Curiosity/DPI/train.py

565 lines
29 KiB
Python
Raw Permalink Normal View History

2023-03-23 14:05:28 +00:00
import os
import gc
import copy
import tqdm
2023-03-23 14:05:28 +00:00
import wandb
import random
import argparse
import numpy as np
2023-03-23 14:05:28 +00:00
import utils
from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image
2023-04-10 18:18:17 +00:00
from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample
2023-03-23 14:05:28 +00:00
from logger import Logger
from video import VideoRecorder
from dmc2gym.wrappers import set_global_var
2023-03-23 14:05:28 +00:00
import torch
2023-04-10 18:18:17 +00:00
import torch.nn as nn
import torch.nn.functional as F
2023-04-09 16:22:41 +00:00
import torchvision.transforms as T
from torch.utils.tensorboard import SummaryWriter
2023-03-23 14:05:28 +00:00
#from agent.baseline_agent import BaselineAgent
#from agent.bisim_agent import BisimAgent
#from agent.deepmdp_agent import DeepMDPAgent
#from agents.navigation.carla_env import CarlaEnv
def parse_args():
parser = argparse.ArgumentParser()
# environment
parser.add_argument('--domain_name', default='cheetah')
parser.add_argument('--version', default=1, type=int)
2023-03-23 14:05:28 +00:00
parser.add_argument('--task_name', default='run')
parser.add_argument('--image_size', default=84, type=int)
parser.add_argument('--channels', default=3, type=int)
parser.add_argument('--action_repeat', default=2, type=int)
2023-04-09 16:22:41 +00:00
parser.add_argument('--frame_stack', default=3, type=int)
parser.add_argument('--collection_interval', default=100, type=int)
2023-03-23 14:05:28 +00:00
parser.add_argument('--resource_files', type=str)
parser.add_argument('--eval_resource_files', type=str)
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
parser.add_argument('--total_frames', default=1000, type=int) # 10000
parser.add_argument('--high_noise', action='store_true')
2023-03-23 14:05:28 +00:00
# replay buffer
parser.add_argument('--replay_buffer_capacity', default=50000, type=int) #50000
2023-04-09 16:22:41 +00:00
parser.add_argument('--episode_length', default=51, type=int)
2023-03-23 14:05:28 +00:00
# train
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
2023-04-09 16:22:41 +00:00
parser.add_argument('--init_steps', default=10000, type=int)
parser.add_argument('--num_train_steps', default=10000, type=int)
parser.add_argument('--batch_size', default=30, type=int) #512
2023-03-23 14:05:28 +00:00
parser.add_argument('--state_size', default=256, type=int)
parser.add_argument('--hidden_size', default=128, type=int)
parser.add_argument('--history_size', default=128, type=int)
parser.add_argument('--num-units', type=int, default=50, help='num hidden units for reward/value/discount models')
2023-03-23 14:05:28 +00:00
parser.add_argument('--load_encoder', default=None, type=str)
2023-04-09 16:22:41 +00:00
parser.add_argument('--imagine_horizon', default=15, type=str)
2023-04-10 18:18:17 +00:00
parser.add_argument('--grad_clip_norm', type=float, default=100.0, help='Gradient clipping norm')
2023-03-23 14:05:28 +00:00
# eval
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
parser.add_argument('--num_eval_episodes', default=20, type=int)
2023-04-10 18:18:17 +00:00
# value
parser.add_argument('--value_lr', default=8e-5, type=float)
2023-04-10 18:18:17 +00:00
parser.add_argument('--value_beta', default=0.9, type=float)
parser.add_argument('--value_tau', default=0.005, type=float)
parser.add_argument('--value_target_update_freq', default=100, type=int)
2023-04-12 07:33:42 +00:00
parser.add_argument('--td_lambda', default=0.95, type=int)
2023-03-23 14:05:28 +00:00
# actor
parser.add_argument('--actor_lr', default=8e-5, type=float)
2023-03-23 14:05:28 +00:00
parser.add_argument('--actor_beta', default=0.9, type=float)
parser.add_argument('--actor_log_std_min', default=-10, type=float)
parser.add_argument('--actor_log_std_max', default=2, type=float)
parser.add_argument('--actor_update_freq', default=2, type=int)
2023-04-10 18:18:17 +00:00
# world/encoder/decoder
2023-03-23 14:05:28 +00:00
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
parser.add_argument('--encoder_feature_dim', default=50, type=int)
parser.add_argument('--world_model_lr', default=6e-4, type=float)
2023-04-12 07:33:42 +00:00
parser.add_argument('--past_transition_lr', default=1e-3, type=float)
2023-03-23 14:05:28 +00:00
parser.add_argument('--encoder_lr', default=1e-3, type=float)
parser.add_argument('--encoder_tau', default=0.001, type=float)
2023-03-23 14:05:28 +00:00
parser.add_argument('--encoder_stride', default=1, type=int)
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
parser.add_argument('--decoder_lr', default=1e-3, type=float)
parser.add_argument('--decoder_update_freq', default=1, type=int)
parser.add_argument('--decoder_weight_lambda', default=0.0, type=float)
parser.add_argument('--num_layers', default=4, type=int)
parser.add_argument('--num_filters', default=32, type=int)
2023-04-10 18:18:17 +00:00
parser.add_argument('--aug', action='store_true')
2023-03-23 14:05:28 +00:00
# sac
parser.add_argument('--discount', default=0.99, type=float)
parser.add_argument('--init_temperature', default=0.01, type=float)
parser.add_argument('--alpha_lr', default=1e-3, type=float)
parser.add_argument('--alpha_beta', default=0.9, type=float)
# misc
parser.add_argument('--seed', default=1, type=int)
2023-04-12 07:33:42 +00:00
parser.add_argument('--logging_freq', default=100, type=int)
parser.add_argument('--saving_interval', default=1000, type=int)
2023-03-23 14:05:28 +00:00
parser.add_argument('--work_dir', default='.', type=str)
parser.add_argument('--save_tb', default=False, action='store_true')
parser.add_argument('--save_model', default=False, action='store_true')
parser.add_argument('--save_buffer', default=False, action='store_true')
parser.add_argument('--save_video', default=False, action='store_true')
parser.add_argument('--transition_model_type', default='', type=str, choices=['', 'deterministic', 'probabilistic', 'ensemble'])
parser.add_argument('--render', default=False, action='store_true')
args = parser.parse_args()
return args
class DPI:
def __init__(self, args):
2023-03-23 14:05:28 +00:00
# wandb config
#run = wandb.init(project="dpi")
self.args = args
# set environment noise
set_global_var(self.args.high_noise)
2023-03-23 14:05:28 +00:00
# environment setup
self.env = make_env(self.args)
2023-04-09 16:22:41 +00:00
#self.args.seed = np.random.randint(0, 1000)
2023-03-23 14:05:28 +00:00
self.env.seed(self.args.seed)
# noiseless environment setup
self.args.version = 2 # env_id changes to v2
self.args.img_source = None # no image noise
self.args.resource_files = None
2023-03-23 14:05:28 +00:00
# stack several consecutive frames together
if self.args.encoder_type.startswith('pixel'):
self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
self.env = utils.ActionRepeat(self.env, self.args.action_repeat)
self.env = utils.NormalizeActions(self.env)
2023-03-23 14:05:28 +00:00
# create replay buffer
self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity,
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size),
action_size=self.env.action_space.shape[0],
seq_len=self.args.episode_length,
2023-03-24 19:39:14 +00:00
batch_size=args.batch_size,
args=self.args)
2023-04-12 07:33:42 +00:00
2023-03-23 14:05:28 +00:00
# create work directory
utils.make_dir(self.args.work_dir)
2023-03-24 19:39:14 +00:00
self.video_dir = utils.make_dir(os.path.join(self.args.work_dir, 'video'))
self.model_dir = utils.make_dir(os.path.join(self.args.work_dir, 'model'))
self.buffer_dir = utils.make_dir(os.path.join(self.args.work_dir, 'buffer'))
2023-03-23 14:05:28 +00:00
# create models
2023-03-24 19:39:14 +00:00
self.build_models(use_saved=False, saved_model_dir=self.model_dir)
2023-03-23 14:05:28 +00:00
def build_models(self, use_saved, saved_model_dir=None):
2023-04-10 18:18:17 +00:00
# World Models
2023-03-23 14:05:28 +00:00
self.obs_encoder = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
2023-03-23 14:05:28 +00:00
state_size=self.args.state_size # 128
).to(device)
2023-04-02 16:52:46 +00:00
self.obs_encoder_momentum = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
2023-04-02 16:52:46 +00:00
state_size=self.args.state_size # 128
).to(device)
2023-03-23 14:05:28 +00:00
self.obs_decoder = ObservationDecoder(
state_size=self.args.state_size, # 128
output_shape=(self.args.channels,self.args.image_size,self.args.image_size) # (3,84,84)
).to(device)
2023-03-23 14:05:28 +00:00
self.transition_model = TransitionModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
action_size=self.env.action_space.shape[0], # 6
history_size=self.args.history_size, # 128
).to(device)
2023-04-10 18:18:17 +00:00
# Actor Model
self.actor_model = Actor(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256,
action_size=self.env.action_space.shape[0], # 6
).to(device)
2023-04-10 18:18:17 +00:00
# Value Models
self.value_model = ValueModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
).to(device)
self.target_value_model = ValueModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
).to(device)
self.reward_model = RewardModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
).to(device)
2023-04-10 18:18:17 +00:00
# Contrastive Models
self.prjoection_head = ProjectionHead(
state_size=self.args.state_size, # 128
action_size=self.env.action_space.shape[0], # 6
hidden_size=self.args.hidden_size, # 256
).to(device)
2023-04-10 18:18:17 +00:00
self.prjoection_head_momentum = ProjectionHead(
state_size=self.args.state_size, # 128
action_size=self.env.action_space.shape[0], # 6
hidden_size=self.args.hidden_size, # 256
).to(device)
2023-04-10 18:18:17 +00:00
self.contrastive_head = ContrastiveHead(
hidden_size=self.args.hidden_size, # 256
).to(device)
2023-04-10 18:18:17 +00:00
2023-03-23 14:05:28 +00:00
# model parameters
2023-04-10 18:18:17 +00:00
self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.obs_decoder.parameters()) + \
list(self.value_model.parameters()) + list(self.transition_model.parameters()) + \
list(self.prjoection_head.parameters())
2023-04-12 07:33:42 +00:00
self.past_transition_parameters = self.transition_model.parameters()
2023-03-23 14:05:28 +00:00
2023-04-10 18:18:17 +00:00
# optimizers
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr)
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr)
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr)
2023-04-12 07:33:42 +00:00
self.past_transition_opt = torch.optim.Adam(self.past_transition_parameters, self.args.past_transition_lr)
2023-04-10 18:18:17 +00:00
# Create Modules
self.world_model_modules = [self.obs_encoder, self.obs_decoder, self.reward_model, self.transition_model, self.prjoection_head]
2023-04-10 18:18:17 +00:00
self.value_modules = [self.value_model]
self.actor_modules = [self.actor_model]
2023-03-23 14:05:28 +00:00
if use_saved:
self._use_saved_models(saved_model_dir)
def _use_saved_models(self, saved_model_dir):
self.obs_encoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_encoder.pt')))
self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt')))
self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt')))
def collect_sequences(self, episodes, random=True, actor_model=None, encoder_model=None):
2023-03-23 14:05:28 +00:00
obs = self.env.reset()
done = False
2023-03-24 19:39:14 +00:00
all_rews = []
#video = VideoRecorder(self.video_dir if args.save_video else None, resource_files=args.resource_files)
for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'):
if args.save_video:
self.env.video.init(enabled=True)
2023-03-31 16:00:07 +00:00
epi_reward = 0
2023-03-23 14:05:28 +00:00
for i in range(self.args.episode_length):
if random:
action = self.env.action_space.sample()
else:
with torch.no_grad():
obs_torch = torch.unsqueeze(torch.tensor(obs).float(),0).to(device)
state = self.obs_encoder(obs_torch)["distribution"].sample()
action = self.actor_model(state).cpu().detach().numpy().squeeze()
2023-04-09 16:22:41 +00:00
next_obs, rew, done, _ = self.env.step(action)
2023-04-12 07:33:42 +00:00
self.data_buffer.add(obs, action, next_obs, rew, episode_count+1, done)
if args.save_video:
2023-04-09 16:22:41 +00:00
self.env.video.record(self.env)
2023-04-09 16:22:41 +00:00
if done or i == self.args.episode_length-1:
2023-03-23 14:05:28 +00:00
obs = self.env.reset()
2023-04-09 16:22:41 +00:00
done=False
2023-03-23 14:05:28 +00:00
else:
obs = next_obs
epi_reward += rew
all_rews.append(epi_reward)
if args.save_video:
self.env.video.save('noisy/%d.mp4' % episode_count)
2023-03-23 14:05:28 +00:00
print("Collected {} random episodes".format(episode_count+1))
return all_rews
2023-03-23 14:05:28 +00:00
def train(self, step, total_steps):
counter = 0
2023-04-10 18:18:17 +00:00
while step < total_steps:
# collect experience
if step !=0:
encoder = self.obs_encoder
actor = self.actor_model
#all_rews = self.collect_sequences(self.args.batch_size, random=True)
all_rews = self.collect_sequences(self.args.batch_size, random=False, actor_model=actor, encoder_model=encoder)
else:
all_rews = self.collect_sequences(self.args.batch_size, random=True)
# Group by steps and sample random batch
random_indices = self.data_buffer.sample_random_idx(self.args.batch_size * ((step//self.args.collection_interval)+1)) # random indices for batch
#random_indices = np.arange(self.args.batch_size * ((step//self.args.collection_interval)),self.args.batch_size * ((step//self.args.collection_interval)+1))
last_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"observations", "cpu", random_indices=random_indices)
current_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", random_indices=random_indices)
next_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", offset=1, random_indices=random_indices)
actions = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"actions", device=device, is_obs=False, random_indices=random_indices)
next_actions = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"actions", device=device, is_obs=False, offset=1, random_indices=random_indices)
rewards = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"rewards", device=device, is_obs=False, offset=1, random_indices=random_indices)
# Preprocessing
last_observations = preprocess_obs(last_observations).to(device)
current_observations = preprocess_obs(current_observations).to(device)
next_observations = preprocess_obs(next_observations).to(device)
# Initialize transition model states
self.transition_model.init_states(self.args.batch_size, device) # (N,128)
self.history = self.transition_model.prev_history # (N,128)
# Train encoder
if step == 0:
step += 1
for _ in range(self.args.collection_interval // self.args.episode_length+1):
counter += 1
for i in range(self.args.episode_length-1):
if i > 0:
# Encode observations and next_observations
self.last_states_dict = self.get_features(last_observations[i])
self.current_states_dict = self.get_features(current_observations[i])
self.next_states_dict = self.get_features(next_observations[i], momentum=True)
self.action = actions[i] # (N,6)
self.next_action = next_actions[i] # (N,6)
history = self.transition_model.prev_history
# Encode negative observations
idx = torch.randperm(current_observations[i].shape[0]) # random permutation on batch
random_time_index = torch.randint(0, self.args.episode_length-2, (1,)).item() # random time index
negative_current_observations = current_observations[random_time_index][idx]
self.negative_current_states_dict = self.obs_encoder(negative_current_observations)
# Predict current state from past state with transition model
last_states_sample = self.last_states_dict["sample"]
predicted_current_state_dict = self.transition_model.imagine_step(last_states_sample, self.action, self.history)
self.history = predicted_current_state_dict["history"]
# Calculate upper bound loss
likeli_loss, ub_loss = self._upper_bound_minimization(self.last_states_dict,
self.current_states_dict,
self.negative_current_states_dict,
predicted_current_state_dict
)
# Calculate encoder loss
encoder_loss = self._past_encoder_loss(self.current_states_dict,
predicted_current_state_dict)
# contrastive projection
vec_anchor = predicted_current_state_dict["sample"]
vec_positive = self.next_states_dict["sample"].detach()
z_anchor = self.prjoection_head(vec_anchor, self.action)
z_positive = self.prjoection_head_momentum(vec_positive, next_actions[i]).detach()
# contrastive loss
logits = self.contrastive_head(z_anchor, z_positive)
labels = torch.arange(logits.shape[0]).long().to(device)
lb_loss = F.cross_entropy(logits, labels)
# behaviour learning
with FreezeParameters(self.world_model_modules):
imagine_horizon = self.args.imagine_horizon #np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"].detach(),
self.next_action, self.history.detach(),
imagine_horizon)
# decoder loss
horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
obs_dist = self.obs_decoder(imagined_rollout["sample"][:horizon])
decoder_loss = -torch.mean(obs_dist.log_prob(next_observations[i:i+horizon][:,:,:3,:,:]))
# reward loss
reward_dist = self.reward_model(self.current_states_dict["sample"])
reward_loss = -torch.mean(reward_dist.log_prob(rewards[:-1]))
2023-04-10 18:18:17 +00:00
# update models
world_model_loss = encoder_loss + 100 * ub_loss + lb_loss + reward_loss + decoder_loss * 1e-2
self.world_model_opt.zero_grad()
world_model_loss.backward()
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
self.world_model_opt.step()
2023-04-09 16:22:41 +00:00
# update momentum encoder
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
2023-04-09 16:22:41 +00:00
# update momentum projection head
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
# actor loss
with FreezeParameters(self.world_model_modules + self.value_modules):
imag_rew_dist = self.reward_model(imagined_rollout["sample"])
target_imag_val_dist = self.target_value_model(imagined_rollout["sample"])
imag_rews = imag_rew_dist.mean
target_imag_vals = target_imag_val_dist.mean
discounts = self.args.discount * torch.ones_like(imag_rews).detach()
self.target_returns = self._compute_lambda_return(imag_rews[:-1],
target_imag_vals[:-1],
discounts[:-1] ,
self.args.td_lambda,
target_imag_vals[-1])
discounts = torch.cat([torch.ones_like(discounts[:1]), discounts[1:-1]], 0)
self.discounts = torch.cumprod(discounts, 0).detach()
actor_loss = -torch.mean(self.discounts * self.target_returns)
# update actor
self.actor_opt.zero_grad()
actor_loss.backward()
nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm)
self.actor_opt.step()
# value loss
with torch.no_grad():
value_feat = imagined_rollout["sample"][:-1].detach()
value_targ = self.target_returns.detach()
value_dist = self.value_model(value_feat)
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
# update value
self.value_opt.zero_grad()
value_loss.backward()
nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm)
self.value_opt.step()
# update target value
if step % self.args.value_target_update_freq == 0:
self.target_value_model = copy.deepcopy(self.value_model)
# counter for reward
count = np.arange((counter-1) * (self.args.batch_size), (counter) * (self.args.batch_size))
if step % self.args.logging_freq:
writer.add_scalar('World Loss/World Loss', world_model_loss.detach().item(), step)
writer.add_scalar('Main Models Loss/Encoder Loss', encoder_loss.detach().item(), step)
writer.add_scalar('Main Models Loss/Decoder Loss', decoder_loss, step)
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss.detach().item(), step)
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss.detach().item(), step)
writer.add_scalar('Actor Critic Loss/Reward Loss', reward_loss.detach().item(), step)
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss.detach().item(), step)
writer.add_scalar('Bound Loss/Lower Bound Loss', lb_loss.detach().item(), step)
step += 1
if step>total_steps:
print("Training finished")
break
# save model
if step % self.args.saving_interval == 0:
path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
self.save_models(path)
#torch.cuda.empty_cache() # memory leak issues
for j in range(len(all_rews)):
writer.add_scalar('Rewards/Rewards', all_rews[j], count[j])
def evaluate(self, env, eval_episodes, render=False):
episode_rew = np.zeros((eval_episodes))
video_images = [[] for _ in range(eval_episodes)]
for i in range(eval_episodes):
obs = env.reset()
done = False
prev_state = self.rssm.init_state(1, self.device)
prev_action = torch.zeros(1, self.action_size).to(self.device)
while not done:
with torch.no_grad():
posterior, action = self.act_with_world_model(obs, prev_state, prev_action)
action = action[0].cpu().numpy()
next_obs, rew, done, _ = env.step(action)
prev_state = posterior
prev_action = torch.tensor(action, dtype=torch.float32).to(self.device).unsqueeze(0)
episode_rew[i] += rew
if render:
video_images[i].append(obs['image'].transpose(1,2,0).copy())
obs = next_obs
return episode_rew, np.array(video_images[:self.args.max_videos_to_save])
2023-04-09 16:22:41 +00:00
def _upper_bound_minimization(self, last_states, current_states, negative_current_states, predicted_current_states):
club_sample = CLUBSample(last_states,
current_states,
negative_current_states,
predicted_current_states)
2023-04-12 07:33:42 +00:00
likelihood_loss = club_sample.learning_loss()
club_loss = club_sample()
return likelihood_loss, club_loss
2023-04-09 16:22:41 +00:00
def _past_encoder_loss(self, curr_states_dict, predicted_curr_states_dict):
# current state distribution
curr_states_dist = curr_states_dict["distribution"]
2023-04-09 16:22:41 +00:00
# predicted current state distribution
predicted_curr_states_dist = predicted_curr_states_dict["distribution"]
# KL divergence loss
2023-04-10 18:18:17 +00:00
loss = torch.distributions.kl.kl_divergence(curr_states_dist, predicted_curr_states_dist).mean()
2023-03-23 14:05:28 +00:00
return loss
2023-04-09 16:22:41 +00:00
def get_features(self, x, momentum=False):
2023-04-10 18:18:17 +00:00
if self.args.aug:
2023-04-09 16:22:41 +00:00
x = T.RandomCrop((80, 80))(x) # (None,80,80,4)
x = T.functional.pad(x, (4, 4, 4, 4), "symmetric") # (None,88,88,4)
x = T.RandomCrop((84, 84))(x) # (None,84,84,4)
with torch.no_grad():
if momentum:
x = self.obs_encoder_momentum(x)
2023-04-10 18:18:17 +00:00
else:
x = self.obs_encoder(x)
2023-04-09 16:22:41 +00:00
return x
2023-04-12 07:33:42 +00:00
def _compute_lambda_return(self, rewards, values, discounts, td_lam, last_value):
next_values = torch.cat([values[1:], last_value.unsqueeze(0)],0)
targets = rewards + discounts * next_values * (1-td_lam)
rets =[]
last_rew = last_value
for t in range(rewards.shape[0]-1, -1, -1):
last_rew = targets[t] + discounts[t] * td_lam *(last_rew)
rets.append(last_rew)
returns = torch.flip(torch.stack(rets), [0])
return returns
def save_models(self, save_path):
torch.save(
{'rssm' : self.transition_model.state_dict(),
'actor': self.actor_model.state_dict(),
'reward_model': self.reward_model.state_dict(),
'obs_encoder': self.obs_encoder.state_dict(),
'obs_decoder': self.obs_decoder.state_dict(),
'actor_optimizer': self.actor_opt.state_dict(),
'value_optimizer': self.value_opt.state_dict(),
'world_model_optimizer': self.world_model_opt.state_dict(),}, save_path)
2023-03-23 14:05:28 +00:00
if __name__ == '__main__':
args = parse_args()
writer = SummaryWriter()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
2023-03-23 14:05:28 +00:00
step = 0
total_steps = 10000
dpi = DPI(args)
dpi.train(step,total_steps)