = np.random.randint(0, 1000)
2023-03-23 14:05:28 +00:00
self.env.seed(self.args.seed)
# noiseless environment setup
self.args.version = 2 # env_id changes to v2
self.args.img_source = None # no image noise
self.args.resource_files = None
self.env_clean = make_env(self.args)
self.env_clean.seed(self.args.seed)
2023-03-23 14:05:28 +00:00
# stack several consecutive frames together
if self.args.encoder_type.startswith('pixel'):
self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
self.env_clean = utils.FrameStack(self.env_clean, k=self.args.frame_stack)
2023-03-23 14:05:28 +00:00
# create replay buffer
self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity,
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size),
action_size=self.env.action_space.shape[0],
seq_len=self.args.episode_length,
2023-03-24 19:39:14 +00:00
batch_size=args.batch_size,
args=self.args)
self.data_buffer_clean = ReplayBuffer(size=self.args.replay_buffer_capacity,
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size),
action_size=self.env.action_space.shape[0],
seq_len=self.args.episode_length,
batch_size=args.batch_size,
args=self.args)
2023-03-23 14:05:28 +00:00
# create work directory
utils.make_dir(self.args.work_dir)
2023-03-24 19:39:14 +00:00
self.video_dir = utils.make_dir(os.path.join(self.args.work_dir, 'video'))
self.model_dir = utils.make_dir(os.path.join(self.args.work_dir, 'model'))
self.buffer_dir = utils.make_dir(os.path.join(self.args.work_dir, 'buffer'))
2023-03-23 14:05:28 +00:00
# create models
2023-03-24 19:39:14 +00:00
self.build_models(use_saved=False, saved_model_dir=self.model_dir)
2023-03-23 14:05:28 +00:00
def build_models(self, use_saved, saved_model_dir=None):
self.obs_encoder = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (12,84,84)
state_size=self.args.state_size # 128
)
2023-04-02 16:52:46 +00:00
self.obs_encoder_momentum = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (12,84,84)
state_size=self.args.state_size # 128
)
2023-03-23 14:05:28 +00:00
self.obs_decoder = ObservationDecoder(
state_size=self.args.state_size, # 128
output_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size) # (12,84,84)
)
self.transition_model = TransitionModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
action_size=self.env.action_space.shape[0], # 6
history_size=self.args.history_size, # 128
)
# model parameters
self.model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_encoder_momentum.parameters()) + \
list(self.obs_decoder.parameters()) + list(self.transition_model.parameters())
2023-03-23 14:05:28 +00:00
# optimizer
self.optimizer = torch.optim.Adam(self.model_parameters, lr=self.args.encoder_lr)
if use_saved:
self._use_saved_models(saved_model_dir)
def _use_saved_models(self, saved_model_dir):
self.obs_encoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_encoder.pt')))
self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt')))
self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt')))
def collect_sequences(self, episodes):
2023-03-23 14:05:28 +00:00
obs = self.env.reset()
2023-04-09 16:22:41 +00:00
#obs_clean = self.env_clean.reset()
2023-03-23 14:05:28 +00:00
done = False
2023-03-24 19:39:14 +00:00
#video = VideoRecorder(self.video_dir if args.save_video else None, resource_files=args.resource_files)
for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'):
if args.save_video:
self.env.video.init(enabled=True)
2023-04-09 16:22:41 +00:00
#self.env_clean.video.init(enabled=True)
2023-03-31 16:00:07 +00:00
2023-03-23 14:05:28 +00:00
for i in range(self.args.episode_length):
2023-04-09 16:22:41 +00:00
2023-03-23 14:05:28 +00:00
action = self.env.action_space.sample()
2023-04-09 16:22:41 +00:00
next_obs, rew, done, _ = self.env.step(action)
#next_obs_clean, _, done, _ = self.env_clean.step(action)
2023-03-23 14:05:28 +00:00
self.data_buffer.add(obs, action, next_obs, episode_count+1, done)
2023-04-09 16:22:41 +00:00
#self.data_buffer_clean.add(obs_clean, action, next_obs_clean, episode_count+1, done)
if args.save_video:
2023-04-09 16:22:41 +00:00
self.env.video.record(self.env)
#self.env_clean.video.record(self.env_clean)
2023-04-09 16:22:41 +00:00
if done or i == self.args.episode_length-1:
2023-03-23 14:05:28 +00:00
obs = self.env.reset()
2023-04-09 16:22:41 +00:00
#obs_clean = self.env_clean.reset()
done=False
2023-03-23 14:05:28 +00:00
else:
obs = next_obs
2023-04-09 16:22:41 +00:00
#obs_clean = next_obs_clean
if args.save_video:
self.env.video.save('noisy/%d.mp4' % episode_count)
2023-04-09 16:22:41 +00:00
#self.env_clean.video.save('clean/%d.mp4' % episode_count)
2023-03-23 14:05:28 +00:00
print("Collected {} random episodes".format(episode_count+1))
2023-03-24 19:39:14 +00:00
def train(self):
# collect experience
self.collect_sequences(self.args.batch_size)
2023-03-24 19:39:14 +00:00
2023-04-09 16:22:41 +00:00
# Group observations and next_observations by steps from past to present
last_observations = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"observations")).float()[:self.args.episode_length-1]
current_observations = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"next_observations")).float()[:self.args.episode_length-1]
next_observations = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"next_observations")).float()[1:]
actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[:self.args.episode_length-1]
next_actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[1:]
# Initialize transition model states
self.transition_model.init_states(self.args.batch_size, device="cpu") # (N,128)
self.history = self.transition_model.prev_history # (N,128)
2023-03-24 19:39:14 +00:00
# Train encoder
2023-04-09 16:22:41 +00:00
total_ub_loss = 0
total_encoder_loss = 0
for i in range(self.args.episode_length-1):
if i > 0:
# Encode observations and next_observations
self.last_states_dict = self.obs_encoder(last_observations[i])
self.current_states_dict = self.obs_encoder(current_observations[i])
self.next_states_dict = self.obs_encoder_momentum(next_observations[i])
self.action = actions[i] # (N,6)
history = self.transition_model.prev_history
# Encode negative observations
idx = torch.randperm(current_observations[i].shape[0]) # random permutation on batch
random_time_index = torch.randint(0, self.args.episode_length-2, (1,)).item() # random time index
negative_current_observations = current_observations[random_time_index][idx]
self.negative_current_states_dict = self.obs_encoder(negative_current_observations)
# Predict current state from past state with transition model
last_states_sample = self.last_states_dict["sample"]
predicted_current_state_dict = self.transition_model.imagine_step(last_states_sample, self.action, self.history)
self.history = predicted_current_state_dict["history"]
# Calculate upper bound loss
ub_loss = self._upper_bound_minimization(self.last_states_dict,
self.current_states_dict,
self.negative_current_states_dict,
predicted_current_state_dict
)
# Calculate encoder loss
encoder_loss = self._past_encoder_loss(self.current_states_dict,
predicted_current_state_dict)
total_ub_loss += ub_loss
total_encoder_loss += encoder_loss
imagine_horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"], self.action, self.history, imagine_horizon)
print(imagine_horizon)
#exit()
#print(total_ub_loss, total_encoder_loss)
def _upper_bound_minimization(self, last_states, current_states, negative_current_states, predicted_current_states):
club_sample = CLUBSample(last_states,
current_states,
negative_current_states,
predicted_current_states)
club_loss = club_sample()
return club_loss
2023-04-09 16:22:41 +00:00
def _past_encoder_loss(self, curr_states_dict, predicted_curr_states_dict):
# current state distribution
curr_states_dist = curr_states_dict["distribution"]
2023-04-09 16:22:41 +00:00
# predicted current state distribution
predicted_curr_states_dist = predicted_curr_states_dict["distribution"]
# KL divergence loss
loss = torch.distributions.kl.kl_divergence(curr_states_dist, predicted_curr_states_dist).mean()
return loss
"""
def _past_encoder_loss(self, states, next_states, states_dist, next_states_dist, actions, history, step):
# Imagine next state
if step == 0:
actions = torch.zeros(self.args.batch_size, self.env.action_space.shape[0]).float() # Zero action for first step
imagined_next_states = self.transition_model.imagine_step(states, actions, history)
self.history = imagined_next_states["history"]
else:
imagined_next_states = self.transition_model.imagine_step(states, actions, self.history) # (N,128)
# State Distribution
imagined_next_states_dist = imagined_next_states["distribution"]
# KL divergence loss
loss = torch.distributions.kl.kl_divergence(imagined_next_states_dist, next_states_dist["distribution"]).mean()
2023-03-23 14:05:28 +00:00
return loss
2023-04-09 16:22:41 +00:00
"""
def get_features(self, x, momentum=False):
if self.aug:
x = T.RandomCrop((80, 80))(x) # (None,80,80,4)
x = T.functional.pad(x, (4, 4, 4, 4), "symmetric") # (None,88,88,4)
x = T.RandomCrop((84, 84))(x) # (None,84,84,4)
with torch.no_grad():
x = (x.float() - self.ob_mean) / self.ob_std
if momentum:
x = self.obs_encoder(x).detach()
else:
x = self.obs_encoder_momentum(x)
return x
2023-03-23 14:05:28 +00:00
if __name__ == '__main__':
args = parse_args()
dpi = DPI(args)
2023-03-24 19:39:14 +00:00
dpi.train()