pypsa-eur/scripts/plot_network.py

1352 lines
38 KiB
Python
Executable File

# -*- coding: utf-8 -*-
<<<<<<< HEAD
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Plots map with pie charts and cost box bar charts.
Relevant Settings
-----------------
Inputs
------
Outputs
-------
Description
-----------
"""
import logging
import cartopy.crs as ccrs
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from _helpers import (
aggregate_costs,
aggregate_p,
configure_logging,
load_network_for_plots,
)
from matplotlib.legend_handler import HandlerPatch
from matplotlib.patches import Circle, Ellipse
to_rgba = mpl.colors.colorConverter.to_rgba
logger = logging.getLogger(__name__)
def make_handler_map_to_scale_circles_as_in(ax, dont_resize_actively=False):
fig = ax.get_figure()
def axes2pt():
return np.diff(ax.transData.transform([(0, 0), (1, 1)]), axis=0)[0] * (
72.0 / fig.dpi
)
ellipses = []
if not dont_resize_actively:
def update_width_height(event):
dist = axes2pt()
for e, radius in ellipses:
e.width, e.height = 2.0 * radius * dist
fig.canvas.mpl_connect("resize_event", update_width_height)
ax.callbacks.connect("xlim_changed", update_width_height)
ax.callbacks.connect("ylim_changed", update_width_height)
def legend_circle_handler(
legend, orig_handle, xdescent, ydescent, width, height, fontsize
):
w, h = 2.0 * orig_handle.get_radius() * axes2pt()
e = Ellipse(
xy=(0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent),
width=w,
height=w,
)
ellipses.append((e, orig_handle.get_radius()))
return e
return {Circle: HandlerPatch(patch_func=legend_circle_handler)}
def make_legend_circles_for(sizes, scale=1.0, **kw):
return [Circle((0, 0), radius=(s / scale) ** 0.5, **kw) for s in sizes]
def set_plot_style():
plt.style.use(
[
"classic",
"seaborn-white",
{
"axes.grid": False,
"grid.linestyle": "--",
"grid.color": "0.6",
"hatch.color": "white",
"patch.linewidth": 0.5,
"font.size": 12,
"legend.fontsize": "medium",
"lines.linewidth": 1.5,
"pdf.fonttype": 42,
},
]
)
def plot_map(n, opts, ax=None, attribute="p_nom"):
if ax is None:
ax = plt.gca()
## DATA
line_colors = {
"cur": "purple",
"exp": mpl.colors.rgb2hex(to_rgba("red", 0.7), True),
}
tech_colors = opts["tech_colors"]
if attribute == "p_nom":
# bus_sizes = n.generators_t.p.sum().loc[n.generators.carrier == "load"].groupby(n.generators.bus).sum()
bus_sizes = pd.concat(
(
n.generators.query('carrier != "load"')
.groupby(["bus", "carrier"])
.p_nom_opt.sum(),
n.storage_units.groupby(["bus", "carrier"]).p_nom_opt.sum(),
)
)
line_widths_exp = n.lines.s_nom_opt
line_widths_cur = n.lines.s_nom_min
link_widths_exp = n.links.p_nom_opt
link_widths_cur = n.links.p_nom_min
else:
raise "plotting of {} has not been implemented yet".format(attribute)
line_colors_with_alpha = (line_widths_cur / n.lines.s_nom > 1e-3).map(
{True: line_colors["cur"], False: to_rgba(line_colors["cur"], 0.0)}
)
link_colors_with_alpha = (link_widths_cur / n.links.p_nom > 1e-3).map(
{True: line_colors["cur"], False: to_rgba(line_colors["cur"], 0.0)}
)
## FORMAT
linewidth_factor = opts["map"][attribute]["linewidth_factor"]
bus_size_factor = opts["map"][attribute]["bus_size_factor"]
## PLOT
n.plot(
line_widths=line_widths_exp / linewidth_factor,
link_widths=link_widths_exp / linewidth_factor,
line_colors=line_colors["exp"],
link_colors=line_colors["exp"],
bus_sizes=bus_sizes / bus_size_factor,
bus_colors=tech_colors,
boundaries=map_boundaries,
color_geomap=True,
geomap=True,
ax=ax,
)
n.plot(
line_widths=line_widths_cur / linewidth_factor,
link_widths=link_widths_cur / linewidth_factor,
line_colors=line_colors_with_alpha,
link_colors=link_colors_with_alpha,
bus_sizes=0,
boundaries=map_boundaries,
color_geomap=True,
geomap=True,
ax=ax,
)
ax.set_aspect("equal")
ax.axis("off")
# Rasterize basemap
# TODO : Check if this also works with cartopy
for c in ax.collections[:2]:
c.set_rasterized(True)
# LEGEND
handles = []
labels = []
for s in (10, 1):
handles.append(
plt.Line2D(
[0], [0], color=line_colors["exp"], linewidth=s * 1e3 / linewidth_factor
)
)
labels.append("{} GW".format(s))
=======
import logging
logger = logging.getLogger(__name__)
import cartopy.crs as ccrs
import geopandas as gpd
import matplotlib.pyplot as plt
import pandas as pd
import pypsa
from helper import override_component_attrs
from make_summary import assign_carriers
from plot_summary import preferred_order, rename_techs
from pypsa.plot import add_legend_circles, add_legend_lines, add_legend_patches
plt.style.use(["ggplot", "matplotlibrc"])
def rename_techs_tyndp(tech):
tech = rename_techs(tech)
if "heat pump" in tech or "resistive heater" in tech:
return "power-to-heat"
elif tech in ["H2 Electrolysis", "methanation", "helmeth", "H2 liquefaction"]:
return "power-to-gas"
elif tech == "H2":
return "H2 storage"
elif tech in ["NH3", "Haber-Bosch", "ammonia cracker", "ammonia store"]:
return "ammonia"
elif tech in ["OCGT", "CHP", "gas boiler", "H2 Fuel Cell"]:
return "gas-to-power/heat"
# elif "solar" in tech:
# return "solar"
elif tech in ["Fischer-Tropsch", "methanolisation"]:
return "power-to-liquid"
elif "offshore wind" in tech:
return "offshore wind"
elif "CC" in tech or "sequestration" in tech:
return "CCS"
else:
return tech
def assign_location(n):
for c in n.iterate_components(n.one_port_components | n.branch_components):
ifind = pd.Series(c.df.index.str.find(" ", start=4), c.df.index)
for i in ifind.value_counts().index:
# these have already been assigned defaults
if i == -1:
continue
names = ifind.index[ifind == i]
c.df.loc[names, "location"] = names.str[:i]
def plot_map(
network,
components=["links", "stores", "storage_units", "generators"],
bus_size_factor=1.7e10,
transmission=False,
with_legend=True,
):
tech_colors = snakemake.config["plotting"]["tech_colors"]
n = network.copy()
assign_location(n)
# Drop non-electric buses so they don't clutter the plot
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
costs = pd.DataFrame(index=n.buses.index)
for comp in components:
df_c = getattr(n, comp)
if df_c.empty:
continue
df_c["nice_group"] = df_c.carrier.map(rename_techs_tyndp)
attr = "e_nom_opt" if comp == "stores" else "p_nom_opt"
costs_c = (
(df_c.capital_cost * df_c[attr])
.groupby([df_c.location, df_c.nice_group])
.sum()
.unstack()
.fillna(0.0)
)
costs = pd.concat([costs, costs_c], axis=1)
logger.debug(f"{comp}, {costs}")
costs = costs.groupby(costs.columns, axis=1).sum()
costs.drop(list(costs.columns[(costs == 0.0).all()]), axis=1, inplace=True)
new_columns = preferred_order.intersection(costs.columns).append(
costs.columns.difference(preferred_order)
)
costs = costs[new_columns]
for item in new_columns:
if item not in tech_colors:
logger.warning(f"{item} not in config/plotting/tech_colors")
costs = costs.stack() # .sort_index()
# hack because impossible to drop buses...
eu_location = snakemake.config["plotting"].get(
"eu_node_location", dict(x=-5.5, y=46)
)
n.buses.loc["EU gas", "x"] = eu_location["x"]
n.buses.loc["EU gas", "y"] = eu_location["y"]
n.links.drop(
n.links.index[(n.links.carrier != "DC") & (n.links.carrier != "B2B")],
inplace=True,
)
# drop non-bus
to_drop = costs.index.levels[0].symmetric_difference(n.buses.index)
if len(to_drop) != 0:
logger.info(f"Dropping non-buses {to_drop.tolist()}")
costs.drop(to_drop, level=0, inplace=True, axis=0, errors="ignore")
# make sure they are removed from index
costs.index = pd.MultiIndex.from_tuples(costs.index.values)
threshold = 100e6 # 100 mEUR/a
carriers = costs.groupby(level=1).sum()
carriers = carriers.where(carriers > threshold).dropna()
carriers = list(carriers.index)
# PDF has minimum width, so set these to zero
line_lower_threshold = 500.0
line_upper_threshold = 1e4
linewidth_factor = 4e3
ac_color = "rosybrown"
dc_color = "darkseagreen"
if snakemake.wildcards["lv"] == "1.0":
# should be zero
line_widths = n.lines.s_nom_opt - n.lines.s_nom
link_widths = n.links.p_nom_opt - n.links.p_nom
title = "added grid"
if transmission:
line_widths = n.lines.s_nom_opt
link_widths = n.links.p_nom_opt
linewidth_factor = 2e3
line_lower_threshold = 0.0
title = "current grid"
else:
line_widths = n.lines.s_nom_opt - n.lines.s_nom_min
link_widths = n.links.p_nom_opt - n.links.p_nom_min
title = "added grid"
if transmission:
line_widths = n.lines.s_nom_opt
link_widths = n.links.p_nom_opt
title = "total grid"
line_widths = line_widths.clip(line_lower_threshold, line_upper_threshold)
link_widths = link_widths.clip(line_lower_threshold, line_upper_threshold)
line_widths = line_widths.replace(line_lower_threshold, 0)
link_widths = link_widths.replace(line_lower_threshold, 0)
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.EqualEarth()})
fig.set_size_inches(7, 6)
n.plot(
bus_sizes=costs / bus_size_factor,
bus_colors=tech_colors,
line_colors=ac_color,
link_colors=dc_color,
line_widths=line_widths / linewidth_factor,
link_widths=link_widths / linewidth_factor,
ax=ax,
**map_opts,
)
sizes = [20, 10, 5]
labels = [f"{s} bEUR/a" for s in sizes]
sizes = [s / bus_size_factor * 1e9 for s in sizes]
legend_kw = dict(
loc="upper left",
bbox_to_anchor=(0.01, 1.06),
labelspacing=0.8,
frameon=False,
handletextpad=0,
title="system cost",
)
add_legend_circles(
ax,
sizes,
labels,
srid=n.srid,
patch_kw=dict(facecolor="lightgrey"),
legend_kw=legend_kw,
)
sizes = [10, 5]
labels = [f"{s} GW" for s in sizes]
scale = 1e3 / linewidth_factor
sizes = [s * scale for s in sizes]
legend_kw = dict(
loc="upper left",
bbox_to_anchor=(0.27, 1.06),
frameon=False,
labelspacing=0.8,
handletextpad=1,
title=title,
)
add_legend_lines(
ax, sizes, labels, patch_kw=dict(color="lightgrey"), legend_kw=legend_kw
)
legend_kw = dict(
bbox_to_anchor=(1.52, 1.04),
frameon=False,
)
if with_legend:
colors = [tech_colors[c] for c in carriers] + [ac_color, dc_color]
labels = carriers + ["HVAC line", "HVDC link"]
add_legend_patches(
ax,
colors,
labels,
legend_kw=legend_kw,
)
fig.savefig(snakemake.output.map, transparent=True, bbox_inches="tight")
def group_pipes(df, drop_direction=False):
"""
Group pipes which connect same buses and return overall capacity.
"""
if drop_direction:
positive_order = df.bus0 < df.bus1
df_p = df[positive_order]
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
df_n = df[~positive_order].rename(columns=swap_buses)
df = pd.concat([df_p, df_n])
# there are pipes for each investment period rename to AC buses name for plotting
df.index = df.apply(
lambda x: f"H2 pipeline {x.bus0.replace(' H2', '')} -> {x.bus1.replace(' H2', '')}",
axis=1,
)
# group pipe lines connecting the same buses and rename them for plotting
pipe_capacity = df.groupby(level=0).agg(
{"p_nom_opt": sum, "bus0": "first", "bus1": "first"}
)
return pipe_capacity
def plot_h2_map(network, regions):
n = network.copy()
if "H2 pipeline" not in n.links.carrier.unique():
return
assign_location(n)
h2_storage = n.stores.query("carrier == 'H2'")
regions["H2"] = h2_storage.rename(
index=h2_storage.bus.map(n.buses.location)
).e_nom_opt.div(
1e6
) # TWh
regions["H2"] = regions["H2"].where(regions["H2"] > 0.1)
bus_size_factor = 1e5
linewidth_factor = 7e3
# MW below which not drawn
line_lower_threshold = 750
# Drop non-electric buses so they don't clutter the plot
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
carriers = ["H2 Electrolysis", "H2 Fuel Cell"]
elec = n.links[n.links.carrier.isin(carriers)].index
bus_sizes = (
n.links.loc[elec, "p_nom_opt"].groupby([n.links["bus0"], n.links.carrier]).sum()
/ bus_size_factor
)
# make a fake MultiIndex so that area is correct for legend
bus_sizes.rename(index=lambda x: x.replace(" H2", ""), level=0, inplace=True)
# drop all links which are not H2 pipelines
n.links.drop(
n.links.index[~n.links.carrier.str.contains("H2 pipeline")], inplace=True
)
h2_new = n.links[n.links.carrier == "H2 pipeline"]
h2_retro = n.links[n.links.carrier == "H2 pipeline retrofitted"]
if snakemake.config["foresight"] == "myopic":
# sum capacitiy for pipelines from different investment periods
h2_new = group_pipes(h2_new)
if not h2_retro.empty:
h2_retro = (
group_pipes(h2_retro, drop_direction=True)
.reindex(h2_new.index)
.fillna(0)
)
if not h2_retro.empty:
positive_order = h2_retro.bus0 < h2_retro.bus1
h2_retro_p = h2_retro[positive_order]
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
h2_retro_n = h2_retro[~positive_order].rename(columns=swap_buses)
h2_retro = pd.concat([h2_retro_p, h2_retro_n])
h2_retro["index_orig"] = h2_retro.index
h2_retro.index = h2_retro.apply(
lambda x: f"H2 pipeline {x.bus0.replace(' H2', '')} -> {x.bus1.replace(' H2', '')}",
axis=1,
)
retro_w_new_i = h2_retro.index.intersection(h2_new.index)
h2_retro_w_new = h2_retro.loc[retro_w_new_i]
retro_wo_new_i = h2_retro.index.difference(h2_new.index)
h2_retro_wo_new = h2_retro.loc[retro_wo_new_i]
h2_retro_wo_new.index = h2_retro_wo_new.index_orig
to_concat = [h2_new, h2_retro_w_new, h2_retro_wo_new]
h2_total = pd.concat(to_concat).p_nom_opt.groupby(level=0).sum()
else:
h2_total = h2_new.p_nom_opt
link_widths_total = h2_total / linewidth_factor
n.links.rename(index=lambda x: x.split("-2")[0], inplace=True)
n.links = n.links.groupby(level=0).first()
link_widths_total = link_widths_total.reindex(n.links.index).fillna(0.0)
link_widths_total[n.links.p_nom_opt < line_lower_threshold] = 0.0
retro = n.links.p_nom_opt.where(
n.links.carrier == "H2 pipeline retrofitted", other=0.0
)
link_widths_retro = retro / linewidth_factor
link_widths_retro[n.links.p_nom_opt < line_lower_threshold] = 0.0
n.links.bus0 = n.links.bus0.str.replace(" H2", "")
n.links.bus1 = n.links.bus1.str.replace(" H2", "")
proj = ccrs.EqualEarth()
regions = regions.to_crs(proj.proj4_init)
fig, ax = plt.subplots(figsize=(7, 6), subplot_kw={"projection": proj})
color_h2_pipe = "#b3f3f4"
color_retrofit = "#499a9c"
bus_colors = {"H2 Electrolysis": "#ff29d9", "H2 Fuel Cell": "#805394"}
n.plot(
geomap=True,
bus_sizes=bus_sizes,
bus_colors=bus_colors,
link_colors=color_h2_pipe,
link_widths=link_widths_total,
branch_components=["Link"],
ax=ax,
**map_opts,
)
n.plot(
geomap=True,
bus_sizes=0,
link_colors=color_retrofit,
link_widths=link_widths_retro,
branch_components=["Link"],
ax=ax,
color_geomap=False,
boundaries=map_opts["boundaries"],
)
regions.plot(
ax=ax,
column="H2",
cmap="Blues",
linewidths=0,
legend=True,
vmax=6,
vmin=0,
legend_kwds={
"label": "Hydrogen Storage [TWh]",
"shrink": 0.7,
"extend": "max",
},
)
sizes = [50, 10]
labels = [f"{s} GW" for s in sizes]
sizes = [s / bus_size_factor * 1e3 for s in sizes]
legend_kw = dict(
loc="upper left",
bbox_to_anchor=(0, 1),
labelspacing=0.8,
handletextpad=0,
frameon=False,
)
add_legend_circles(
ax,
sizes,
labels,
srid=n.srid,
patch_kw=dict(facecolor="lightgrey"),
legend_kw=legend_kw,
)
sizes = [30, 10]
labels = [f"{s} GW" for s in sizes]
scale = 1e3 / linewidth_factor
sizes = [s * scale for s in sizes]
legend_kw = dict(
loc="upper left",
bbox_to_anchor=(0.23, 1),
frameon=False,
labelspacing=0.8,
handletextpad=1,
)
add_legend_lines(
ax,
sizes,
labels,
patch_kw=dict(color="lightgrey"),
legend_kw=legend_kw,
)
colors = [bus_colors[c] for c in carriers] + [color_h2_pipe, color_retrofit]
labels = carriers + ["H2 pipeline (total)", "H2 pipeline (repurposed)"]
legend_kw = dict(
loc="upper left",
bbox_to_anchor=(0, 1.13),
ncol=2,
frameon=False,
)
add_legend_patches(ax, colors, labels, legend_kw=legend_kw)
ax.set_facecolor("white")
fig.savefig(
snakemake.output.map.replace("-costs-all", "-h2_network"), bbox_inches="tight"
)
def plot_ch4_map(network):
n = network.copy()
if "gas pipeline" not in n.links.carrier.unique():
return
assign_location(n)
bus_size_factor = 8e7
linewidth_factor = 1e4
# MW below which not drawn
line_lower_threshold = 1e3
# Drop non-electric buses so they don't clutter the plot
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
fossil_gas_i = n.generators[n.generators.carrier == "gas"].index
fossil_gas = (
n.generators_t.p.loc[:, fossil_gas_i]
.mul(n.snapshot_weightings.generators, axis=0)
.sum()
.groupby(n.generators.loc[fossil_gas_i, "bus"])
.sum()
/ bus_size_factor
)
fossil_gas.rename(index=lambda x: x.replace(" gas", ""), inplace=True)
fossil_gas = fossil_gas.reindex(n.buses.index).fillna(0)
# make a fake MultiIndex so that area is correct for legend
fossil_gas.index = pd.MultiIndex.from_product([fossil_gas.index, ["fossil gas"]])
methanation_i = n.links[n.links.carrier.isin(["helmeth", "Sabatier"])].index
methanation = (
abs(
n.links_t.p1.loc[:, methanation_i].mul(
n.snapshot_weightings.generators, axis=0
)
)
.sum()
.groupby(n.links.loc[methanation_i, "bus1"])
.sum()
/ bus_size_factor
)
methanation = (
methanation.groupby(methanation.index)
.sum()
.rename(index=lambda x: x.replace(" gas", ""))
)
# make a fake MultiIndex so that area is correct for legend
methanation.index = pd.MultiIndex.from_product([methanation.index, ["methanation"]])
biogas_i = n.stores[n.stores.carrier == "biogas"].index
biogas = (
n.stores_t.p.loc[:, biogas_i]
.mul(n.snapshot_weightings.generators, axis=0)
.sum()
.groupby(n.stores.loc[biogas_i, "bus"])
.sum()
/ bus_size_factor
)
biogas = (
biogas.groupby(biogas.index)
.sum()
.rename(index=lambda x: x.replace(" biogas", ""))
)
# make a fake MultiIndex so that area is correct for legend
biogas.index = pd.MultiIndex.from_product([biogas.index, ["biogas"]])
bus_sizes = pd.concat([fossil_gas, methanation, biogas])
bus_sizes.sort_index(inplace=True)
to_remove = n.links.index[~n.links.carrier.str.contains("gas pipeline")]
n.links.drop(to_remove, inplace=True)
link_widths_rem = n.links.p_nom_opt / linewidth_factor
link_widths_rem[n.links.p_nom_opt < line_lower_threshold] = 0.0
link_widths_orig = n.links.p_nom / linewidth_factor
link_widths_orig[n.links.p_nom < line_lower_threshold] = 0.0
max_usage = n.links_t.p0.abs().max(axis=0)
link_widths_used = max_usage / linewidth_factor
link_widths_used[max_usage < line_lower_threshold] = 0.0
tech_colors = snakemake.config["plotting"]["tech_colors"]
pipe_colors = {
"gas pipeline": "#f08080",
"gas pipeline new": "#c46868",
"gas pipeline (in 2020)": "lightgrey",
"gas pipeline (available)": "#e8d1d1",
}
link_color_used = n.links.carrier.map(pipe_colors)
n.links.bus0 = n.links.bus0.str.replace(" gas", "")
n.links.bus1 = n.links.bus1.str.replace(" gas", "")
bus_colors = {
"fossil gas": tech_colors["fossil gas"],
"methanation": tech_colors["methanation"],
"biogas": "seagreen",
}
fig, ax = plt.subplots(figsize=(7, 6), subplot_kw={"projection": ccrs.EqualEarth()})
n.plot(
bus_sizes=bus_sizes,
bus_colors=bus_colors,
link_colors=pipe_colors["gas pipeline (in 2020)"],
link_widths=link_widths_orig,
branch_components=["Link"],
ax=ax,
**map_opts,
)
n.plot(
ax=ax,
bus_sizes=0.0,
link_colors=pipe_colors["gas pipeline (available)"],
link_widths=link_widths_rem,
branch_components=["Link"],
color_geomap=False,
boundaries=map_opts["boundaries"],
)
n.plot(
ax=ax,
bus_sizes=0.0,
link_colors=link_color_used,
link_widths=link_widths_used,
branch_components=["Link"],
color_geomap=False,
boundaries=map_opts["boundaries"],
)
sizes = [100, 10]
labels = [f"{s} TWh" for s in sizes]
sizes = [s / bus_size_factor * 1e6 for s in sizes]
legend_kw = dict(
loc="upper left",
bbox_to_anchor=(0, 1.03),
labelspacing=0.8,
frameon=False,
handletextpad=1,
title="gas sources",
)
add_legend_circles(
ax,
sizes,
labels,
srid=n.srid,
patch_kw=dict(facecolor="lightgrey"),
legend_kw=legend_kw,
)
sizes = [50, 10]
labels = [f"{s} GW" for s in sizes]
scale = 1e3 / linewidth_factor
sizes = [s * scale for s in sizes]
legend_kw = dict(
loc="upper left",
bbox_to_anchor=(0.25, 1.03),
frameon=False,
labelspacing=0.8,
handletextpad=1,
title="gas pipeline",
)
add_legend_lines(
ax,
sizes,
labels,
patch_kw=dict(color="lightgrey"),
legend_kw=legend_kw,
)
colors = list(pipe_colors.values()) + list(bus_colors.values())
labels = list(pipe_colors.keys()) + list(bus_colors.keys())
# legend on the side
# legend_kw = dict(
# bbox_to_anchor=(1.47, 1.04),
# frameon=False,
# )
legend_kw = dict(
loc="upper left",
bbox_to_anchor=(0, 1.24),
ncol=2,
frameon=False,
)
add_legend_patches(
ax,
colors,
labels,
legend_kw=legend_kw,
)
fig.savefig(
snakemake.output.map.replace("-costs-all", "-ch4_network"), bbox_inches="tight"
)
def plot_map_without(network):
n = network.copy()
assign_location(n)
# Drop non-electric buses so they don't clutter the plot
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
fig, ax = plt.subplots(figsize=(7, 6), subplot_kw={"projection": ccrs.EqualEarth()})
# PDF has minimum width, so set these to zero
line_lower_threshold = 200.0
line_upper_threshold = 1e4
linewidth_factor = 3e3
ac_color = "rosybrown"
dc_color = "darkseagreen"
# hack because impossible to drop buses...
if "EU gas" in n.buses.index:
eu_location = snakemake.config["plotting"].get(
"eu_node_location", dict(x=-5.5, y=46)
)
n.buses.loc["EU gas", "x"] = eu_location["x"]
n.buses.loc["EU gas", "y"] = eu_location["y"]
to_drop = n.links.index[(n.links.carrier != "DC") & (n.links.carrier != "B2B")]
n.links.drop(to_drop, inplace=True)
if snakemake.wildcards["lv"] == "1.0":
line_widths = n.lines.s_nom
link_widths = n.links.p_nom
else:
line_widths = n.lines.s_nom_min
link_widths = n.links.p_nom_min
line_widths = line_widths.clip(line_lower_threshold, line_upper_threshold)
link_widths = link_widths.clip(line_lower_threshold, line_upper_threshold)
line_widths = line_widths.replace(line_lower_threshold, 0)
link_widths = link_widths.replace(line_lower_threshold, 0)
n.plot(
bus_colors="k",
line_colors=ac_color,
link_colors=dc_color,
line_widths=line_widths / linewidth_factor,
link_widths=link_widths / linewidth_factor,
ax=ax,
**map_opts,
)
handles = []
labels = []
for s in (10, 5):
handles.append(
plt.Line2D([0], [0], color=ac_color, linewidth=s * 1e3 / linewidth_factor)
)
labels.append(f"{s} GW")
>>>>>>> pypsa-eur-sec/master
l1_1 = ax.legend(
handles,
labels,
loc="upper left",
<<<<<<< HEAD
bbox_to_anchor=(0.24, 1.01),
frameon=False,
labelspacing=0.8,
handletextpad=1.5,
title="Transmission Exp./Exist. ",
)
ax.add_artist(l1_1)
handles = []
labels = []
for s in (10, 5):
handles.append(
plt.Line2D(
[0], [0], color=line_colors["cur"], linewidth=s * 1e3 / linewidth_factor
)
)
labels.append("/")
l1_2 = ax.legend(
handles,
labels,
loc="upper left",
bbox_to_anchor=(0.26, 1.01),
frameon=False,
labelspacing=0.8,
handletextpad=0.5,
title=" ",
)
ax.add_artist(l1_2)
handles = make_legend_circles_for(
[10e3, 5e3, 1e3], scale=bus_size_factor, facecolor="w"
)
labels = ["{} GW".format(s) for s in (10, 5, 3)]
l2 = ax.legend(
handles,
labels,
loc="upper left",
bbox_to_anchor=(0.01, 1.01),
frameon=False,
labelspacing=1.0,
title="Generation",
handler_map=make_handler_map_to_scale_circles_as_in(ax),
)
ax.add_artist(l2)
techs = (bus_sizes.index.levels[1]).intersection(
pd.Index(opts["vre_techs"] + opts["conv_techs"] + opts["storage_techs"])
)
handles = []
labels = []
for t in techs:
handles.append(
plt.Line2D(
[0], [0], color=tech_colors[t], marker="o", markersize=8, linewidth=0
)
)
labels.append(opts["nice_names"].get(t, t))
l3 = ax.legend(
handles,
labels,
loc="upper center",
bbox_to_anchor=(0.5, -0.0), # bbox_to_anchor=(0.72, -0.05),
handletextpad=0.0,
columnspacing=0.5,
ncol=4,
title="Technology",
)
return fig
def plot_total_energy_pie(n, opts, ax=None):
if ax is None:
ax = plt.gca()
ax.set_title("Energy per technology", fontdict=dict(fontsize="medium"))
e_primary = aggregate_p(n).drop("load", errors="ignore").loc[lambda s: s > 0]
patches, texts, autotexts = ax.pie(
e_primary,
startangle=90,
labels=e_primary.rename(opts["nice_names"]).index,
autopct="%.0f%%",
shadow=False,
colors=[opts["tech_colors"][tech] for tech in e_primary.index],
)
for t1, t2, i in zip(texts, autotexts, e_primary.index):
if e_primary.at[i] < 0.04 * e_primary.sum():
t1.remove()
t2.remove()
def plot_total_cost_bar(n, opts, ax=None):
if ax is None:
ax = plt.gca()
total_load = (n.snapshot_weightings.generators * n.loads_t.p.sum(axis=1)).sum()
tech_colors = opts["tech_colors"]
def split_costs(n):
costs = aggregate_costs(n).reset_index(level=0, drop=True)
costs_ex = aggregate_costs(n, existing_only=True).reset_index(
level=0, drop=True
)
return (
costs["capital"].add(costs["marginal"], fill_value=0.0),
costs_ex["capital"],
costs["capital"] - costs_ex["capital"],
costs["marginal"],
)
costs, costs_cap_ex, costs_cap_new, costs_marg = split_costs(n)
costs_graph = pd.DataFrame(
dict(a=costs.drop("load", errors="ignore")),
index=[
"AC-AC",
"AC line",
"onwind",
"offwind-ac",
"offwind-dc",
"solar",
"OCGT",
"CCGT",
"battery",
"H2",
],
).dropna()
bottom = np.array([0.0, 0.0])
texts = []
for i, ind in enumerate(costs_graph.index):
data = np.asarray(costs_graph.loc[ind]) / total_load
ax.bar([0.5], data, bottom=bottom, color=tech_colors[ind], width=0.7, zorder=-1)
bottom_sub = bottom
bottom = bottom + data
if ind in opts["conv_techs"] + ["AC line"]:
for c in [costs_cap_ex, costs_marg]:
if ind in c:
data_sub = np.asarray([c.loc[ind]]) / total_load
ax.bar(
[0.5],
data_sub,
linewidth=0,
bottom=bottom_sub,
color=tech_colors[ind],
width=0.7,
zorder=-1,
alpha=0.8,
)
bottom_sub += data_sub
if abs(data[-1]) < 5:
continue
text = ax.text(
1.1, (bottom - 0.5 * data)[-1] - 3, opts["nice_names"].get(ind, ind)
)
texts.append(text)
ax.set_ylabel("Average system cost [Eur/MWh]")
ax.set_ylim([0, opts.get("costs_max", 80)])
ax.set_xlim([0, 1])
ax.set_xticklabels([])
ax.grid(True, axis="y", color="k", linestyle="dotted")
=======
bbox_to_anchor=(0.05, 1.01),
frameon=False,
labelspacing=0.8,
handletextpad=1.5,
title="Today's transmission",
)
ax.add_artist(l1_1)
fig.savefig(snakemake.output.today, transparent=True, bbox_inches="tight")
def plot_series(network, carrier="AC", name="test"):
n = network.copy()
assign_location(n)
assign_carriers(n)
buses = n.buses.index[n.buses.carrier.str.contains(carrier)]
supply = pd.DataFrame(index=n.snapshots)
for c in n.iterate_components(n.branch_components):
n_port = 4 if c.name == "Link" else 2
for i in range(n_port):
supply = pd.concat(
(
supply,
(-1)
* c.pnl["p" + str(i)]
.loc[:, c.df.index[c.df["bus" + str(i)].isin(buses)]]
.groupby(c.df.carrier, axis=1)
.sum(),
),
axis=1,
)
for c in n.iterate_components(n.one_port_components):
comps = c.df.index[c.df.bus.isin(buses)]
supply = pd.concat(
(
supply,
((c.pnl["p"].loc[:, comps]).multiply(c.df.loc[comps, "sign"]))
.groupby(c.df.carrier, axis=1)
.sum(),
),
axis=1,
)
supply = supply.groupby(rename_techs_tyndp, axis=1).sum()
both = supply.columns[(supply < 0.0).any() & (supply > 0.0).any()]
positive_supply = supply[both]
negative_supply = supply[both]
positive_supply[positive_supply < 0.0] = 0.0
negative_supply[negative_supply > 0.0] = 0.0
supply[both] = positive_supply
suffix = " charging"
negative_supply.columns = negative_supply.columns + suffix
supply = pd.concat((supply, negative_supply), axis=1)
# 14-21.2 for flaute
# 19-26.1 for flaute
start = "2013-02-19"
stop = "2013-02-26"
threshold = 10e3
to_drop = supply.columns[(abs(supply) < threshold).all()]
if len(to_drop) != 0:
logger.info(f"Dropping {to_drop.tolist()} from supply")
supply.drop(columns=to_drop, inplace=True)
supply.index.name = None
supply = supply / 1e3
supply.rename(
columns={"electricity": "electric demand", "heat": "heat demand"}, inplace=True
)
supply.columns = supply.columns.str.replace("residential ", "")
supply.columns = supply.columns.str.replace("services ", "")
supply.columns = supply.columns.str.replace("urban decentral ", "decentral ")
preferred_order = pd.Index(
[
"electric demand",
"transmission lines",
"hydroelectricity",
"hydro reservoir",
"run of river",
"pumped hydro storage",
"CHP",
"onshore wind",
"offshore wind",
"solar PV",
"solar thermal",
"building retrofitting",
"ground heat pump",
"air heat pump",
"resistive heater",
"OCGT",
"gas boiler",
"gas",
"natural gas",
"methanation",
"hydrogen storage",
"battery storage",
"hot water storage",
]
)
new_columns = preferred_order.intersection(supply.columns).append(
supply.columns.difference(preferred_order)
)
supply = supply.groupby(supply.columns, axis=1).sum()
fig, ax = plt.subplots()
fig.set_size_inches((8, 5))
(
supply.loc[start:stop, new_columns].plot(
ax=ax,
kind="area",
stacked=True,
linewidth=0.0,
color=[
snakemake.config["plotting"]["tech_colors"][i.replace(suffix, "")]
for i in new_columns
],
)
)
handles, labels = ax.get_legend_handles_labels()
handles.reverse()
labels.reverse()
new_handles = []
new_labels = []
for i, item in enumerate(labels):
if "charging" not in item:
new_handles.append(handles[i])
new_labels.append(labels[i])
ax.legend(new_handles, new_labels, ncol=3, loc="upper left", frameon=False)
ax.set_xlim([start, stop])
ax.set_ylim([-1300, 1900])
ax.grid(True)
ax.set_ylabel("Power [GW]")
fig.tight_layout()
fig.savefig(
"{}{}/maps/series-{}-{}-{}-{}-{}.pdf".format(
snakemake.config["results_dir"],
snakemake.config["run"],
snakemake.wildcards["lv"],
carrier,
start,
stop,
name,
),
transparent=True,
)
>>>>>>> pypsa-eur-sec/master
if __name__ == "__main__":
if "snakemake" not in globals():
<<<<<<< HEAD
from _helpers import mock_snakemake
=======
from helper import mock_snakemake
>>>>>>> pypsa-eur-sec/master
snakemake = mock_snakemake(
"plot_network",
simpl="",
<<<<<<< HEAD
clusters="5",
ll="copt",
opts="Co2L-24H",
attr="p_nom",
ext="pdf",
)
configure_logging(snakemake)
set_plot_style()
config, wildcards = snakemake.config, snakemake.wildcards
map_figsize = config["plotting"]["map"]["figsize"]
map_boundaries = config["plotting"]["map"]["boundaries"]
n = load_network_for_plots(
snakemake.input.network, snakemake.input.tech_costs, config
)
scenario_opts = wildcards.opts.split("-")
fig, ax = plt.subplots(
figsize=map_figsize, subplot_kw={"projection": ccrs.PlateCarree()}
)
plot_map(n, config["plotting"], ax=ax, attribute=wildcards.attr)
fig.savefig(snakemake.output.only_map, dpi=150, bbox_inches="tight")
ax1 = fig.add_axes([-0.115, 0.625, 0.2, 0.2])
plot_total_energy_pie(n, config["plotting"], ax=ax1)
ax2 = fig.add_axes([-0.075, 0.1, 0.1, 0.45])
plot_total_cost_bar(n, config["plotting"], ax=ax2)
ll = wildcards.ll
ll_type = ll[0]
ll_factor = ll[1:]
lbl = dict(c="line cost", v="line volume")[ll_type]
amnt = "{ll} x today's".format(ll=ll_factor) if ll_factor != "opt" else "optimal"
fig.suptitle(
"Expansion to {amount} {label} at {clusters} clusters".format(
amount=amnt, label=lbl, clusters=wildcards.clusters
)
)
fig.savefig(snakemake.output.ext, transparent=True, bbox_inches="tight")
=======
clusters="181",
lv="opt",
opts="",
sector_opts="Co2L0-730H-T-H-B-I-A-solar+p3-linemaxext10",
planning_horizons="2050",
)
logging.basicConfig(level=snakemake.config["logging_level"])
overrides = override_component_attrs(snakemake.input.overrides)
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
regions = gpd.read_file(snakemake.input.regions).set_index("name")
map_opts = snakemake.config["plotting"]["map"]
plot_map(
n,
components=["generators", "links", "stores", "storage_units"],
bus_size_factor=2e10,
transmission=False,
)
plot_h2_map(n, regions)
plot_ch4_map(n)
plot_map_without(n)
# plot_series(n, carrier="AC", name=suffix)
# plot_series(n, carrier="heat", name=suffix)
>>>>>>> pypsa-eur-sec/master