232 lines
4.5 KiB
Plaintext
232 lines
4.5 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"Import the libraries"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import pandas as pd\n",
|
||
|
"import numpy as np"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"Create the Regression Models"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"class Predictor:\n",
|
||
|
" def __init__(self):\n",
|
||
|
" self.coefficients = None\n",
|
||
|
"\n",
|
||
|
" def fit(self, X, y):\n",
|
||
|
" pass\n",
|
||
|
"\n",
|
||
|
" def predict(self, X):\n",
|
||
|
" pass\n",
|
||
|
"\n",
|
||
|
"class LinearRegression(Predictor):\n",
|
||
|
" pass\n",
|
||
|
"\n",
|
||
|
"class RidgeRegression(Predictor):\n",
|
||
|
" pass\n",
|
||
|
"\n",
|
||
|
"class LassoRegression(Predictor):\n",
|
||
|
" pass"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"Data Preprocessing and Data loading functions"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def preprocess(df):\n",
|
||
|
" pass\n",
|
||
|
"\n",
|
||
|
"def train_test_split(X, y, test_size=0.2):\n",
|
||
|
" pass\n",
|
||
|
"\n",
|
||
|
"def load_data():\n",
|
||
|
" pass"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Load the diabetes dataset\n",
|
||
|
"df = pd.read_csv(\"diabetes.csv\")\n",
|
||
|
"\n",
|
||
|
"# Preprocess the dataset\n",
|
||
|
"df = preprocess(df)"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"Load the data"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"outputs": [
|
||
|
{
|
||
|
"ename": "TypeError",
|
||
|
"evalue": "cannot unpack non-iterable NoneType object",
|
||
|
"output_type": "error",
|
||
|
"traceback": [
|
||
|
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
|
||
|
"\u001B[0;31mTypeError\u001B[0m Traceback (most recent call last)",
|
||
|
"Cell \u001B[0;32mIn[5], line 2\u001B[0m\n\u001B[1;32m 1\u001B[0m \u001B[38;5;66;03m# Load the data\u001B[39;00m\n\u001B[0;32m----> 2\u001B[0m X_train, X_test, y_train, y_test \u001B[38;5;241m=\u001B[39m load_data()\n",
|
||
|
"\u001B[0;31mTypeError\u001B[0m: cannot unpack non-iterable NoneType object"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"# Load the data\n",
|
||
|
"X_train, X_test, y_train, y_test = load_data()"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"Fit the models"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Fit the linear regression\n",
|
||
|
"linear_regression = LinearRegression()\n",
|
||
|
"linear_regression.fit(X_train, y_train)"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Fit the ridge regression\n",
|
||
|
"ridge_regression = RidgeRegression(alpha=1)\n",
|
||
|
"ridge_regression.fit(X_train, y_train)"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Fit the lasso regression\n",
|
||
|
"lasso_regression = LassoRegression(alpha=1, num_iters=10000, lr=0.001)\n",
|
||
|
"lasso_regression.fit(X_train, y_train)"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"Evaluate the models"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"outputs": [],
|
||
|
"source": [],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 2
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython2",
|
||
|
"version": "2.7.6"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 0
|
||
|
}
|