Delete 'README.md'
This commit is contained in:
parent
56123b126b
commit
39260d8c9c
23
README.md
23
README.md
@ -1,23 +0,0 @@
|
|||||||
This is the coding part of the lecture Deep Representation Learning in PyTorch.
|
|
||||||
|
|
||||||
python 3.10
|
|
||||||
|
|
||||||
#### Autoencoder
|
|
||||||
In this demo we will implement a simple autoencoder. The autoencoder will be trained on the MNIST dataset. The autoencoder will be implemented in the file autoencoder.py. The file autoencoder.py contains a class Autoencoder on the MNIST dataset.
|
|
||||||
We compare the performance of the fully connected autoencoder with a convolutional autoencoder.
|
|
||||||
Jupyter notebooks:
|
|
||||||
* autoencoder_mnist.ipynb
|
|
||||||
* autoencoder_cifar10.ipynb
|
|
||||||
|
|
||||||
#### Contractive Learning (SimCLR)
|
|
||||||
In this demo we implemented the SimClR [1] algorithm and trained it on the cifar10 dataset.
|
|
||||||
|
|
||||||
Download the pretrained encoder [here](https://cloud.cps.unileoben.ac.at/index.php/s/feHYqRHwDy7mMDm) and put it in the folder `runs`.
|
|
||||||
|
|
||||||
The code was adapted from this [repo](https://github.com/sthalles/SimCLR/tree/master)
|
|
||||||
|
|
||||||
Jupyter notebooks:
|
|
||||||
* simclr.ipynb
|
|
||||||
|
|
||||||
|
|
||||||
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning (ICML'20), Vol. 119. JMLR.org, Article 149, 1597–1607.
|
|
Loading…
Reference in New Issue
Block a user