mirror of
https://github.com/bjoernellens1/cps_microros_imu.git
synced 2024-11-27 18:25:46 +00:00
3214 lines
126 KiB
C++
3214 lines
126 KiB
C++
// I2Cdev library collection - MPU6050 I2C device class
|
|
// Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
|
|
// 8/24/2011 by Jeff Rowberg <jeff@rowberg.net>
|
|
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
|
|
//
|
|
// Changelog:
|
|
// ... - ongoing debug release
|
|
|
|
// NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
|
|
// DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
|
|
// YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
|
|
|
|
/* ============================================
|
|
I2Cdev device library code is placed under the MIT license
|
|
Copyright (c) 2012 Jeff Rowberg
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
===============================================
|
|
*/
|
|
|
|
#include "MPU6050.h"
|
|
|
|
/** Default constructor, uses default I2C address.
|
|
* @see MPU6050_DEFAULT_ADDRESS
|
|
*/
|
|
MPU6050::MPU6050() {
|
|
devAddr = MPU6050_DEFAULT_ADDRESS;
|
|
}
|
|
|
|
/** Specific address constructor.
|
|
* @param address I2C address
|
|
* @see MPU6050_DEFAULT_ADDRESS
|
|
* @see MPU6050_ADDRESS_AD0_LOW
|
|
* @see MPU6050_ADDRESS_AD0_HIGH
|
|
*/
|
|
MPU6050::MPU6050(uint8_t address) {
|
|
devAddr = address;
|
|
}
|
|
|
|
/** Power on and prepare for general usage.
|
|
* This will activate the device and take it out of sleep mode (which must be done
|
|
* after start-up). This function also sets both the accelerometer and the gyroscope
|
|
* to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
|
|
* the clock source to use the X Gyro for reference, which is slightly better than
|
|
* the default internal clock source.
|
|
*/
|
|
void MPU6050::initialize() {
|
|
setClockSource(MPU6050_CLOCK_PLL_XGYRO);
|
|
setFullScaleGyroRange(MPU6050_GYRO_FS_250);
|
|
setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
|
|
setSleepEnabled(false); // thanks to Jack Elston for pointing this one out!
|
|
}
|
|
|
|
/** Verify the I2C connection.
|
|
* Make sure the device is connected and responds as expected.
|
|
* @return True if connection is valid, false otherwise
|
|
*/
|
|
bool MPU6050::testConnection() {
|
|
return getDeviceID() == 0x34;
|
|
}
|
|
|
|
// AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)
|
|
|
|
/** Get the auxiliary I2C supply voltage level.
|
|
* When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
|
|
* 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
|
|
* the MPU-6000, which does not have a VLOGIC pin.
|
|
* @return I2C supply voltage level (0=VLOGIC, 1=VDD)
|
|
*/
|
|
uint8_t MPU6050::getAuxVDDIOLevel() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set the auxiliary I2C supply voltage level.
|
|
* When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
|
|
* 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
|
|
* the MPU-6000, which does not have a VLOGIC pin.
|
|
* @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
|
|
*/
|
|
void MPU6050::setAuxVDDIOLevel(uint8_t level) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level);
|
|
}
|
|
|
|
// SMPLRT_DIV register
|
|
|
|
/** Get gyroscope output rate divider.
|
|
* The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
|
|
* Motion detection, and Free Fall detection are all based on the Sample Rate.
|
|
* The Sample Rate is generated by dividing the gyroscope output rate by
|
|
* SMPLRT_DIV:
|
|
*
|
|
* Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
|
|
*
|
|
* where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
|
|
* 7), and 1kHz when the DLPF is enabled (see Register 26).
|
|
*
|
|
* Note: The accelerometer output rate is 1kHz. This means that for a Sample
|
|
* Rate greater than 1kHz, the same accelerometer sample may be output to the
|
|
* FIFO, DMP, and sensor registers more than once.
|
|
*
|
|
* For a diagram of the gyroscope and accelerometer signal paths, see Section 8
|
|
* of the MPU-6000/MPU-6050 Product Specification document.
|
|
*
|
|
* @return Current sample rate
|
|
* @see MPU6050_RA_SMPLRT_DIV
|
|
*/
|
|
uint8_t MPU6050::getRate() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set gyroscope sample rate divider.
|
|
* @param rate New sample rate divider
|
|
* @see getRate()
|
|
* @see MPU6050_RA_SMPLRT_DIV
|
|
*/
|
|
void MPU6050::setRate(uint8_t rate) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate);
|
|
}
|
|
|
|
// CONFIG register
|
|
|
|
/** Get external FSYNC configuration.
|
|
* Configures the external Frame Synchronization (FSYNC) pin sampling. An
|
|
* external signal connected to the FSYNC pin can be sampled by configuring
|
|
* EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
|
|
* strobes may be captured. The latched FSYNC signal will be sampled at the
|
|
* Sampling Rate, as defined in register 25. After sampling, the latch will
|
|
* reset to the current FSYNC signal state.
|
|
*
|
|
* The sampled value will be reported in place of the least significant bit in
|
|
* a sensor data register determined by the value of EXT_SYNC_SET according to
|
|
* the following table.
|
|
*
|
|
* <pre>
|
|
* EXT_SYNC_SET | FSYNC Bit Location
|
|
* -------------+-------------------
|
|
* 0 | Input disabled
|
|
* 1 | TEMP_OUT_L[0]
|
|
* 2 | GYRO_XOUT_L[0]
|
|
* 3 | GYRO_YOUT_L[0]
|
|
* 4 | GYRO_ZOUT_L[0]
|
|
* 5 | ACCEL_XOUT_L[0]
|
|
* 6 | ACCEL_YOUT_L[0]
|
|
* 7 | ACCEL_ZOUT_L[0]
|
|
* </pre>
|
|
*
|
|
* @return FSYNC configuration value
|
|
*/
|
|
uint8_t MPU6050::getExternalFrameSync() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set external FSYNC configuration.
|
|
* @see getExternalFrameSync()
|
|
* @see MPU6050_RA_CONFIG
|
|
* @param sync New FSYNC configuration value
|
|
*/
|
|
void MPU6050::setExternalFrameSync(uint8_t sync) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync);
|
|
}
|
|
/** Get digital low-pass filter configuration.
|
|
* The DLPF_CFG parameter sets the digital low pass filter configuration. It
|
|
* also determines the internal sampling rate used by the device as shown in
|
|
* the table below.
|
|
*
|
|
* Note: The accelerometer output rate is 1kHz. This means that for a Sample
|
|
* Rate greater than 1kHz, the same accelerometer sample may be output to the
|
|
* FIFO, DMP, and sensor registers more than once.
|
|
*
|
|
* <pre>
|
|
* | ACCELEROMETER | GYROSCOPE
|
|
* DLPF_CFG | Bandwidth | Delay | Bandwidth | Delay | Sample Rate
|
|
* ---------+-----------+--------+-----------+--------+-------------
|
|
* 0 | 260Hz | 0ms | 256Hz | 0.98ms | 8kHz
|
|
* 1 | 184Hz | 2.0ms | 188Hz | 1.9ms | 1kHz
|
|
* 2 | 94Hz | 3.0ms | 98Hz | 2.8ms | 1kHz
|
|
* 3 | 44Hz | 4.9ms | 42Hz | 4.8ms | 1kHz
|
|
* 4 | 21Hz | 8.5ms | 20Hz | 8.3ms | 1kHz
|
|
* 5 | 10Hz | 13.8ms | 10Hz | 13.4ms | 1kHz
|
|
* 6 | 5Hz | 19.0ms | 5Hz | 18.6ms | 1kHz
|
|
* 7 | -- Reserved -- | -- Reserved -- | Reserved
|
|
* </pre>
|
|
*
|
|
* @return DLFP configuration
|
|
* @see MPU6050_RA_CONFIG
|
|
* @see MPU6050_CFG_DLPF_CFG_BIT
|
|
* @see MPU6050_CFG_DLPF_CFG_LENGTH
|
|
*/
|
|
uint8_t MPU6050::getDLPFMode() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set digital low-pass filter configuration.
|
|
* @param mode New DLFP configuration setting
|
|
* @see getDLPFBandwidth()
|
|
* @see MPU6050_DLPF_BW_256
|
|
* @see MPU6050_RA_CONFIG
|
|
* @see MPU6050_CFG_DLPF_CFG_BIT
|
|
* @see MPU6050_CFG_DLPF_CFG_LENGTH
|
|
*/
|
|
void MPU6050::setDLPFMode(uint8_t mode) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode);
|
|
}
|
|
|
|
// GYRO_CONFIG register
|
|
|
|
/** Get full-scale gyroscope range.
|
|
* The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
|
|
* as described in the table below.
|
|
*
|
|
* <pre>
|
|
* 0 = +/- 250 degrees/sec
|
|
* 1 = +/- 500 degrees/sec
|
|
* 2 = +/- 1000 degrees/sec
|
|
* 3 = +/- 2000 degrees/sec
|
|
* </pre>
|
|
*
|
|
* @return Current full-scale gyroscope range setting
|
|
* @see MPU6050_GYRO_FS_250
|
|
* @see MPU6050_RA_GYRO_CONFIG
|
|
* @see MPU6050_GCONFIG_FS_SEL_BIT
|
|
* @see MPU6050_GCONFIG_FS_SEL_LENGTH
|
|
*/
|
|
uint8_t MPU6050::getFullScaleGyroRange() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set full-scale gyroscope range.
|
|
* @param range New full-scale gyroscope range value
|
|
* @see getFullScaleRange()
|
|
* @see MPU6050_GYRO_FS_250
|
|
* @see MPU6050_RA_GYRO_CONFIG
|
|
* @see MPU6050_GCONFIG_FS_SEL_BIT
|
|
* @see MPU6050_GCONFIG_FS_SEL_LENGTH
|
|
*/
|
|
void MPU6050::setFullScaleGyroRange(uint8_t range) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range);
|
|
}
|
|
|
|
// SELF TEST FACTORY TRIM VALUES
|
|
|
|
/** Get self-test factory trim value for accelerometer X axis.
|
|
* @return factory trim value
|
|
* @see MPU6050_RA_SELF_TEST_X
|
|
*/
|
|
uint8_t MPU6050::getAccelXSelfTestFactoryTrim() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_X, &buffer[0]);
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_A, &buffer[1]);
|
|
return (buffer[0]>>3) | ((buffer[1]>>4) & 0x03);
|
|
}
|
|
|
|
/** Get self-test factory trim value for accelerometer Y axis.
|
|
* @return factory trim value
|
|
* @see MPU6050_RA_SELF_TEST_Y
|
|
*/
|
|
uint8_t MPU6050::getAccelYSelfTestFactoryTrim() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_Y, &buffer[0]);
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_A, &buffer[1]);
|
|
return (buffer[0]>>3) | ((buffer[1]>>2) & 0x03);
|
|
}
|
|
|
|
/** Get self-test factory trim value for accelerometer Z axis.
|
|
* @return factory trim value
|
|
* @see MPU6050_RA_SELF_TEST_Z
|
|
*/
|
|
uint8_t MPU6050::getAccelZSelfTestFactoryTrim() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_SELF_TEST_Z, 2, buffer);
|
|
return (buffer[0]>>3) | (buffer[1] & 0x03);
|
|
}
|
|
|
|
/** Get self-test factory trim value for gyro X axis.
|
|
* @return factory trim value
|
|
* @see MPU6050_RA_SELF_TEST_X
|
|
*/
|
|
uint8_t MPU6050::getGyroXSelfTestFactoryTrim() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_X, buffer);
|
|
return (buffer[0] & 0x1F);
|
|
}
|
|
|
|
/** Get self-test factory trim value for gyro Y axis.
|
|
* @return factory trim value
|
|
* @see MPU6050_RA_SELF_TEST_Y
|
|
*/
|
|
uint8_t MPU6050::getGyroYSelfTestFactoryTrim() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_Y, buffer);
|
|
return (buffer[0] & 0x1F);
|
|
}
|
|
|
|
/** Get self-test factory trim value for gyro Z axis.
|
|
* @return factory trim value
|
|
* @see MPU6050_RA_SELF_TEST_Z
|
|
*/
|
|
uint8_t MPU6050::getGyroZSelfTestFactoryTrim() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_SELF_TEST_Z, buffer);
|
|
return (buffer[0] & 0x1F);
|
|
}
|
|
|
|
// ACCEL_CONFIG register
|
|
|
|
/** Get self-test enabled setting for accelerometer X axis.
|
|
* @return Self-test enabled value
|
|
* @see MPU6050_RA_ACCEL_CONFIG
|
|
*/
|
|
bool MPU6050::getAccelXSelfTest() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get self-test enabled setting for accelerometer X axis.
|
|
* @param enabled Self-test enabled value
|
|
* @see MPU6050_RA_ACCEL_CONFIG
|
|
*/
|
|
void MPU6050::setAccelXSelfTest(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled);
|
|
}
|
|
/** Get self-test enabled value for accelerometer Y axis.
|
|
* @return Self-test enabled value
|
|
* @see MPU6050_RA_ACCEL_CONFIG
|
|
*/
|
|
bool MPU6050::getAccelYSelfTest() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get self-test enabled value for accelerometer Y axis.
|
|
* @param enabled Self-test enabled value
|
|
* @see MPU6050_RA_ACCEL_CONFIG
|
|
*/
|
|
void MPU6050::setAccelYSelfTest(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled);
|
|
}
|
|
/** Get self-test enabled value for accelerometer Z axis.
|
|
* @return Self-test enabled value
|
|
* @see MPU6050_RA_ACCEL_CONFIG
|
|
*/
|
|
bool MPU6050::getAccelZSelfTest() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set self-test enabled value for accelerometer Z axis.
|
|
* @param enabled Self-test enabled value
|
|
* @see MPU6050_RA_ACCEL_CONFIG
|
|
*/
|
|
void MPU6050::setAccelZSelfTest(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled);
|
|
}
|
|
/** Get full-scale accelerometer range.
|
|
* The FS_SEL parameter allows setting the full-scale range of the accelerometer
|
|
* sensors, as described in the table below.
|
|
*
|
|
* <pre>
|
|
* 0 = +/- 2g
|
|
* 1 = +/- 4g
|
|
* 2 = +/- 8g
|
|
* 3 = +/- 16g
|
|
* </pre>
|
|
*
|
|
* @return Current full-scale accelerometer range setting
|
|
* @see MPU6050_ACCEL_FS_2
|
|
* @see MPU6050_RA_ACCEL_CONFIG
|
|
* @see MPU6050_ACONFIG_AFS_SEL_BIT
|
|
* @see MPU6050_ACONFIG_AFS_SEL_LENGTH
|
|
*/
|
|
uint8_t MPU6050::getFullScaleAccelRange() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set full-scale accelerometer range.
|
|
* @param range New full-scale accelerometer range setting
|
|
* @see getFullScaleAccelRange()
|
|
*/
|
|
void MPU6050::setFullScaleAccelRange(uint8_t range) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range);
|
|
}
|
|
/** Get the high-pass filter configuration.
|
|
* The DHPF is a filter module in the path leading to motion detectors (Free
|
|
* Fall, Motion threshold, and Zero Motion). The high pass filter output is not
|
|
* available to the data registers (see Figure in Section 8 of the MPU-6000/
|
|
* MPU-6050 Product Specification document).
|
|
*
|
|
* The high pass filter has three modes:
|
|
*
|
|
* <pre>
|
|
* Reset: The filter output settles to zero within one sample. This
|
|
* effectively disables the high pass filter. This mode may be toggled
|
|
* to quickly settle the filter.
|
|
*
|
|
* On: The high pass filter will pass signals above the cut off frequency.
|
|
*
|
|
* Hold: When triggered, the filter holds the present sample. The filter
|
|
* output will be the difference between the input sample and the held
|
|
* sample.
|
|
* </pre>
|
|
*
|
|
* <pre>
|
|
* ACCEL_HPF | Filter Mode | Cut-off Frequency
|
|
* ----------+-------------+------------------
|
|
* 0 | Reset | None
|
|
* 1 | On | 5Hz
|
|
* 2 | On | 2.5Hz
|
|
* 3 | On | 1.25Hz
|
|
* 4 | On | 0.63Hz
|
|
* 7 | Hold | None
|
|
* </pre>
|
|
*
|
|
* @return Current high-pass filter configuration
|
|
* @see MPU6050_DHPF_RESET
|
|
* @see MPU6050_RA_ACCEL_CONFIG
|
|
*/
|
|
uint8_t MPU6050::getDHPFMode() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set the high-pass filter configuration.
|
|
* @param bandwidth New high-pass filter configuration
|
|
* @see setDHPFMode()
|
|
* @see MPU6050_DHPF_RESET
|
|
* @see MPU6050_RA_ACCEL_CONFIG
|
|
*/
|
|
void MPU6050::setDHPFMode(uint8_t bandwidth) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);
|
|
}
|
|
|
|
// FF_THR register
|
|
|
|
/** Get free-fall event acceleration threshold.
|
|
* This register configures the detection threshold for Free Fall event
|
|
* detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
|
|
* absolute value of the accelerometer measurements for the three axes are each
|
|
* less than the detection threshold. This condition increments the Free Fall
|
|
* duration counter (Register 30). The Free Fall interrupt is triggered when the
|
|
* Free Fall duration counter reaches the time specified in FF_DUR.
|
|
*
|
|
* For more details on the Free Fall detection interrupt, see Section 8.2 of the
|
|
* MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
|
|
* 58 of this document.
|
|
*
|
|
* @return Current free-fall acceleration threshold value (LSB = 2mg)
|
|
* @see MPU6050_RA_FF_THR
|
|
*/
|
|
uint8_t MPU6050::getFreefallDetectionThreshold() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_FF_THR, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get free-fall event acceleration threshold.
|
|
* @param threshold New free-fall acceleration threshold value (LSB = 2mg)
|
|
* @see getFreefallDetectionThreshold()
|
|
* @see MPU6050_RA_FF_THR
|
|
*/
|
|
void MPU6050::setFreefallDetectionThreshold(uint8_t threshold) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_FF_THR, threshold);
|
|
}
|
|
|
|
// FF_DUR register
|
|
|
|
/** Get free-fall event duration threshold.
|
|
* This register configures the duration counter threshold for Free Fall event
|
|
* detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
|
|
* of 1 LSB = 1 ms.
|
|
*
|
|
* The Free Fall duration counter increments while the absolute value of the
|
|
* accelerometer measurements are each less than the detection threshold
|
|
* (Register 29). The Free Fall interrupt is triggered when the Free Fall
|
|
* duration counter reaches the time specified in this register.
|
|
*
|
|
* For more details on the Free Fall detection interrupt, see Section 8.2 of
|
|
* the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
|
|
* and 58 of this document.
|
|
*
|
|
* @return Current free-fall duration threshold value (LSB = 1ms)
|
|
* @see MPU6050_RA_FF_DUR
|
|
*/
|
|
uint8_t MPU6050::getFreefallDetectionDuration() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_FF_DUR, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get free-fall event duration threshold.
|
|
* @param duration New free-fall duration threshold value (LSB = 1ms)
|
|
* @see getFreefallDetectionDuration()
|
|
* @see MPU6050_RA_FF_DUR
|
|
*/
|
|
void MPU6050::setFreefallDetectionDuration(uint8_t duration) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_FF_DUR, duration);
|
|
}
|
|
|
|
// MOT_THR register
|
|
|
|
/** Get motion detection event acceleration threshold.
|
|
* This register configures the detection threshold for Motion interrupt
|
|
* generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
|
|
* absolute value of any of the accelerometer measurements exceeds this Motion
|
|
* detection threshold. This condition increments the Motion detection duration
|
|
* counter (Register 32). The Motion detection interrupt is triggered when the
|
|
* Motion Detection counter reaches the time count specified in MOT_DUR
|
|
* (Register 32).
|
|
*
|
|
* The Motion interrupt will indicate the axis and polarity of detected motion
|
|
* in MOT_DETECT_STATUS (Register 97).
|
|
*
|
|
* For more details on the Motion detection interrupt, see Section 8.3 of the
|
|
* MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
|
|
* 58 of this document.
|
|
*
|
|
* @return Current motion detection acceleration threshold value (LSB = 2mg)
|
|
* @see MPU6050_RA_MOT_THR
|
|
*/
|
|
uint8_t MPU6050::getMotionDetectionThreshold() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_MOT_THR, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set motion detection event acceleration threshold.
|
|
* @param threshold New motion detection acceleration threshold value (LSB = 2mg)
|
|
* @see getMotionDetectionThreshold()
|
|
* @see MPU6050_RA_MOT_THR
|
|
*/
|
|
void MPU6050::setMotionDetectionThreshold(uint8_t threshold) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_MOT_THR, threshold);
|
|
}
|
|
|
|
// MOT_DUR register
|
|
|
|
/** Get motion detection event duration threshold.
|
|
* This register configures the duration counter threshold for Motion interrupt
|
|
* generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
|
|
* of 1LSB = 1ms. The Motion detection duration counter increments when the
|
|
* absolute value of any of the accelerometer measurements exceeds the Motion
|
|
* detection threshold (Register 31). The Motion detection interrupt is
|
|
* triggered when the Motion detection counter reaches the time count specified
|
|
* in this register.
|
|
*
|
|
* For more details on the Motion detection interrupt, see Section 8.3 of the
|
|
* MPU-6000/MPU-6050 Product Specification document.
|
|
*
|
|
* @return Current motion detection duration threshold value (LSB = 1ms)
|
|
* @see MPU6050_RA_MOT_DUR
|
|
*/
|
|
uint8_t MPU6050::getMotionDetectionDuration() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_MOT_DUR, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set motion detection event duration threshold.
|
|
* @param duration New motion detection duration threshold value (LSB = 1ms)
|
|
* @see getMotionDetectionDuration()
|
|
* @see MPU6050_RA_MOT_DUR
|
|
*/
|
|
void MPU6050::setMotionDetectionDuration(uint8_t duration) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_MOT_DUR, duration);
|
|
}
|
|
|
|
// ZRMOT_THR register
|
|
|
|
/** Get zero motion detection event acceleration threshold.
|
|
* This register configures the detection threshold for Zero Motion interrupt
|
|
* generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
|
|
* the absolute value of the accelerometer measurements for the 3 axes are each
|
|
* less than the detection threshold. This condition increments the Zero Motion
|
|
* duration counter (Register 34). The Zero Motion interrupt is triggered when
|
|
* the Zero Motion duration counter reaches the time count specified in
|
|
* ZRMOT_DUR (Register 34).
|
|
*
|
|
* Unlike Free Fall or Motion detection, Zero Motion detection triggers an
|
|
* interrupt both when Zero Motion is first detected and when Zero Motion is no
|
|
* longer detected.
|
|
*
|
|
* When a zero motion event is detected, a Zero Motion Status will be indicated
|
|
* in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
|
|
* condition is detected, the status bit is set to 1. When a zero-motion-to-
|
|
* motion condition is detected, the status bit is set to 0.
|
|
*
|
|
* For more details on the Zero Motion detection interrupt, see Section 8.4 of
|
|
* the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
|
|
* and 58 of this document.
|
|
*
|
|
* @return Current zero motion detection acceleration threshold value (LSB = 2mg)
|
|
* @see MPU6050_RA_ZRMOT_THR
|
|
*/
|
|
uint8_t MPU6050::getZeroMotionDetectionThreshold() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set zero motion detection event acceleration threshold.
|
|
* @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
|
|
* @see getZeroMotionDetectionThreshold()
|
|
* @see MPU6050_RA_ZRMOT_THR
|
|
*/
|
|
void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold);
|
|
}
|
|
|
|
// ZRMOT_DUR register
|
|
|
|
/** Get zero motion detection event duration threshold.
|
|
* This register configures the duration counter threshold for Zero Motion
|
|
* interrupt generation. The duration counter ticks at 16 Hz, therefore
|
|
* ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
|
|
* increments while the absolute value of the accelerometer measurements are
|
|
* each less than the detection threshold (Register 33). The Zero Motion
|
|
* interrupt is triggered when the Zero Motion duration counter reaches the time
|
|
* count specified in this register.
|
|
*
|
|
* For more details on the Zero Motion detection interrupt, see Section 8.4 of
|
|
* the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
|
|
* and 58 of this document.
|
|
*
|
|
* @return Current zero motion detection duration threshold value (LSB = 64ms)
|
|
* @see MPU6050_RA_ZRMOT_DUR
|
|
*/
|
|
uint8_t MPU6050::getZeroMotionDetectionDuration() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set zero motion detection event duration threshold.
|
|
* @param duration New zero motion detection duration threshold value (LSB = 1ms)
|
|
* @see getZeroMotionDetectionDuration()
|
|
* @see MPU6050_RA_ZRMOT_DUR
|
|
*/
|
|
void MPU6050::setZeroMotionDetectionDuration(uint8_t duration) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration);
|
|
}
|
|
|
|
// FIFO_EN register
|
|
|
|
/** Get temperature FIFO enabled value.
|
|
* When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
|
|
* 66) to be written into the FIFO buffer.
|
|
* @return Current temperature FIFO enabled value
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
bool MPU6050::getTempFIFOEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set temperature FIFO enabled value.
|
|
* @param enabled New temperature FIFO enabled value
|
|
* @see getTempFIFOEnabled()
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
void MPU6050::setTempFIFOEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled);
|
|
}
|
|
/** Get gyroscope X-axis FIFO enabled value.
|
|
* When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
|
|
* 68) to be written into the FIFO buffer.
|
|
* @return Current gyroscope X-axis FIFO enabled value
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
bool MPU6050::getXGyroFIFOEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set gyroscope X-axis FIFO enabled value.
|
|
* @param enabled New gyroscope X-axis FIFO enabled value
|
|
* @see getXGyroFIFOEnabled()
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
void MPU6050::setXGyroFIFOEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled);
|
|
}
|
|
/** Get gyroscope Y-axis FIFO enabled value.
|
|
* When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
|
|
* 70) to be written into the FIFO buffer.
|
|
* @return Current gyroscope Y-axis FIFO enabled value
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
bool MPU6050::getYGyroFIFOEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set gyroscope Y-axis FIFO enabled value.
|
|
* @param enabled New gyroscope Y-axis FIFO enabled value
|
|
* @see getYGyroFIFOEnabled()
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
void MPU6050::setYGyroFIFOEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled);
|
|
}
|
|
/** Get gyroscope Z-axis FIFO enabled value.
|
|
* When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
|
|
* 72) to be written into the FIFO buffer.
|
|
* @return Current gyroscope Z-axis FIFO enabled value
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
bool MPU6050::getZGyroFIFOEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set gyroscope Z-axis FIFO enabled value.
|
|
* @param enabled New gyroscope Z-axis FIFO enabled value
|
|
* @see getZGyroFIFOEnabled()
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
void MPU6050::setZGyroFIFOEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled);
|
|
}
|
|
/** Get accelerometer FIFO enabled value.
|
|
* When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
|
|
* ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
|
|
* written into the FIFO buffer.
|
|
* @return Current accelerometer FIFO enabled value
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
bool MPU6050::getAccelFIFOEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set accelerometer FIFO enabled value.
|
|
* @param enabled New accelerometer FIFO enabled value
|
|
* @see getAccelFIFOEnabled()
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
void MPU6050::setAccelFIFOEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled);
|
|
}
|
|
/** Get Slave 2 FIFO enabled value.
|
|
* When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
|
|
* associated with Slave 2 to be written into the FIFO buffer.
|
|
* @return Current Slave 2 FIFO enabled value
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
bool MPU6050::getSlave2FIFOEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Slave 2 FIFO enabled value.
|
|
* @param enabled New Slave 2 FIFO enabled value
|
|
* @see getSlave2FIFOEnabled()
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
void MPU6050::setSlave2FIFOEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled);
|
|
}
|
|
/** Get Slave 1 FIFO enabled value.
|
|
* When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
|
|
* associated with Slave 1 to be written into the FIFO buffer.
|
|
* @return Current Slave 1 FIFO enabled value
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
bool MPU6050::getSlave1FIFOEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Slave 1 FIFO enabled value.
|
|
* @param enabled New Slave 1 FIFO enabled value
|
|
* @see getSlave1FIFOEnabled()
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
void MPU6050::setSlave1FIFOEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled);
|
|
}
|
|
/** Get Slave 0 FIFO enabled value.
|
|
* When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
|
|
* associated with Slave 0 to be written into the FIFO buffer.
|
|
* @return Current Slave 0 FIFO enabled value
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
bool MPU6050::getSlave0FIFOEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Slave 0 FIFO enabled value.
|
|
* @param enabled New Slave 0 FIFO enabled value
|
|
* @see getSlave0FIFOEnabled()
|
|
* @see MPU6050_RA_FIFO_EN
|
|
*/
|
|
void MPU6050::setSlave0FIFOEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled);
|
|
}
|
|
|
|
// I2C_MST_CTRL register
|
|
|
|
/** Get multi-master enabled value.
|
|
* Multi-master capability allows multiple I2C masters to operate on the same
|
|
* bus. In circuits where multi-master capability is required, set MULT_MST_EN
|
|
* to 1. This will increase current drawn by approximately 30uA.
|
|
*
|
|
* In circuits where multi-master capability is required, the state of the I2C
|
|
* bus must always be monitored by each separate I2C Master. Before an I2C
|
|
* Master can assume arbitration of the bus, it must first confirm that no other
|
|
* I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
|
|
* MPU-60X0's bus arbitration detection logic is turned on, enabling it to
|
|
* detect when the bus is available.
|
|
*
|
|
* @return Current multi-master enabled value
|
|
* @see MPU6050_RA_I2C_MST_CTRL
|
|
*/
|
|
bool MPU6050::getMultiMasterEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set multi-master enabled value.
|
|
* @param enabled New multi-master enabled value
|
|
* @see getMultiMasterEnabled()
|
|
* @see MPU6050_RA_I2C_MST_CTRL
|
|
*/
|
|
void MPU6050::setMultiMasterEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled);
|
|
}
|
|
/** Get wait-for-external-sensor-data enabled value.
|
|
* When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
|
|
* delayed until External Sensor data from the Slave Devices are loaded into the
|
|
* EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
|
|
* data (i.e. from gyro and accel) and external sensor data have been loaded to
|
|
* their respective data registers (i.e. the data is synced) when the Data Ready
|
|
* interrupt is triggered.
|
|
*
|
|
* @return Current wait-for-external-sensor-data enabled value
|
|
* @see MPU6050_RA_I2C_MST_CTRL
|
|
*/
|
|
bool MPU6050::getWaitForExternalSensorEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set wait-for-external-sensor-data enabled value.
|
|
* @param enabled New wait-for-external-sensor-data enabled value
|
|
* @see getWaitForExternalSensorEnabled()
|
|
* @see MPU6050_RA_I2C_MST_CTRL
|
|
*/
|
|
void MPU6050::setWaitForExternalSensorEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled);
|
|
}
|
|
/** Get Slave 3 FIFO enabled value.
|
|
* When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
|
|
* associated with Slave 3 to be written into the FIFO buffer.
|
|
* @return Current Slave 3 FIFO enabled value
|
|
* @see MPU6050_RA_MST_CTRL
|
|
*/
|
|
bool MPU6050::getSlave3FIFOEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Slave 3 FIFO enabled value.
|
|
* @param enabled New Slave 3 FIFO enabled value
|
|
* @see getSlave3FIFOEnabled()
|
|
* @see MPU6050_RA_MST_CTRL
|
|
*/
|
|
void MPU6050::setSlave3FIFOEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled);
|
|
}
|
|
/** Get slave read/write transition enabled value.
|
|
* The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave
|
|
* read to the next slave read. If the bit equals 0, there will be a restart
|
|
* between reads. If the bit equals 1, there will be a stop followed by a start
|
|
* of the following read. When a write transaction follows a read transaction,
|
|
* the stop followed by a start of the successive write will be always used.
|
|
*
|
|
* @return Current slave read/write transition enabled value
|
|
* @see MPU6050_RA_I2C_MST_CTRL
|
|
*/
|
|
bool MPU6050::getSlaveReadWriteTransitionEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set slave read/write transition enabled value.
|
|
* @param enabled New slave read/write transition enabled value
|
|
* @see getSlaveReadWriteTransitionEnabled()
|
|
* @see MPU6050_RA_I2C_MST_CTRL
|
|
*/
|
|
void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled);
|
|
}
|
|
/** Get I2C master clock speed.
|
|
* I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
|
|
* MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
|
|
* the following table:
|
|
*
|
|
* <pre>
|
|
* I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
|
|
* ------------+------------------------+-------------------
|
|
* 0 | 348kHz | 23
|
|
* 1 | 333kHz | 24
|
|
* 2 | 320kHz | 25
|
|
* 3 | 308kHz | 26
|
|
* 4 | 296kHz | 27
|
|
* 5 | 286kHz | 28
|
|
* 6 | 276kHz | 29
|
|
* 7 | 267kHz | 30
|
|
* 8 | 258kHz | 31
|
|
* 9 | 500kHz | 16
|
|
* 10 | 471kHz | 17
|
|
* 11 | 444kHz | 18
|
|
* 12 | 421kHz | 19
|
|
* 13 | 400kHz | 20
|
|
* 14 | 381kHz | 21
|
|
* 15 | 364kHz | 22
|
|
* </pre>
|
|
*
|
|
* @return Current I2C master clock speed
|
|
* @see MPU6050_RA_I2C_MST_CTRL
|
|
*/
|
|
uint8_t MPU6050::getMasterClockSpeed() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set I2C master clock speed.
|
|
* @reparam speed Current I2C master clock speed
|
|
* @see MPU6050_RA_I2C_MST_CTRL
|
|
*/
|
|
void MPU6050::setMasterClockSpeed(uint8_t speed) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed);
|
|
}
|
|
|
|
// I2C_SLV* registers (Slave 0-3)
|
|
|
|
/** Get the I2C address of the specified slave (0-3).
|
|
* Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
|
|
* operation, and if it is cleared, then it's a write operation. The remaining
|
|
* bits (6-0) are the 7-bit device address of the slave device.
|
|
*
|
|
* In read mode, the result of the read is placed in the lowest available
|
|
* EXT_SENS_DATA register. For further information regarding the allocation of
|
|
* read results, please refer to the EXT_SENS_DATA register description
|
|
* (Registers 73 - 96).
|
|
*
|
|
* The MPU-6050 supports a total of five slaves, but Slave 4 has unique
|
|
* characteristics, and so it has its own functions (getSlave4* and setSlave4*).
|
|
*
|
|
* I2C data transactions are performed at the Sample Rate, as defined in
|
|
* Register 25. The user is responsible for ensuring that I2C data transactions
|
|
* to and from each enabled Slave can be completed within a single period of the
|
|
* Sample Rate.
|
|
*
|
|
* The I2C slave access rate can be reduced relative to the Sample Rate. This
|
|
* reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
|
|
* slave's access rate is reduced relative to the Sample Rate is determined by
|
|
* I2C_MST_DELAY_CTRL (Register 103).
|
|
*
|
|
* The processing order for the slaves is fixed. The sequence followed for
|
|
* processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
|
|
* particular Slave is disabled it will be skipped.
|
|
*
|
|
* Each slave can either be accessed at the sample rate or at a reduced sample
|
|
* rate. In a case where some slaves are accessed at the Sample Rate and some
|
|
* slaves are accessed at the reduced rate, the sequence of accessing the slaves
|
|
* (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
|
|
* be skipped if their access rate dictates that they should not be accessed
|
|
* during that particular cycle. For further information regarding the reduced
|
|
* access rate, please refer to Register 52. Whether a slave is accessed at the
|
|
* Sample Rate or at the reduced rate is determined by the Delay Enable bits in
|
|
* Register 103.
|
|
*
|
|
* @param num Slave number (0-3)
|
|
* @return Current address for specified slave
|
|
* @see MPU6050_RA_I2C_SLV0_ADDR
|
|
*/
|
|
uint8_t MPU6050::getSlaveAddress(uint8_t num) {
|
|
if (num > 3) return 0;
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set the I2C address of the specified slave (0-3).
|
|
* @param num Slave number (0-3)
|
|
* @param address New address for specified slave
|
|
* @see getSlaveAddress()
|
|
* @see MPU6050_RA_I2C_SLV0_ADDR
|
|
*/
|
|
void MPU6050::setSlaveAddress(uint8_t num, uint8_t address) {
|
|
if (num > 3) return;
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address);
|
|
}
|
|
/** Get the active internal register for the specified slave (0-3).
|
|
* Read/write operations for this slave will be done to whatever internal
|
|
* register address is stored in this MPU register.
|
|
*
|
|
* The MPU-6050 supports a total of five slaves, but Slave 4 has unique
|
|
* characteristics, and so it has its own functions.
|
|
*
|
|
* @param num Slave number (0-3)
|
|
* @return Current active register for specified slave
|
|
* @see MPU6050_RA_I2C_SLV0_REG
|
|
*/
|
|
uint8_t MPU6050::getSlaveRegister(uint8_t num) {
|
|
if (num > 3) return 0;
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set the active internal register for the specified slave (0-3).
|
|
* @param num Slave number (0-3)
|
|
* @param reg New active register for specified slave
|
|
* @see getSlaveRegister()
|
|
* @see MPU6050_RA_I2C_SLV0_REG
|
|
*/
|
|
void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg) {
|
|
if (num > 3) return;
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg);
|
|
}
|
|
/** Get the enabled value for the specified slave (0-3).
|
|
* When set to 1, this bit enables Slave 0 for data transfer operations. When
|
|
* cleared to 0, this bit disables Slave 0 from data transfer operations.
|
|
* @param num Slave number (0-3)
|
|
* @return Current enabled value for specified slave
|
|
* @see MPU6050_RA_I2C_SLV0_CTRL
|
|
*/
|
|
bool MPU6050::getSlaveEnabled(uint8_t num) {
|
|
if (num > 3) return 0;
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set the enabled value for the specified slave (0-3).
|
|
* @param num Slave number (0-3)
|
|
* @param enabled New enabled value for specified slave
|
|
* @see getSlaveEnabled()
|
|
* @see MPU6050_RA_I2C_SLV0_CTRL
|
|
*/
|
|
void MPU6050::setSlaveEnabled(uint8_t num, bool enabled) {
|
|
if (num > 3) return;
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled);
|
|
}
|
|
/** Get word pair byte-swapping enabled for the specified slave (0-3).
|
|
* When set to 1, this bit enables byte swapping. When byte swapping is enabled,
|
|
* the high and low bytes of a word pair are swapped. Please refer to
|
|
* I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0,
|
|
* bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA
|
|
* registers in the order they were transferred.
|
|
*
|
|
* @param num Slave number (0-3)
|
|
* @return Current word pair byte-swapping enabled value for specified slave
|
|
* @see MPU6050_RA_I2C_SLV0_CTRL
|
|
*/
|
|
bool MPU6050::getSlaveWordByteSwap(uint8_t num) {
|
|
if (num > 3) return 0;
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set word pair byte-swapping enabled for the specified slave (0-3).
|
|
* @param num Slave number (0-3)
|
|
* @param enabled New word pair byte-swapping enabled value for specified slave
|
|
* @see getSlaveWordByteSwap()
|
|
* @see MPU6050_RA_I2C_SLV0_CTRL
|
|
*/
|
|
void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled) {
|
|
if (num > 3) return;
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled);
|
|
}
|
|
/** Get write mode for the specified slave (0-3).
|
|
* When set to 1, the transaction will read or write data only. When cleared to
|
|
* 0, the transaction will write a register address prior to reading or writing
|
|
* data. This should equal 0 when specifying the register address within the
|
|
* Slave device to/from which the ensuing data transaction will take place.
|
|
*
|
|
* @param num Slave number (0-3)
|
|
* @return Current write mode for specified slave (0 = register address + data, 1 = data only)
|
|
* @see MPU6050_RA_I2C_SLV0_CTRL
|
|
*/
|
|
bool MPU6050::getSlaveWriteMode(uint8_t num) {
|
|
if (num > 3) return 0;
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set write mode for the specified slave (0-3).
|
|
* @param num Slave number (0-3)
|
|
* @param mode New write mode for specified slave (0 = register address + data, 1 = data only)
|
|
* @see getSlaveWriteMode()
|
|
* @see MPU6050_RA_I2C_SLV0_CTRL
|
|
*/
|
|
void MPU6050::setSlaveWriteMode(uint8_t num, bool mode) {
|
|
if (num > 3) return;
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode);
|
|
}
|
|
/** Get word pair grouping order offset for the specified slave (0-3).
|
|
* This sets specifies the grouping order of word pairs received from registers.
|
|
* When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even,
|
|
* then odd register addresses) are paired to form a word. When set to 1, bytes
|
|
* from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even
|
|
* register addresses) are paired to form a word.
|
|
*
|
|
* @param num Slave number (0-3)
|
|
* @return Current word pair grouping order offset for specified slave
|
|
* @see MPU6050_RA_I2C_SLV0_CTRL
|
|
*/
|
|
bool MPU6050::getSlaveWordGroupOffset(uint8_t num) {
|
|
if (num > 3) return 0;
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set word pair grouping order offset for the specified slave (0-3).
|
|
* @param num Slave number (0-3)
|
|
* @param enabled New word pair grouping order offset for specified slave
|
|
* @see getSlaveWordGroupOffset()
|
|
* @see MPU6050_RA_I2C_SLV0_CTRL
|
|
*/
|
|
void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled) {
|
|
if (num > 3) return;
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled);
|
|
}
|
|
/** Get number of bytes to read for the specified slave (0-3).
|
|
* Specifies the number of bytes transferred to and from Slave 0. Clearing this
|
|
* bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN.
|
|
* @param num Slave number (0-3)
|
|
* @return Number of bytes to read for specified slave
|
|
* @see MPU6050_RA_I2C_SLV0_CTRL
|
|
*/
|
|
uint8_t MPU6050::getSlaveDataLength(uint8_t num) {
|
|
if (num > 3) return 0;
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set number of bytes to read for the specified slave (0-3).
|
|
* @param num Slave number (0-3)
|
|
* @param length Number of bytes to read for specified slave
|
|
* @see getSlaveDataLength()
|
|
* @see MPU6050_RA_I2C_SLV0_CTRL
|
|
*/
|
|
void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length) {
|
|
if (num > 3) return;
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length);
|
|
}
|
|
|
|
// I2C_SLV* registers (Slave 4)
|
|
|
|
/** Get the I2C address of Slave 4.
|
|
* Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
|
|
* operation, and if it is cleared, then it's a write operation. The remaining
|
|
* bits (6-0) are the 7-bit device address of the slave device.
|
|
*
|
|
* @return Current address for Slave 4
|
|
* @see getSlaveAddress()
|
|
* @see MPU6050_RA_I2C_SLV4_ADDR
|
|
*/
|
|
uint8_t MPU6050::getSlave4Address() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set the I2C address of Slave 4.
|
|
* @param address New address for Slave 4
|
|
* @see getSlave4Address()
|
|
* @see MPU6050_RA_I2C_SLV4_ADDR
|
|
*/
|
|
void MPU6050::setSlave4Address(uint8_t address) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address);
|
|
}
|
|
/** Get the active internal register for the Slave 4.
|
|
* Read/write operations for this slave will be done to whatever internal
|
|
* register address is stored in this MPU register.
|
|
*
|
|
* @return Current active register for Slave 4
|
|
* @see MPU6050_RA_I2C_SLV4_REG
|
|
*/
|
|
uint8_t MPU6050::getSlave4Register() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set the active internal register for Slave 4.
|
|
* @param reg New active register for Slave 4
|
|
* @see getSlave4Register()
|
|
* @see MPU6050_RA_I2C_SLV4_REG
|
|
*/
|
|
void MPU6050::setSlave4Register(uint8_t reg) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg);
|
|
}
|
|
/** Set new byte to write to Slave 4.
|
|
* This register stores the data to be written into the Slave 4. If I2C_SLV4_RW
|
|
* is set 1 (set to read), this register has no effect.
|
|
* @param data New byte to write to Slave 4
|
|
* @see MPU6050_RA_I2C_SLV4_DO
|
|
*/
|
|
void MPU6050::setSlave4OutputByte(uint8_t data) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data);
|
|
}
|
|
/** Get the enabled value for the Slave 4.
|
|
* When set to 1, this bit enables Slave 4 for data transfer operations. When
|
|
* cleared to 0, this bit disables Slave 4 from data transfer operations.
|
|
* @return Current enabled value for Slave 4
|
|
* @see MPU6050_RA_I2C_SLV4_CTRL
|
|
*/
|
|
bool MPU6050::getSlave4Enabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set the enabled value for Slave 4.
|
|
* @param enabled New enabled value for Slave 4
|
|
* @see getSlave4Enabled()
|
|
* @see MPU6050_RA_I2C_SLV4_CTRL
|
|
*/
|
|
void MPU6050::setSlave4Enabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled);
|
|
}
|
|
/** Get the enabled value for Slave 4 transaction interrupts.
|
|
* When set to 1, this bit enables the generation of an interrupt signal upon
|
|
* completion of a Slave 4 transaction. When cleared to 0, this bit disables the
|
|
* generation of an interrupt signal upon completion of a Slave 4 transaction.
|
|
* The interrupt status can be observed in Register 54.
|
|
*
|
|
* @return Current enabled value for Slave 4 transaction interrupts.
|
|
* @see MPU6050_RA_I2C_SLV4_CTRL
|
|
*/
|
|
bool MPU6050::getSlave4InterruptEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set the enabled value for Slave 4 transaction interrupts.
|
|
* @param enabled New enabled value for Slave 4 transaction interrupts.
|
|
* @see getSlave4InterruptEnabled()
|
|
* @see MPU6050_RA_I2C_SLV4_CTRL
|
|
*/
|
|
void MPU6050::setSlave4InterruptEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled);
|
|
}
|
|
/** Get write mode for Slave 4.
|
|
* When set to 1, the transaction will read or write data only. When cleared to
|
|
* 0, the transaction will write a register address prior to reading or writing
|
|
* data. This should equal 0 when specifying the register address within the
|
|
* Slave device to/from which the ensuing data transaction will take place.
|
|
*
|
|
* @return Current write mode for Slave 4 (0 = register address + data, 1 = data only)
|
|
* @see MPU6050_RA_I2C_SLV4_CTRL
|
|
*/
|
|
bool MPU6050::getSlave4WriteMode() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set write mode for the Slave 4.
|
|
* @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only)
|
|
* @see getSlave4WriteMode()
|
|
* @see MPU6050_RA_I2C_SLV4_CTRL
|
|
*/
|
|
void MPU6050::setSlave4WriteMode(bool mode) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode);
|
|
}
|
|
/** Get Slave 4 master delay value.
|
|
* This configures the reduced access rate of I2C slaves relative to the Sample
|
|
* Rate. When a slave's access rate is decreased relative to the Sample Rate,
|
|
* the slave is accessed every:
|
|
*
|
|
* 1 / (1 + I2C_MST_DLY) samples
|
|
*
|
|
* This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and
|
|
* DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to
|
|
* the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For
|
|
* further information regarding the Sample Rate, please refer to register 25.
|
|
*
|
|
* @return Current Slave 4 master delay value
|
|
* @see MPU6050_RA_I2C_SLV4_CTRL
|
|
*/
|
|
uint8_t MPU6050::getSlave4MasterDelay() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Slave 4 master delay value.
|
|
* @param delay New Slave 4 master delay value
|
|
* @see getSlave4MasterDelay()
|
|
* @see MPU6050_RA_I2C_SLV4_CTRL
|
|
*/
|
|
void MPU6050::setSlave4MasterDelay(uint8_t delay) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay);
|
|
}
|
|
/** Get last available byte read from Slave 4.
|
|
* This register stores the data read from Slave 4. This field is populated
|
|
* after a read transaction.
|
|
* @return Last available byte read from to Slave 4
|
|
* @see MPU6050_RA_I2C_SLV4_DI
|
|
*/
|
|
uint8_t MPU6050::getSlate4InputByte() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer);
|
|
return buffer[0];
|
|
}
|
|
|
|
// I2C_MST_STATUS register
|
|
|
|
/** Get FSYNC interrupt status.
|
|
* This bit reflects the status of the FSYNC interrupt from an external device
|
|
* into the MPU-60X0. This is used as a way to pass an external interrupt
|
|
* through the MPU-60X0 to the host application processor. When set to 1, this
|
|
* bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG
|
|
* (Register 55).
|
|
* @return FSYNC interrupt status
|
|
* @see MPU6050_RA_I2C_MST_STATUS
|
|
*/
|
|
bool MPU6050::getPassthroughStatus() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Slave 4 transaction done status.
|
|
* Automatically sets to 1 when a Slave 4 transaction has completed. This
|
|
* triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register
|
|
* (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the
|
|
* I2C_SLV4_CTRL register (Register 52).
|
|
* @return Slave 4 transaction done status
|
|
* @see MPU6050_RA_I2C_MST_STATUS
|
|
*/
|
|
bool MPU6050::getSlave4IsDone() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get master arbitration lost status.
|
|
* This bit automatically sets to 1 when the I2C Master has lost arbitration of
|
|
* the auxiliary I2C bus (an error condition). This triggers an interrupt if the
|
|
* I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted.
|
|
* @return Master arbitration lost status
|
|
* @see MPU6050_RA_I2C_MST_STATUS
|
|
*/
|
|
bool MPU6050::getLostArbitration() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Slave 4 NACK status.
|
|
* This bit automatically sets to 1 when the I2C Master receives a NACK in a
|
|
* transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN
|
|
* bit in the INT_ENABLE register (Register 56) is asserted.
|
|
* @return Slave 4 NACK interrupt status
|
|
* @see MPU6050_RA_I2C_MST_STATUS
|
|
*/
|
|
bool MPU6050::getSlave4Nack() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Slave 3 NACK status.
|
|
* This bit automatically sets to 1 when the I2C Master receives a NACK in a
|
|
* transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN
|
|
* bit in the INT_ENABLE register (Register 56) is asserted.
|
|
* @return Slave 3 NACK interrupt status
|
|
* @see MPU6050_RA_I2C_MST_STATUS
|
|
*/
|
|
bool MPU6050::getSlave3Nack() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Slave 2 NACK status.
|
|
* This bit automatically sets to 1 when the I2C Master receives a NACK in a
|
|
* transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN
|
|
* bit in the INT_ENABLE register (Register 56) is asserted.
|
|
* @return Slave 2 NACK interrupt status
|
|
* @see MPU6050_RA_I2C_MST_STATUS
|
|
*/
|
|
bool MPU6050::getSlave2Nack() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Slave 1 NACK status.
|
|
* This bit automatically sets to 1 when the I2C Master receives a NACK in a
|
|
* transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN
|
|
* bit in the INT_ENABLE register (Register 56) is asserted.
|
|
* @return Slave 1 NACK interrupt status
|
|
* @see MPU6050_RA_I2C_MST_STATUS
|
|
*/
|
|
bool MPU6050::getSlave1Nack() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Slave 0 NACK status.
|
|
* This bit automatically sets to 1 when the I2C Master receives a NACK in a
|
|
* transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN
|
|
* bit in the INT_ENABLE register (Register 56) is asserted.
|
|
* @return Slave 0 NACK interrupt status
|
|
* @see MPU6050_RA_I2C_MST_STATUS
|
|
*/
|
|
bool MPU6050::getSlave0Nack() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
|
|
// INT_PIN_CFG register
|
|
|
|
/** Get interrupt logic level mode.
|
|
* Will be set 0 for active-high, 1 for active-low.
|
|
* @return Current interrupt mode (0=active-high, 1=active-low)
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_INT_LEVEL_BIT
|
|
*/
|
|
bool MPU6050::getInterruptMode() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set interrupt logic level mode.
|
|
* @param mode New interrupt mode (0=active-high, 1=active-low)
|
|
* @see getInterruptMode()
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_INT_LEVEL_BIT
|
|
*/
|
|
void MPU6050::setInterruptMode(bool mode) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode);
|
|
}
|
|
/** Get interrupt drive mode.
|
|
* Will be set 0 for push-pull, 1 for open-drain.
|
|
* @return Current interrupt drive mode (0=push-pull, 1=open-drain)
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_INT_OPEN_BIT
|
|
*/
|
|
bool MPU6050::getInterruptDrive() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set interrupt drive mode.
|
|
* @param drive New interrupt drive mode (0=push-pull, 1=open-drain)
|
|
* @see getInterruptDrive()
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_INT_OPEN_BIT
|
|
*/
|
|
void MPU6050::setInterruptDrive(bool drive) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive);
|
|
}
|
|
/** Get interrupt latch mode.
|
|
* Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared.
|
|
* @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared)
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_LATCH_INT_EN_BIT
|
|
*/
|
|
bool MPU6050::getInterruptLatch() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set interrupt latch mode.
|
|
* @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared)
|
|
* @see getInterruptLatch()
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_LATCH_INT_EN_BIT
|
|
*/
|
|
void MPU6050::setInterruptLatch(bool latch) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch);
|
|
}
|
|
/** Get interrupt latch clear mode.
|
|
* Will be set 0 for status-read-only, 1 for any-register-read.
|
|
* @return Current latch clear mode (0=status-read-only, 1=any-register-read)
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
|
|
*/
|
|
bool MPU6050::getInterruptLatchClear() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set interrupt latch clear mode.
|
|
* @param clear New latch clear mode (0=status-read-only, 1=any-register-read)
|
|
* @see getInterruptLatchClear()
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
|
|
*/
|
|
void MPU6050::setInterruptLatchClear(bool clear) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear);
|
|
}
|
|
/** Get FSYNC interrupt logic level mode.
|
|
* @return Current FSYNC interrupt mode (0=active-high, 1=active-low)
|
|
* @see getFSyncInterruptMode()
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
|
|
*/
|
|
bool MPU6050::getFSyncInterruptLevel() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set FSYNC interrupt logic level mode.
|
|
* @param mode New FSYNC interrupt mode (0=active-high, 1=active-low)
|
|
* @see getFSyncInterruptMode()
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
|
|
*/
|
|
void MPU6050::setFSyncInterruptLevel(bool level) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level);
|
|
}
|
|
/** Get FSYNC pin interrupt enabled setting.
|
|
* Will be set 0 for disabled, 1 for enabled.
|
|
* @return Current interrupt enabled setting
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
|
|
*/
|
|
bool MPU6050::getFSyncInterruptEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set FSYNC pin interrupt enabled setting.
|
|
* @param enabled New FSYNC pin interrupt enabled setting
|
|
* @see getFSyncInterruptEnabled()
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
|
|
*/
|
|
void MPU6050::setFSyncInterruptEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled);
|
|
}
|
|
/** Get I2C bypass enabled status.
|
|
* When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
|
|
* 0, the host application processor will be able to directly access the
|
|
* auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
|
|
* application processor will not be able to directly access the auxiliary I2C
|
|
* bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
|
|
* bit[5]).
|
|
* @return Current I2C bypass enabled status
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
|
|
*/
|
|
bool MPU6050::getI2CBypassEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set I2C bypass enabled status.
|
|
* When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
|
|
* 0, the host application processor will be able to directly access the
|
|
* auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
|
|
* application processor will not be able to directly access the auxiliary I2C
|
|
* bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
|
|
* bit[5]).
|
|
* @param enabled New I2C bypass enabled status
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
|
|
*/
|
|
void MPU6050::setI2CBypassEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled);
|
|
}
|
|
/** Get reference clock output enabled status.
|
|
* When this bit is equal to 1, a reference clock output is provided at the
|
|
* CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
|
|
* further information regarding CLKOUT, please refer to the MPU-60X0 Product
|
|
* Specification document.
|
|
* @return Current reference clock output enabled status
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_CLKOUT_EN_BIT
|
|
*/
|
|
bool MPU6050::getClockOutputEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set reference clock output enabled status.
|
|
* When this bit is equal to 1, a reference clock output is provided at the
|
|
* CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
|
|
* further information regarding CLKOUT, please refer to the MPU-60X0 Product
|
|
* Specification document.
|
|
* @param enabled New reference clock output enabled status
|
|
* @see MPU6050_RA_INT_PIN_CFG
|
|
* @see MPU6050_INTCFG_CLKOUT_EN_BIT
|
|
*/
|
|
void MPU6050::setClockOutputEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled);
|
|
}
|
|
|
|
// INT_ENABLE register
|
|
|
|
/** Get full interrupt enabled status.
|
|
* Full register byte for all interrupts, for quick reading. Each bit will be
|
|
* set 0 for disabled, 1 for enabled.
|
|
* @return Current interrupt enabled status
|
|
* @see MPU6050_RA_INT_ENABLE
|
|
* @see MPU6050_INTERRUPT_FF_BIT
|
|
**/
|
|
uint8_t MPU6050::getIntEnabled() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set full interrupt enabled status.
|
|
* Full register byte for all interrupts, for quick reading. Each bit should be
|
|
* set 0 for disabled, 1 for enabled.
|
|
* @param enabled New interrupt enabled status
|
|
* @see getIntFreefallEnabled()
|
|
* @see MPU6050_RA_INT_ENABLE
|
|
* @see MPU6050_INTERRUPT_FF_BIT
|
|
**/
|
|
void MPU6050::setIntEnabled(uint8_t enabled) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled);
|
|
}
|
|
/** Get Free Fall interrupt enabled status.
|
|
* Will be set 0 for disabled, 1 for enabled.
|
|
* @return Current interrupt enabled status
|
|
* @see MPU6050_RA_INT_ENABLE
|
|
* @see MPU6050_INTERRUPT_FF_BIT
|
|
**/
|
|
bool MPU6050::getIntFreefallEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Free Fall interrupt enabled status.
|
|
* @param enabled New interrupt enabled status
|
|
* @see getIntFreefallEnabled()
|
|
* @see MPU6050_RA_INT_ENABLE
|
|
* @see MPU6050_INTERRUPT_FF_BIT
|
|
**/
|
|
void MPU6050::setIntFreefallEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled);
|
|
}
|
|
/** Get Motion Detection interrupt enabled status.
|
|
* Will be set 0 for disabled, 1 for enabled.
|
|
* @return Current interrupt enabled status
|
|
* @see MPU6050_RA_INT_ENABLE
|
|
* @see MPU6050_INTERRUPT_MOT_BIT
|
|
**/
|
|
bool MPU6050::getIntMotionEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Motion Detection interrupt enabled status.
|
|
* @param enabled New interrupt enabled status
|
|
* @see getIntMotionEnabled()
|
|
* @see MPU6050_RA_INT_ENABLE
|
|
* @see MPU6050_INTERRUPT_MOT_BIT
|
|
**/
|
|
void MPU6050::setIntMotionEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled);
|
|
}
|
|
/** Get Zero Motion Detection interrupt enabled status.
|
|
* Will be set 0 for disabled, 1 for enabled.
|
|
* @return Current interrupt enabled status
|
|
* @see MPU6050_RA_INT_ENABLE
|
|
* @see MPU6050_INTERRUPT_ZMOT_BIT
|
|
**/
|
|
bool MPU6050::getIntZeroMotionEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Zero Motion Detection interrupt enabled status.
|
|
* @param enabled New interrupt enabled status
|
|
* @see getIntZeroMotionEnabled()
|
|
* @see MPU6050_RA_INT_ENABLE
|
|
* @see MPU6050_INTERRUPT_ZMOT_BIT
|
|
**/
|
|
void MPU6050::setIntZeroMotionEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled);
|
|
}
|
|
/** Get FIFO Buffer Overflow interrupt enabled status.
|
|
* Will be set 0 for disabled, 1 for enabled.
|
|
* @return Current interrupt enabled status
|
|
* @see MPU6050_RA_INT_ENABLE
|
|
* @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
|
|
**/
|
|
bool MPU6050::getIntFIFOBufferOverflowEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set FIFO Buffer Overflow interrupt enabled status.
|
|
* @param enabled New interrupt enabled status
|
|
* @see getIntFIFOBufferOverflowEnabled()
|
|
* @see MPU6050_RA_INT_ENABLE
|
|
* @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
|
|
**/
|
|
void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled);
|
|
}
|
|
/** Get I2C Master interrupt enabled status.
|
|
* This enables any of the I2C Master interrupt sources to generate an
|
|
* interrupt. Will be set 0 for disabled, 1 for enabled.
|
|
* @return Current interrupt enabled status
|
|
* @see MPU6050_RA_INT_ENABLE
|
|
* @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
|
|
**/
|
|
bool MPU6050::getIntI2CMasterEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set I2C Master interrupt enabled status.
|
|
* @param enabled New interrupt enabled status
|
|
* @see getIntI2CMasterEnabled()
|
|
* @see MPU6050_RA_INT_ENABLE
|
|
* @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
|
|
**/
|
|
void MPU6050::setIntI2CMasterEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled);
|
|
}
|
|
/** Get Data Ready interrupt enabled setting.
|
|
* This event occurs each time a write operation to all of the sensor registers
|
|
* has been completed. Will be set 0 for disabled, 1 for enabled.
|
|
* @return Current interrupt enabled status
|
|
* @see MPU6050_RA_INT_ENABLE
|
|
* @see MPU6050_INTERRUPT_DATA_RDY_BIT
|
|
*/
|
|
bool MPU6050::getIntDataReadyEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Data Ready interrupt enabled status.
|
|
* @param enabled New interrupt enabled status
|
|
* @see getIntDataReadyEnabled()
|
|
* @see MPU6050_RA_INT_CFG
|
|
* @see MPU6050_INTERRUPT_DATA_RDY_BIT
|
|
*/
|
|
void MPU6050::setIntDataReadyEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled);
|
|
}
|
|
|
|
// INT_STATUS register
|
|
|
|
/** Get full set of interrupt status bits.
|
|
* These bits clear to 0 after the register has been read. Very useful
|
|
* for getting multiple INT statuses, since each single bit read clears
|
|
* all of them because it has to read the whole byte.
|
|
* @return Current interrupt status
|
|
* @see MPU6050_RA_INT_STATUS
|
|
*/
|
|
uint8_t MPU6050::getIntStatus() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_INT_STATUS, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Free Fall interrupt status.
|
|
* This bit automatically sets to 1 when a Free Fall interrupt has been
|
|
* generated. The bit clears to 0 after the register has been read.
|
|
* @return Current interrupt status
|
|
* @see MPU6050_RA_INT_STATUS
|
|
* @see MPU6050_INTERRUPT_FF_BIT
|
|
*/
|
|
bool MPU6050::getIntFreefallStatus() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Motion Detection interrupt status.
|
|
* This bit automatically sets to 1 when a Motion Detection interrupt has been
|
|
* generated. The bit clears to 0 after the register has been read.
|
|
* @return Current interrupt status
|
|
* @see MPU6050_RA_INT_STATUS
|
|
* @see MPU6050_INTERRUPT_MOT_BIT
|
|
*/
|
|
bool MPU6050::getIntMotionStatus() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Zero Motion Detection interrupt status.
|
|
* This bit automatically sets to 1 when a Zero Motion Detection interrupt has
|
|
* been generated. The bit clears to 0 after the register has been read.
|
|
* @return Current interrupt status
|
|
* @see MPU6050_RA_INT_STATUS
|
|
* @see MPU6050_INTERRUPT_ZMOT_BIT
|
|
*/
|
|
bool MPU6050::getIntZeroMotionStatus() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get FIFO Buffer Overflow interrupt status.
|
|
* This bit automatically sets to 1 when a Free Fall interrupt has been
|
|
* generated. The bit clears to 0 after the register has been read.
|
|
* @return Current interrupt status
|
|
* @see MPU6050_RA_INT_STATUS
|
|
* @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
|
|
*/
|
|
bool MPU6050::getIntFIFOBufferOverflowStatus() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get I2C Master interrupt status.
|
|
* This bit automatically sets to 1 when an I2C Master interrupt has been
|
|
* generated. For a list of I2C Master interrupts, please refer to Register 54.
|
|
* The bit clears to 0 after the register has been read.
|
|
* @return Current interrupt status
|
|
* @see MPU6050_RA_INT_STATUS
|
|
* @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
|
|
*/
|
|
bool MPU6050::getIntI2CMasterStatus() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Data Ready interrupt status.
|
|
* This bit automatically sets to 1 when a Data Ready interrupt has been
|
|
* generated. The bit clears to 0 after the register has been read.
|
|
* @return Current interrupt status
|
|
* @see MPU6050_RA_INT_STATUS
|
|
* @see MPU6050_INTERRUPT_DATA_RDY_BIT
|
|
*/
|
|
bool MPU6050::getIntDataReadyStatus() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
|
|
// ACCEL_*OUT_* registers
|
|
|
|
/** Get raw 9-axis motion sensor readings (accel/gyro/compass).
|
|
* FUNCTION NOT FULLY IMPLEMENTED YET.
|
|
* @param ax 16-bit signed integer container for accelerometer X-axis value
|
|
* @param ay 16-bit signed integer container for accelerometer Y-axis value
|
|
* @param az 16-bit signed integer container for accelerometer Z-axis value
|
|
* @param gx 16-bit signed integer container for gyroscope X-axis value
|
|
* @param gy 16-bit signed integer container for gyroscope Y-axis value
|
|
* @param gz 16-bit signed integer container for gyroscope Z-axis value
|
|
* @param mx 16-bit signed integer container for magnetometer X-axis value
|
|
* @param my 16-bit signed integer container for magnetometer Y-axis value
|
|
* @param mz 16-bit signed integer container for magnetometer Z-axis value
|
|
* @see getMotion6()
|
|
* @see getAcceleration()
|
|
* @see getRotation()
|
|
* @see MPU6050_RA_ACCEL_XOUT_H
|
|
*/
|
|
void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz) {
|
|
getMotion6(ax, ay, az, gx, gy, gz);
|
|
// TODO: magnetometer integration
|
|
}
|
|
/** Get raw 6-axis motion sensor readings (accel/gyro).
|
|
* Retrieves all currently available motion sensor values.
|
|
* @param ax 16-bit signed integer container for accelerometer X-axis value
|
|
* @param ay 16-bit signed integer container for accelerometer Y-axis value
|
|
* @param az 16-bit signed integer container for accelerometer Z-axis value
|
|
* @param gx 16-bit signed integer container for gyroscope X-axis value
|
|
* @param gy 16-bit signed integer container for gyroscope Y-axis value
|
|
* @param gz 16-bit signed integer container for gyroscope Z-axis value
|
|
* @see getAcceleration()
|
|
* @see getRotation()
|
|
* @see MPU6050_RA_ACCEL_XOUT_H
|
|
*/
|
|
void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz) {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer);
|
|
*ax = (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
*ay = (((int16_t)buffer[2]) << 8) | buffer[3];
|
|
*az = (((int16_t)buffer[4]) << 8) | buffer[5];
|
|
*gx = (((int16_t)buffer[8]) << 8) | buffer[9];
|
|
*gy = (((int16_t)buffer[10]) << 8) | buffer[11];
|
|
*gz = (((int16_t)buffer[12]) << 8) | buffer[13];
|
|
}
|
|
/** Get 3-axis accelerometer readings.
|
|
* These registers store the most recent accelerometer measurements.
|
|
* Accelerometer measurements are written to these registers at the Sample Rate
|
|
* as defined in Register 25.
|
|
*
|
|
* The accelerometer measurement registers, along with the temperature
|
|
* measurement registers, gyroscope measurement registers, and external sensor
|
|
* data registers, are composed of two sets of registers: an internal register
|
|
* set and a user-facing read register set.
|
|
*
|
|
* The data within the accelerometer sensors' internal register set is always
|
|
* updated at the Sample Rate. Meanwhile, the user-facing read register set
|
|
* duplicates the internal register set's data values whenever the serial
|
|
* interface is idle. This guarantees that a burst read of sensor registers will
|
|
* read measurements from the same sampling instant. Note that if burst reads
|
|
* are not used, the user is responsible for ensuring a set of single byte reads
|
|
* correspond to a single sampling instant by checking the Data Ready interrupt.
|
|
*
|
|
* Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS
|
|
* (Register 28). For each full scale setting, the accelerometers' sensitivity
|
|
* per LSB in ACCEL_xOUT is shown in the table below:
|
|
*
|
|
* <pre>
|
|
* AFS_SEL | Full Scale Range | LSB Sensitivity
|
|
* --------+------------------+----------------
|
|
* 0 | +/- 2g | 8192 LSB/mg
|
|
* 1 | +/- 4g | 4096 LSB/mg
|
|
* 2 | +/- 8g | 2048 LSB/mg
|
|
* 3 | +/- 16g | 1024 LSB/mg
|
|
* </pre>
|
|
*
|
|
* @param x 16-bit signed integer container for X-axis acceleration
|
|
* @param y 16-bit signed integer container for Y-axis acceleration
|
|
* @param z 16-bit signed integer container for Z-axis acceleration
|
|
* @see MPU6050_RA_GYRO_XOUT_H
|
|
*/
|
|
void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z) {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
|
|
*x = (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
*y = (((int16_t)buffer[2]) << 8) | buffer[3];
|
|
*z = (((int16_t)buffer[4]) << 8) | buffer[5];
|
|
}
|
|
/** Get X-axis accelerometer reading.
|
|
* @return X-axis acceleration measurement in 16-bit 2's complement format
|
|
* @see getMotion6()
|
|
* @see MPU6050_RA_ACCEL_XOUT_H
|
|
*/
|
|
int16_t MPU6050::getAccelerationX() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer);
|
|
return (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
/** Get Y-axis accelerometer reading.
|
|
* @return Y-axis acceleration measurement in 16-bit 2's complement format
|
|
* @see getMotion6()
|
|
* @see MPU6050_RA_ACCEL_YOUT_H
|
|
*/
|
|
int16_t MPU6050::getAccelerationY() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer);
|
|
return (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
/** Get Z-axis accelerometer reading.
|
|
* @return Z-axis acceleration measurement in 16-bit 2's complement format
|
|
* @see getMotion6()
|
|
* @see MPU6050_RA_ACCEL_ZOUT_H
|
|
*/
|
|
int16_t MPU6050::getAccelerationZ() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer);
|
|
return (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
|
|
// TEMP_OUT_* registers
|
|
|
|
/** Get current internal temperature.
|
|
* @return Temperature reading in 16-bit 2's complement format
|
|
* @see MPU6050_RA_TEMP_OUT_H
|
|
*/
|
|
int16_t MPU6050::getTemperature() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer);
|
|
return (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
|
|
// GYRO_*OUT_* registers
|
|
|
|
/** Get 3-axis gyroscope readings.
|
|
* These gyroscope measurement registers, along with the accelerometer
|
|
* measurement registers, temperature measurement registers, and external sensor
|
|
* data registers, are composed of two sets of registers: an internal register
|
|
* set and a user-facing read register set.
|
|
* The data within the gyroscope sensors' internal register set is always
|
|
* updated at the Sample Rate. Meanwhile, the user-facing read register set
|
|
* duplicates the internal register set's data values whenever the serial
|
|
* interface is idle. This guarantees that a burst read of sensor registers will
|
|
* read measurements from the same sampling instant. Note that if burst reads
|
|
* are not used, the user is responsible for ensuring a set of single byte reads
|
|
* correspond to a single sampling instant by checking the Data Ready interrupt.
|
|
*
|
|
* Each 16-bit gyroscope measurement has a full scale defined in FS_SEL
|
|
* (Register 27). For each full scale setting, the gyroscopes' sensitivity per
|
|
* LSB in GYRO_xOUT is shown in the table below:
|
|
*
|
|
* <pre>
|
|
* FS_SEL | Full Scale Range | LSB Sensitivity
|
|
* -------+--------------------+----------------
|
|
* 0 | +/- 250 degrees/s | 131 LSB/deg/s
|
|
* 1 | +/- 500 degrees/s | 65.5 LSB/deg/s
|
|
* 2 | +/- 1000 degrees/s | 32.8 LSB/deg/s
|
|
* 3 | +/- 2000 degrees/s | 16.4 LSB/deg/s
|
|
* </pre>
|
|
*
|
|
* @param x 16-bit signed integer container for X-axis rotation
|
|
* @param y 16-bit signed integer container for Y-axis rotation
|
|
* @param z 16-bit signed integer container for Z-axis rotation
|
|
* @see getMotion6()
|
|
* @see MPU6050_RA_GYRO_XOUT_H
|
|
*/
|
|
void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z) {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer);
|
|
*x = (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
*y = (((int16_t)buffer[2]) << 8) | buffer[3];
|
|
*z = (((int16_t)buffer[4]) << 8) | buffer[5];
|
|
}
|
|
/** Get X-axis gyroscope reading.
|
|
* @return X-axis rotation measurement in 16-bit 2's complement format
|
|
* @see getMotion6()
|
|
* @see MPU6050_RA_GYRO_XOUT_H
|
|
*/
|
|
int16_t MPU6050::getRotationX() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer);
|
|
return (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
/** Get Y-axis gyroscope reading.
|
|
* @return Y-axis rotation measurement in 16-bit 2's complement format
|
|
* @see getMotion6()
|
|
* @see MPU6050_RA_GYRO_YOUT_H
|
|
*/
|
|
int16_t MPU6050::getRotationY() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer);
|
|
return (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
/** Get Z-axis gyroscope reading.
|
|
* @return Z-axis rotation measurement in 16-bit 2's complement format
|
|
* @see getMotion6()
|
|
* @see MPU6050_RA_GYRO_ZOUT_H
|
|
*/
|
|
int16_t MPU6050::getRotationZ() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer);
|
|
return (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
|
|
// EXT_SENS_DATA_* registers
|
|
|
|
/** Read single byte from external sensor data register.
|
|
* These registers store data read from external sensors by the Slave 0, 1, 2,
|
|
* and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in
|
|
* I2C_SLV4_DI (Register 53).
|
|
*
|
|
* External sensor data is written to these registers at the Sample Rate as
|
|
* defined in Register 25. This access rate can be reduced by using the Slave
|
|
* Delay Enable registers (Register 103).
|
|
*
|
|
* External sensor data registers, along with the gyroscope measurement
|
|
* registers, accelerometer measurement registers, and temperature measurement
|
|
* registers, are composed of two sets of registers: an internal register set
|
|
* and a user-facing read register set.
|
|
*
|
|
* The data within the external sensors' internal register set is always updated
|
|
* at the Sample Rate (or the reduced access rate) whenever the serial interface
|
|
* is idle. This guarantees that a burst read of sensor registers will read
|
|
* measurements from the same sampling instant. Note that if burst reads are not
|
|
* used, the user is responsible for ensuring a set of single byte reads
|
|
* correspond to a single sampling instant by checking the Data Ready interrupt.
|
|
*
|
|
* Data is placed in these external sensor data registers according to
|
|
* I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39,
|
|
* 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from
|
|
* an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as
|
|
* defined in Register 25) or delayed rate (if specified in Register 52 and
|
|
* 103). During each Sample cycle, slave reads are performed in order of Slave
|
|
* number. If all slaves are enabled with more than zero bytes to be read, the
|
|
* order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3.
|
|
*
|
|
* Each enabled slave will have EXT_SENS_DATA registers associated with it by
|
|
* number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from
|
|
* EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may
|
|
* change the higher numbered slaves' associated registers. Furthermore, if
|
|
* fewer total bytes are being read from the external sensors as a result of
|
|
* such a change, then the data remaining in the registers which no longer have
|
|
* an associated slave device (i.e. high numbered registers) will remain in
|
|
* these previously allocated registers unless reset.
|
|
*
|
|
* If the sum of the read lengths of all SLVx transactions exceed the number of
|
|
* available EXT_SENS_DATA registers, the excess bytes will be dropped. There
|
|
* are 24 EXT_SENS_DATA registers and hence the total read lengths between all
|
|
* the slaves cannot be greater than 24 or some bytes will be lost.
|
|
*
|
|
* Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further
|
|
* information regarding the characteristics of Slave 4, please refer to
|
|
* Registers 49 to 53.
|
|
*
|
|
* EXAMPLE:
|
|
* Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and
|
|
* I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that
|
|
* I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00
|
|
* through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05
|
|
* will be associated with Slave 1. If Slave 2 is enabled as well, registers
|
|
* starting from EXT_SENS_DATA_06 will be allocated to Slave 2.
|
|
*
|
|
* If Slave 2 is disabled while Slave 3 is enabled in this same situation, then
|
|
* registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3
|
|
* instead.
|
|
*
|
|
* REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE:
|
|
* If a slave is disabled at any time, the space initially allocated to the
|
|
* slave in the EXT_SENS_DATA register, will remain associated with that slave.
|
|
* This is to avoid dynamic adjustment of the register allocation.
|
|
*
|
|
* The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all
|
|
* slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106).
|
|
*
|
|
* This above is also true if one of the slaves gets NACKed and stops
|
|
* functioning.
|
|
*
|
|
* @param position Starting position (0-23)
|
|
* @return Byte read from register
|
|
*/
|
|
uint8_t MPU6050::getExternalSensorByte(int position) {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Read word (2 bytes) from external sensor data registers.
|
|
* @param position Starting position (0-21)
|
|
* @return Word read from register
|
|
* @see getExternalSensorByte()
|
|
*/
|
|
uint16_t MPU6050::getExternalSensorWord(int position) {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer);
|
|
return (((uint16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
/** Read double word (4 bytes) from external sensor data registers.
|
|
* @param position Starting position (0-20)
|
|
* @return Double word read from registers
|
|
* @see getExternalSensorByte()
|
|
*/
|
|
uint32_t MPU6050::getExternalSensorDWord(int position) {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer);
|
|
return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3];
|
|
}
|
|
|
|
// MOT_DETECT_STATUS register
|
|
|
|
/** Get full motion detection status register content (all bits).
|
|
* @return Motion detection status byte
|
|
* @see MPU6050_RA_MOT_DETECT_STATUS
|
|
*/
|
|
uint8_t MPU6050::getMotionStatus() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_MOT_DETECT_STATUS, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get X-axis negative motion detection interrupt status.
|
|
* @return Motion detection status
|
|
* @see MPU6050_RA_MOT_DETECT_STATUS
|
|
* @see MPU6050_MOTION_MOT_XNEG_BIT
|
|
*/
|
|
bool MPU6050::getXNegMotionDetected() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get X-axis positive motion detection interrupt status.
|
|
* @return Motion detection status
|
|
* @see MPU6050_RA_MOT_DETECT_STATUS
|
|
* @see MPU6050_MOTION_MOT_XPOS_BIT
|
|
*/
|
|
bool MPU6050::getXPosMotionDetected() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Y-axis negative motion detection interrupt status.
|
|
* @return Motion detection status
|
|
* @see MPU6050_RA_MOT_DETECT_STATUS
|
|
* @see MPU6050_MOTION_MOT_YNEG_BIT
|
|
*/
|
|
bool MPU6050::getYNegMotionDetected() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Y-axis positive motion detection interrupt status.
|
|
* @return Motion detection status
|
|
* @see MPU6050_RA_MOT_DETECT_STATUS
|
|
* @see MPU6050_MOTION_MOT_YPOS_BIT
|
|
*/
|
|
bool MPU6050::getYPosMotionDetected() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Z-axis negative motion detection interrupt status.
|
|
* @return Motion detection status
|
|
* @see MPU6050_RA_MOT_DETECT_STATUS
|
|
* @see MPU6050_MOTION_MOT_ZNEG_BIT
|
|
*/
|
|
bool MPU6050::getZNegMotionDetected() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get Z-axis positive motion detection interrupt status.
|
|
* @return Motion detection status
|
|
* @see MPU6050_RA_MOT_DETECT_STATUS
|
|
* @see MPU6050_MOTION_MOT_ZPOS_BIT
|
|
*/
|
|
bool MPU6050::getZPosMotionDetected() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Get zero motion detection interrupt status.
|
|
* @return Motion detection status
|
|
* @see MPU6050_RA_MOT_DETECT_STATUS
|
|
* @see MPU6050_MOTION_MOT_ZRMOT_BIT
|
|
*/
|
|
bool MPU6050::getZeroMotionDetected() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
|
|
// I2C_SLV*_DO register
|
|
|
|
/** Write byte to Data Output container for specified slave.
|
|
* This register holds the output data written into Slave when Slave is set to
|
|
* write mode. For further information regarding Slave control, please
|
|
* refer to Registers 37 to 39 and immediately following.
|
|
* @param num Slave number (0-3)
|
|
* @param data Byte to write
|
|
* @see MPU6050_RA_I2C_SLV0_DO
|
|
*/
|
|
void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data) {
|
|
if (num > 3) return;
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data);
|
|
}
|
|
|
|
// I2C_MST_DELAY_CTRL register
|
|
|
|
/** Get external data shadow delay enabled status.
|
|
* This register is used to specify the timing of external sensor data
|
|
* shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external
|
|
* sensor data is delayed until all data has been received.
|
|
* @return Current external data shadow delay enabled status.
|
|
* @see MPU6050_RA_I2C_MST_DELAY_CTRL
|
|
* @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
|
|
*/
|
|
bool MPU6050::getExternalShadowDelayEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set external data shadow delay enabled status.
|
|
* @param enabled New external data shadow delay enabled status.
|
|
* @see getExternalShadowDelayEnabled()
|
|
* @see MPU6050_RA_I2C_MST_DELAY_CTRL
|
|
* @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
|
|
*/
|
|
void MPU6050::setExternalShadowDelayEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled);
|
|
}
|
|
/** Get slave delay enabled status.
|
|
* When a particular slave delay is enabled, the rate of access for the that
|
|
* slave device is reduced. When a slave's access rate is decreased relative to
|
|
* the Sample Rate, the slave is accessed every:
|
|
*
|
|
* 1 / (1 + I2C_MST_DLY) Samples
|
|
*
|
|
* This base Sample Rate in turn is determined by SMPLRT_DIV (register * 25)
|
|
* and DLPF_CFG (register 26).
|
|
*
|
|
* For further information regarding I2C_MST_DLY, please refer to register 52.
|
|
* For further information regarding the Sample Rate, please refer to register 25.
|
|
*
|
|
* @param num Slave number (0-4)
|
|
* @return Current slave delay enabled status.
|
|
* @see MPU6050_RA_I2C_MST_DELAY_CTRL
|
|
* @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
|
|
*/
|
|
bool MPU6050::getSlaveDelayEnabled(uint8_t num) {
|
|
// MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc.
|
|
if (num > 4) return 0;
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set slave delay enabled status.
|
|
* @param num Slave number (0-4)
|
|
* @param enabled New slave delay enabled status.
|
|
* @see MPU6050_RA_I2C_MST_DELAY_CTRL
|
|
* @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
|
|
*/
|
|
void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled);
|
|
}
|
|
|
|
// SIGNAL_PATH_RESET register
|
|
|
|
/** Reset gyroscope signal path.
|
|
* The reset will revert the signal path analog to digital converters and
|
|
* filters to their power up configurations.
|
|
* @see MPU6050_RA_SIGNAL_PATH_RESET
|
|
* @see MPU6050_PATHRESET_GYRO_RESET_BIT
|
|
*/
|
|
void MPU6050::resetGyroscopePath() {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true);
|
|
}
|
|
/** Reset accelerometer signal path.
|
|
* The reset will revert the signal path analog to digital converters and
|
|
* filters to their power up configurations.
|
|
* @see MPU6050_RA_SIGNAL_PATH_RESET
|
|
* @see MPU6050_PATHRESET_ACCEL_RESET_BIT
|
|
*/
|
|
void MPU6050::resetAccelerometerPath() {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true);
|
|
}
|
|
/** Reset temperature sensor signal path.
|
|
* The reset will revert the signal path analog to digital converters and
|
|
* filters to their power up configurations.
|
|
* @see MPU6050_RA_SIGNAL_PATH_RESET
|
|
* @see MPU6050_PATHRESET_TEMP_RESET_BIT
|
|
*/
|
|
void MPU6050::resetTemperaturePath() {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true);
|
|
}
|
|
|
|
// MOT_DETECT_CTRL register
|
|
|
|
/** Get accelerometer power-on delay.
|
|
* The accelerometer data path provides samples to the sensor registers, Motion
|
|
* detection, Zero Motion detection, and Free Fall detection modules. The
|
|
* signal path contains filters which must be flushed on wake-up with new
|
|
* samples before the detection modules begin operations. The default wake-up
|
|
* delay, of 4ms can be lengthened by up to 3ms. This additional delay is
|
|
* specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select
|
|
* any value above zero unless instructed otherwise by InvenSense. Please refer
|
|
* to Section 8 of the MPU-6000/MPU-6050 Product Specification document for
|
|
* further information regarding the detection modules.
|
|
* @return Current accelerometer power-on delay
|
|
* @see MPU6050_RA_MOT_DETECT_CTRL
|
|
* @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
|
|
*/
|
|
uint8_t MPU6050::getAccelerometerPowerOnDelay() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set accelerometer power-on delay.
|
|
* @param delay New accelerometer power-on delay (0-3)
|
|
* @see getAccelerometerPowerOnDelay()
|
|
* @see MPU6050_RA_MOT_DETECT_CTRL
|
|
* @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
|
|
*/
|
|
void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay);
|
|
}
|
|
/** Get Free Fall detection counter decrement configuration.
|
|
* Detection is registered by the Free Fall detection module after accelerometer
|
|
* measurements meet their respective threshold conditions over a specified
|
|
* number of samples. When the threshold conditions are met, the corresponding
|
|
* detection counter increments by 1. The user may control the rate at which the
|
|
* detection counter decrements when the threshold condition is not met by
|
|
* configuring FF_COUNT. The decrement rate can be set according to the
|
|
* following table:
|
|
*
|
|
* <pre>
|
|
* FF_COUNT | Counter Decrement
|
|
* ---------+------------------
|
|
* 0 | Reset
|
|
* 1 | 1
|
|
* 2 | 2
|
|
* 3 | 4
|
|
* </pre>
|
|
*
|
|
* When FF_COUNT is configured to 0 (reset), any non-qualifying sample will
|
|
* reset the counter to 0. For further information on Free Fall detection,
|
|
* please refer to Registers 29 to 32.
|
|
*
|
|
* @return Current decrement configuration
|
|
* @see MPU6050_RA_MOT_DETECT_CTRL
|
|
* @see MPU6050_DETECT_FF_COUNT_BIT
|
|
*/
|
|
uint8_t MPU6050::getFreefallDetectionCounterDecrement() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Free Fall detection counter decrement configuration.
|
|
* @param decrement New decrement configuration value
|
|
* @see getFreefallDetectionCounterDecrement()
|
|
* @see MPU6050_RA_MOT_DETECT_CTRL
|
|
* @see MPU6050_DETECT_FF_COUNT_BIT
|
|
*/
|
|
void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement);
|
|
}
|
|
/** Get Motion detection counter decrement configuration.
|
|
* Detection is registered by the Motion detection module after accelerometer
|
|
* measurements meet their respective threshold conditions over a specified
|
|
* number of samples. When the threshold conditions are met, the corresponding
|
|
* detection counter increments by 1. The user may control the rate at which the
|
|
* detection counter decrements when the threshold condition is not met by
|
|
* configuring MOT_COUNT. The decrement rate can be set according to the
|
|
* following table:
|
|
*
|
|
* <pre>
|
|
* MOT_COUNT | Counter Decrement
|
|
* ----------+------------------
|
|
* 0 | Reset
|
|
* 1 | 1
|
|
* 2 | 2
|
|
* 3 | 4
|
|
* </pre>
|
|
*
|
|
* When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will
|
|
* reset the counter to 0. For further information on Motion detection,
|
|
* please refer to Registers 29 to 32.
|
|
*
|
|
*/
|
|
uint8_t MPU6050::getMotionDetectionCounterDecrement() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Motion detection counter decrement configuration.
|
|
* @param decrement New decrement configuration value
|
|
* @see getMotionDetectionCounterDecrement()
|
|
* @see MPU6050_RA_MOT_DETECT_CTRL
|
|
* @see MPU6050_DETECT_MOT_COUNT_BIT
|
|
*/
|
|
void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement);
|
|
}
|
|
|
|
// USER_CTRL register
|
|
|
|
/** Get FIFO enabled status.
|
|
* When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer
|
|
* cannot be written to or read from while disabled. The FIFO buffer's state
|
|
* does not change unless the MPU-60X0 is power cycled.
|
|
* @return Current FIFO enabled status
|
|
* @see MPU6050_RA_USER_CTRL
|
|
* @see MPU6050_USERCTRL_FIFO_EN_BIT
|
|
*/
|
|
bool MPU6050::getFIFOEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set FIFO enabled status.
|
|
* @param enabled New FIFO enabled status
|
|
* @see getFIFOEnabled()
|
|
* @see MPU6050_RA_USER_CTRL
|
|
* @see MPU6050_USERCTRL_FIFO_EN_BIT
|
|
*/
|
|
void MPU6050::setFIFOEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled);
|
|
}
|
|
/** Get I2C Master Mode enabled status.
|
|
* When this mode is enabled, the MPU-60X0 acts as the I2C Master to the
|
|
* external sensor slave devices on the auxiliary I2C bus. When this bit is
|
|
* cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically
|
|
* driven by the primary I2C bus (SDA and SCL). This is a precondition to
|
|
* enabling Bypass Mode. For further information regarding Bypass Mode, please
|
|
* refer to Register 55.
|
|
* @return Current I2C Master Mode enabled status
|
|
* @see MPU6050_RA_USER_CTRL
|
|
* @see MPU6050_USERCTRL_I2C_MST_EN_BIT
|
|
*/
|
|
bool MPU6050::getI2CMasterModeEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set I2C Master Mode enabled status.
|
|
* @param enabled New I2C Master Mode enabled status
|
|
* @see getI2CMasterModeEnabled()
|
|
* @see MPU6050_RA_USER_CTRL
|
|
* @see MPU6050_USERCTRL_I2C_MST_EN_BIT
|
|
*/
|
|
void MPU6050::setI2CMasterModeEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled);
|
|
}
|
|
/** Switch from I2C to SPI mode (MPU-6000 only)
|
|
* If this is set, the primary SPI interface will be enabled in place of the
|
|
* disabled primary I2C interface.
|
|
*/
|
|
void MPU6050::switchSPIEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled);
|
|
}
|
|
/** Reset the FIFO.
|
|
* This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This
|
|
* bit automatically clears to 0 after the reset has been triggered.
|
|
* @see MPU6050_RA_USER_CTRL
|
|
* @see MPU6050_USERCTRL_FIFO_RESET_BIT
|
|
*/
|
|
void MPU6050::resetFIFO() {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true);
|
|
}
|
|
/** Reset the I2C Master.
|
|
* This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0.
|
|
* This bit automatically clears to 0 after the reset has been triggered.
|
|
* @see MPU6050_RA_USER_CTRL
|
|
* @see MPU6050_USERCTRL_I2C_MST_RESET_BIT
|
|
*/
|
|
void MPU6050::resetI2CMaster() {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true);
|
|
}
|
|
/** Reset all sensor registers and signal paths.
|
|
* When set to 1, this bit resets the signal paths for all sensors (gyroscopes,
|
|
* accelerometers, and temperature sensor). This operation will also clear the
|
|
* sensor registers. This bit automatically clears to 0 after the reset has been
|
|
* triggered.
|
|
*
|
|
* When resetting only the signal path (and not the sensor registers), please
|
|
* use Register 104, SIGNAL_PATH_RESET.
|
|
*
|
|
* @see MPU6050_RA_USER_CTRL
|
|
* @see MPU6050_USERCTRL_SIG_COND_RESET_BIT
|
|
*/
|
|
void MPU6050::resetSensors() {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true);
|
|
}
|
|
|
|
// PWR_MGMT_1 register
|
|
|
|
/** Trigger a full device reset.
|
|
* A small delay of ~50ms may be desirable after triggering a reset.
|
|
* @see MPU6050_RA_PWR_MGMT_1
|
|
* @see MPU6050_PWR1_DEVICE_RESET_BIT
|
|
*/
|
|
void MPU6050::reset() {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true);
|
|
}
|
|
/** Get sleep mode status.
|
|
* Setting the SLEEP bit in the register puts the device into very low power
|
|
* sleep mode. In this mode, only the serial interface and internal registers
|
|
* remain active, allowing for a very low standby current. Clearing this bit
|
|
* puts the device back into normal mode. To save power, the individual standby
|
|
* selections for each of the gyros should be used if any gyro axis is not used
|
|
* by the application.
|
|
* @return Current sleep mode enabled status
|
|
* @see MPU6050_RA_PWR_MGMT_1
|
|
* @see MPU6050_PWR1_SLEEP_BIT
|
|
*/
|
|
bool MPU6050::getSleepEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set sleep mode status.
|
|
* @param enabled New sleep mode enabled status
|
|
* @see getSleepEnabled()
|
|
* @see MPU6050_RA_PWR_MGMT_1
|
|
* @see MPU6050_PWR1_SLEEP_BIT
|
|
*/
|
|
void MPU6050::setSleepEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled);
|
|
}
|
|
/** Get wake cycle enabled status.
|
|
* When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle
|
|
* between sleep mode and waking up to take a single sample of data from active
|
|
* sensors at a rate determined by LP_WAKE_CTRL (register 108).
|
|
* @return Current sleep mode enabled status
|
|
* @see MPU6050_RA_PWR_MGMT_1
|
|
* @see MPU6050_PWR1_CYCLE_BIT
|
|
*/
|
|
bool MPU6050::getWakeCycleEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set wake cycle enabled status.
|
|
* @param enabled New sleep mode enabled status
|
|
* @see getWakeCycleEnabled()
|
|
* @see MPU6050_RA_PWR_MGMT_1
|
|
* @see MPU6050_PWR1_CYCLE_BIT
|
|
*/
|
|
void MPU6050::setWakeCycleEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled);
|
|
}
|
|
/** Get temperature sensor enabled status.
|
|
* Control the usage of the internal temperature sensor.
|
|
*
|
|
* Note: this register stores the *disabled* value, but for consistency with the
|
|
* rest of the code, the function is named and used with standard true/false
|
|
* values to indicate whether the sensor is enabled or disabled, respectively.
|
|
*
|
|
* @return Current temperature sensor enabled status
|
|
* @see MPU6050_RA_PWR_MGMT_1
|
|
* @see MPU6050_PWR1_TEMP_DIS_BIT
|
|
*/
|
|
bool MPU6050::getTempSensorEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer);
|
|
return buffer[0] == 0; // 1 is actually disabled here
|
|
}
|
|
/** Set temperature sensor enabled status.
|
|
* Note: this register stores the *disabled* value, but for consistency with the
|
|
* rest of the code, the function is named and used with standard true/false
|
|
* values to indicate whether the sensor is enabled or disabled, respectively.
|
|
*
|
|
* @param enabled New temperature sensor enabled status
|
|
* @see getTempSensorEnabled()
|
|
* @see MPU6050_RA_PWR_MGMT_1
|
|
* @see MPU6050_PWR1_TEMP_DIS_BIT
|
|
*/
|
|
void MPU6050::setTempSensorEnabled(bool enabled) {
|
|
// 1 is actually disabled here
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled);
|
|
}
|
|
/** Get clock source setting.
|
|
* @return Current clock source setting
|
|
* @see MPU6050_RA_PWR_MGMT_1
|
|
* @see MPU6050_PWR1_CLKSEL_BIT
|
|
* @see MPU6050_PWR1_CLKSEL_LENGTH
|
|
*/
|
|
uint8_t MPU6050::getClockSource() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set clock source setting.
|
|
* An internal 8MHz oscillator, gyroscope based clock, or external sources can
|
|
* be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator
|
|
* or an external source is chosen as the clock source, the MPU-60X0 can operate
|
|
* in low power modes with the gyroscopes disabled.
|
|
*
|
|
* Upon power up, the MPU-60X0 clock source defaults to the internal oscillator.
|
|
* However, it is highly recommended that the device be configured to use one of
|
|
* the gyroscopes (or an external clock source) as the clock reference for
|
|
* improved stability. The clock source can be selected according to the following table:
|
|
*
|
|
* <pre>
|
|
* CLK_SEL | Clock Source
|
|
* --------+--------------------------------------
|
|
* 0 | Internal oscillator
|
|
* 1 | PLL with X Gyro reference
|
|
* 2 | PLL with Y Gyro reference
|
|
* 3 | PLL with Z Gyro reference
|
|
* 4 | PLL with external 32.768kHz reference
|
|
* 5 | PLL with external 19.2MHz reference
|
|
* 6 | Reserved
|
|
* 7 | Stops the clock and keeps the timing generator in reset
|
|
* </pre>
|
|
*
|
|
* @param source New clock source setting
|
|
* @see getClockSource()
|
|
* @see MPU6050_RA_PWR_MGMT_1
|
|
* @see MPU6050_PWR1_CLKSEL_BIT
|
|
* @see MPU6050_PWR1_CLKSEL_LENGTH
|
|
*/
|
|
void MPU6050::setClockSource(uint8_t source) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source);
|
|
}
|
|
|
|
// PWR_MGMT_2 register
|
|
|
|
/** Get wake frequency in Accel-Only Low Power Mode.
|
|
* The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting
|
|
* PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode,
|
|
* the device will power off all devices except for the primary I2C interface,
|
|
* waking only the accelerometer at fixed intervals to take a single
|
|
* measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL
|
|
* as shown below:
|
|
*
|
|
* <pre>
|
|
* LP_WAKE_CTRL | Wake-up Frequency
|
|
* -------------+------------------
|
|
* 0 | 1.25 Hz
|
|
* 1 | 2.5 Hz
|
|
* 2 | 5 Hz
|
|
* 3 | 10 Hz
|
|
* </pre>
|
|
*
|
|
* For further information regarding the MPU-60X0's power modes, please refer to
|
|
* Register 107.
|
|
*
|
|
* @return Current wake frequency
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
*/
|
|
uint8_t MPU6050::getWakeFrequency() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set wake frequency in Accel-Only Low Power Mode.
|
|
* @param frequency New wake frequency
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
*/
|
|
void MPU6050::setWakeFrequency(uint8_t frequency) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency);
|
|
}
|
|
|
|
/** Get X-axis accelerometer standby enabled status.
|
|
* If enabled, the X-axis will not gather or report data (or use power).
|
|
* @return Current X-axis standby enabled status
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
* @see MPU6050_PWR2_STBY_XA_BIT
|
|
*/
|
|
bool MPU6050::getStandbyXAccelEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set X-axis accelerometer standby enabled status.
|
|
* @param New X-axis standby enabled status
|
|
* @see getStandbyXAccelEnabled()
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
* @see MPU6050_PWR2_STBY_XA_BIT
|
|
*/
|
|
void MPU6050::setStandbyXAccelEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
|
|
}
|
|
/** Get Y-axis accelerometer standby enabled status.
|
|
* If enabled, the Y-axis will not gather or report data (or use power).
|
|
* @return Current Y-axis standby enabled status
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
* @see MPU6050_PWR2_STBY_YA_BIT
|
|
*/
|
|
bool MPU6050::getStandbyYAccelEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Y-axis accelerometer standby enabled status.
|
|
* @param New Y-axis standby enabled status
|
|
* @see getStandbyYAccelEnabled()
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
* @see MPU6050_PWR2_STBY_YA_BIT
|
|
*/
|
|
void MPU6050::setStandbyYAccelEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
|
|
}
|
|
/** Get Z-axis accelerometer standby enabled status.
|
|
* If enabled, the Z-axis will not gather or report data (or use power).
|
|
* @return Current Z-axis standby enabled status
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
* @see MPU6050_PWR2_STBY_ZA_BIT
|
|
*/
|
|
bool MPU6050::getStandbyZAccelEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Z-axis accelerometer standby enabled status.
|
|
* @param New Z-axis standby enabled status
|
|
* @see getStandbyZAccelEnabled()
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
* @see MPU6050_PWR2_STBY_ZA_BIT
|
|
*/
|
|
void MPU6050::setStandbyZAccelEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
|
|
}
|
|
/** Get X-axis gyroscope standby enabled status.
|
|
* If enabled, the X-axis will not gather or report data (or use power).
|
|
* @return Current X-axis standby enabled status
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
* @see MPU6050_PWR2_STBY_XG_BIT
|
|
*/
|
|
bool MPU6050::getStandbyXGyroEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set X-axis gyroscope standby enabled status.
|
|
* @param New X-axis standby enabled status
|
|
* @see getStandbyXGyroEnabled()
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
* @see MPU6050_PWR2_STBY_XG_BIT
|
|
*/
|
|
void MPU6050::setStandbyXGyroEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
|
|
}
|
|
/** Get Y-axis gyroscope standby enabled status.
|
|
* If enabled, the Y-axis will not gather or report data (or use power).
|
|
* @return Current Y-axis standby enabled status
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
* @see MPU6050_PWR2_STBY_YG_BIT
|
|
*/
|
|
bool MPU6050::getStandbyYGyroEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Y-axis gyroscope standby enabled status.
|
|
* @param New Y-axis standby enabled status
|
|
* @see getStandbyYGyroEnabled()
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
* @see MPU6050_PWR2_STBY_YG_BIT
|
|
*/
|
|
void MPU6050::setStandbyYGyroEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
|
|
}
|
|
/** Get Z-axis gyroscope standby enabled status.
|
|
* If enabled, the Z-axis will not gather or report data (or use power).
|
|
* @return Current Z-axis standby enabled status
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
* @see MPU6050_PWR2_STBY_ZG_BIT
|
|
*/
|
|
bool MPU6050::getStandbyZGyroEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Z-axis gyroscope standby enabled status.
|
|
* @param New Z-axis standby enabled status
|
|
* @see getStandbyZGyroEnabled()
|
|
* @see MPU6050_RA_PWR_MGMT_2
|
|
* @see MPU6050_PWR2_STBY_ZG_BIT
|
|
*/
|
|
void MPU6050::setStandbyZGyroEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
|
|
}
|
|
|
|
// FIFO_COUNT* registers
|
|
|
|
/** Get current FIFO buffer size.
|
|
* This value indicates the number of bytes stored in the FIFO buffer. This
|
|
* number is in turn the number of bytes that can be read from the FIFO buffer
|
|
* and it is directly proportional to the number of samples available given the
|
|
* set of sensor data bound to be stored in the FIFO (register 35 and 36).
|
|
* @return Current FIFO buffer size
|
|
*/
|
|
uint16_t MPU6050::getFIFOCount() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
|
|
return (((uint16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
|
|
// FIFO_R_W register
|
|
|
|
/** Get byte from FIFO buffer.
|
|
* This register is used to read and write data from the FIFO buffer. Data is
|
|
* written to the FIFO in order of register number (from lowest to highest). If
|
|
* all the FIFO enable flags (see below) are enabled and all External Sensor
|
|
* Data registers (Registers 73 to 96) are associated with a Slave device, the
|
|
* contents of registers 59 through 96 will be written in order at the Sample
|
|
* Rate.
|
|
*
|
|
* The contents of the sensor data registers (Registers 59 to 96) are written
|
|
* into the FIFO buffer when their corresponding FIFO enable flags are set to 1
|
|
* in FIFO_EN (Register 35). An additional flag for the sensor data registers
|
|
* associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
|
|
*
|
|
* If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
|
|
* automatically set to 1. This bit is located in INT_STATUS (Register 58).
|
|
* When the FIFO buffer has overflowed, the oldest data will be lost and new
|
|
* data will be written to the FIFO.
|
|
*
|
|
* If the FIFO buffer is empty, reading this register will return the last byte
|
|
* that was previously read from the FIFO until new data is available. The user
|
|
* should check FIFO_COUNT to ensure that the FIFO buffer is not read when
|
|
* empty.
|
|
*
|
|
* @return Byte from FIFO buffer
|
|
*/
|
|
uint8_t MPU6050::getFIFOByte() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::getFIFOBytes(uint8_t *data, uint8_t length) {
|
|
if(length > 0){
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
|
|
} else {
|
|
*data = 0;
|
|
}
|
|
}
|
|
/** Write byte to FIFO buffer.
|
|
* @see getFIFOByte()
|
|
* @see MPU6050_RA_FIFO_R_W
|
|
*/
|
|
void MPU6050::setFIFOByte(uint8_t data) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
|
|
}
|
|
|
|
// WHO_AM_I register
|
|
|
|
/** Get Device ID.
|
|
* This register is used to verify the identity of the device (0b110100, 0x34).
|
|
* @return Device ID (6 bits only! should be 0x34)
|
|
* @see MPU6050_RA_WHO_AM_I
|
|
* @see MPU6050_WHO_AM_I_BIT
|
|
* @see MPU6050_WHO_AM_I_LENGTH
|
|
*/
|
|
uint8_t MPU6050::getDeviceID() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
/** Set Device ID.
|
|
* Write a new ID into the WHO_AM_I register (no idea why this should ever be
|
|
* necessary though).
|
|
* @param id New device ID to set.
|
|
* @see getDeviceID()
|
|
* @see MPU6050_RA_WHO_AM_I
|
|
* @see MPU6050_WHO_AM_I_BIT
|
|
* @see MPU6050_WHO_AM_I_LENGTH
|
|
*/
|
|
void MPU6050::setDeviceID(uint8_t id) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
|
|
}
|
|
|
|
// ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
|
|
|
|
// XG_OFFS_TC register
|
|
|
|
uint8_t MPU6050::getOTPBankValid() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::setOTPBankValid(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
|
|
}
|
|
int8_t MPU6050::getXGyroOffsetTC() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::setXGyroOffsetTC(int8_t offset) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
|
|
}
|
|
|
|
// YG_OFFS_TC register
|
|
|
|
int8_t MPU6050::getYGyroOffsetTC() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::setYGyroOffsetTC(int8_t offset) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
|
|
}
|
|
|
|
// ZG_OFFS_TC register
|
|
|
|
int8_t MPU6050::getZGyroOffsetTC() {
|
|
I2Cdev::readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::setZGyroOffsetTC(int8_t offset) {
|
|
I2Cdev::writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
|
|
}
|
|
|
|
// X_FINE_GAIN register
|
|
|
|
int8_t MPU6050::getXFineGain() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::setXFineGain(int8_t gain) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
|
|
}
|
|
|
|
// Y_FINE_GAIN register
|
|
|
|
int8_t MPU6050::getYFineGain() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::setYFineGain(int8_t gain) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
|
|
}
|
|
|
|
// Z_FINE_GAIN register
|
|
|
|
int8_t MPU6050::getZFineGain() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::setZFineGain(int8_t gain) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
|
|
}
|
|
|
|
// XA_OFFS_* registers
|
|
|
|
int16_t MPU6050::getXAccelOffset() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
|
|
return (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
void MPU6050::setXAccelOffset(int16_t offset) {
|
|
I2Cdev::writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
|
|
}
|
|
|
|
// YA_OFFS_* register
|
|
|
|
int16_t MPU6050::getYAccelOffset() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
|
|
return (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
void MPU6050::setYAccelOffset(int16_t offset) {
|
|
I2Cdev::writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
|
|
}
|
|
|
|
// ZA_OFFS_* register
|
|
|
|
int16_t MPU6050::getZAccelOffset() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
|
|
return (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
void MPU6050::setZAccelOffset(int16_t offset) {
|
|
I2Cdev::writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
|
|
}
|
|
|
|
// XG_OFFS_USR* registers
|
|
|
|
int16_t MPU6050::getXGyroOffset() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
|
|
return (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
void MPU6050::setXGyroOffset(int16_t offset) {
|
|
I2Cdev::writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
|
|
}
|
|
|
|
// YG_OFFS_USR* register
|
|
|
|
int16_t MPU6050::getYGyroOffset() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
|
|
return (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
void MPU6050::setYGyroOffset(int16_t offset) {
|
|
I2Cdev::writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
|
|
}
|
|
|
|
// ZG_OFFS_USR* register
|
|
|
|
int16_t MPU6050::getZGyroOffset() {
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
|
|
return (((int16_t)buffer[0]) << 8) | buffer[1];
|
|
}
|
|
void MPU6050::setZGyroOffset(int16_t offset) {
|
|
I2Cdev::writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
|
|
}
|
|
|
|
// INT_ENABLE register (DMP functions)
|
|
|
|
bool MPU6050::getIntPLLReadyEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::setIntPLLReadyEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
|
|
}
|
|
bool MPU6050::getIntDMPEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::setIntDMPEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
|
|
}
|
|
|
|
// DMP_INT_STATUS
|
|
|
|
bool MPU6050::getDMPInt5Status() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
bool MPU6050::getDMPInt4Status() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
bool MPU6050::getDMPInt3Status() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
bool MPU6050::getDMPInt2Status() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
bool MPU6050::getDMPInt1Status() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
bool MPU6050::getDMPInt0Status() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
|
|
// INT_STATUS register (DMP functions)
|
|
|
|
bool MPU6050::getIntPLLReadyStatus() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
bool MPU6050::getIntDMPStatus() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
|
|
// USER_CTRL register (DMP functions)
|
|
|
|
bool MPU6050::getDMPEnabled() {
|
|
I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::setDMPEnabled(bool enabled) {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
|
|
}
|
|
void MPU6050::resetDMP() {
|
|
I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
|
|
}
|
|
|
|
// BANK_SEL register
|
|
|
|
void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank) {
|
|
bank &= 0x1F;
|
|
if (userBank) bank |= 0x20;
|
|
if (prefetchEnabled) bank |= 0x40;
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
|
|
}
|
|
|
|
// MEM_START_ADDR register
|
|
|
|
void MPU6050::setMemoryStartAddress(uint8_t address) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
|
|
}
|
|
|
|
// MEM_R_W register
|
|
|
|
uint8_t MPU6050::readMemoryByte() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::writeMemoryByte(uint8_t data) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
|
|
}
|
|
void MPU6050::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address) {
|
|
setMemoryBank(bank);
|
|
setMemoryStartAddress(address);
|
|
uint8_t chunkSize;
|
|
for (uint16_t i = 0; i < dataSize;) {
|
|
// determine correct chunk size according to bank position and data size
|
|
chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
|
|
|
|
// make sure we don't go past the data size
|
|
if (i + chunkSize > dataSize) chunkSize = dataSize - i;
|
|
|
|
// make sure this chunk doesn't go past the bank boundary (256 bytes)
|
|
if (chunkSize > 256 - address) chunkSize = 256 - address;
|
|
|
|
// read the chunk of data as specified
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);
|
|
|
|
// increase byte index by [chunkSize]
|
|
i += chunkSize;
|
|
|
|
// uint8_t automatically wraps to 0 at 256
|
|
address += chunkSize;
|
|
|
|
// if we aren't done, update bank (if necessary) and address
|
|
if (i < dataSize) {
|
|
if (address == 0) bank++;
|
|
setMemoryBank(bank);
|
|
setMemoryStartAddress(address);
|
|
}
|
|
}
|
|
}
|
|
bool MPU6050::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem) {
|
|
setMemoryBank(bank);
|
|
setMemoryStartAddress(address);
|
|
uint8_t chunkSize;
|
|
uint8_t *verifyBuffer=0;
|
|
uint8_t *progBuffer=0;
|
|
uint16_t i;
|
|
uint8_t j;
|
|
if (verify) verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
|
|
if (useProgMem) progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
|
|
for (i = 0; i < dataSize;) {
|
|
// determine correct chunk size according to bank position and data size
|
|
chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
|
|
|
|
// make sure we don't go past the data size
|
|
if (i + chunkSize > dataSize) chunkSize = dataSize - i;
|
|
|
|
// make sure this chunk doesn't go past the bank boundary (256 bytes)
|
|
if (chunkSize > 256 - address) chunkSize = 256 - address;
|
|
|
|
if (useProgMem) {
|
|
// write the chunk of data as specified
|
|
for (j = 0; j < chunkSize; j++) progBuffer[j] = pgm_read_byte(data + i + j);
|
|
} else {
|
|
// write the chunk of data as specified
|
|
progBuffer = (uint8_t *)data + i;
|
|
}
|
|
|
|
I2Cdev::writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);
|
|
|
|
// verify data if needed
|
|
if (verify && verifyBuffer) {
|
|
setMemoryBank(bank);
|
|
setMemoryStartAddress(address);
|
|
I2Cdev::readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
|
|
if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) {
|
|
/*Serial.print("Block write verification error, bank ");
|
|
Serial.print(bank, DEC);
|
|
Serial.print(", address ");
|
|
Serial.print(address, DEC);
|
|
Serial.print("!\nExpected:");
|
|
for (j = 0; j < chunkSize; j++) {
|
|
Serial.print(" 0x");
|
|
if (progBuffer[j] < 16) Serial.print("0");
|
|
Serial.print(progBuffer[j], HEX);
|
|
}
|
|
Serial.print("\nReceived:");
|
|
for (uint8_t j = 0; j < chunkSize; j++) {
|
|
Serial.print(" 0x");
|
|
if (verifyBuffer[i + j] < 16) Serial.print("0");
|
|
Serial.print(verifyBuffer[i + j], HEX);
|
|
}
|
|
Serial.print("\n");*/
|
|
free(verifyBuffer);
|
|
if (useProgMem) free(progBuffer);
|
|
return false; // uh oh.
|
|
}
|
|
}
|
|
|
|
// increase byte index by [chunkSize]
|
|
i += chunkSize;
|
|
|
|
// uint8_t automatically wraps to 0 at 256
|
|
address += chunkSize;
|
|
|
|
// if we aren't done, update bank (if necessary) and address
|
|
if (i < dataSize) {
|
|
if (address == 0) bank++;
|
|
setMemoryBank(bank);
|
|
setMemoryStartAddress(address);
|
|
}
|
|
}
|
|
if (verify) free(verifyBuffer);
|
|
if (useProgMem) free(progBuffer);
|
|
return true;
|
|
}
|
|
bool MPU6050::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify) {
|
|
return writeMemoryBlock(data, dataSize, bank, address, verify, true);
|
|
}
|
|
bool MPU6050::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem) {
|
|
uint8_t *progBuffer = 0;
|
|
uint8_t success, special;
|
|
uint16_t i, j;
|
|
if (useProgMem) {
|
|
progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary
|
|
}
|
|
|
|
// config set data is a long string of blocks with the following structure:
|
|
// [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]]
|
|
uint8_t bank, offset, length;
|
|
for (i = 0; i < dataSize;) {
|
|
if (useProgMem) {
|
|
bank = pgm_read_byte(data + i++);
|
|
offset = pgm_read_byte(data + i++);
|
|
length = pgm_read_byte(data + i++);
|
|
} else {
|
|
bank = data[i++];
|
|
offset = data[i++];
|
|
length = data[i++];
|
|
}
|
|
|
|
// write data or perform special action
|
|
if (length > 0) {
|
|
// regular block of data to write
|
|
/*Serial.print("Writing config block to bank ");
|
|
Serial.print(bank);
|
|
Serial.print(", offset ");
|
|
Serial.print(offset);
|
|
Serial.print(", length=");
|
|
Serial.println(length);*/
|
|
if (useProgMem) {
|
|
if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length);
|
|
for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j);
|
|
} else {
|
|
progBuffer = (uint8_t *)data + i;
|
|
}
|
|
success = writeMemoryBlock(progBuffer, length, bank, offset, true);
|
|
i += length;
|
|
} else {
|
|
// special instruction
|
|
// NOTE: this kind of behavior (what and when to do certain things)
|
|
// is totally undocumented. This code is in here based on observed
|
|
// behavior only, and exactly why (or even whether) it has to be here
|
|
// is anybody's guess for now.
|
|
if (useProgMem) {
|
|
special = pgm_read_byte(data + i++);
|
|
} else {
|
|
special = data[i++];
|
|
}
|
|
/*Serial.print("Special command code ");
|
|
Serial.print(special, HEX);
|
|
Serial.println(" found...");*/
|
|
if (special == 0x01) {
|
|
// enable DMP-related interrupts
|
|
|
|
//setIntZeroMotionEnabled(true);
|
|
//setIntFIFOBufferOverflowEnabled(true);
|
|
//setIntDMPEnabled(true);
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32); // single operation
|
|
|
|
success = true;
|
|
} else {
|
|
// unknown special command
|
|
success = false;
|
|
}
|
|
}
|
|
|
|
if (!success) {
|
|
if (useProgMem) free(progBuffer);
|
|
return false; // uh oh
|
|
}
|
|
}
|
|
if (useProgMem) free(progBuffer);
|
|
return true;
|
|
}
|
|
bool MPU6050::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize) {
|
|
return writeDMPConfigurationSet(data, dataSize, true);
|
|
}
|
|
|
|
// DMP_CFG_1 register
|
|
|
|
uint8_t MPU6050::getDMPConfig1() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::setDMPConfig1(uint8_t config) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
|
|
}
|
|
|
|
// DMP_CFG_2 register
|
|
|
|
uint8_t MPU6050::getDMPConfig2() {
|
|
I2Cdev::readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
|
|
return buffer[0];
|
|
}
|
|
void MPU6050::setDMPConfig2(uint8_t config) {
|
|
I2Cdev::writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
|
|
}
|