build district heating heat pump COPs using approximation from Jensen et al. and values from Pieper et al.
This commit is contained in:
parent
167b056def
commit
f3c898f43d
@ -418,6 +418,15 @@ sector:
|
||||
2045: 0.8
|
||||
2050: 1.0
|
||||
district_heating_loss: 0.15
|
||||
# check these numbers!
|
||||
forward_temperature: 90 #C
|
||||
return_temperature: 60 #C
|
||||
heat_source_cooling: 6 #K
|
||||
heat_pump_cop_approximation:
|
||||
refrigerant: ammonia
|
||||
heat_exchanger_pinch_point_temperature_difference: 5 #K
|
||||
isentropic_compressor_efficiency: 0.8
|
||||
heat_loss: 0.0
|
||||
cluster_heat_buses: true
|
||||
heat_demand_cutout: default
|
||||
bev_dsm_restriction_value: 0.75
|
||||
@ -500,7 +509,7 @@ sector:
|
||||
aviation_demand_factor: 1.
|
||||
HVC_demand_factor: 1.
|
||||
time_dep_hp_cop: true
|
||||
heat_pump_sink_T: 55.
|
||||
heat_pump_sink_T_individual_heating: 55.
|
||||
reduce_space_heat_exogenously: true
|
||||
reduce_space_heat_exogenously_factor:
|
||||
2020: 0.10 # this results in a space heat demand reduction of 10%
|
||||
|
@ -217,13 +217,19 @@ rule build_temperature_profiles:
|
||||
|
||||
rule build_cop_profiles:
|
||||
params:
|
||||
heat_pump_sink_T=config_provider("sector", "heat_pump_sink_T"),
|
||||
heat_pump_sink_T_individual_heating=config_provider("sector", "heat_pump_sink_T_individual_heating"),
|
||||
forward_temperature_district_heating=config_provider("sector", "district_heating", "forward_temperature"),
|
||||
return_temperature_district_heating=config_provider("sector", "district_heating", "return_temperature"),
|
||||
heat_source_cooling_district_heating=config_provider("sector", "district_heating", "heat_source_cooling"),
|
||||
heat_pump_cop_approximation=config_provider("sector", "district_heating", "heat_pump_cop_approximation"),
|
||||
input:
|
||||
temp_soil_total=resources("temp_soil_total_elec_s{simpl}_{clusters}.nc"),
|
||||
temp_air_total=resources("temp_air_total_elec_s{simpl}_{clusters}.nc"),
|
||||
output:
|
||||
cop_soil_individual_heating=resources("cop_soil_individual_heating_elec_s{simpl}_{clusters}.nc"),
|
||||
cop_air_individual_heating=resources("cop_air_individual_heating_elec_s{simpl}_{clusters}.nc"),
|
||||
cop_air_district_heating=resources("cop_air_district_heating_elec_s{simpl}_{clusters}.nc"),
|
||||
cop_soil_district_heating=resources("cop_soil_district_heating_elec_s{simpl}_{clusters}.nc"),
|
||||
resources:
|
||||
mem_mb=20000,
|
||||
log:
|
||||
@ -1023,6 +1029,8 @@ rule prepare_sector_network:
|
||||
temp_air_urban=resources("temp_air_urban_elec_s{simpl}_{clusters}.nc"),
|
||||
cop_soil_individual_heating=resources("cop_soil_individual_heating_elec_s{simpl}_{clusters}.nc"),
|
||||
cop_air_individual_heating=resources("cop_air_individual_heating_elec_s{simpl}_{clusters}.nc"),
|
||||
cop_air_district_heating=resources("cop_air_district_heating_elec_s{simpl}_{clusters}.nc"),
|
||||
cop_soil_district_heating=resources("cop_soil_district_heating_elec_s{simpl}_{clusters}.nc"),
|
||||
solar_thermal_total=lambda w: (
|
||||
resources("solar_thermal_total_elec_s{simpl}_{clusters}.nc")
|
||||
if config_provider("sector", "solar_thermal")(w)
|
||||
|
@ -42,11 +42,14 @@ References
|
||||
[1] Staffell et al., Energy & Environmental Science 11 (2012): A review of domestic heat pumps, https://doi.org/10.1039/C2EE22653G.
|
||||
"""
|
||||
|
||||
from typing import Union
|
||||
from enum import Enum
|
||||
import xarray as xr
|
||||
import numpy as np
|
||||
from _helpers import set_scenario_config
|
||||
|
||||
|
||||
def coefficient_of_performance(delta_T, source="air"):
|
||||
def coefficient_of_performance_individual_heating(delta_T, source="air"):
|
||||
if source == "air":
|
||||
return 6.81 - 0.121 * delta_T + 0.000630 * delta_T**2
|
||||
elif source == "soil":
|
||||
@ -55,6 +58,301 @@ def coefficient_of_performance(delta_T, source="air"):
|
||||
raise NotImplementedError("'source' must be one of ['air', 'soil']")
|
||||
|
||||
|
||||
def celsius_to_kelvin(t_celsius: Union[float, xr.DataArray, np.array]) -> Union[float, xr.DataArray, np.array]:
|
||||
if (np.asarray(t_celsius) > 200).any():
|
||||
raise ValueError("t_celsius > 200. Are you sure you are using the right units?")
|
||||
return t_celsius + 273.15
|
||||
|
||||
|
||||
def logarithmic_mean(t_hot: Union[float, xr.DataArray, np.ndarray], t_cold: Union[float, xr.DataArray, np.ndarray]) -> Union[float, xr.DataArray, np.ndarray]:
|
||||
if (np.asarray(t_hot <= t_cold)).any():
|
||||
raise ValueError("t_hot must be greater than t_cold")
|
||||
return (t_hot - t_cold) / np.log(t_hot / t_cold)
|
||||
|
||||
class CopDistrictHeating:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
forward_temperature_celsius: Union[xr.DataArray, np.array],
|
||||
source_inlet_temperature_celsius: Union[xr.DataArray, np.array],
|
||||
return_temperature_celsius: Union[xr.DataArray, np.array],
|
||||
source_outlet_temperature_celsius: Union[xr.DataArray, np.array],
|
||||
delta_t_pinch_point: float = 5,
|
||||
isentropic_compressor_efficiency: float = 0.8,
|
||||
heat_loss: float = 0.0,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the COPProfileBuilder object.
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
forward_temperature_celsius : Union[xr.DataArray, np.array]
|
||||
The forward temperature in Celsius.
|
||||
return_temperature_celsius : Union[xr.DataArray, np.array]
|
||||
The return temperature in Celsius.
|
||||
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
|
||||
The source inlet temperature in Celsius.
|
||||
source_outlet_temperature_celsius : Union[xr.DataArray, np.array]
|
||||
The source outlet temperature in Celsius.
|
||||
delta_t_pinch_point : float, optional
|
||||
The pinch point temperature difference, by default 5.
|
||||
isentropic_compressor_efficiency : float, optional
|
||||
The isentropic compressor efficiency, by default 0.8.
|
||||
heat_loss : float, optional
|
||||
The heat loss, by default 0.0.
|
||||
"""
|
||||
self.t_source_in = celsius_to_kelvin(source_inlet_temperature_celsius)
|
||||
self.t_sink_out = celsius_to_kelvin(forward_temperature_celsius)
|
||||
|
||||
self.t_sink_in = celsius_to_kelvin(return_temperature_celsius)
|
||||
self.t_source_out = celsius_to_kelvin(source_outlet_temperature_celsius)
|
||||
|
||||
self.isentropic_efficiency_compressor = isentropic_compressor_efficiency
|
||||
self.heat_loss = heat_loss
|
||||
self.delta_t_pinch = delta_t_pinch_point
|
||||
|
||||
def cop(self) -> Union[xr.DataArray, np.array]:
|
||||
"""
|
||||
Calculate the coefficient of performance (COP) for the system.
|
||||
|
||||
Returns:
|
||||
Union[xr.DataArray, np.array]: The calculated COP values.
|
||||
"""
|
||||
return (
|
||||
self.ideal_lorenz_cop
|
||||
* (
|
||||
(
|
||||
1
|
||||
+ (self.delta_t_refrigerant_sink + self.delta_t_pinch)
|
||||
/ self.t_sink_mean
|
||||
)
|
||||
/ (
|
||||
1
|
||||
+ (
|
||||
self.delta_t_refrigerant_sink
|
||||
+ self.delta_t_refrigerant_source
|
||||
+ 2 * self.delta_t_pinch
|
||||
)
|
||||
/ self.delta_t_lift
|
||||
)
|
||||
)
|
||||
* self.isentropic_efficiency_compressor
|
||||
* (1 - self.ratio_evaporation_compression_work)
|
||||
+ 1
|
||||
- self.isentropic_efficiency_compressor
|
||||
- self.heat_loss
|
||||
)
|
||||
|
||||
@property
|
||||
def t_sink_mean(self) -> Union[xr.DataArray, np.array]:
|
||||
"""
|
||||
Calculate the logarithmic mean temperature difference between the cold and hot sinks.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Union[xr.DataArray, np.array]
|
||||
The mean temperature difference.
|
||||
"""
|
||||
return logarithmic_mean(t_cold=self.t_sink_in, t_hot=self.t_sink_out)
|
||||
|
||||
@property
|
||||
def t_source_mean(self) -> Union[xr.DataArray, np.array]:
|
||||
"""
|
||||
Calculate the logarithmic mean temperature of the heat source.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Union[xr.DataArray, np.array]
|
||||
The mean temperature of the heat source.
|
||||
"""
|
||||
return logarithmic_mean(t_hot=self.t_source_in, t_cold=self.t_source_out)
|
||||
|
||||
@property
|
||||
def delta_t_lift(self) -> Union[xr.DataArray, np.array]:
|
||||
"""
|
||||
Calculate the temperature lift as the difference between the logarithmic sink and source temperatures.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Union[xr.DataArray, np.array]
|
||||
The temperature difference between the sink and source.
|
||||
"""
|
||||
return self.t_sink_mean - self.t_source_mean
|
||||
|
||||
@property
|
||||
def ideal_lorenz_cop(self) -> Union[xr.DataArray, np.array]:
|
||||
"""
|
||||
Ideal Lorenz coefficient of performance (COP).
|
||||
|
||||
The ideal Lorenz COP is calculated as the ratio of the mean sink temperature
|
||||
to the lift temperature difference.
|
||||
|
||||
Returns
|
||||
-------
|
||||
np.array
|
||||
The ideal Lorenz COP.
|
||||
|
||||
"""
|
||||
return self.t_sink_mean / self.delta_t_lift
|
||||
|
||||
@property
|
||||
def delta_t_refrigerant_source(self) -> Union[xr.DataArray, np.array]:
|
||||
"""
|
||||
Calculate the temperature difference between the refrigerant source inlet and outlet.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Union[xr.DataArray, np.array]
|
||||
The temperature difference between the refrigerant source inlet and outlet.
|
||||
"""
|
||||
return self._approximate_delta_t_refrigerant_source(
|
||||
delta_t_source=self.t_source_in - self.t_source_out
|
||||
)
|
||||
|
||||
@property
|
||||
def delta_t_refrigerant_sink(self) -> Union[xr.DataArray, np.array]:
|
||||
"""
|
||||
Temperature difference between the refrigerant and the sink based on approximation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Union[xr.DataArray, np.array]
|
||||
The temperature difference between the refrigerant and the sink.
|
||||
"""
|
||||
return self._approximate_delta_t_refrigerant_sink()
|
||||
|
||||
@property
|
||||
def ratio_evaporation_compression_work(self) -> Union[xr.DataArray, np.array]:
|
||||
"""
|
||||
Calculate the ratio of evaporation to compression work based on approximation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Union[xr.DataArray, np.array]
|
||||
The calculated ratio of evaporation to compression work.
|
||||
"""
|
||||
return self._ratio_evaporation_compression_work_approximation()
|
||||
|
||||
@property
|
||||
def delta_t_sink(self) -> Union[xr.DataArray, np.array]:
|
||||
"""
|
||||
Calculate the temperature difference at the sink.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Union[xr.DataArray, np.array]
|
||||
The temperature difference at the sink.
|
||||
"""
|
||||
return self.t_sink_out - self.t_sink_in
|
||||
|
||||
def _approximate_delta_t_refrigerant_source(
|
||||
self, delta_t_source: Union[xr.DataArray, np.array]
|
||||
) -> Union[xr.DataArray, np.array]:
|
||||
"""
|
||||
Approximates the temperature difference between the refrigerant and the source.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
delta_t_source : Union[xr.DataArray, np.array]
|
||||
The temperature difference for the refrigerant source.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Union[xr.DataArray, np.array]
|
||||
The approximate temperature difference for the refrigerant source.
|
||||
"""
|
||||
return delta_t_source / 2
|
||||
|
||||
def _approximate_delta_t_refrigerant_sink(
|
||||
self,
|
||||
refrigerant: str = "ammonia",
|
||||
a: float = {"ammonia": 0.2, "isobutane": -0.0011},
|
||||
b: float = {"ammonia": 0.2, "isobutane": 0.3},
|
||||
c: float = {"ammonia": 0.016, "isobutane": 2.4},
|
||||
) -> Union[xr.DataArray, np.array]:
|
||||
"""
|
||||
Approximates the temperature difference at the refrigerant sink.
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
refrigerant : str, optional
|
||||
The refrigerant used in the system. Either 'isobutane' or 'ammonia. Default is 'ammonia'.
|
||||
a : float, optional
|
||||
Coefficient for the temperature difference between the sink and source, default is 0.2.
|
||||
b : float, optional
|
||||
Coefficient for the temperature difference at the sink, default is 0.2.
|
||||
c : float, optional
|
||||
Constant term, default is 0.016.
|
||||
|
||||
Returns:
|
||||
-------
|
||||
Union[xr.DataArray, np.array]
|
||||
The approximate temperature difference at the refrigerant sink.
|
||||
|
||||
Notes:
|
||||
------
|
||||
This function assumes ammonia as the refrigerant.
|
||||
|
||||
The approximate temperature difference at the refrigerant sink is calculated using the following formula:
|
||||
a * (t_sink_out - t_source_out + 2 * delta_t_pinch) + b * delta_t_sink + c
|
||||
|
||||
"""
|
||||
if refrigerant not in a.keys():
|
||||
raise ValueError(
|
||||
f"Invalid refrigerant '{refrigerant}'. Must be one of {a.keys()}"
|
||||
)
|
||||
return (
|
||||
a[refrigerant]
|
||||
* (self.t_sink_out - self.t_source_out + 2 * self.delta_t_pinch)
|
||||
+ b[refrigerant] * self.delta_t_sink
|
||||
+ c[refrigerant]
|
||||
)
|
||||
|
||||
def _ratio_evaporation_compression_work_approximation(
|
||||
self,
|
||||
refrigerant: str = "ammonia",
|
||||
a: float = {"ammonia": 0.0014, "isobutane": 0.0035},
|
||||
b: float = {"ammonia": -0.0015, "isobutane": -0.0033},
|
||||
c: float = {"ammonia": 0.039, "isobutane": 0.053},
|
||||
) -> Union[xr.DataArray, np.array]:
|
||||
"""
|
||||
Calculate the ratio of evaporation to compression work approximation.
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
refrigerant : str, optional
|
||||
The refrigerant used in the system. Either 'isobutane' or 'ammonia. Default is 'ammonia'.
|
||||
a : float, optional
|
||||
Coefficient 'a' in the approximation equation. Default is 0.0014.
|
||||
b : float, optional
|
||||
Coefficient 'b' in the approximation equation. Default is -0.0015.
|
||||
c : float, optional
|
||||
Coefficient 'c' in the approximation equation. Default is 0.039.
|
||||
|
||||
Returns:
|
||||
-------
|
||||
Union[xr.DataArray, np.array]
|
||||
The calculated ratio of evaporation to compression work.
|
||||
|
||||
Notes:
|
||||
------
|
||||
This function assumes ammonia as the refrigerant.
|
||||
|
||||
The approximation equation used is:
|
||||
ratio = a * (t_sink_out - t_source_out + 2 * delta_t_pinch) + b * delta_t_sink + c
|
||||
"""
|
||||
if refrigerant not in a.keys():
|
||||
raise ValueError(
|
||||
f"Invalid refrigerant '{refrigerant}'. Must be one of {a.keys()}"
|
||||
)
|
||||
return (
|
||||
a[refrigerant]
|
||||
* (self.t_sink_out - self.t_source_out + 2 * self.delta_t_pinch)
|
||||
+ b[refrigerant] * self.delta_t_sink
|
||||
+ c[refrigerant]
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
@ -70,8 +368,18 @@ if __name__ == "__main__":
|
||||
for source in ["air", "soil"]:
|
||||
source_T = xr.open_dataarray(snakemake.input[f"temp_{source}_total"])
|
||||
|
||||
delta_T = snakemake.params.heat_pump_sink_T - source_T
|
||||
delta_T = snakemake.params.heat_pump_sink_T_individual_heating - source_T
|
||||
|
||||
cop = coefficient_of_performance(delta_T, source)
|
||||
cop_individual_heating = coefficient_of_performance_individual_heating(delta_T, source)
|
||||
cop_individual_heating.to_netcdf(snakemake.output[f"cop_{source}_individual_heating"])
|
||||
|
||||
cop.to_netcdf(snakemake.output[f"cop_{source}_individual_heating"])
|
||||
cop_district_heating = CopDistrictHeating(
|
||||
forward_temperature_celsius=snakemake.params.forward_temperature_district_heating,
|
||||
return_temperature_celsius=snakemake.params.return_temperature_district_heating,
|
||||
source_inlet_temperature_celsius=source_T,
|
||||
source_outlet_temperature_celsius=source_T - snakemake.params.heat_source_cooling_district_heating,
|
||||
).cop()
|
||||
|
||||
cop_district_heating.to_netcdf(snakemake.output[f"cop_{source}_district_heating"])
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user