386 lines
14 KiB
Python
386 lines
14 KiB
Python
# -*- coding: utf-8 -*-
|
|
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
"""
|
|
Build coefficient of performance (COP) time series for air- or ground-sourced
|
|
heat pumps.
|
|
|
|
The COP is approximated as a quatratic function of the temperature difference between source and
|
|
sink, based on Staffell et al. 2012.
|
|
|
|
This rule is executed in ``build_sector.smk``.
|
|
|
|
Relevant Settings
|
|
-----------------
|
|
|
|
.. code:: yaml
|
|
heat_pump_sink_T:
|
|
|
|
|
|
Inputs:
|
|
-------
|
|
- ``resources/<run_name>/temp_soil_total_elec_s<simpl>_<clusters>.nc``: Soil temperature (total) time series.
|
|
- ``resources/<run_name>/temp_soil_rural_elec_s<simpl>_<clusters>.nc``: Soil temperature (rural) time series.
|
|
- ``resources/<run_name>/temp_soil_urban_elec_s<simpl>_<clusters>.nc``: Soil temperature (urban) time series.
|
|
- ``resources/<run_name>/temp_air_total_elec_s<simpl>_<clusters>.nc``: Ambient air temperature (total) time series.
|
|
- ``resources/<run_name>/temp_air_rural_elec_s<simpl>_<clusters>.nc``: Ambient air temperature (rural) time series.
|
|
- ``resources/<run_name>/temp_air_urban_elec_s<simpl>_<clusters>.nc``: Ambient air temperature (urban) time series.
|
|
|
|
Outputs:
|
|
--------
|
|
- ``resources/cop_soil_total_elec_s<simpl>_<clusters>.nc``: COP (ground-sourced) time series (total).
|
|
- ``resources/cop_soil_rural_elec_s<simpl>_<clusters>.nc``: COP (ground-sourced) time series (rural).
|
|
- ``resources/cop_soil_urban_elec_s<simpl>_<clusters>.nc``: COP (ground-sourced) time series (urban).
|
|
- ``resources/cop_air_total_elec_s<simpl>_<clusters>.nc``: COP (air-sourced) time series (total).
|
|
- ``resources/cop_air_rural_elec_s<simpl>_<clusters>.nc``: COP (air-sourced) time series (rural).
|
|
- ``resources/cop_air_urban_elec_s<simpl>_<clusters>.nc``: COP (air-sourced) time series (urban).
|
|
|
|
|
|
References
|
|
----------
|
|
[1] Staffell et al., Energy & Environmental Science 11 (2012): A review of domestic heat pumps, https://doi.org/10.1039/C2EE22653G.
|
|
"""
|
|
|
|
from typing import Union
|
|
from enum import Enum
|
|
import xarray as xr
|
|
import numpy as np
|
|
from _helpers import set_scenario_config
|
|
|
|
|
|
def coefficient_of_performance_individual_heating(delta_T, source="air"):
|
|
if source == "air":
|
|
return 6.81 - 0.121 * delta_T + 0.000630 * delta_T**2
|
|
elif source == "soil":
|
|
return 8.77 - 0.150 * delta_T + 0.000734 * delta_T**2
|
|
else:
|
|
raise NotImplementedError("'source' must be one of ['air', 'soil']")
|
|
|
|
|
|
def celsius_to_kelvin(t_celsius: Union[float, xr.DataArray, np.array]) -> Union[float, xr.DataArray, np.array]:
|
|
if (np.asarray(t_celsius) > 200).any():
|
|
raise ValueError("t_celsius > 200. Are you sure you are using the right units?")
|
|
return t_celsius + 273.15
|
|
|
|
|
|
def logarithmic_mean(t_hot: Union[float, xr.DataArray, np.ndarray], t_cold: Union[float, xr.DataArray, np.ndarray]) -> Union[float, xr.DataArray, np.ndarray]:
|
|
if (np.asarray(t_hot <= t_cold)).any():
|
|
raise ValueError("t_hot must be greater than t_cold")
|
|
return (t_hot - t_cold) / np.log(t_hot / t_cold)
|
|
|
|
class CopDistrictHeating:
|
|
|
|
def __init__(
|
|
self,
|
|
forward_temperature_celsius: Union[xr.DataArray, np.array],
|
|
source_inlet_temperature_celsius: Union[xr.DataArray, np.array],
|
|
return_temperature_celsius: Union[xr.DataArray, np.array],
|
|
source_outlet_temperature_celsius: Union[xr.DataArray, np.array],
|
|
delta_t_pinch_point: float = 5,
|
|
isentropic_compressor_efficiency: float = 0.8,
|
|
heat_loss: float = 0.0,
|
|
) -> None:
|
|
"""
|
|
Initialize the COPProfileBuilder object.
|
|
|
|
Parameters:
|
|
----------
|
|
forward_temperature_celsius : Union[xr.DataArray, np.array]
|
|
The forward temperature in Celsius.
|
|
return_temperature_celsius : Union[xr.DataArray, np.array]
|
|
The return temperature in Celsius.
|
|
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
|
|
The source inlet temperature in Celsius.
|
|
source_outlet_temperature_celsius : Union[xr.DataArray, np.array]
|
|
The source outlet temperature in Celsius.
|
|
delta_t_pinch_point : float, optional
|
|
The pinch point temperature difference, by default 5.
|
|
isentropic_compressor_efficiency : float, optional
|
|
The isentropic compressor efficiency, by default 0.8.
|
|
heat_loss : float, optional
|
|
The heat loss, by default 0.0.
|
|
"""
|
|
self.t_source_in = celsius_to_kelvin(source_inlet_temperature_celsius)
|
|
self.t_sink_out = celsius_to_kelvin(forward_temperature_celsius)
|
|
|
|
self.t_sink_in = celsius_to_kelvin(return_temperature_celsius)
|
|
self.t_source_out = celsius_to_kelvin(source_outlet_temperature_celsius)
|
|
|
|
self.isentropic_efficiency_compressor = isentropic_compressor_efficiency
|
|
self.heat_loss = heat_loss
|
|
self.delta_t_pinch = delta_t_pinch_point
|
|
|
|
def cop(self) -> Union[xr.DataArray, np.array]:
|
|
"""
|
|
Calculate the coefficient of performance (COP) for the system.
|
|
|
|
Returns:
|
|
Union[xr.DataArray, np.array]: The calculated COP values.
|
|
"""
|
|
return (
|
|
self.ideal_lorenz_cop
|
|
* (
|
|
(
|
|
1
|
|
+ (self.delta_t_refrigerant_sink + self.delta_t_pinch)
|
|
/ self.t_sink_mean
|
|
)
|
|
/ (
|
|
1
|
|
+ (
|
|
self.delta_t_refrigerant_sink
|
|
+ self.delta_t_refrigerant_source
|
|
+ 2 * self.delta_t_pinch
|
|
)
|
|
/ self.delta_t_lift
|
|
)
|
|
)
|
|
* self.isentropic_efficiency_compressor
|
|
* (1 - self.ratio_evaporation_compression_work)
|
|
+ 1
|
|
- self.isentropic_efficiency_compressor
|
|
- self.heat_loss
|
|
)
|
|
|
|
@property
|
|
def t_sink_mean(self) -> Union[xr.DataArray, np.array]:
|
|
"""
|
|
Calculate the logarithmic mean temperature difference between the cold and hot sinks.
|
|
|
|
Returns
|
|
-------
|
|
Union[xr.DataArray, np.array]
|
|
The mean temperature difference.
|
|
"""
|
|
return logarithmic_mean(t_cold=self.t_sink_in, t_hot=self.t_sink_out)
|
|
|
|
@property
|
|
def t_source_mean(self) -> Union[xr.DataArray, np.array]:
|
|
"""
|
|
Calculate the logarithmic mean temperature of the heat source.
|
|
|
|
Returns
|
|
-------
|
|
Union[xr.DataArray, np.array]
|
|
The mean temperature of the heat source.
|
|
"""
|
|
return logarithmic_mean(t_hot=self.t_source_in, t_cold=self.t_source_out)
|
|
|
|
@property
|
|
def delta_t_lift(self) -> Union[xr.DataArray, np.array]:
|
|
"""
|
|
Calculate the temperature lift as the difference between the logarithmic sink and source temperatures.
|
|
|
|
Returns
|
|
-------
|
|
Union[xr.DataArray, np.array]
|
|
The temperature difference between the sink and source.
|
|
"""
|
|
return self.t_sink_mean - self.t_source_mean
|
|
|
|
@property
|
|
def ideal_lorenz_cop(self) -> Union[xr.DataArray, np.array]:
|
|
"""
|
|
Ideal Lorenz coefficient of performance (COP).
|
|
|
|
The ideal Lorenz COP is calculated as the ratio of the mean sink temperature
|
|
to the lift temperature difference.
|
|
|
|
Returns
|
|
-------
|
|
np.array
|
|
The ideal Lorenz COP.
|
|
|
|
"""
|
|
return self.t_sink_mean / self.delta_t_lift
|
|
|
|
@property
|
|
def delta_t_refrigerant_source(self) -> Union[xr.DataArray, np.array]:
|
|
"""
|
|
Calculate the temperature difference between the refrigerant source inlet and outlet.
|
|
|
|
Returns
|
|
-------
|
|
Union[xr.DataArray, np.array]
|
|
The temperature difference between the refrigerant source inlet and outlet.
|
|
"""
|
|
return self._approximate_delta_t_refrigerant_source(
|
|
delta_t_source=self.t_source_in - self.t_source_out
|
|
)
|
|
|
|
@property
|
|
def delta_t_refrigerant_sink(self) -> Union[xr.DataArray, np.array]:
|
|
"""
|
|
Temperature difference between the refrigerant and the sink based on approximation.
|
|
|
|
Returns
|
|
-------
|
|
Union[xr.DataArray, np.array]
|
|
The temperature difference between the refrigerant and the sink.
|
|
"""
|
|
return self._approximate_delta_t_refrigerant_sink()
|
|
|
|
@property
|
|
def ratio_evaporation_compression_work(self) -> Union[xr.DataArray, np.array]:
|
|
"""
|
|
Calculate the ratio of evaporation to compression work based on approximation.
|
|
|
|
Returns
|
|
-------
|
|
Union[xr.DataArray, np.array]
|
|
The calculated ratio of evaporation to compression work.
|
|
"""
|
|
return self._ratio_evaporation_compression_work_approximation()
|
|
|
|
@property
|
|
def delta_t_sink(self) -> Union[xr.DataArray, np.array]:
|
|
"""
|
|
Calculate the temperature difference at the sink.
|
|
|
|
Returns
|
|
-------
|
|
Union[xr.DataArray, np.array]
|
|
The temperature difference at the sink.
|
|
"""
|
|
return self.t_sink_out - self.t_sink_in
|
|
|
|
def _approximate_delta_t_refrigerant_source(
|
|
self, delta_t_source: Union[xr.DataArray, np.array]
|
|
) -> Union[xr.DataArray, np.array]:
|
|
"""
|
|
Approximates the temperature difference between the refrigerant and the source.
|
|
|
|
Parameters
|
|
----------
|
|
delta_t_source : Union[xr.DataArray, np.array]
|
|
The temperature difference for the refrigerant source.
|
|
|
|
Returns
|
|
-------
|
|
Union[xr.DataArray, np.array]
|
|
The approximate temperature difference for the refrigerant source.
|
|
"""
|
|
return delta_t_source / 2
|
|
|
|
def _approximate_delta_t_refrigerant_sink(
|
|
self,
|
|
refrigerant: str = "ammonia",
|
|
a: float = {"ammonia": 0.2, "isobutane": -0.0011},
|
|
b: float = {"ammonia": 0.2, "isobutane": 0.3},
|
|
c: float = {"ammonia": 0.016, "isobutane": 2.4},
|
|
) -> Union[xr.DataArray, np.array]:
|
|
"""
|
|
Approximates the temperature difference at the refrigerant sink.
|
|
|
|
Parameters:
|
|
----------
|
|
refrigerant : str, optional
|
|
The refrigerant used in the system. Either 'isobutane' or 'ammonia. Default is 'ammonia'.
|
|
a : float, optional
|
|
Coefficient for the temperature difference between the sink and source, default is 0.2.
|
|
b : float, optional
|
|
Coefficient for the temperature difference at the sink, default is 0.2.
|
|
c : float, optional
|
|
Constant term, default is 0.016.
|
|
|
|
Returns:
|
|
-------
|
|
Union[xr.DataArray, np.array]
|
|
The approximate temperature difference at the refrigerant sink.
|
|
|
|
Notes:
|
|
------
|
|
This function assumes ammonia as the refrigerant.
|
|
|
|
The approximate temperature difference at the refrigerant sink is calculated using the following formula:
|
|
a * (t_sink_out - t_source_out + 2 * delta_t_pinch) + b * delta_t_sink + c
|
|
|
|
"""
|
|
if refrigerant not in a.keys():
|
|
raise ValueError(
|
|
f"Invalid refrigerant '{refrigerant}'. Must be one of {a.keys()}"
|
|
)
|
|
return (
|
|
a[refrigerant]
|
|
* (self.t_sink_out - self.t_source_out + 2 * self.delta_t_pinch)
|
|
+ b[refrigerant] * self.delta_t_sink
|
|
+ c[refrigerant]
|
|
)
|
|
|
|
def _ratio_evaporation_compression_work_approximation(
|
|
self,
|
|
refrigerant: str = "ammonia",
|
|
a: float = {"ammonia": 0.0014, "isobutane": 0.0035},
|
|
b: float = {"ammonia": -0.0015, "isobutane": -0.0033},
|
|
c: float = {"ammonia": 0.039, "isobutane": 0.053},
|
|
) -> Union[xr.DataArray, np.array]:
|
|
"""
|
|
Calculate the ratio of evaporation to compression work approximation.
|
|
|
|
Parameters:
|
|
----------
|
|
refrigerant : str, optional
|
|
The refrigerant used in the system. Either 'isobutane' or 'ammonia. Default is 'ammonia'.
|
|
a : float, optional
|
|
Coefficient 'a' in the approximation equation. Default is 0.0014.
|
|
b : float, optional
|
|
Coefficient 'b' in the approximation equation. Default is -0.0015.
|
|
c : float, optional
|
|
Coefficient 'c' in the approximation equation. Default is 0.039.
|
|
|
|
Returns:
|
|
-------
|
|
Union[xr.DataArray, np.array]
|
|
The calculated ratio of evaporation to compression work.
|
|
|
|
Notes:
|
|
------
|
|
This function assumes ammonia as the refrigerant.
|
|
|
|
The approximation equation used is:
|
|
ratio = a * (t_sink_out - t_source_out + 2 * delta_t_pinch) + b * delta_t_sink + c
|
|
"""
|
|
if refrigerant not in a.keys():
|
|
raise ValueError(
|
|
f"Invalid refrigerant '{refrigerant}'. Must be one of {a.keys()}"
|
|
)
|
|
return (
|
|
a[refrigerant]
|
|
* (self.t_sink_out - self.t_source_out + 2 * self.delta_t_pinch)
|
|
+ b[refrigerant] * self.delta_t_sink
|
|
+ c[refrigerant]
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if "snakemake" not in globals():
|
|
from _helpers import mock_snakemake
|
|
|
|
snakemake = mock_snakemake(
|
|
"build_cop_profiles",
|
|
simpl="",
|
|
clusters=48,
|
|
)
|
|
|
|
set_scenario_config(snakemake)
|
|
|
|
for source in ["air", "soil"]:
|
|
source_T = xr.open_dataarray(snakemake.input[f"temp_{source}_total"])
|
|
|
|
delta_T = snakemake.params.heat_pump_sink_T_individual_heating - source_T
|
|
|
|
cop_individual_heating = coefficient_of_performance_individual_heating(delta_T, source)
|
|
cop_individual_heating.to_netcdf(snakemake.output[f"cop_{source}_individual_heating"])
|
|
|
|
cop_district_heating = CopDistrictHeating(
|
|
forward_temperature_celsius=snakemake.params.forward_temperature_district_heating,
|
|
return_temperature_celsius=snakemake.params.return_temperature_district_heating,
|
|
source_inlet_temperature_celsius=source_T,
|
|
source_outlet_temperature_celsius=source_T - snakemake.params.heat_source_cooling_district_heating,
|
|
).cop()
|
|
|
|
cop_district_heating.to_netcdf(snakemake.output[f"cop_{source}_district_heating"])
|
|
|
|
|