cps_microros_imu/firmware/lib/odometry/odometry.cpp

92 lines
3.1 KiB
C++
Raw Permalink Normal View History

2023-07-10 09:54:53 +00:00
// Copyright (c) 2021 Juan Miguel Jimeno
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "odometry.h"
Odometry::Odometry():
x_pos_(0.0),
y_pos_(0.0),
heading_(0.0)
{
odom_msg_.header.frame_id = micro_ros_string_utilities_set(odom_msg_.header.frame_id, "odom");
odom_msg_.child_frame_id = micro_ros_string_utilities_set(odom_msg_.child_frame_id, "base_footprint");
}
void Odometry::update(float vel_dt, float linear_vel_x, float linear_vel_y, float angular_vel_z)
{
float delta_heading = angular_vel_z * vel_dt; //radians
float cos_h = cos(heading_);
float sin_h = sin(heading_);
float delta_x = (linear_vel_x * cos_h - linear_vel_y * sin_h) * vel_dt; //m
float delta_y = (linear_vel_x * sin_h + linear_vel_y * cos_h) * vel_dt; //m
//calculate current position of the robot
x_pos_ += delta_x;
y_pos_ += delta_y;
heading_ += delta_heading;
//calculate robot's heading in quaternion angle
//ROS has a function to calculate yaw in quaternion angle
float q[4];
euler_to_quat(0, 0, heading_, q);
//robot's position in x,y, and z
odom_msg_.pose.pose.position.x = x_pos_;
odom_msg_.pose.pose.position.y = y_pos_;
odom_msg_.pose.pose.position.z = 0.0;
//robot's heading in quaternion
odom_msg_.pose.pose.orientation.x = (double) q[1];
odom_msg_.pose.pose.orientation.y = (double) q[2];
odom_msg_.pose.pose.orientation.z = (double) q[3];
odom_msg_.pose.pose.orientation.w = (double) q[0];
odom_msg_.pose.covariance[0] = 0.001;
odom_msg_.pose.covariance[7] = 0.001;
odom_msg_.pose.covariance[35] = 0.001;
//linear speed from encoders
odom_msg_.twist.twist.linear.x = linear_vel_x;
odom_msg_.twist.twist.linear.y = linear_vel_y;
odom_msg_.twist.twist.linear.z = 0.0;
//angular speed from encoders
odom_msg_.twist.twist.angular.x = 0.0;
odom_msg_.twist.twist.angular.y = 0.0;
odom_msg_.twist.twist.angular.z = angular_vel_z;
odom_msg_.twist.covariance[0] = 0.0001;
odom_msg_.twist.covariance[7] = 0.0001;
odom_msg_.twist.covariance[35] = 0.0001;
}
nav_msgs__msg__Odometry Odometry::getData()
{
return odom_msg_;
}
const void Odometry::euler_to_quat(float roll, float pitch, float yaw, float* q)
{
float cy = cos(yaw * 0.5);
float sy = sin(yaw * 0.5);
float cp = cos(pitch * 0.5);
float sp = sin(pitch * 0.5);
float cr = cos(roll * 0.5);
float sr = sin(roll * 0.5);
q[0] = cy * cp * cr + sy * sp * sr;
q[1] = cy * cp * sr - sy * sp * cr;
q[2] = sy * cp * sr + cy * sp * cr;
q[3] = sy * cp * cr - cy * sp * sr;
}