cps_microros_imu/firmware/lib/imu/ADXL345.cpp
2023-07-10 11:54:53 +02:00

1669 lines
61 KiB
C++
Raw Blame History

// I2Cdev library collection - ADXL345 I2C device class
// Based on Analog Devices ADXL345 datasheet rev. C, 5/2011
// 7/31/2011 by Jeff Rowberg <jeff@rowberg.net>
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Changelog:
// 2011-07-31 - initial release
/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2011 Jeff Rowberg
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/
#include "ADXL345.h"
/** Default constructor, uses default I2C address.
* @see ADXL345_DEFAULT_ADDRESS
*/
ADXL345::ADXL345() {
devAddr = ADXL345_DEFAULT_ADDRESS;
}
/** Specific address constructor.
* @param address I2C address
* @see ADXL345_DEFAULT_ADDRESS
* @see ADXL345_ADDRESS_ALT_LOW
* @see ADXL345_ADDRESS_ALT_HIGH
*/
ADXL345::ADXL345(uint8_t address) {
devAddr = address;
}
/** Power on and prepare for general usage.
* This will activate the accelerometer, so be sure to adjust the power settings
* after you call this method if you want it to enter standby mode, or another
* less demanding mode of operation.
*/
void ADXL345::initialize() {
I2Cdev::writeByte(devAddr, ADXL345_RA_POWER_CTL, 0); // reset all power settings
setAutoSleepEnabled(true);
setMeasureEnabled(true);
}
/** Verify the I2C connection.
* Make sure the device is connected and responds as expected.
* @return True if connection is valid, false otherwise
*/
bool ADXL345::testConnection() {
return getDeviceID() == 0xE5;
}
// DEVID register
/** Get Device ID.
* The DEVID register holds a fixed device ID code of 0xE5 (345 octal).
* @return Device ID (should be 0xE5, 229 dec, 345 oct)
* @see ADXL345_RA_DEVID
*/
uint8_t ADXL345::getDeviceID() {
I2Cdev::readByte(devAddr, ADXL345_RA_DEVID, buffer);
return buffer[0];
}
// THRESH_TAP register
/** Get tap threshold.
* The THRESH_TAP register is eight bits and holds the threshold value for tap
* interrupts. The data format is unsigned, therefore, the magnitude of the tap
* event is compared with the value in THRESH_TAP for normal tap detection. The
* scale factor is 62.5 mg/LSB (that is, 0xFF = 16 g). A value of 0 may result
* in undesirable behavior if single tap/double tap interrupts are enabled.
* @return Tap threshold (scaled at 62.5 mg/LSB)
* @see ADXL345_RA_THRESH_TAP
*/
uint8_t ADXL345::getTapThreshold() {
I2Cdev::readByte(devAddr, ADXL345_RA_THRESH_TAP, buffer);
return buffer[0];
}
/** Set tap threshold.
* @param threshold Tap magnitude threshold (scaled at 62.5 mg/LSB)
* @see ADXL345_RA_THRESH_TAP
* @see getTapThreshold()
*/
void ADXL345::setTapThreshold(uint8_t threshold) {
I2Cdev::writeByte(devAddr, ADXL345_RA_THRESH_TAP, threshold);
}
// OFS* registers
/** Get axis offsets.
* The OFSX, OFSY, and OFSZ registers are each eight bits and offer user-set
* offset adjustments in twos complement format with a scale factor of 15.6
* mg/LSB (that is, 0x7F = 2 g). The value stored in the offset registers is
* automatically added to the acceleration data, and the resulting value is
* stored in the output data registers. For additional information regarding
* offset calibration and the use of the offset registers, refer to the Offset
* Calibration section of the datasheet.
* @param x X axis offset container
* @param y Y axis offset container
* @param z Z axis offset container
* @see ADXL345_RA_OFSX
* @see ADXL345_RA_OFSY
* @see ADXL345_RA_OFSZ
*/
void ADXL345::getOffset(int8_t* x, int8_t* y, int8_t* z) {
I2Cdev::readBytes(devAddr, ADXL345_RA_OFSX, 3, buffer);
*x = buffer[0];
*y = buffer[1];
*z = buffer[2];
}
/** Set axis offsets.
* @param x X axis offset value
* @param y Y axis offset value
* @param z Z axis offset value
* @see getOffset()
* @see ADXL345_RA_OFSX
* @see ADXL345_RA_OFSY
* @see ADXL345_RA_OFSZ
*/
void ADXL345::setOffset(int8_t x, int8_t y, int8_t z) {
I2Cdev::writeByte(devAddr, ADXL345_RA_OFSX, x);
I2Cdev::writeByte(devAddr, ADXL345_RA_OFSY, y);
I2Cdev::writeByte(devAddr, ADXL345_RA_OFSZ, z);
}
/** Get X axis offset.
* @return X axis offset value
* @see getOffset()
* @see ADXL345_RA_OFSX
*/
int8_t ADXL345::getOffsetX() {
I2Cdev::readByte(devAddr, ADXL345_RA_OFSX, buffer);
return buffer[0];
}
/** Set X axis offset.
* @param x X axis offset value
* @see getOffset()
* @see ADXL345_RA_OFSX
*/
void ADXL345::setOffsetX(int8_t x) {
I2Cdev::writeByte(devAddr, ADXL345_RA_OFSX, x);
}
/** Get Y axis offset.
* @return Y axis offset value
* @see getOffset()
* @see ADXL345_RA_OFSY
*/
int8_t ADXL345::getOffsetY() {
I2Cdev::readByte(devAddr, ADXL345_RA_OFSY, buffer);
return buffer[0];
}
/** Set Y axis offset.
* @param y Y axis offset value
* @see getOffset()
* @see ADXL345_RA_OFSY
*/
void ADXL345::setOffsetY(int8_t y) {
I2Cdev::writeByte(devAddr, ADXL345_RA_OFSY, y);
}
/** Get Z axis offset.
* @return Z axis offset value
* @see getOffset()
* @see ADXL345_RA_OFSZ
*/
int8_t ADXL345::getOffsetZ() {
I2Cdev::readByte(devAddr, ADXL345_RA_OFSZ, buffer);
return buffer[0];
}
/** Set Z axis offset.
* @param z Z axis offset value
* @see getOffset()
* @see ADXL345_RA_OFSZ
*/
void ADXL345::setOffsetZ(int8_t z) {
I2Cdev::writeByte(devAddr, ADXL345_RA_OFSZ, z);
}
// DUR register
/** Get tap duration.
* The DUR register is eight bits and contains an unsigned time value
* representing the maximum time that an event must be above the THRESH_TAP
* threshold to qualify as a tap event. The scale factor is 625 us/LSB. A value
* of 0 disables the single tap/ double tap functions.
* @return Tap duration (scaled at 625 us/LSB)
* @see ADXL345_RA_DUR
*/
uint8_t ADXL345::getTapDuration() {
I2Cdev::readByte(devAddr, ADXL345_RA_DUR, buffer);
return buffer[0];
}
/** Set tap duration.
* @param duration Tap duration (scaled at 625 us/LSB)
* @see getTapDuration()
* @see ADXL345_RA_DUR
*/
void ADXL345::setTapDuration(uint8_t duration) {
I2Cdev::writeByte(devAddr, ADXL345_RA_DUR, duration);
}
// LATENT register
/** Get tap duration.
* The latent register is eight bits and contains an unsigned time value
* representing the wait time from the detection of a tap event to the start of
* the time window (defined by the window register) during which a possible
* second tap event can be detected. The scale factor is 1.25 ms/LSB. A value of
* 0 disables the double tap function.
* @return Tap latency (scaled at 1.25 ms/LSB)
* @see ADXL345_RA_LATENT
*/
uint8_t ADXL345::getDoubleTapLatency() {
I2Cdev::readByte(devAddr, ADXL345_RA_LATENT, buffer);
return buffer[0];
}
/** Set tap duration.
* @param latency Tap latency (scaled at 1.25 ms/LSB)
* @see getDoubleTapLatency()
* @see ADXL345_RA_LATENT
*/
void ADXL345::setDoubleTapLatency(uint8_t latency) {
I2Cdev::writeByte(devAddr, ADXL345_RA_LATENT, latency);
}
// WINDOW register
/** Get double tap window.
* The window register is eight bits and contains an unsigned time value
* representing the amount of time after the expiration of the latency time
* (determined by the latent register) during which a second valid tap can
* begin. The scale factor is 1.25 ms/LSB. A value of 0 disables the double tap
* function.
* @return Double tap window (scaled at 1.25 ms/LSB)
* @see ADXL345_RA_WINDOW
*/
uint8_t ADXL345::getDoubleTapWindow() {
I2Cdev::readByte(devAddr, ADXL345_RA_WINDOW, buffer);
return buffer[0];
}
/** Set double tap window.
* @param window Double tap window (scaled at 1.25 ms/LSB)
* @see getDoubleTapWindow()
* @see ADXL345_RA_WINDOW
*/
void ADXL345::setDoubleTapWindow(uint8_t window) {
I2Cdev::writeByte(devAddr, ADXL345_RA_WINDOW, window);
}
// THRESH_ACT register
/** Get activity threshold.
* The THRESH_ACT register is eight bits and holds the threshold value for
* detecting activity. The data format is unsigned, so the magnitude of the
* activity event is compared with the value in the THRESH_ACT register. The
* scale factor is 62.5 mg/LSB. A value of 0 may result in undesirable behavior
* if the activity interrupt is enabled.
* @return Activity threshold (scaled at 62.5 mg/LSB)
* @see ADXL345_RA_THRESH_ACT
*/
uint8_t ADXL345::getActivityThreshold() {
I2Cdev::readByte(devAddr, ADXL345_RA_THRESH_ACT, buffer);
return buffer[0];
}
/** Set activity threshold.
* @param threshold Activity threshold (scaled at 62.5 mg/LSB)
* @see getActivityThreshold()
* @see ADXL345_RA_THRESH_ACT
*/
void ADXL345::setActivityThreshold(uint8_t threshold) {
I2Cdev::writeByte(devAddr, ADXL345_RA_THRESH_ACT, threshold);
}
// THRESH_INACT register
/** Get inactivity threshold.
* The THRESH_INACT register is eight bits and holds the threshold value for
* detecting inactivity. The data format is unsigned, so the magnitude of the
* inactivity event is compared with the value in the THRESH_INACT register. The
* scale factor is 62.5 mg/LSB. A value of 0 may result in undesirable behavior
* if the inactivity interrupt is enabled.
* @return Inactivity threshold (scaled at 62.5 mg/LSB)
* @see ADXL345_RA_THRESH_INACT
*/
uint8_t ADXL345::getInactivityThreshold() {
I2Cdev::readByte(devAddr, ADXL345_RA_THRESH_INACT, buffer);
return buffer[0];
}
/** Set inactivity threshold.
* @param threshold Inctivity threshold (scaled at 62.5 mg/LSB)
* @see getInctivityThreshold()
* @see ADXL345_RA_THRESH_INACT
*/
void ADXL345::setInactivityThreshold(uint8_t threshold) {
I2Cdev::writeByte(devAddr, ADXL345_RA_THRESH_INACT, threshold);
}
// TIME_INACT register
/** Set inactivity time.
* The TIME_INACT register is eight bits and contains an unsigned time value
* representing the amount of time that acceleration must be less than the value
* in the THRESH_INACT register for inactivity to be declared. The scale factor
* is 1 sec/LSB. Unlike the other interrupt functions, which use unfiltered data
* (see the Threshold sectionof the datasheet), the inactivity function uses
* filtered output data. At least one output sample must be generated for the
* inactivity interrupt to be triggered. This results in the function appearing
* unresponsive if the TIME_INACT register is set to a value less than the time
* constant of the output data rate. A value of 0 results in an interrupt when
* the output data is less than the value in the THRESH_INACT register.
* @return Inactivity time (scaled at 1 sec/LSB)
* @see ADXL345_RA_TIME_INACT
*/
uint8_t ADXL345::getInactivityTime() {
I2Cdev::readByte(devAddr, ADXL345_RA_TIME_INACT, buffer);
return buffer[0];
}
/** Set inactivity time.
* @param time Inactivity time (scaled at 1 sec/LSB)
* @see getInctivityTime()
* @see ADXL345_RA_TIME_INACT
*/
void ADXL345::setInactivityTime(uint8_t time) {
I2Cdev::writeByte(devAddr, ADXL345_RA_TIME_INACT, time);
}
// ACT_INACT_CTL register
/** Get activity AC/DC coupling.
* A setting of 0 selects dc-coupled operation, and a setting of 1 enables
* ac-coupled operation. In dc-coupled operation, the current acceleration
* magnitude is compared directly with THRESH_ACT and THRESH_INACT to determine
* whether activity or inactivity is detected.
*
* In ac-coupled operation for activity detection, the acceleration value at the
* start of activity detection is taken as a reference value. New samples of
* acceleration are then compared to this reference value, and if the magnitude
* of the difference exceeds the THRESH_ACT value, the device triggers an
* activity interrupt.
*
* Similarly, in ac-coupled operation for inactivity detection, a reference
* value is used for comparison and is updated whenever the device exceeds the
* inactivity threshold. After the reference value is selected, the device
* compares the magnitude of the difference between the reference value and the
* current acceleration with THRESH_INACT. If the difference is less than the
* value in THRESH_INACT for the time in TIME_INACT, the device is considered
* inactive and the inactivity interrupt is triggered.
*
* @return Activity coupling (0 = DC, 1 = AC)
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_ACT_AC_BIT
*/
bool ADXL345::getActivityAC() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_ACT_AC_BIT, buffer);
return buffer[0];
}
/** Set activity AC/DC coupling.
* @param enabled Activity AC/DC coupling (TRUE for AC, FALSE for DC)
* @see getActivityAC()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_ACT_AC_BIT
*/
void ADXL345::setActivityAC(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_ACT_AC_BIT, enabled);
}
/** Get X axis activity monitoring inclusion.
* For all "get[In]Activity*Enabled()" methods: a setting of 1 enables x-, y-,
* or z-axis participation in detecting activity or inactivity. A setting of 0
* excludes the selected axis from participation. If all axes are excluded, the
* function is disabled. For activity detection, all participating axes are
* logically OR<4F>ed, causing the activity function to trigger when any of the
* participating axes exceeds the threshold. For inactivity detection, all
* participating axes are logically AND<4E>ed, causing the inactivity function to
* trigger only if all participating axes are below the threshold for the
* specified time.
* @return X axis activity monitoring enabled value
* @see getActivityAC()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_ACT_X_BIT
*/
bool ADXL345::getActivityXEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_ACT_X_BIT, buffer);
return buffer[0];
}
/** Set X axis activity monitoring inclusion.
* @param enabled X axis activity monitoring inclusion value
* @see getActivityAC()
* @see getActivityXEnabled()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_ACT_X_BIT
*/
void ADXL345::setActivityXEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_ACT_X_BIT, enabled);
}
/** Get Y axis activity monitoring.
* @return Y axis activity monitoring enabled value
* @see getActivityAC()
* @see getActivityXEnabled()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_ACT_Y_BIT
*/
bool ADXL345::getActivityYEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_ACT_Y_BIT, buffer);
return buffer[0];
}
/** Set Y axis activity monitoring inclusion.
* @param enabled Y axis activity monitoring inclusion value
* @see getActivityAC()
* @see getActivityXEnabled()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_ACT_Y_BIT
*/
void ADXL345::setActivityYEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_ACT_Y_BIT, enabled);
}
/** Get Z axis activity monitoring.
* @return Z axis activity monitoring enabled value
* @see getActivityAC()
* @see getActivityXEnabled()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_ACT_Z_BIT
*/
bool ADXL345::getActivityZEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_ACT_Z_BIT, buffer);
return buffer[0];
}
/** Set Z axis activity monitoring inclusion.
* @param enabled Z axis activity monitoring inclusion value
* @see getActivityAC()
* @see getActivityXEnabled()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_ACT_Z_BIT
*/
void ADXL345::setActivityZEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_ACT_Z_BIT, enabled);
}
/** Get inactivity AC/DC coupling.
* @return Inctivity coupling (0 = DC, 1 = AC)
* @see getActivityAC()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_INACT_AC_BIT
*/
bool ADXL345::getInactivityAC() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_INACT_AC_BIT, buffer);
return buffer[0];
}
/** Set inctivity AC/DC coupling.
* @param enabled Inactivity AC/DC coupling (TRUE for AC, FALSE for DC)
* @see getActivityAC()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_INACT_AC_BIT
*/
void ADXL345::setInactivityAC(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_INACT_AC_BIT, enabled);
}
/** Get X axis inactivity monitoring.
* @return Y axis inactivity monitoring enabled value
* @see getActivityAC()
* @see getActivityXEnabled()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_INACT_X_BIT
*/
bool ADXL345::getInactivityXEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_INACT_X_BIT, buffer);
return buffer[0];
}
/** Set X axis activity monitoring inclusion.
* @param enabled X axis inactivity monitoring inclusion value
* @see getActivityAC()
* @see getActivityXEnabled()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_INACT_X_BIT
*/
void ADXL345::setInactivityXEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_INACT_X_BIT, enabled);
}
/** Get Y axis inactivity monitoring.
* @return Y axis inactivity monitoring enabled value
* @see getActivityAC()
* @see getActivityXEnabled()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_INACT_Y_BIT
*/
bool ADXL345::getInactivityYEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_INACT_Y_BIT, buffer);
return buffer[0];
}
/** Set Y axis inactivity monitoring inclusion.
* @param enabled Y axis inactivity monitoring inclusion value
* @see getActivityAC()
* @see getActivityXEnabled()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_INACT_Y_BIT
*/
void ADXL345::setInactivityYEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_INACT_Y_BIT, enabled);
}
/** Get Z axis inactivity monitoring.
* @return Z axis inactivity monitoring enabled value
* @see getActivityAC()
* @see getActivityXEnabled()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_INACT_Z_BIT
*/
bool ADXL345::getInactivityZEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_INACT_Z_BIT, buffer);
return buffer[0];
}
/** Set Z axis inactivity monitoring inclusion.
* @param enabled Z axis activity monitoring inclusion value
* @see getActivityAC()
* @see getActivityXEnabled()
* @see ADXL345_RA_ACT_INACT_CTL
* @see ADXL345_AIC_INACT_Z_BIT
*/
void ADXL345::setInactivityZEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_ACT_INACT_CTL, ADXL345_AIC_INACT_Z_BIT, enabled);
}
// THRESH_FF register
/** Get freefall threshold value.
* The THRESH_FF register is eight bits and holds the threshold value, in
* unsigned format, for free-fall detection. The acceleration on all axes is
* compared with the value in THRESH_FF to determine if a free-fall event
* occurred. The scale factor is 62.5 mg/LSB. Note that a value of 0 mg may
* result in undesirable behavior if the free-fall interrupt is enabled. Values
* between 300 mg and 600 mg (0x05 to 0x09) are recommended.
* @return Freefall threshold value (scaled at 62.5 mg/LSB)
* @see ADXL345_RA_THRESH_FF
*/
uint8_t ADXL345::getFreefallThreshold() {
I2Cdev::readByte(devAddr, ADXL345_RA_THRESH_FF, buffer);
return buffer[0];
}
/** Set freefall threshold value.
* @param threshold Freefall threshold value (scaled at 62.5 mg/LSB)
* @see getFreefallThreshold()
* @see ADXL345_RA_THRESH_FF
*/
void ADXL345::setFreefallThreshold(uint8_t threshold) {
I2Cdev::writeByte(devAddr, ADXL345_RA_THRESH_FF, threshold);
}
// TIME_FF register
/** Get freefall time value.
* The TIME_FF register is eight bits and stores an unsigned time value
* representing the minimum time that the value of all axes must be less than
* THRESH_FF to generate a free-fall interrupt. The scale factor is 5 ms/LSB. A
* value of 0 may result in undesirable behavior if the free-fall interrupt is
* enabled. Values between 100 ms and 350 ms (0x14 to 0x46) are recommended.
* @return Freefall time value (scaled at 5 ms/LSB)
* @see getFreefallThreshold()
* @see ADXL345_RA_TIME_FF
*/
uint8_t ADXL345::getFreefallTime() {
I2Cdev::readByte(devAddr, ADXL345_RA_TIME_FF, buffer);
return buffer[0];
}
/** Set freefall time value.
* @param threshold Freefall time value (scaled at 5 ms/LSB)
* @see getFreefallTime()
* @see ADXL345_RA_TIME_FF
*/
void ADXL345::setFreefallTime(uint8_t time) {
I2Cdev::writeByte(devAddr, ADXL345_RA_TIME_FF, time);
}
// TAP_AXES register
/** Get double-tap fast-movement suppression.
* Setting the suppress bit suppresses double tap detection if acceleration
* greater than the value in THRESH_TAP is present between taps. See the Tap
* Detection section in the datasheet for more details.
* @return Double-tap fast-movement suppression value
* @see getTapThreshold()
* @see ADXL345_RA_TAP_AXES
* @see ADXL345_TAPAXIS_SUP_BIT
*/
bool ADXL345::getTapAxisSuppress() {
I2Cdev::readBit(devAddr, ADXL345_RA_TAP_AXES, ADXL345_TAPAXIS_SUP_BIT, buffer);
return buffer[0];
}
/** Set double-tap fast-movement suppression.
* @param enabled Double-tap fast-movement suppression value
* @see getTapAxisSuppress()
* @see ADXL345_RA_TAP_AXES
* @see ADXL345_TAPAXIS_SUP_BIT
*/
void ADXL345::setTapAxisSuppress(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_TAP_AXES, ADXL345_TAPAXIS_SUP_BIT, enabled);
}
/** Get double-tap fast-movement suppression.
* A setting of 1 in the TAP_X enable bit enables x-axis participation in tap
* detection. A setting of 0 excludes the selected axis from participation in
* tap detection.
* @return Double-tap fast-movement suppression value
* @see getTapThreshold()
* @see ADXL345_RA_TAP_AXES
* @see ADXL345_TAPAXIS_X_BIT
*/
bool ADXL345::getTapAxisXEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_TAP_AXES, ADXL345_TAPAXIS_X_BIT, buffer);
return buffer[0];
}
/** Set tap detection X axis inclusion.
* @param enabled X axis tap detection enabled value
* @see getTapAxisXEnabled()
* @see ADXL345_RA_TAP_AXES
* @see ADXL345_TAPAXIS_X_BIT
*/
void ADXL345::setTapAxisXEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_TAP_AXES, ADXL345_TAPAXIS_X_BIT, enabled);
}
/** Get tap detection Y axis inclusion.
* A setting of 1 in the TAP_Y enable bit enables y-axis participation in tap
* detection. A setting of 0 excludes the selected axis from participation in
* tap detection.
* @return Double-tap fast-movement suppression value
* @see getTapThreshold()
* @see ADXL345_RA_TAP_AXES
* @see ADXL345_TAPAXIS_Y_BIT
*/
bool ADXL345::getTapAxisYEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_TAP_AXES, ADXL345_TAPAXIS_Y_BIT, buffer);
return buffer[0];
}
/** Set tap detection Y axis inclusion.
* @param enabled Y axis tap detection enabled value
* @see getTapAxisYEnabled()
* @see ADXL345_RA_TAP_AXES
* @see ADXL345_TAPAXIS_Y_BIT
*/
void ADXL345::setTapAxisYEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_TAP_AXES, ADXL345_TAPAXIS_Y_BIT, enabled);
}
/** Get tap detection Z axis inclusion.
* A setting of 1 in the TAP_Z enable bit enables z-axis participation in tap
* detection. A setting of 0 excludes the selected axis from participation in
* tap detection.
* @return Double-tap fast-movement suppression value
* @see getTapThreshold()
* @see ADXL345_RA_TAP_AXES
* @see ADXL345_TAPAXIS_Z_BIT
*/
bool ADXL345::getTapAxisZEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_TAP_AXES, ADXL345_TAPAXIS_Z_BIT, buffer);
return buffer[0];
}
/** Set tap detection Z axis inclusion.
* @param enabled Z axis tap detection enabled value
* @see getTapAxisZEnabled()
* @see ADXL345_RA_TAP_AXES
* @see ADXL345_TAPAXIS_Z_BIT
*/
void ADXL345::setTapAxisZEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_TAP_AXES, ADXL345_TAPAXIS_Z_BIT, enabled);
}
// ACT_TAP_STATUS register
/** Get X axis activity source flag.
* These bits indicate the first axis involved in a tap or activity event. A
* setting of 1 corresponds to involvement in the event, and a setting of 0
* corresponds to no involvement. When new data is available, these bits are not
* cleared but are overwritten by the new data. The ACT_TAP_STATUS register
* should be read before clearing the interrupt. Disabling an axis from
* participation clears the corresponding source bit when the next activity or
* single tap/double tap event occurs.
* @return X axis activity source flag
* @see ADXL345_RA_ACT_TAP_STATUS
* @see ADXL345_TAPSTAT_ACTX_BIT
*/
bool ADXL345::getActivitySourceX() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_TAP_STATUS, ADXL345_TAPSTAT_ACTX_BIT, buffer);
return buffer[0];
}
/** Get Y axis activity source flag.
* @return Y axis activity source flag
* @see getActivitySourceX()
* @see ADXL345_RA_ACT_TAP_STATUS
* @see ADXL345_TAPSTAT_ACTY_BIT
*/
bool ADXL345::getActivitySourceY() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_TAP_STATUS, ADXL345_TAPSTAT_ACTY_BIT, buffer);
return buffer[0];
}
/** Get Z axis activity source flag.
* @return Z axis activity source flag
* @see getActivitySourceX()
* @see ADXL345_RA_ACT_TAP_STATUS
* @see ADXL345_TAPSTAT_ACTZ_BIT
*/
bool ADXL345::getActivitySourceZ() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_TAP_STATUS, ADXL345_TAPSTAT_ACTZ_BIT, buffer);
return buffer[0];
}
/** Get sleep mode flag.
* A setting of 1 in the asleep bit indicates that the part is asleep, and a
* setting of 0 indicates that the part is not asleep. This bit toggles only if
* the device is configured for auto sleep. See the AUTO_SLEEP Bit section of
* the datasheet for more information on autosleep mode.
* @return Sleep mode enabled flag
* @see ADXL345_RA_ACT_TAP_STATUS
* @see ADXL345_TAPSTAT_ASLEEP_BIT
*/
bool ADXL345::getAsleep() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_TAP_STATUS, ADXL345_TAPSTAT_ASLEEP_BIT, buffer);
return buffer[0];
}
/** Get X axis tap source flag.
* @return X axis tap source flag
* @see getActivitySourceX()
* @see ADXL345_RA_ACT_TAP_STATUS
* @see ADXL345_TAPSTAT_TAPX_BIT
*/
bool ADXL345::getTapSourceX() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_TAP_STATUS, ADXL345_TAPSTAT_TAPX_BIT, buffer);
return buffer[0];
}
/** Get Y axis tap source flag.
* @return Y axis tap source flag
* @see getActivitySourceX()
* @see ADXL345_RA_ACT_TAP_STATUS
* @see ADXL345_TAPSTAT_TAPY_BIT
*/
bool ADXL345::getTapSourceY() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_TAP_STATUS, ADXL345_TAPSTAT_TAPY_BIT, buffer);
return buffer[0];
}
/** Get Z axis tap source flag.
* @return Z axis tap source flag
* @see getActivitySourceX()
* @see ADXL345_RA_ACT_TAP_STATUS
* @see ADXL345_TAPSTAT_TAPZ_BIT
*/
bool ADXL345::getTapSourceZ() {
I2Cdev::readBit(devAddr, ADXL345_RA_ACT_TAP_STATUS, ADXL345_TAPSTAT_TAPZ_BIT, buffer);
return buffer[0];
}
// BW_RATE register
/** Get low power enabled status.
* A setting of 0 in the LOW_POWER bit selects normal operation, and a setting
* of 1 selects reduced power operation, which has somewhat higher noise (see
* the Power Modes section of the datasheet for details).
* @return Low power enabled status
* @see ADXL345_RA_BW_RATE
* @see ADXL345_BW_LOWPOWER_BIT
*/
bool ADXL345::getLowPowerEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_BW_RATE, ADXL345_BW_LOWPOWER_BIT, buffer);
return buffer[0];
}
/** Set low power enabled status.
* @see getLowPowerEnabled()
* @param enabled Low power enable setting
* @see ADXL345_RA_BW_RATE
* @see ADXL345_BW_LOWPOWER_BIT
*/
void ADXL345::setLowPowerEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_BW_RATE, ADXL345_BW_LOWPOWER_BIT, enabled);
}
/** Get measurement data rate.
* These bits select the device bandwidth and output data rate (see Table 7 and
* Table 8 in the datasheet for details). The default value is 0x0A, which
* translates to a 100 Hz output data rate. An output data rate should be
* selected that is appropriate for the communication protocol and frequency
* selected. Selecting too high of an output data rate with a low communication
* speed results in samples being discarded.
* @return Data rate (0x0 - 0xF)
* @see ADXL345_RA_BW_RATE
* @see ADXL345_BW_RATE_BIT
* @see ADXL345_BW_RATE_LENGTH
*/
uint8_t ADXL345::getRate() {
I2Cdev::readBits(devAddr, ADXL345_RA_BW_RATE, ADXL345_BW_RATE_BIT, ADXL345_BW_RATE_LENGTH, buffer);
return buffer[0];
}
/** Set measurement data rate.
* 0x7 = 12.5Hz
* 0x8 = 25Hz, increasing or decreasing by factors of 2, so:
* 0x9 = 50Hz
* 0xA = 100Hz
* @param rate New data rate (0x0 - 0xF)
* @see ADXL345_RATE_100
* @see ADXL345_RA_BW_RATE
* @see ADXL345_BW_RATE_BIT
* @see ADXL345_BW_RATE_LENGTH
*/
void ADXL345::setRate(uint8_t rate) {
I2Cdev::writeBits(devAddr, ADXL345_RA_BW_RATE, ADXL345_BW_RATE_BIT, ADXL345_BW_RATE_LENGTH, rate);
}
// POWER_CTL register
/** Get activity/inactivity serial linkage status.
* A setting of 1 in the link bit with both the activity and inactivity
* functions enabled delays the start of the activity function until
* inactivity is detected. After activity is detected, inactivity detection
* begins, preventing the detection of activity. This bit serially links the
* activity and inactivity functions. When this bit is set to 0, the inactivity
* and activity functions are concurrent. Additional information can be found
* in the Link Mode section of the datasheet.
*
* When clearing the link bit, it is recommended that the part be placed into
* standby mode and then set back to measurement mode with a subsequent write.
* This is done to ensure that the device is properly biased if sleep mode is
* manually disabled; otherwise, the first few samples of data after the link
* bit is cleared may have additional noise, especially if the device was asleep
* when the bit was cleared.
*
* @return Link status
* @see ADXL345_RA_POWER_CTL
* @see ADXL345_PCTL_LINK_BIT
*/
bool ADXL345::getLinkEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_POWER_CTL, ADXL345_PCTL_LINK_BIT, buffer);
return buffer[0];
}
/** Set activity/inactivity serial linkage status.
* @param enabled New link status
* @see ADXL345_RA_POWER_CTL
* @see ADXL345_PCTL_LINK_BIT
*/
void ADXL345::setLinkEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_POWER_CTL, ADXL345_PCTL_LINK_BIT, enabled);
}
/** Get auto-sleep enabled status.
* If the link bit is set, a setting of 1 in the AUTO_SLEEP bit enables the
* auto-sleep functionality. In this mode, the ADXL345 auto-matically switches
* to sleep mode if the inactivity function is enabled and inactivity is
* detected (that is, when acceleration is below the THRESH_INACT value for at
* least the time indicated by TIME_INACT). If activity is also enabled, the
* ADXL345 automatically wakes up from sleep after detecting activity and
* returns to operation at the output data rate set in the BW_RATE register. A
* setting of 0 in the AUTO_SLEEP bit disables automatic switching to sleep
* mode. See the description of the Sleep Bit in this section of the datasheet
* for more information on sleep mode.
*
* If the link bit is not set, the AUTO_SLEEP feature is disabled and setting
* the AUTO_SLEEP bit does not have an impact on device operation. Refer to the
* Link Bit section or the Link Mode section for more information on utilization
* of the link feature.
*
* When clearing the AUTO_SLEEP bit, it is recommended that the part be placed
* into standby mode and then set back to measure-ment mode with a subsequent
* write. This is done to ensure that the device is properly biased if sleep
* mode is manually disabled; otherwise, the first few samples of data after the
* AUTO_SLEEP bit is cleared may have additional noise, especially if the device
* was asleep when the bit was cleared.
*
* @return Auto-sleep enabled status
* @see getActivityThreshold()
* @see getInactivityThreshold()
* @see getInactivityTime()
* @see ADXL345_RA_POWER_CTL
* @see ADXL345_PCTL_AUTOSLEEP_BIT
*/
bool ADXL345::getAutoSleepEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_POWER_CTL, ADXL345_PCTL_AUTOSLEEP_BIT, buffer);
return buffer[0];
}
/** Set auto-sleep enabled status.
* @param enabled New auto-sleep status
* @see getAutoSleepEnabled()
* @see ADXL345_RA_POWER_CTL
* @see ADXL345_PCTL_AUTOSLEEP_BIT
*/
void ADXL345::setAutoSleepEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_POWER_CTL, ADXL345_PCTL_AUTOSLEEP_BIT, enabled);
}
/** Get measurement enabled status.
* A setting of 0 in the measure bit places the part into standby mode, and a
* setting of 1 places the part into measurement mode. The ADXL345 powers up in
* standby mode with minimum power consumption.
* @return Measurement enabled status
* @see ADXL345_RA_POWER_CTL
* @see ADXL345_PCTL_MEASURE_BIT
*/
bool ADXL345::getMeasureEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_POWER_CTL, ADXL345_PCTL_MEASURE_BIT, buffer);
return buffer[0];
}
/** Set measurement enabled status.
* @param enabled Measurement enabled status
* @see getMeasureEnabled()
* @see ADXL345_RA_POWER_CTL
* @see ADXL345_PCTL_MEASURE_BIT
*/
void ADXL345::setMeasureEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_POWER_CTL, ADXL345_PCTL_MEASURE_BIT, enabled);
}
/** Get sleep mode enabled status.
* A setting of 0 in the sleep bit puts the part into the normal mode of
* operation, and a setting of 1 places the part into sleep mode. Sleep mode
* suppresses DATA_READY, stops transmission of data to FIFO, and switches the
* sampling rate to one specified by the wakeup bits. In sleep mode, only the
* activity function can be used. When the DATA_READY interrupt is suppressed,
* the output data registers (Register 0x32 to Register 0x37) are still updated
* at the sampling rate set by the wakeup bits (D1:D0).
*
* When clearing the sleep bit, it is recommended that the part be placed into
* standby mode and then set back to measurement mode with a subsequent write.
* This is done to ensure that the device is properly biased if sleep mode is
* manually disabled; otherwise, the first few samples of data after the sleep
* bit is cleared may have additional noise, especially if the device was asleep
* when the bit was cleared.
*
* @return Sleep enabled status
* @see ADXL345_RA_POWER_CTL
* @see ADXL345_PCTL_SLEEP_BIT
*/
bool ADXL345::getSleepEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_POWER_CTL, ADXL345_PCTL_SLEEP_BIT, buffer);
return buffer[0];
}
/** Set sleep mode enabled status.
* @param Sleep mode enabled status
* @see getSleepEnabled()
* @see ADXL345_RA_POWER_CTL
* @see ADXL345_PCTL_SLEEP_BIT
*/
void ADXL345::setSleepEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_POWER_CTL, ADXL345_PCTL_SLEEP_BIT, enabled);
}
/** Get wakeup frequency.
* These bits control the frequency of readings in sleep mode as described in
* Table 20 in the datasheet. (That is, 0 = 8Hz, 1 = 4Hz, 2 = 2Hz, 3 = 1Hz)
* @return Wakeup frequency (0x0 - 0x3, indicating 8/4/2/1Hz respectively)
* @see ADXL345_RA_POWER_CTL
* @see ADXL345_PCTL_SLEEP_BIT
*/
uint8_t ADXL345::getWakeupFrequency() {
I2Cdev::readBits(devAddr, ADXL345_RA_POWER_CTL, ADXL345_PCTL_WAKEUP_BIT, ADXL345_PCTL_WAKEUP_LENGTH, buffer);
return buffer[0];
}
/** Set wakeup frequency.
* @param frequency Wakeup frequency (0x0 - 0x3, indicating 8/4/2/1Hz respectively)
* @see getWakeupFrequency()
* @see ADXL345_RA_POWER_CTL
* @see ADXL345_PCTL_SLEEP_BIT
*/
void ADXL345::setWakeupFrequency(uint8_t frequency) {
I2Cdev::writeBits(devAddr, ADXL345_RA_POWER_CTL, ADXL345_PCTL_WAKEUP_BIT, ADXL345_PCTL_WAKEUP_LENGTH, frequency);
}
// INT_ENABLE register
/** Get DATA_READY interrupt enabled status.
* Setting bits in this register to a value of 1 enables their respective
* functions to generate interrupts, whereas a value of 0 prevents the functions
* from generating interrupts. The DATA_READY, watermark, and overrun bits
* enable only the interrupt output; the functions are always enabled. It is
* recommended that interrupts be configured before enabling their outputs.
* @return DATA_READY interrupt enabled status.
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_DATA_READY_BIT
*/
bool ADXL345::getIntDataReadyEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_DATA_READY_BIT, buffer);
return buffer[0];
}
/** Set DATA_READY interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_DATA_READY_BIT
*/
void ADXL345::setIntDataReadyEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_DATA_READY_BIT, enabled);
}
/** Set SINGLE_TAP interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_SINGLE_TAP_BIT
*/
bool ADXL345::getIntSingleTapEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_SINGLE_TAP_BIT, buffer);
return buffer[0];
}
/** Set SINGLE_TAP interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_SINGLE_TAP_BIT
*/
void ADXL345::setIntSingleTapEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_SINGLE_TAP_BIT, enabled);
}
/** Get DOUBLE_TAP interrupt enabled status.
* @return Interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_DOUBLE_TAP_BIT
*/
bool ADXL345::getIntDoubleTapEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_DOUBLE_TAP_BIT, buffer);
return buffer[0];
}
/** Set DOUBLE_TAP interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_DOUBLE_TAP_BIT
*/
void ADXL345::setIntDoubleTapEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_DOUBLE_TAP_BIT, enabled);
}
/** Set ACTIVITY interrupt enabled status.
* @return Interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_ACTIVITY_BIT
*/
bool ADXL345::getIntActivityEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_ACTIVITY_BIT, buffer);
return buffer[0];
}
/** Set ACTIVITY interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_ACTIVITY_BIT
*/
void ADXL345::setIntActivityEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_ACTIVITY_BIT, enabled);
}
/** Get INACTIVITY interrupt enabled status.
* @return Interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_INACTIVITY_BIT
*/
bool ADXL345::getIntInactivityEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_INACTIVITY_BIT, buffer);
return buffer[0];
}
/** Set INACTIVITY interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_INACTIVITY_BIT
*/
void ADXL345::setIntInactivityEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_INACTIVITY_BIT, enabled);
}
/** Get FREE_FALL interrupt enabled status.
* @return Interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_FREE_FALL_BIT
*/
bool ADXL345::getIntFreefallEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_FREE_FALL_BIT, buffer);
return buffer[0];
}
/** Set FREE_FALL interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_FREE_FALL_BIT
*/
void ADXL345::setIntFreefallEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_FREE_FALL_BIT, enabled);
}
/** Get WATERMARK interrupt enabled status.
* @return Interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_WATERMARK_BIT
*/
bool ADXL345::getIntWatermarkEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_WATERMARK_BIT, buffer);
return buffer[0];
}
/** Set WATERMARK interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_WATERMARK_BIT
*/
void ADXL345::setIntWatermarkEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_WATERMARK_BIT, enabled);
}
/** Get OVERRUN interrupt enabled status.
* @return Interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_OVERRUN_BIT
*/
bool ADXL345::getIntOverrunEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_OVERRUN_BIT, buffer);
return buffer[0];
}
/** Set OVERRUN interrupt enabled status.
* @param enabled New interrupt enabled status
* @see getIntDataReadyEnabled()
* @see ADXL345_RA_INT_ENABLE
* @see ADXL345_INT_OVERRUN_BIT
*/
void ADXL345::setIntOverrunEnabled(bool enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_ENABLE, ADXL345_INT_OVERRUN_BIT, enabled);
}
// INT_MAP register
/** Get DATA_READY interrupt pin.
* Any bits set to 0 in this register send their respective interrupts to the
* INT1 pin, whereas bits set to 1 send their respective interrupts to the INT2
* pin. All selected interrupts for a given pin are OR'ed.
* @return Interrupt pin setting
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_DATA_READY_BIT
*/
uint8_t ADXL345::getIntDataReadyPin() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_DATA_READY_BIT, buffer);
return buffer[0];
}
/** Set DATA_READY interrupt pin.
* @param pin Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_DATA_READY_BIT
*/
void ADXL345::setIntDataReadyPin(uint8_t pin) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_DATA_READY_BIT, pin);
}
/** Get SINGLE_TAP interrupt pin.
* @return Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_SINGLE_TAP_BIT
*/
uint8_t ADXL345::getIntSingleTapPin() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_SINGLE_TAP_BIT, buffer);
return buffer[0];
}
/** Set SINGLE_TAP interrupt pin.
* @param pin Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_SINGLE_TAP_BIT
*/
void ADXL345::setIntSingleTapPin(uint8_t pin) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_SINGLE_TAP_BIT, pin);
}
/** Get DOUBLE_TAP interrupt pin.
* @return Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_DOUBLE_TAP_BIT
*/
uint8_t ADXL345::getIntDoubleTapPin() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_DOUBLE_TAP_BIT, buffer);
return buffer[0];
}
/** Set DOUBLE_TAP interrupt pin.
* @param pin Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_DOUBLE_TAP_BIT
*/
void ADXL345::setIntDoubleTapPin(uint8_t pin) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_DOUBLE_TAP_BIT, pin);
}
/** Get ACTIVITY interrupt pin.
* @return Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_ACTIVITY_BIT
*/
uint8_t ADXL345::getIntActivityPin() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_ACTIVITY_BIT, buffer);
return buffer[0];
}
/** Set ACTIVITY interrupt pin.
* @param pin Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_ACTIVITY_BIT
*/
void ADXL345::setIntActivityPin(uint8_t pin) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_ACTIVITY_BIT, pin);
}
/** Get INACTIVITY interrupt pin.
* @return Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_INACTIVITY_BIT
*/
uint8_t ADXL345::getIntInactivityPin() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_INACTIVITY_BIT, buffer);
return buffer[0];
}
/** Set INACTIVITY interrupt pin.
* @param pin Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_INACTIVITY_BIT
*/
void ADXL345::setIntInactivityPin(uint8_t pin) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_INACTIVITY_BIT, pin);
}
/** Get FREE_FALL interrupt pin.
* @return Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_FREE_FALL_BIT
*/
uint8_t ADXL345::getIntFreefallPin() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_FREE_FALL_BIT, buffer);
return buffer[0];
}
/** Set FREE_FALL interrupt pin.
* @param pin Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_FREE_FALL_BIT
*/
void ADXL345::setIntFreefallPin(uint8_t pin) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_FREE_FALL_BIT, pin);
}
/** Get WATERMARK interrupt pin.
* @return Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_WATERMARK_BIT
*/
uint8_t ADXL345::getIntWatermarkPin() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_WATERMARK_BIT, buffer);
return buffer[0];
}
/** Set WATERMARK interrupt pin.
* @param pin Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_WATERMARK_BIT
*/
void ADXL345::setIntWatermarkPin(uint8_t pin) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_WATERMARK_BIT, pin);
}
/** Get OVERRUN interrupt pin.
* @return Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_OVERRUN_BIT
*/
uint8_t ADXL345::getIntOverrunPin() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_OVERRUN_BIT, buffer);
return buffer[0];
}
/** Set OVERRUN interrupt pin.
* @param pin Interrupt pin setting
* @see getIntDataReadyPin()
* @see ADXL345_RA_INT_MAP
* @see ADXL345_INT_OVERRUN_BIT
*/
void ADXL345::setIntOverrunPin(uint8_t pin) {
I2Cdev::writeBit(devAddr, ADXL345_RA_INT_MAP, ADXL345_INT_OVERRUN_BIT, pin);
}
// INT_SOURCE register
/** Get DATA_READY interrupt source flag.
* Bits set to 1 in this register indicate that their respective functions have
* triggered an event, whereas a value of 0 indicates that the corresponding
* event has not occurred. The DATA_READY, watermark, and overrun bits are
* always set if the corresponding events occur, regardless of the INT_ENABLE
* register settings, and are cleared by reading data from the DATAX, DATAY, and
* DATAZ registers. The DATA_READY and watermark bits may require multiple
* reads, as indicated in the FIFO mode descriptions in the FIFO section. Other
* bits, and the corresponding interrupts, are cleared by reading the INT_SOURCE
* register.
* @return Interrupt source flag
* @see ADXL345_RA_INT_SOURCE
* @see ADXL345_INT_DATA_READY_BIT
*/
uint8_t ADXL345::getIntDataReadySource() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_SOURCE, ADXL345_INT_DATA_READY_BIT, buffer);
return buffer[0];
}
/** Get SINGLE_TAP interrupt source flag.
* @return Interrupt source flag
* @see ADXL345_RA_INT_SOURCE
* @see ADXL345_INT_SINGLE_TAP_BIT
*/
uint8_t ADXL345::getIntSingleTapSource() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_SOURCE, ADXL345_INT_SINGLE_TAP_BIT, buffer);
return buffer[0];
}
/** Get DOUBLE_TAP interrupt source flag.
* @return Interrupt source flag
* @see ADXL345_RA_INT_SOURCE
* @see ADXL345_INT_DOUBLE_TAP_BIT
*/
uint8_t ADXL345::getIntDoubleTapSource() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_SOURCE, ADXL345_INT_DOUBLE_TAP_BIT, buffer);
return buffer[0];
}
/** Get ACTIVITY interrupt source flag.
* @return Interrupt source flag
* @see ADXL345_RA_INT_SOURCE
* @see ADXL345_INT_ACTIVITY_BIT
*/
uint8_t ADXL345::getIntActivitySource() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_SOURCE, ADXL345_INT_ACTIVITY_BIT, buffer);
return buffer[0];
}
/** Get INACTIVITY interrupt source flag.
* @return Interrupt source flag
* @see ADXL345_RA_INT_SOURCE
* @see ADXL345_INT_INACTIVITY_BIT
*/
uint8_t ADXL345::getIntInactivitySource() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_SOURCE, ADXL345_INT_INACTIVITY_BIT, buffer);
return buffer[0];
}
/** Get FREE_FALL interrupt source flag.
* @return Interrupt source flag
* @see ADXL345_RA_INT_SOURCE
* @see ADXL345_INT_FREE_FALL_BIT
*/
uint8_t ADXL345::getIntFreefallSource() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_SOURCE, ADXL345_INT_FREE_FALL_BIT, buffer);
return buffer[0];
}
/** Get WATERMARK interrupt source flag.
* @return Interrupt source flag
* @see ADXL345_RA_INT_SOURCE
* @see ADXL345_INT_WATERMARK_BIT
*/
uint8_t ADXL345::getIntWatermarkSource() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_SOURCE, ADXL345_INT_WATERMARK_BIT, buffer);
return buffer[0];
}
/** Get OVERRUN interrupt source flag.
* @return Interrupt source flag
* @see ADXL345_RA_INT_SOURCE
* @see ADXL345_INT_OVERRUN_BIT
*/
uint8_t ADXL345::getIntOverrunSource() {
I2Cdev::readBit(devAddr, ADXL345_RA_INT_SOURCE, ADXL345_INT_OVERRUN_BIT, buffer);
return buffer[0];
}
// DATA_FORMAT register
/** Get self-test force enabled.
* A setting of 1 in the SELF_TEST bit applies a self-test force to the sensor,
* causing a shift in the output data. A value of 0 disables the self-test
* force.
* @return Self-test force enabled setting
* @see ADXL345_RA_DATA_FORMAT
* @see ADXL345_FORMAT_SELFTEST_BIT
*/
uint8_t ADXL345::getSelfTestEnabled() {
I2Cdev::readBit(devAddr, ADXL345_RA_DATA_FORMAT, ADXL345_FORMAT_SELFTEST_BIT, buffer);
return buffer[0];
}
/** Set self-test force enabled.
* @param enabled New self-test force enabled setting
* @see getSelfTestEnabled()
* @see ADXL345_RA_DATA_FORMAT
* @see ADXL345_FORMAT_SELFTEST_BIT
*/
void ADXL345::setSelfTestEnabled(uint8_t enabled) {
I2Cdev::writeBit(devAddr, ADXL345_RA_DATA_FORMAT, ADXL345_FORMAT_SELFTEST_BIT, enabled);
}
/** Get SPI mode setting.
* A value of 1 in the SPI bit sets the device to 3-wire SPI mode, and a value
* of 0 sets the device to 4-wire SPI mode.
* @return SPI mode setting
* @see ADXL345_RA_DATA_FORMAT
* @see ADXL345_FORMAT_SELFTEST_BIT
*/
uint8_t ADXL345::getSPIMode() {
I2Cdev::readBit(devAddr, ADXL345_RA_DATA_FORMAT, ADXL345_FORMAT_SPIMODE_BIT, buffer);
return buffer[0];
}
/** Set SPI mode setting.
* @param mode New SPI mode setting
* @see getSPIMode()
* @see ADXL345_RA_DATA_FORMAT
* @see ADXL345_FORMAT_SELFTEST_BIT
*/
void ADXL345::setSPIMode(uint8_t mode) {
I2Cdev::writeBit(devAddr, ADXL345_RA_DATA_FORMAT, ADXL345_FORMAT_SPIMODE_BIT, mode);
}
/** Get interrupt mode setting.
* A value of 0 in the INT_INVERT bit sets the interrupts to active high, and a
* value of 1 sets the interrupts to active low.
* @return Interrupt mode setting
* @see ADXL345_RA_DATA_FORMAT
* @see ADXL345_FORMAT_INTMODE_BIT
*/
uint8_t ADXL345::getInterruptMode() {
I2Cdev::readBit(devAddr, ADXL345_RA_DATA_FORMAT, ADXL345_FORMAT_INTMODE_BIT, buffer);
return buffer[0];
}
/** Set interrupt mode setting.
* @param mode New interrupt mode setting
* @see getInterruptMode()
* @see ADXL345_RA_DATA_FORMAT
* @see ADXL345_FORMAT_INTMODE_BIT
*/
void ADXL345::setInterruptMode(uint8_t mode) {
I2Cdev::writeBit(devAddr, ADXL345_RA_DATA_FORMAT, ADXL345_FORMAT_INTMODE_BIT, mode);
}
/** Get full resolution mode setting.
* When this bit is set to a value of 1, the device is in full resolution mode,
* where the output resolution increases with the g range set by the range bits
* to maintain a 4 mg/LSB scale factor. When the FULL_RES bit is set to 0, the
* device is in 10-bit mode, and the range bits determine the maximum g range
* and scale factor.
* @return Full resolution enabled setting
* @see ADXL345_RA_DATA_FORMAT
* @see ADXL345_FORMAT_FULL_RES_BIT
*/
uint8_t ADXL345::getFullResolution() {
I2Cdev::readBit(devAddr, ADXL345_RA_DATA_FORMAT, ADXL345_FORMAT_FULL_RES_BIT, buffer);
return buffer[0];
}
/** Set full resolution mode setting.
* @param resolution New full resolution enabled setting
* @see getFullResolution()
* @see ADXL345_RA_DATA_FORMAT
* @see ADXL345_FORMAT_FULL_RES_BIT
*/
void ADXL345::setFullResolution(uint8_t resolution) {
I2Cdev::writeBit(devAddr, ADXL345_RA_DATA_FORMAT, ADXL345_FORMAT_FULL_RES_BIT, resolution);
}
/** Get data justification mode setting.
* A setting of 1 in the justify bit selects left-justified (MSB) mode, and a
* setting of 0 selects right-justified mode with sign extension.
* @return Data justification mode
* @see ADXL345_RA_DATA_FORMAT
* @see ADXL345_FORMAT_JUSTIFY_BIT
*/
uint8_t ADXL345::getDataJustification() {
I2Cdev::readBit(devAddr, ADXL345_RA_DATA_FORMAT, ADXL345_FORMAT_JUSTIFY_BIT, buffer);
return buffer[0];
}
/** Set data justification mode setting.
* @param justification New data justification mode
* @see getDataJustification()
* @see ADXL345_RA_DATA_FORMAT
* @see ADXL345_FORMAT_JUSTIFY_BIT
*/
void ADXL345::setDataJustification(uint8_t justification) {
I2Cdev::writeBit(devAddr, ADXL345_RA_DATA_FORMAT, ADXL345_FORMAT_JUSTIFY_BIT, justification);
}
/** Get data range setting.
* These bits set the g range as described in Table 21. (That is, 0x0 - 0x3 to
* indicate 2g/4g/8g/16g respectively)
* @return Range value (0x0 - 0x3 for 2g/4g/8g/16g)
* @see ADXL345_RA_DATA_FORMAT
* @see ADXL345_FORMAT_RANGE_BIT
* @see ADXL345_FORMAT_RANGE_LENGTH
*/
uint8_t ADXL345::getRange() {
I2Cdev::readBits(devAddr, ADXL345_RA_DATA_FORMAT, ADXL345_FORMAT_RANGE_BIT, ADXL345_FORMAT_RANGE_LENGTH, buffer);
return buffer[0];
}
/** Set data range setting.
* @param range Range value (0x0 - 0x3 for 2g/4g/8g/16g)
* @see getRange()
* @see ADXL345_RA_DATA_FORMAT
* @see ADXL345_FORMAT_RANGE_BIT
* @see ADXL345_FORMAT_RANGE_LENGTH
*/
void ADXL345::setRange(uint8_t range) {
I2Cdev::writeBits(devAddr, ADXL345_RA_DATA_FORMAT, ADXL345_FORMAT_RANGE_BIT, ADXL345_FORMAT_RANGE_LENGTH, range);
}
// DATA* registers
/** Get 3-axis accleration measurements.
* These six bytes (Register 0x32 to Register 0x37) are eight bits each and hold
* the output data for each axis. Register 0x32 and Register 0x33 hold the
* output data for the x-axis, Register 0x34 and Register 0x35 hold the output
* data for the y-axis, and Register 0x36 and Register 0x37 hold the output data
* for the z-axis. The output data is twos complement, with DATAx0 as the least
* significant byte and DATAx1 as the most significant byte, where x represent
* X, Y, or Z. The DATA_FORMAT register (Address 0x31) controls the format of
* the data. It is recommended that a multiple-byte read of all registers be
* performed to prevent a change in data between reads of sequential registers.
*
* The DATA_FORMAT register controls the presentation of data to Register 0x32
* through Register 0x37. All data, except that for the +/-16 g range, must be
* clipped to avoid rollover.
*
* @param x 16-bit signed integer container for X-axis acceleration
* @param y 16-bit signed integer container for Y-axis acceleration
* @param z 16-bit signed integer container for Z-axis acceleration
* @see ADXL345_RA_DATAX0
*/
void ADXL345::getAcceleration(int16_t* x, int16_t* y, int16_t* z) {
I2Cdev::readBytes(devAddr, ADXL345_RA_DATAX0, 6, buffer);
*x = (((int16_t)buffer[1]) << 8) | buffer[0];
*y = (((int16_t)buffer[3]) << 8) | buffer[2];
*z = (((int16_t)buffer[5]) << 8) | buffer[4];
}
/** Get X-axis accleration measurement.
* @return 16-bit signed X-axis acceleration value
* @see ADXL345_RA_DATAX0
*/
int16_t ADXL345::getAccelerationX() {
I2Cdev::readBytes(devAddr, ADXL345_RA_DATAX0, 2, buffer);
return (((int16_t)buffer[1]) << 8) | buffer[0];
}
/** Get Y-axis accleration measurement.
* @return 16-bit signed Y-axis acceleration value
* @see ADXL345_RA_DATAY0
*/
int16_t ADXL345::getAccelerationY() {
I2Cdev::readBytes(devAddr, ADXL345_RA_DATAY0, 2, buffer);
return (((int16_t)buffer[1]) << 8) | buffer[0];
}
/** Get Z-axis accleration measurement.
* @return 16-bit signed Z-axis acceleration value
* @see ADXL345_RA_DATAZ0
*/
int16_t ADXL345::getAccelerationZ() {
I2Cdev::readBytes(devAddr, ADXL345_RA_DATAZ0, 2, buffer);
return (((int16_t)buffer[1]) << 8) | buffer[0];
}
// FIFO_CTL register
/** Get FIFO mode.
* These bits set the FIFO mode, as described in Table 22. That is:
*
* 0x0 = Bypass (FIFO is bypassed.)
*
* 0x1 = FIFO (FIFO collects up to 32 values and then stops collecting data,
* collecting new data only when FIFO is not full.)
*
* 0x2 = Stream (FIFO holds the last 32 data values. When FIFO is full, the
* oldest data is overwritten with newer data.)
*
* 0x3 = Trigger (When triggered by the trigger bit, FIFO holds the last data
* samples before the trigger event and then continues to collect data
* until full. New data is collected only when FIFO is not full.)
*
* @return Curent FIFO mode
* @see ADXL345_RA_FIFO_CTL
* @see ADXL345_FIFO_MODE_BIT
* @see ADXL345_FIFO_MODE_LENGTH
*/
uint8_t ADXL345::getFIFOMode() {
I2Cdev::readBits(devAddr, ADXL345_RA_FIFO_CTL, ADXL345_FIFO_MODE_BIT, ADXL345_FIFO_MODE_LENGTH, buffer);
return buffer[0];
}
/** Set FIFO mode.
* @param mode New FIFO mode
* @see getFIFOMode()
* @see ADXL345_RA_FIFO_CTL
* @see ADXL345_FIFO_MODE_BIT
* @see ADXL345_FIFO_MODE_LENGTH
*/
void ADXL345::setFIFOMode(uint8_t mode) {
I2Cdev::writeBits(devAddr, ADXL345_RA_FIFO_CTL, ADXL345_FIFO_MODE_BIT, ADXL345_FIFO_MODE_LENGTH, mode);
}
/** Get FIFO trigger interrupt setting.
* A value of 0 in the trigger bit links the trigger event of trigger mode to
* INT1, and a value of 1 links the trigger event to INT2.
* @return Current FIFO trigger interrupt setting
* @see ADXL345_RA_FIFO_CTL
* @see ADXL345_FIFO_TRIGGER_BIT
*/
uint8_t ADXL345::getFIFOTriggerInterruptPin() {
I2Cdev::readBit(devAddr, ADXL345_RA_FIFO_CTL, ADXL345_FIFO_TRIGGER_BIT, buffer);
return buffer[0];
}
/** Set FIFO trigger interrupt pin setting.
* @param interrupt New FIFO trigger interrupt pin setting
* @see ADXL345_RA_FIFO_CTL
* @see ADXL345_FIFO_TRIGGER_BIT
*/
void ADXL345::setFIFOTriggerInterruptPin(uint8_t interrupt) {
I2Cdev::writeBit(devAddr, ADXL345_RA_FIFO_CTL, ADXL345_FIFO_TRIGGER_BIT, interrupt);
}
/** Get FIFO samples setting.
* The function of these bits depends on the FIFO mode selected (see Table 23).
* Entering a value of 0 in the samples bits immediately sets the watermark
* status bit in the INT_SOURCE register, regardless of which FIFO mode is
* selected. Undesirable operation may occur if a value of 0 is used for the
* samples bits when trigger mode is used.
*
* MODE | EFFECT
* --------+-------------------------------------------------------------------
* Bypass | None.
* FIFO | FIFO entries needed to trigger a watermark interrupt.
* Stream | FIFO entries needed to trigger a watermark interrupt.
* Trigger | Samples are retained in the FIFO buffer before a trigger event.
*
* @return Current FIFO samples setting
* @see ADXL345_RA_FIFO_CTL
* @see ADXL345_FIFO_SAMPLES_BIT
* @see ADXL345_FIFO_SAMPLES_LENGTH
*/
uint8_t ADXL345::getFIFOSamples() {
I2Cdev::readBits(devAddr, ADXL345_RA_FIFO_CTL, ADXL345_FIFO_SAMPLES_BIT, ADXL345_FIFO_SAMPLES_LENGTH, buffer);
return buffer[0];
}
/** Set FIFO samples setting.
* @param size New FIFO samples setting (impact depends on FIFO mode setting)
* @see getFIFOSamples()
* @see getFIFOMode()
* @see ADXL345_RA_FIFO_CTL
* @see ADXL345_FIFO_SAMPLES_BIT
* @see ADXL345_FIFO_SAMPLES_LENGTH
*/
void ADXL345::setFIFOSamples(uint8_t size) {
I2Cdev::writeBits(devAddr, ADXL345_RA_FIFO_CTL, ADXL345_FIFO_SAMPLES_BIT, ADXL345_FIFO_SAMPLES_LENGTH, size);
}
// FIFO_STATUS register
/** Get FIFO trigger occurred status.
* A 1 in the FIFO_TRIG bit corresponds to a trigger event occurring, and a 0
* means that a FIFO trigger event has not occurred.
* @return FIFO trigger occurred status
* @see ADXL345_RA_FIFO_STATUS
* @see ADXL345_FIFOSTAT_TRIGGER_BIT
*/
bool ADXL345::getFIFOTriggerOccurred() {
I2Cdev::readBit(devAddr, ADXL345_RA_FIFO_STATUS, ADXL345_FIFOSTAT_TRIGGER_BIT, buffer);
return buffer[0];
}
/** Get FIFO length.
* These bits report how many data values are stored in FIFO. Access to collect
* the data from FIFO is provided through the DATAX, DATAY, and DATAZ registers.
* FIFO reads must be done in burst or multiple-byte mode because each FIFO
* level is cleared after any read (single- or multiple-byte) of FIFO. FIFO
* stores a maximum of 32 entries, which equates to a maximum of 33 entries
* available at any given time because an additional entry is available at the
* output filter of the I2Cdev::
* @return Current FIFO length
* @see ADXL345_RA_FIFO_STATUS
* @see ADXL345_FIFOSTAT_LENGTH_BIT
* @see ADXL345_FIFOSTAT_LENGTH_LENGTH
*/
uint8_t ADXL345::getFIFOLength() {
I2Cdev::readBits(devAddr, ADXL345_RA_FIFO_STATUS, ADXL345_FIFOSTAT_LENGTH_BIT, ADXL345_FIFOSTAT_LENGTH_LENGTH, buffer);
return buffer[0];
}