{ "cells": [ { "cell_type": "markdown", "source": [ "Import the libraries" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 1, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Create the Regression Models" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 2, "outputs": [], "source": [ "class Predictor:\n", " def __init__(self):\n", " self.coefficients = None\n", "\n", " def fit(self, X, y):\n", " pass\n", "\n", " def predict(self, X):\n", " pass\n", "\n", "class LinearRegression(Predictor):\n", " pass\n", "\n", "class RidgeRegression(Predictor):\n", " pass\n", "\n", "class LassoRegression(Predictor):\n", " pass" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Data Preprocessing and Data loading functions" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def preprocess(df):\n", " pass\n", "\n", "def train_test_split(X, y, test_size=0.2):\n", " pass\n", "\n", "def load_data():\n", " pass" ] }, { "cell_type": "code", "execution_count": 4, "outputs": [], "source": [ "# Load the diabetes dataset\n", "df = pd.read_csv(\"diabetes.csv\")\n", "\n", "# Preprocess the dataset\n", "df = preprocess(df)" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Load the data" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 5, "outputs": [ { "ename": "TypeError", "evalue": "cannot unpack non-iterable NoneType object", "output_type": "error", "traceback": [ "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", "\u001B[0;31mTypeError\u001B[0m Traceback (most recent call last)", "Cell \u001B[0;32mIn[5], line 2\u001B[0m\n\u001B[1;32m 1\u001B[0m \u001B[38;5;66;03m# Load the data\u001B[39;00m\n\u001B[0;32m----> 2\u001B[0m X_train, X_test, y_train, y_test \u001B[38;5;241m=\u001B[39m load_data()\n", "\u001B[0;31mTypeError\u001B[0m: cannot unpack non-iterable NoneType object" ] } ], "source": [ "# Load the data\n", "X_train, X_test, y_train, y_test = load_data()" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Fit the models" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# Fit the linear regression\n", "linear_regression = LinearRegression()\n", "linear_regression.fit(X_train, y_train)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# Fit the ridge regression\n", "ridge_regression = RidgeRegression(alpha=1)\n", "ridge_regression.fit(X_train, y_train)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "# Fit the lasso regression\n", "lasso_regression = LassoRegression(alpha=1, num_iters=10000, lr=0.001)\n", "lasso_regression.fit(X_train, y_train)" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Evaluate the models" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }