tested async functions

This commit is contained in:
Niko Feith 2024-02-16 16:01:22 +01:00
parent 220d590c05
commit 5c6750886c
7 changed files with 285 additions and 9 deletions

View File

@ -6,3 +6,4 @@ empy~=3.3.4
lark~=1.1.1
scipy~=1.12.0
scikit-learn~=1.4.0
transitions~=0.9.0

View File

@ -14,6 +14,7 @@ rosidl_generate_interfaces(${PROJECT_NAME}
"msg/Opt2UI.msg"
"msg/Task2Opt.msg"
"msg/UI2Opt.msg"
"msg/TaskOrder.msg"
DEPENDENCIES
)

View File

@ -1,3 +1,5 @@
# Return reward - True: for updating the model, False: for displaying the x_best to the user
bool reward_return
# Number of dimensions of the representation model
uint16 nr_dim
# Number of parameters per dimensions

View File

@ -0,0 +1 @@
uint16 bla

View File

@ -0,0 +1,78 @@
import rclpy
from rclpy.node import Node
from transitions.extensions.asyncio import AsyncMachine
from std_msgs.msg import String
import asyncio
import threading
import time
class StatefulNode(Node):
def __init__(self, event_loop):
super().__init__('stateful_node')
self.event_loop = event_loop
self.subscription = self.create_subscription(String, 'my_topic', self.listener_callback, 10)
states = [
{'name': 'state1', 'on_enter': 'on_enter_state1'},
{'name': 'state2', 'on_enter': 'on_enter_state2'},
{'name': 'state3', 'on_enter': 'on_enter_state3'}
]
transitions = [
{'trigger': 'go_to_state1', 'source': '*', 'dest': 'state1'},
{'trigger': 'go_to_state2', 'source': '*', 'dest': 'state2'},
{'trigger': 'go_to_state3', 'source': '*', 'dest': 'state3'},
]
self.machine = AsyncMachine(model=self, states=states, transitions=transitions, initial='state1')
async def on_enter_state1(self):
self.get_logger().info(f"Entering State 1 - {time.time()}")
async def on_enter_state2(self):
self.get_logger().info(f"Entering State 2 - {time.time()}")
async def on_enter_state3(self):
self.get_logger().info(f"Entering State 3 - {time.time()}")
def listener_callback(self, msg):
try:
self.get_logger().info(f'Received message: "{msg.data}"')
if msg.data == 'trigger1':
self.get_logger().info("Attempting to go to state2")
asyncio.run_coroutine_threadsafe(self.go_to_state1(), self.event_loop)
elif msg.data == 'trigger2':
self.get_logger().info("Attempting to go to state1")
asyncio.run_coroutine_threadsafe(self.go_to_state2(), self.event_loop)
elif msg.data == 'trigger3':
self.get_logger().info("Attempting to go to state1")
asyncio.run_coroutine_threadsafe(self.go_to_state3(), self.event_loop)
except Exception as e:
self.get_logger().error(f"Error in listener_callback: {str(e)}")
def run_asyncio_loop():
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_forever()
return loop # Ensure you return the loop reference
def main():
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
threading.Thread(target=loop.run_forever, daemon=True).start()
# Initialize ROS and pass the event loop to the node
rclpy.init()
node = StatefulNode(loop)
# Now, the ROS 2 node has the correct event loop reference for asyncio operations
rclpy.spin(node)
node.destroy_node()
rclpy.shutdown()
loop.call_soon_threadsafe(loop.stop)
if __name__ == '__main__':
main()

View File

@ -20,6 +20,7 @@ setup(
tests_require=['pytest'],
entry_points={
'console_scripts': [
'async_node = interaction_objective_function.async_testing:main'
],
},
)

View File

@ -1,14 +1,23 @@
import rclpy
from rclpy.node import Node
from rclpy.callback_groups import ReentrantCallbackGroup
from interaction_msgs.srv import Query
from interaction_msgs.msg import Task2Opt
from interaction_msgs.msg import UI2Opt
from interaction_msgs.msg import TaskOrder
from interaction_msgs.msg import Opt2UI
from interaction_msgs.msg import Opt2Rep
from .optimizers.bayesian_optimization import BayesianOptimization
from transitions.extensions.asyncio import AsyncMachine
import asyncio
import numpy as np
import threading
import time
import os
@ -17,29 +26,118 @@ class BayesianOptimizationNode(Node):
def __init__(self):
super().__init__('bayesian_optimization_node')
# reading parameters
# region Parameters
self.kernel_type = self.declare_parameter('kernel_type', 'Matern').get_parameter_value().string_value
self.acquisition_function_name = (self.declare_parameter('acquisition_function_name', 'EI')
.get_parameter_value().string_value)
.get_parameter_value().string_value)
self.nr_bo_steps = self.declare_parameter('bo_steps', 100).get_parameter_value().integer_value
self.nr_dimensions = self.declare_parameter('nr_dimensions',1).get_parameter_value().integer_value
self.nr_policy_parameters = (self.declare_parameter('nr_policy_parameters', 100)
.get_parameter_value().integer_value)
self.nr_init = self.declare_parameter('nr_init', 3).get_parameter_value().integer_value
self.cycle_time = (self.declare_parameter('bo_cylce_time', 0.1)).get_parameter_value().double_value
# endregion
# Subscribers
self.reward_sub = self.create_subscription(Task2Opt, 'interaction/reward', self.reward_callback, 10)
self.ui_sub = self.create_subscription(UI2Opt, 'interaction/ui_response', self.ui_callback, 10)
self.order_sub = self.create_subscription(Task2Opt, 'interaction/task_order', self.task_order_callback, 10)
# Publishers
self.ui_pub = self.create_publisher(Opt2UI, 'interaction/ui_request', 10)
self.rep_pub = self.create_publisher(Opt2Rep, 'interaction/next_x', 10)
# Service Clients
self.query_client = self.create_client(Query, 'user_query')
self.query_client = self.create_client(Query, 'interaction/user_query')
# Bayesian Optimization
self.bayesian_optimization = None
self.nr_bo_steps = 100
self.nr_dimensions = 1
self.nr_policy_parameters = 10
self.nr_init = 3
self.seed = None
self.lower_bound = None
self.upper_bound = None
# State Machine
states = ['idle',
'initialize_bo',
'user_query',
'processing',
'waiting_for_user_response',
'waiting_for_task_response']
transitions = [
{'trigger': 'order_received', 'source': 'idle', 'dest': 'initialize_bo', 'after': 'after_receiving_order'},
{'trigger': 'initialization_finished', 'source': 'initialize_bo', 'dest': 'user_query'},
{'trigger': 'non_interactive', 'source': 'user_query', 'dest': 'sampling_x_next'},
{'trigger': 'sampling_finished', 'source': 'sampling_x_next', 'dest': 'processing'},
{'trigger': 'interactive', 'source': 'user_query', 'dest': 'waiting_for_user_response'},
{'trigger': 'user_response_received', 'source': 'waiting_for_user_response', 'dest': 'processing'},
{'trigger': 'processing_finished', 'source': 'processing', 'dest': 'waiting_for_task_response'},
{'trigger': 'task_response_received', 'source': 'waiting_for_task_response', 'dest': 'user_query'},
{'trigger': 'order_completed', 'source': 'waiting_for_task_response', 'dest': 'idle'},
{'trigger': 'abort', 'source': '*', 'dest': 'idle'}
]
"""
Algo:
A) idle -> order_received() -> initializing_bo:
order_sub - receives order
reset_bo with the order parameters
trigger: order_received()
for i=0:nr_episodes
B) initializing_bo -> initialization_finished() -> user_query:
for j = 0:nr_init
x_next <- initial sampling
send x_next to task node
reward received from task node
fit model
trigger: initialization_finished()
C1.1) user_query -> non_interactive() -> sampling_x_next
service call for user_query
if user_query is False:
trigger: non_interactive()
C1.2) sampling_x_next -> sampling_finished() -> processing
sampling x_next with acqusition function
trigger: sampling_finished()
C2.1) user_query -> interactive() -> waiting_for_user
service call for user_query
if user_query is True:
trigger: interactive()
C2.2) waiting_for_user_response -> user_response_received() -> processing
send x_best to task node
send x_best to UI
user adapts x_best
(UI sends x_next to task node)
receives x_next from UI
trigger: user_response_received()
D) processing -> processing_finished() -> waiting_for_task_response
sends x_next to task node
trigger: processing_finished()
E) waiting_for_task_response -> task_response_received() -> user_query
if episode < nr_episodes:
get results from reward_sub
model fit with additional observation
trigger: task_response_received()
F) waiting_for_task_response -> order_completed() -> idle
if episode = nr_episodes:
completion_pub with the completed results
trigger: order_completed()
Additional Transitions:
Abort: * -> abort() -> idle
"""
self.machine = AsyncMachine(model=self, states=states,
transitions=transitions, initial='idle',
ignore_invalid_triggers=True)
def reset_bo(self, fixed_dimensions=None, **kwargs):
self.bayesian_optimization = BayesianOptimization(self.nr_bo_steps,
self.nr_dimensions,
@ -52,5 +150,99 @@ class BayesianOptimizationNode(Node):
kernel_type=self.kernel_type, **kwargs)
# region Callback functions
def reward_callback(self, msg):
pass
def ui_callback(self, msg):
pass
def task_order_callback(self, msg):
pass
async def call_service_async(self, client, request):
"""
Asynchronously call a ROS 2 service and wait for its response.
"""
# Use an asyncio Future to wait for the response
future = asyncio.Future()
def callback(response_future):
# Set the result of the asyncio Future when the ROS 2 service responds
rclpy.spin_once(self, timeout_sec=0) # Make sure the callback is processed
future.set_result(response_future.result())
client.call_async(request).add_done_callback(callback)
# Wait for the response
response = await future
return response
# endregion
# region Trigger Placeholers
async def order_received(self):
# Placeholder for trigger
pass
async def initialization_finished(self):
# Placeholder for trigger
pass
async def non_interactive(self):
# Placeholder for trigger
pass
async def interactive(self):
# Placeholder for trigger
pass
async def user_response_received(self):
# Placeholder for trigger
pass
async def processing_finished(self):
# Placeholder for trigger
pass
async def task_response_received(self):
# Placeholder for trigger
pass
async def order_completed(self):
# Placeholder for trigger
pass
async def abort(self):
# Placeholder for trigger
pass
# endregion
# State Methods
async def after_receiving_order(self):
self.get_logger().info('Initializing bo...')
async def user_query_state(self):
self.get_logger().info('Deciding wheter to ask the user...')
srv_msg = Query()
response = await self.call_service_async(self.query_client, srv_msg)
if response.interaction:
await self.interactive()
else:
await self.non_interactive()
async def ask_user_state(self):
self.get_logger().info('Waiting for user response...')
async def processing_next_episode(self):
pass
async def waiting_for_task_response(self):
pass
async def completing_order(self):
pass
async def abort(self):
pass