diff --git a/README.md b/README.md deleted file mode 100644 index 373029b..0000000 --- a/README.md +++ /dev/null @@ -1,23 +0,0 @@ -This is the coding part of the lecture Deep Representation Learning in PyTorch. - -python 3.10 - -#### Autoencoder -In this demo we will implement a simple autoencoder. The autoencoder will be trained on the MNIST dataset. The autoencoder will be implemented in the file autoencoder.py. The file autoencoder.py contains a class Autoencoder on the MNIST dataset. -We compare the performance of the fully connected autoencoder with a convolutional autoencoder. -Jupyter notebooks: -* autoencoder_mnist.ipynb -* autoencoder_cifar10.ipynb - -#### Contractive Learning (SimCLR) -In this demo we implemented the SimClR [1] algorithm and trained it on the cifar10 dataset. - -Download the pretrained encoder [here](https://cloud.cps.unileoben.ac.at/index.php/s/feHYqRHwDy7mMDm) and put it in the folder `runs`. - -The code was adapted from this [repo](https://github.com/sthalles/SimCLR/tree/master) - -Jupyter notebooks: -* simclr.ipynb - - -[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning (ICML'20), Vol. 119. JMLR.org, Article 149, 1597–1607. \ No newline at end of file