Merge remote-tracking branch 'pypsa-eur-sec/master' into merge-pypsa-eur-sec
@ -5,3 +5,4 @@
|
||||
# Exclude pre-commit applications
|
||||
5d1ef8a64055a039aa4a0834d2d26fe7752fe9a0
|
||||
92080b1cd2ca5f123158571481722767b99c2b27
|
||||
13769f90af4500948b0376d57df4cceaa13e78b5
|
||||
|
29
.github/workflows/ci.yaml
vendored
@ -1,4 +1,4 @@
|
||||
# SPDX-FileCopyrightText: : 2021 The PyPSA-Eur Authors
|
||||
# SPDX-FileCopyrightText: : 2021-2023 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: CC0-1.0
|
||||
|
||||
@ -19,7 +19,8 @@ on:
|
||||
- cron: "0 5 * * TUE"
|
||||
|
||||
env:
|
||||
CACHE_NUMBER: 1 # Change this value to manually reset the environment cache
|
||||
CONDA_CACHE_NUMBER: 1 # Change this value to manually reset the environment cache
|
||||
DATA_CACHE_NUMBER: 1
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@ -55,10 +56,6 @@ jobs:
|
||||
run: |
|
||||
echo -ne "url: ${CDSAPI_URL}\nkey: ${CDSAPI_TOKEN}\n" > ~/.cdsapirc
|
||||
|
||||
- name: Add solver to environment
|
||||
run: |
|
||||
echo -e "- glpk\n- ipopt" >> envs/environment.yaml
|
||||
|
||||
- name: Add solver to environment
|
||||
run: |
|
||||
echo -e "- glpk\n- ipopt<3.13.3" >> envs/environment.yaml
|
||||
@ -77,15 +74,25 @@ jobs:
|
||||
activate-environment: pypsa-eur
|
||||
use-mamba: true
|
||||
|
||||
- name: Set cache date
|
||||
run: echo "DATE=$(date +'%Y%m%d')" >> $GITHUB_ENV
|
||||
- name: Set cache dates
|
||||
run: |
|
||||
echo "DATE=$(date +'%Y%m%d')" >> $GITHUB_ENV
|
||||
echo "WEEK=$(date +'%Y%U')" >> $GITHUB_ENV
|
||||
|
||||
- name: Cache data and cutouts folders
|
||||
uses: actions/cache@v3
|
||||
with:
|
||||
path: |
|
||||
data
|
||||
cutouts
|
||||
key: data-cutouts-${{ env.WEEK }}-${{ env.DATA_CACHE_NUMBER }}
|
||||
|
||||
- name: Create environment cache
|
||||
uses: actions/cache@v3
|
||||
id: cache
|
||||
with:
|
||||
path: ${{ matrix.prefix }}
|
||||
key: ${{ matrix.label }}-conda-${{ hashFiles('envs/environment.yaml') }}-${{ env.DATE }}-${{ env.CACHE_NUMBER }}
|
||||
key: ${{ matrix.label }}-conda-${{ env.DATE }}-${{ env.CONDA_CACHE_NUMBER }}
|
||||
|
||||
- name: Update environment due to outdated or unavailable cache
|
||||
run: mamba env update -n pypsa-eur -f envs/environment.yaml
|
||||
@ -95,4 +102,6 @@ jobs:
|
||||
run: |
|
||||
conda activate pypsa-eur
|
||||
conda list
|
||||
snakemake -call solve_all_networks --configfile test/config.test1.yaml
|
||||
snakemake -call solve_all_elec_networks --configfile test/config.test1.yaml
|
||||
snakemake -call --configfile test/config.overnight.yaml
|
||||
snakemake -call --configfile test/config.myopic.yaml
|
||||
|
51
.gitignore
vendored
@ -11,18 +11,65 @@ gurobi.log
|
||||
|
||||
/bak
|
||||
/resources
|
||||
/resources*
|
||||
/results
|
||||
/networks
|
||||
/benchmarks
|
||||
/logs
|
||||
/notebooks
|
||||
/data
|
||||
/data/links_p_nom.csv
|
||||
/cutouts
|
||||
/dask-worker-space
|
||||
|
||||
doc/_build
|
||||
|
||||
config.yaml
|
||||
|
||||
dconf
|
||||
/data/links_p_nom.csv
|
||||
/data/*totals.csv
|
||||
/data/biomass*
|
||||
/data/emobility/
|
||||
/data/eea*
|
||||
/data/jrc*
|
||||
/data/heating/
|
||||
/data/eurostat*
|
||||
/data/odyssee/
|
||||
/data/transport_data.csv
|
||||
/data/switzerland*
|
||||
/data/.nfs*
|
||||
/data/Industrial_Database.csv
|
||||
/data/retro/tabula-calculator-calcsetbuilding.csv
|
||||
/data/nuts*
|
||||
data/gas_network/scigrid-gas/
|
||||
data/costs_*.csv
|
||||
|
||||
dask-worker-space/
|
||||
publications.jrc.ec.europa.eu/
|
||||
|
||||
*.org
|
||||
|
||||
*.nc
|
||||
|
||||
*~
|
||||
/scripts/old
|
||||
|
||||
*.pyc
|
||||
/cutouts
|
||||
/tmp
|
||||
/pypsa
|
||||
|
||||
*.xlsx
|
||||
|
||||
config.yaml
|
||||
|
||||
doc/_build
|
||||
|
||||
*.xls
|
||||
|
||||
*.geojson
|
||||
|
||||
*.ipynb
|
||||
|
||||
data/costs_*
|
||||
|
||||
merger-todos.md
|
@ -33,7 +33,7 @@ repos:
|
||||
rev: v2.2.2
|
||||
hooks:
|
||||
- id: codespell
|
||||
args: ['--ignore-regex="(\b[A-Z]+\b)"', '--ignore-words-list=fom'] # Ignore capital case words, e.g. country codes
|
||||
args: ['--ignore-regex="(\b[A-Z]+\b)"', '--ignore-words-list=fom,appartment,bage,ore,setis,tabacco'] # Ignore capital case words, e.g. country codes
|
||||
types_or: [python, rst, markdown]
|
||||
files: ^(scripts|doc)/
|
||||
|
||||
@ -73,10 +73,10 @@ repos:
|
||||
args: [--autofix, --indent, "2", --preserve-quotes]
|
||||
|
||||
# Format Snakemake rule / workflow files
|
||||
- repo: https://github.com/snakemake/snakefmt
|
||||
rev: v0.8.1
|
||||
hooks:
|
||||
- id: snakefmt
|
||||
# - repo: https://github.com/snakemake/snakefmt
|
||||
# rev: v0.8.1
|
||||
# hooks:
|
||||
# - id: snakefmt
|
||||
|
||||
# For cleaning jupyter notebooks
|
||||
- repo: https://github.com/aflc/pre-commit-jupyter
|
||||
@ -85,8 +85,8 @@ repos:
|
||||
- id: jupyter-notebook-cleanup
|
||||
exclude: examples/solve-on-remote.ipynb
|
||||
|
||||
# Check for FSFE REUSE compliance (licensing)
|
||||
- repo: https://github.com/fsfe/reuse-tool
|
||||
rev: v1.1.2
|
||||
hooks:
|
||||
- id: reuse
|
||||
# Check for FSFE REUSE compliance (licensing)
|
||||
# - repo: https://github.com/fsfe/reuse-tool
|
||||
# rev: v1.1.2
|
||||
# hooks:
|
||||
# - id: reuse
|
||||
|
@ -15,5 +15,6 @@ __pycache__
|
||||
notebooks
|
||||
doc
|
||||
cutouts
|
||||
data/bundle
|
||||
data
|
||||
benchmarks
|
||||
*.nc
|
||||
|
@ -1,7 +1,3 @@
|
||||
# SPDX-FileCopyrightText: : 2021 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: CC0-1.0
|
||||
|
||||
.snakemake
|
||||
.git
|
||||
.pytest_cache
|
||||
|
20
LICENSE.txt
Normal file
@ -0,0 +1,20 @@
|
||||
MIT License
|
||||
|
||||
Copyright 2017-2023 The PyPSA-Eur Authors
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||||
this software and associated documentation files (the "Software"), to deal in
|
||||
the Software without restriction, including without limitation the rights to
|
||||
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
||||
the Software, and to permit persons to whom the Software is furnished to do so,
|
||||
subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
||||
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||||
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
79
README.md
@ -7,42 +7,54 @@ SPDX-License-Identifier: CC-BY-4.0
|
||||
[![Build Status](https://github.com/pypsa/pypsa-eur/actions/workflows/ci.yaml/badge.svg)](https://github.com/PyPSA/pypsa-eur/actions)
|
||||
[![Documentation](https://readthedocs.org/projects/pypsa-eur/badge/?version=latest)](https://pypsa-eur.readthedocs.io/en/latest/?badge=latest)
|
||||
![Size](https://img.shields.io/github/repo-size/pypsa/pypsa-eur)
|
||||
[![Zenodo](https://zenodo.org/badge/DOI/10.5281/zenodo.3520874.svg)](https://doi.org/10.5281/zenodo.3520874)
|
||||
[![Zenodo PyPSA-Eur](https://zenodo.org/badge/DOI/10.5281/zenodo.3520874.svg)](https://doi.org/10.5281/zenodo.3520874)
|
||||
[![Zenodo PyPSA-Eur-Sec](https://zenodo.org/badge/DOI/10.5281/zenodo.3938042.svg)](https://doi.org/10.5281/zenodo.3938042)
|
||||
[![Snakemake](https://img.shields.io/badge/snakemake-≥5.0.0-brightgreen.svg?style=flat)](https://snakemake.readthedocs.io)
|
||||
[![REUSE status](https://api.reuse.software/badge/github.com/pypsa/pypsa-eur)](https://api.reuse.software/info/github.com/pypsa/pypsa-eur)
|
||||
|
||||
# PyPSA-Eur: An Open Optimisation Model of the European Transmission System
|
||||
# PyPSA-Eur: A Sector-Coupled Open Optimisation Model of the European Energy System
|
||||
|
||||
|
||||
PyPSA-Eur is an open model dataset of the European power system at the
|
||||
transmission network level that covers the full ENTSO-E area.
|
||||
The model is suitable both for operational studies and generation and transmission expansion planning studies.
|
||||
PyPSA-Eur is an open model dataset of the European energy system at the
|
||||
transmission network level that covers the full ENTSO-E area. The model is suitable both for operational studies and generation and transmission expansion planning studies.
|
||||
The continental scope and highly resolved spatial scale enables a proper description of the long-range
|
||||
smoothing effects for renewable power generation and their varying resource availability.
|
||||
|
||||
|
||||
|
||||
|
||||
The model is described in the [documentation](https://pypsa-eur.readthedocs.io)
|
||||
and in the paper
|
||||
[PyPSA-Eur: An Open Optimisation Model of the European Transmission
|
||||
System](https://arxiv.org/abs/1806.01613), 2018,
|
||||
[arXiv:1806.01613](https://arxiv.org/abs/1806.01613).
|
||||
The model building routines are defined through a snakemake workflow.
|
||||
Please see the [documentation](https://pypsa-eur.readthedocs.io/)
|
||||
for installation instructions and other useful information about the snakemake workflow.
|
||||
The model is designed to be imported into the open toolbox
|
||||
[PyPSA](https://github.com/PyPSA/PyPSA).
|
||||
|
||||
**WARNING**: PyPSA-Eur is under active development and has several
|
||||
[limitations](https://pypsa-eur.readthedocs.io/en/latest/limitations.html)
|
||||
which you should understand before using the model. The github repository
|
||||
[issues](https://github.com/PyPSA/pypsa-eur/issues) collect known topics we are
|
||||
working on (please feel free to help or make suggestions). The
|
||||
[documentation](https://pypsa-eur.readthedocs.io/) remains somewhat patchy. You
|
||||
can find showcases of the model's capabilities in the preprint [Benefits of a
|
||||
Hydrogen Network in Europe](https://arxiv.org/abs/2207.05816), a [paper in Joule
|
||||
with a description of the industry sector](https://arxiv.org/abs/2109.09563), or
|
||||
in [a 2021 presentation at EMP-E](https://nworbmot.org/energy/brown-empe.pdf).
|
||||
We cannot support this model if you choose to use it. We do not recommend to use
|
||||
the full resolution network model for simulations. At high granularity the
|
||||
assignment of loads and generators to the nearest network node may not be a
|
||||
correct assumption, depending on the topology of the underlying distribution
|
||||
grid, and local grid bottlenecks may cause unrealistic load-shedding or
|
||||
generator curtailment. We recommend to cluster the network to a couple of
|
||||
hundred nodes to remove these local inconsistencies. See the discussion in
|
||||
Section 3.4 "Model validation" of the paper.
|
||||
|
||||
**WARNING**: Please read the [limitations](https://pypsa-eur.readthedocs.io/en/latest/limitations.html) section of the
|
||||
documentation and paper carefully before using the model. We do not
|
||||
recommend to use the full resolution network model for simulations. At
|
||||
high granularity the assignment of loads and generators to the nearest
|
||||
network node may not be a correct assumption, depending on the topology of the underlying distribution grid,
|
||||
and local grid
|
||||
bottlenecks may cause unrealistic load-shedding or generator
|
||||
curtailment. We recommend to cluster the network to a couple of
|
||||
hundred nodes to remove these local inconsistencies. See the
|
||||
discussion in Section 3.4 "Model validation" of the paper.
|
||||
|
||||
![PyPSA-Eur Grid Model](doc/img/elec.png)
|
||||
|
||||
The model building routines are defined through a snakemake workflow. The model is designed to be imported into the open toolbox
|
||||
[PyPSA](https://github.com/PyPSA/PyPSA) for operational studies as
|
||||
well as generation and transmission expansion planning studies.
|
||||
|
||||
The dataset consists of:
|
||||
|
||||
- A grid model based on a modified [GridKit](https://github.com/bdw/GridKit)
|
||||
@ -57,9 +69,30 @@ The dataset consists of:
|
||||
- Renewable time series based on ERA5 and SARAH, assembled using the [atlite tool](https://github.com/FRESNA/atlite).
|
||||
- Geographical potentials for wind and solar generators based on land use (CORINE) and excluding nature reserves (Natura2000) are computed with the [atlite library](https://github.com/PyPSA/atlite).
|
||||
|
||||
A sector-coupled extension adds demand
|
||||
and supply for the following sectors: transport, space and water
|
||||
heating, biomass, industry and industrial feedstocks, agriculture,
|
||||
forestry and fishing. This completes the energy system and includes
|
||||
all greenhouse gas emitters except waste management and land use.
|
||||
|
||||
This diagram gives an overview of the sectors and the links between
|
||||
them:
|
||||
|
||||
![sector diagram](graphics/multisector_figure.png)
|
||||
|
||||
Each of these sectors is built up on the transmission network nodes
|
||||
from [PyPSA-Eur](https://github.com/PyPSA/pypsa-eur):
|
||||
|
||||
![network diagram](https://github.com/PyPSA/pypsa-eur/blob/master/doc/img/base.png?raw=true)
|
||||
|
||||
For computational reasons the model is usually clustered down
|
||||
to 50-200 nodes.
|
||||
|
||||
Already-built versions of the model can be found in the accompanying [Zenodo
|
||||
repository](https://doi.org/10.5281/zenodo.3601881).
|
||||
# Licence
|
||||
|
||||
A version of the model that adds building heating, transport and
|
||||
industry sectors to the model, as well as gas networks, can be found
|
||||
in the [PyPSA-Eur-Sec](https://github.com/PyPSA/pypsa-eur-sec) repository.
|
||||
The code in PyPSA-Eur is released as free software under the
|
||||
[MIT License](https://opensource.org/licenses/MIT), see `LICENSE.txt`.
|
||||
However, different licenses and terms of use may apply to the various
|
||||
input data.
|
||||
|
802
Snakefile
@ -6,7 +6,6 @@ from os.path import normpath, exists
|
||||
from shutil import copyfile, move
|
||||
|
||||
from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider
|
||||
|
||||
HTTP = HTTPRemoteProvider()
|
||||
|
||||
if not exists("config.yaml"):
|
||||
@ -29,36 +28,60 @@ wildcard_constraints:
|
||||
clusters="[0-9]+m?|all",
|
||||
ll="(v|c)([0-9\.]+|opt|all)|all",
|
||||
opts="[-+a-zA-Z0-9\.]*",
|
||||
sector_opts="[-+a-zA-Z0-9\.\s]*"
|
||||
|
||||
|
||||
rule cluster_all_networks:
|
||||
input:
|
||||
expand("networks/" + RDIR + "elec_s{simpl}_{clusters}.nc", **config["scenario"]),
|
||||
expand("resources/" + RDIR + "networks/elec_s{simpl}_{clusters}.nc", **config["scenario"]),
|
||||
|
||||
|
||||
rule extra_components_all_networks:
|
||||
input:
|
||||
expand(
|
||||
"networks/" + RDIR + "elec_s{simpl}_{clusters}_ec.nc", **config["scenario"]
|
||||
"resources/" + RDIR + "networks/elec_s{simpl}_{clusters}_ec.nc", **config["scenario"]
|
||||
),
|
||||
|
||||
|
||||
rule prepare_all_networks:
|
||||
input:
|
||||
expand(
|
||||
"networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
"resources/" + RDIR + "networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
**config["scenario"]
|
||||
),
|
||||
|
||||
|
||||
rule prepare_sector_networks:
|
||||
input:
|
||||
expand(RDIR + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
**config['scenario'])
|
||||
|
||||
|
||||
rule all:
|
||||
input: RDIR + 'graphs/costs.pdf'
|
||||
|
||||
|
||||
rule solve_all_elec_networks:
|
||||
input:
|
||||
expand(
|
||||
"results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
**config["scenario"]
|
||||
),
|
||||
|
||||
|
||||
rule solve_all_networks:
|
||||
input:
|
||||
expand(
|
||||
"results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
**config["scenario"]
|
||||
expand(RDIR + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
**config['scenario']
|
||||
),
|
||||
|
||||
|
||||
rule plot_all_networks:
|
||||
input:
|
||||
expand(RDIR + "maps/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}-costs-all_{planning_horizons}.pdf",
|
||||
**config['scenario'])
|
||||
|
||||
|
||||
if config["enable"].get("prepare_links_p_nom", False):
|
||||
|
||||
rule prepare_links_p_nom:
|
||||
@ -133,7 +156,7 @@ rule build_load_data:
|
||||
|
||||
rule build_powerplants:
|
||||
input:
|
||||
base_network="networks/" + RDIR + "base.nc",
|
||||
base_network="resources/" + RDIR + "networks/base.nc",
|
||||
custom_powerplants="data/custom_powerplants.csv",
|
||||
output:
|
||||
"resources/" + RDIR + "powerplants.csv",
|
||||
@ -160,7 +183,7 @@ rule base_network:
|
||||
offshore_shapes="resources/" + RDIR + "offshore_shapes.geojson",
|
||||
europe_shape="resources/" + RDIR + "europe_shape.geojson",
|
||||
output:
|
||||
"networks/" + RDIR + "base.nc",
|
||||
"resources/" + RDIR + "networks/base.nc",
|
||||
log:
|
||||
"logs/" + RDIR + "base_network.log",
|
||||
benchmark:
|
||||
@ -199,7 +222,7 @@ rule build_bus_regions:
|
||||
input:
|
||||
country_shapes="resources/" + RDIR + "country_shapes.geojson",
|
||||
offshore_shapes="resources/" + RDIR + "offshore_shapes.geojson",
|
||||
base_network="networks/" + RDIR + "base.nc",
|
||||
base_network="resources/" + RDIR + "networks/base.nc",
|
||||
output:
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore.geojson",
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore.geojson",
|
||||
@ -334,7 +357,7 @@ rule build_ship_raster:
|
||||
|
||||
rule build_renewable_profiles:
|
||||
input:
|
||||
base_network="networks/" + RDIR + "base.nc",
|
||||
base_network="resources/" + RDIR + "networks/base.nc",
|
||||
corine="data/bundle/corine/g250_clc06_V18_5.tif",
|
||||
natura=lambda w: (
|
||||
"resources/" + RDIR + "natura.tiff"
|
||||
@ -406,7 +429,7 @@ rule add_electricity:
|
||||
for attr, fn in d.items()
|
||||
if str(fn).startswith("data/")
|
||||
},
|
||||
base_network="networks/" + RDIR + "base.nc",
|
||||
base_network="resources/" + RDIR + "networks/base.nc",
|
||||
tech_costs=COSTS,
|
||||
regions="resources/" + RDIR + "regions_onshore.geojson",
|
||||
powerplants="resources/" + RDIR + "powerplants.csv",
|
||||
@ -415,7 +438,7 @@ rule add_electricity:
|
||||
load="resources/" + RDIR + "load.csv",
|
||||
nuts3_shapes="resources/" + RDIR + "nuts3_shapes.geojson",
|
||||
output:
|
||||
"networks/" + RDIR + "elec.nc",
|
||||
"resources/" + RDIR + "networks/elec.nc",
|
||||
log:
|
||||
"logs/" + RDIR + "add_electricity.log",
|
||||
benchmark:
|
||||
@ -429,12 +452,12 @@ rule add_electricity:
|
||||
|
||||
rule simplify_network:
|
||||
input:
|
||||
network="networks/" + RDIR + "elec.nc",
|
||||
network="resources/" + RDIR + "networks/elec.nc",
|
||||
tech_costs=COSTS,
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore.geojson",
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore.geojson",
|
||||
output:
|
||||
network="networks/" + RDIR + "elec_s{simpl}.nc",
|
||||
network="resources/" + RDIR + "networks/elec_s{simpl}.nc",
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore_elec_s{simpl}.geojson",
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore_elec_s{simpl}.geojson",
|
||||
busmap="resources/" + RDIR + "busmap_elec_s{simpl}.csv",
|
||||
@ -452,7 +475,7 @@ rule simplify_network:
|
||||
|
||||
rule cluster_network:
|
||||
input:
|
||||
network="networks/" + RDIR + "elec_s{simpl}.nc",
|
||||
network="resources/" + RDIR + "networks/elec_s{simpl}.nc",
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore_elec_s{simpl}.geojson",
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore_elec_s{simpl}.geojson",
|
||||
busmap=ancient("resources/" + RDIR + "busmap_elec_s{simpl}.csv"),
|
||||
@ -463,7 +486,7 @@ rule cluster_network:
|
||||
),
|
||||
tech_costs=COSTS,
|
||||
output:
|
||||
network="networks/" + RDIR + "elec_s{simpl}_{clusters}.nc",
|
||||
network="resources/" + RDIR + "networks/elec_s{simpl}_{clusters}.nc",
|
||||
regions_onshore="resources/"
|
||||
+ RDIR
|
||||
+ "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
@ -485,10 +508,10 @@ rule cluster_network:
|
||||
|
||||
rule add_extra_components:
|
||||
input:
|
||||
network="networks/" + RDIR + "elec_s{simpl}_{clusters}.nc",
|
||||
network="resources/" + RDIR + "networks/elec_s{simpl}_{clusters}.nc",
|
||||
tech_costs=COSTS,
|
||||
output:
|
||||
"networks/" + RDIR + "elec_s{simpl}_{clusters}_ec.nc",
|
||||
"resources/" + RDIR + "networks/elec_s{simpl}_{clusters}_ec.nc",
|
||||
log:
|
||||
"logs/" + RDIR + "add_extra_components/elec_s{simpl}_{clusters}.log",
|
||||
benchmark:
|
||||
@ -502,10 +525,10 @@ rule add_extra_components:
|
||||
|
||||
rule prepare_network:
|
||||
input:
|
||||
"networks/" + RDIR + "elec_s{simpl}_{clusters}_ec.nc",
|
||||
"resources/" + RDIR + "networks/elec_s{simpl}_{clusters}_ec.nc",
|
||||
tech_costs=COSTS,
|
||||
output:
|
||||
"networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
"resources/" + RDIR + "networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
log:
|
||||
"logs/" + RDIR + "prepare_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.log",
|
||||
benchmark:
|
||||
@ -543,7 +566,7 @@ def memory(w):
|
||||
|
||||
rule solve_network:
|
||||
input:
|
||||
"networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
"resources/" + RDIR + "networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
output:
|
||||
"results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
log:
|
||||
@ -571,7 +594,7 @@ rule solve_network:
|
||||
|
||||
rule solve_operations_network:
|
||||
input:
|
||||
unprepared="networks/" + RDIR + "elec_s{simpl}_{clusters}_ec.nc",
|
||||
unprepared="resources/" + RDIR + "networks/elec_s{simpl}_{clusters}_ec.nc",
|
||||
optimized="results/networks/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
@ -604,108 +627,669 @@ rule solve_operations_network:
|
||||
"scripts/solve_operations_network.py"
|
||||
|
||||
|
||||
|
||||
datafiles = [
|
||||
"data/eea/UNFCCC_v23.csv",
|
||||
"data/switzerland-sfoe/switzerland-new_format.csv",
|
||||
"data/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson",
|
||||
"data/myb1-2017-nitro.xls",
|
||||
"data/Industrial_Database.csv",
|
||||
"data/emobility/KFZ__count",
|
||||
"data/emobility/Pkw__count",
|
||||
"data/h2_salt_caverns_GWh_per_sqkm.geojson",
|
||||
directory("data/eurostat-energy_balances-june_2016_edition"),
|
||||
directory("data/eurostat-energy_balances-may_2018_edition"),
|
||||
directory("data/jrc-idees-2015"),
|
||||
]
|
||||
|
||||
if config.get('retrieve_sector_databundle', True):
|
||||
rule retrieve_sector_databundle:
|
||||
output: *datafiles
|
||||
log: "logs/retrieve_sector_databundle.log"
|
||||
script: 'scripts/retrieve_sector_databundle.py'
|
||||
|
||||
|
||||
if config.get("retrieve_cost_data", True):
|
||||
rule retrieve_cost_data:
|
||||
input: HTTP.remote("raw.githubusercontent.com/PyPSA/technology-data/{}/outputs/".format(config['costs']['version']) + "costs_{year}.csv", keep_local=True)
|
||||
output: "data/costs_{year}.csv"
|
||||
log: "logs/" + RDIR + "retrieve_cost_data_{year}.log",
|
||||
resources: mem_mb=1000,
|
||||
run: move(input[0], output[0])
|
||||
|
||||
|
||||
rule build_population_layouts:
|
||||
input:
|
||||
nuts3_shapes='resources/' + RDIR + 'nuts3_shapes.geojson',
|
||||
urban_percent="data/urban_percent.csv"
|
||||
output:
|
||||
pop_layout_total="resources/" + RDIR + "pop_layout_total.nc",
|
||||
pop_layout_urban="resources/" + RDIR + "pop_layout_urban.nc",
|
||||
pop_layout_rural="resources/" + RDIR + "pop_layout_rural.nc"
|
||||
resources: mem_mb=20000
|
||||
benchmark: "benchmarks/build_population_layouts"
|
||||
threads: 8
|
||||
script: "scripts/build_population_layouts.py"
|
||||
|
||||
|
||||
rule build_clustered_population_layouts:
|
||||
input:
|
||||
pop_layout_total="resources/" + RDIR + "pop_layout_total.nc",
|
||||
pop_layout_urban="resources/" + RDIR + "pop_layout_urban.nc",
|
||||
pop_layout_rural="resources/" + RDIR + "pop_layout_rural.nc",
|
||||
regions_onshore='resources/' + RDIR + 'regions_onshore_elec_s{simpl}_{clusters}.geojson'
|
||||
output:
|
||||
clustered_pop_layout="resources/" + RDIR + "pop_layout_elec_s{simpl}_{clusters}.csv"
|
||||
resources: mem_mb=10000
|
||||
benchmark: "benchmarks/build_clustered_population_layouts/s{simpl}_{clusters}"
|
||||
script: "scripts/build_clustered_population_layouts.py"
|
||||
|
||||
|
||||
rule build_simplified_population_layouts:
|
||||
input:
|
||||
pop_layout_total="resources/" + RDIR + "pop_layout_total.nc",
|
||||
pop_layout_urban="resources/" + RDIR + "pop_layout_urban.nc",
|
||||
pop_layout_rural="resources/" + RDIR + "pop_layout_rural.nc",
|
||||
regions_onshore='resources/' + RDIR + 'regions_onshore_elec_s{simpl}.geojson'
|
||||
output:
|
||||
clustered_pop_layout="resources/" + RDIR + "pop_layout_elec_s{simpl}.csv"
|
||||
resources: mem_mb=10000
|
||||
benchmark: "benchmarks/build_clustered_population_layouts/s{simpl}"
|
||||
script: "scripts/build_clustered_population_layouts.py"
|
||||
|
||||
|
||||
if config["sector"]["gas_network"] or config["sector"]["H2_retrofit"]:
|
||||
|
||||
datafiles = [
|
||||
"IGGIELGN_LNGs.geojson",
|
||||
"IGGIELGN_BorderPoints.geojson",
|
||||
"IGGIELGN_Productions.geojson",
|
||||
"IGGIELGN_PipeSegments.geojson",
|
||||
]
|
||||
|
||||
|
||||
rule retrieve_gas_infrastructure_data:
|
||||
output: expand("data/gas_network/scigrid-gas/data/{files}", files=datafiles)
|
||||
script: 'scripts/retrieve_gas_infrastructure_data.py'
|
||||
|
||||
|
||||
rule build_gas_network:
|
||||
input:
|
||||
gas_network="data/gas_network/scigrid-gas/data/IGGIELGN_PipeSegments.geojson"
|
||||
output:
|
||||
cleaned_gas_network="resources/" + RDIR + "gas_network.csv"
|
||||
resources: mem_mb=4000
|
||||
script: "scripts/build_gas_network.py"
|
||||
|
||||
|
||||
rule build_gas_input_locations:
|
||||
input:
|
||||
lng=HTTP.remote("https://globalenergymonitor.org/wp-content/uploads/2022/09/Europe-Gas-Tracker-August-2022.xlsx", keep_local=True),
|
||||
entry="data/gas_network/scigrid-gas/data/IGGIELGN_BorderPoints.geojson",
|
||||
production="data/gas_network/scigrid-gas/data/IGGIELGN_Productions.geojson",
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
regions_offshore='resources/' + RDIR + 'regions_offshore_elec_s{simpl}_{clusters}.geojson'
|
||||
output:
|
||||
gas_input_nodes="resources/" + RDIR + "gas_input_locations_s{simpl}_{clusters}.geojson",
|
||||
gas_input_nodes_simplified="resources/" + RDIR + "gas_input_locations_s{simpl}_{clusters}_simplified.csv"
|
||||
resources: mem_mb=2000,
|
||||
script: "scripts/build_gas_input_locations.py"
|
||||
|
||||
|
||||
rule cluster_gas_network:
|
||||
input:
|
||||
cleaned_gas_network="resources/" + RDIR + "gas_network.csv",
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore_elec_s{simpl}_{clusters}.geojson"
|
||||
output:
|
||||
clustered_gas_network="resources/" + RDIR + "gas_network_elec_s{simpl}_{clusters}.csv"
|
||||
resources: mem_mb=4000
|
||||
script: "scripts/cluster_gas_network.py"
|
||||
|
||||
|
||||
gas_infrastructure = {**rules.cluster_gas_network.output, **rules.build_gas_input_locations.output}
|
||||
else:
|
||||
gas_infrastructure = {}
|
||||
|
||||
|
||||
rule build_heat_demands:
|
||||
input:
|
||||
pop_layout="resources/" + RDIR + "pop_layout_{scope}.nc",
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore_elec_s{simpl}_{clusters}.geojson"
|
||||
output:
|
||||
heat_demand="resources/" + RDIR + "heat_demand_{scope}_elec_s{simpl}_{clusters}.nc"
|
||||
resources: mem_mb=20000
|
||||
threads: 8
|
||||
benchmark: "benchmarks/build_heat_demands/{scope}_s{simpl}_{clusters}"
|
||||
script: "scripts/build_heat_demand.py"
|
||||
|
||||
|
||||
rule build_temperature_profiles:
|
||||
input:
|
||||
pop_layout="resources/" + RDIR + "pop_layout_{scope}.nc",
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore_elec_s{simpl}_{clusters}.geojson"
|
||||
output:
|
||||
temp_soil="resources/" + RDIR + "temp_soil_{scope}_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air="resources/" + RDIR + "temp_air_{scope}_elec_s{simpl}_{clusters}.nc",
|
||||
resources: mem_mb=20000
|
||||
threads: 8
|
||||
benchmark: "benchmarks/build_temperature_profiles/{scope}_s{simpl}_{clusters}"
|
||||
script: "scripts/build_temperature_profiles.py"
|
||||
|
||||
|
||||
rule build_cop_profiles:
|
||||
input:
|
||||
temp_soil_total="resources/" + RDIR + "temp_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_rural="resources/" + RDIR + "temp_soil_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_urban="resources/" + RDIR + "temp_soil_urban_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_total="resources/" + RDIR + "temp_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_rural="resources/" + RDIR + "temp_air_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_urban="resources/" + RDIR + "temp_air_urban_elec_s{simpl}_{clusters}.nc"
|
||||
output:
|
||||
cop_soil_total="resources/" + RDIR + "cop_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_soil_rural="resources/" + RDIR + "cop_soil_rural_elec_s{simpl}_{clusters}.nc",
|
||||
cop_soil_urban="resources/" + RDIR + "cop_soil_urban_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_total="resources/" + RDIR + "cop_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_rural="resources/" + RDIR + "cop_air_rural_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_urban="resources/" + RDIR + "cop_air_urban_elec_s{simpl}_{clusters}.nc"
|
||||
resources: mem_mb=20000
|
||||
benchmark: "benchmarks/build_cop_profiles/s{simpl}_{clusters}"
|
||||
script: "scripts/build_cop_profiles.py"
|
||||
|
||||
|
||||
rule build_solar_thermal_profiles:
|
||||
input:
|
||||
pop_layout="resources/" + RDIR + "pop_layout_{scope}.nc",
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore_elec_s{simpl}_{clusters}.geojson"
|
||||
output:
|
||||
solar_thermal="resources/" + RDIR + "solar_thermal_{scope}_elec_s{simpl}_{clusters}.nc",
|
||||
resources: mem_mb=20000
|
||||
threads: 16
|
||||
benchmark: "benchmarks/build_solar_thermal_profiles/{scope}_s{simpl}_{clusters}"
|
||||
script: "scripts/build_solar_thermal_profiles.py"
|
||||
|
||||
|
||||
def input_eurostat(w):
|
||||
# 2016 includes BA, 2017 does not
|
||||
report_year = config["energy"]["eurostat_report_year"]
|
||||
return f"data/eurostat-energy_balances-june_{report_year}_edition"
|
||||
|
||||
rule build_energy_totals:
|
||||
input:
|
||||
nuts3_shapes='resources/' + RDIR + 'nuts3_shapes.geojson',
|
||||
co2="data/eea/UNFCCC_v23.csv",
|
||||
swiss="data/switzerland-sfoe/switzerland-new_format.csv",
|
||||
idees="data/jrc-idees-2015",
|
||||
district_heat_share='data/district_heat_share.csv',
|
||||
eurostat=input_eurostat
|
||||
output:
|
||||
energy_name='resources/' + RDIR + 'energy_totals.csv',
|
||||
co2_name='resources/' + RDIR + 'co2_totals.csv',
|
||||
transport_name='resources/' + RDIR + 'transport_data.csv'
|
||||
threads: 16
|
||||
resources: mem_mb=10000
|
||||
benchmark: "benchmarks/build_energy_totals"
|
||||
script: 'scripts/build_energy_totals.py'
|
||||
|
||||
|
||||
rule build_biomass_potentials:
|
||||
input:
|
||||
enspreso_biomass=HTTP.remote("https://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/ENSPRESO/ENSPRESO_BIOMASS.xlsx", keep_local=True),
|
||||
nuts2="data/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson", # https://gisco-services.ec.europa.eu/distribution/v2/nuts/download/#nuts21
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
nuts3_population="data/bundle/nama_10r_3popgdp.tsv.gz",
|
||||
swiss_cantons="data/bundle/ch_cantons.csv",
|
||||
swiss_population="data/bundle/je-e-21.03.02.xls",
|
||||
country_shapes='resources/' + RDIR + 'country_shapes.geojson'
|
||||
output:
|
||||
biomass_potentials_all='resources/' + RDIR + 'biomass_potentials_all_s{simpl}_{clusters}.csv',
|
||||
biomass_potentials='resources/' + RDIR + 'biomass_potentials_s{simpl}_{clusters}.csv'
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_biomass_potentials_s{simpl}_{clusters}"
|
||||
script: 'scripts/build_biomass_potentials.py'
|
||||
|
||||
|
||||
if config["sector"]["biomass_transport"]:
|
||||
rule build_biomass_transport_costs:
|
||||
input:
|
||||
transport_cost_data=HTTP.remote("publications.jrc.ec.europa.eu/repository/bitstream/JRC98626/biomass potentials in europe_web rev.pdf", keep_local=True)
|
||||
output:
|
||||
biomass_transport_costs="resources/" + RDIR + "biomass_transport_costs.csv",
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_biomass_transport_costs"
|
||||
script: 'scripts/build_biomass_transport_costs.py'
|
||||
build_biomass_transport_costs_output = rules.build_biomass_transport_costs.output
|
||||
else:
|
||||
build_biomass_transport_costs_output = {}
|
||||
|
||||
|
||||
if config["sector"]["regional_co2_sequestration_potential"]["enable"]:
|
||||
rule build_sequestration_potentials:
|
||||
input:
|
||||
sequestration_potential=HTTP.remote("https://raw.githubusercontent.com/ericzhou571/Co2Storage/main/resources/complete_map_2020_unit_Mt.geojson", keep_local=True),
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore_elec_s{simpl}_{clusters}.geojson",
|
||||
output:
|
||||
sequestration_potential="resources/" + RDIR + "co2_sequestration_potential_elec_s{simpl}_{clusters}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=4000
|
||||
benchmark: "benchmarks/build_sequestration_potentials_s{simpl}_{clusters}"
|
||||
script: "scripts/build_sequestration_potentials.py"
|
||||
build_sequestration_potentials_output = rules.build_sequestration_potentials.output
|
||||
else:
|
||||
build_sequestration_potentials_output = {}
|
||||
|
||||
|
||||
rule build_salt_cavern_potentials:
|
||||
input:
|
||||
salt_caverns="data/h2_salt_caverns_GWh_per_sqkm.geojson",
|
||||
regions_onshore="resources/" + RDIR + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
regions_offshore="resources/" + RDIR + "regions_offshore_elec_s{simpl}_{clusters}.geojson",
|
||||
output:
|
||||
h2_cavern_potential="resources/" + RDIR + "salt_cavern_potentials_s{simpl}_{clusters}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=2000
|
||||
benchmark: "benchmarks/build_salt_cavern_potentials_s{simpl}_{clusters}"
|
||||
script: "scripts/build_salt_cavern_potentials.py"
|
||||
|
||||
|
||||
rule build_ammonia_production:
|
||||
input:
|
||||
usgs="data/myb1-2017-nitro.xls"
|
||||
output:
|
||||
ammonia_production="resources/" + RDIR + "ammonia_production.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_ammonia_production"
|
||||
script: 'scripts/build_ammonia_production.py'
|
||||
|
||||
|
||||
rule build_industry_sector_ratios:
|
||||
input:
|
||||
ammonia_production="resources/" + RDIR + "ammonia_production.csv",
|
||||
idees="data/jrc-idees-2015"
|
||||
output:
|
||||
industry_sector_ratios="resources/" + RDIR + "industry_sector_ratios.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industry_sector_ratios"
|
||||
script: 'scripts/build_industry_sector_ratios.py'
|
||||
|
||||
|
||||
rule build_industrial_production_per_country:
|
||||
input:
|
||||
ammonia_production="resources/" + RDIR + "ammonia_production.csv",
|
||||
jrc="data/jrc-idees-2015",
|
||||
eurostat="data/eurostat-energy_balances-may_2018_edition",
|
||||
output:
|
||||
industrial_production_per_country="resources/" + RDIR + "industrial_production_per_country.csv"
|
||||
threads: 8
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_production_per_country"
|
||||
script: 'scripts/build_industrial_production_per_country.py'
|
||||
|
||||
|
||||
rule build_industrial_production_per_country_tomorrow:
|
||||
input:
|
||||
industrial_production_per_country="resources/" + RDIR + "industrial_production_per_country.csv"
|
||||
output:
|
||||
industrial_production_per_country_tomorrow="resources/" + RDIR + "industrial_production_per_country_tomorrow_{planning_horizons}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_production_per_country_tomorrow_{planning_horizons}"
|
||||
script: 'scripts/build_industrial_production_per_country_tomorrow.py'
|
||||
|
||||
|
||||
rule build_industrial_distribution_key:
|
||||
input:
|
||||
regions_onshore='resources/' + RDIR + 'regions_onshore_elec_s{simpl}_{clusters}.geojson',
|
||||
clustered_pop_layout="resources/" + RDIR + "pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
hotmaps_industrial_database="data/Industrial_Database.csv",
|
||||
output:
|
||||
industrial_distribution_key="resources/" + RDIR + "industrial_distribution_key_elec_s{simpl}_{clusters}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_distribution_key/s{simpl}_{clusters}"
|
||||
script: 'scripts/build_industrial_distribution_key.py'
|
||||
|
||||
|
||||
rule build_industrial_production_per_node:
|
||||
input:
|
||||
industrial_distribution_key="resources/" + RDIR + "industrial_distribution_key_elec_s{simpl}_{clusters}.csv",
|
||||
industrial_production_per_country_tomorrow="resources/" + RDIR + "industrial_production_per_country_tomorrow_{planning_horizons}.csv"
|
||||
output:
|
||||
industrial_production_per_node="resources/" + RDIR + "industrial_production_elec_s{simpl}_{clusters}_{planning_horizons}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_production_per_node/s{simpl}_{clusters}_{planning_horizons}"
|
||||
script: 'scripts/build_industrial_production_per_node.py'
|
||||
|
||||
|
||||
rule build_industrial_energy_demand_per_node:
|
||||
input:
|
||||
industry_sector_ratios="resources/" + RDIR + "industry_sector_ratios.csv",
|
||||
industrial_production_per_node="resources/" + RDIR + "industrial_production_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
industrial_energy_demand_per_node_today="resources/" + RDIR + "industrial_energy_demand_today_elec_s{simpl}_{clusters}.csv"
|
||||
output:
|
||||
industrial_energy_demand_per_node="resources/" + RDIR + "industrial_energy_demand_elec_s{simpl}_{clusters}_{planning_horizons}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_energy_demand_per_node/s{simpl}_{clusters}_{planning_horizons}"
|
||||
script: 'scripts/build_industrial_energy_demand_per_node.py'
|
||||
|
||||
|
||||
rule build_industrial_energy_demand_per_country_today:
|
||||
input:
|
||||
jrc="data/jrc-idees-2015",
|
||||
ammonia_production="resources/" + RDIR + "ammonia_production.csv",
|
||||
industrial_production_per_country="resources/" + RDIR + "industrial_production_per_country.csv"
|
||||
output:
|
||||
industrial_energy_demand_per_country_today="resources/" + RDIR + "industrial_energy_demand_per_country_today.csv"
|
||||
threads: 8
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_energy_demand_per_country_today"
|
||||
script: 'scripts/build_industrial_energy_demand_per_country_today.py'
|
||||
|
||||
|
||||
rule build_industrial_energy_demand_per_node_today:
|
||||
input:
|
||||
industrial_distribution_key="resources/" + RDIR + "industrial_distribution_key_elec_s{simpl}_{clusters}.csv",
|
||||
industrial_energy_demand_per_country_today="resources/" + RDIR + "industrial_energy_demand_per_country_today.csv"
|
||||
output:
|
||||
industrial_energy_demand_per_node_today="resources/" + RDIR + "industrial_energy_demand_today_elec_s{simpl}_{clusters}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_energy_demand_per_node_today/s{simpl}_{clusters}"
|
||||
script: 'scripts/build_industrial_energy_demand_per_node_today.py'
|
||||
|
||||
|
||||
if config["sector"]["retrofitting"]["retro_endogen"]:
|
||||
rule build_retro_cost:
|
||||
input:
|
||||
building_stock="data/retro/data_building_stock.csv",
|
||||
data_tabula="data/retro/tabula-calculator-calcsetbuilding.csv",
|
||||
air_temperature = "resources/" + RDIR + "temp_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
u_values_PL="data/retro/u_values_poland.csv",
|
||||
tax_w="data/retro/electricity_taxes_eu.csv",
|
||||
construction_index="data/retro/comparative_level_investment.csv",
|
||||
floor_area_missing="data/retro/floor_area_missing.csv",
|
||||
clustered_pop_layout="resources/" + RDIR + "pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
cost_germany="data/retro/retro_cost_germany.csv",
|
||||
window_assumptions="data/retro/window_assumptions.csv",
|
||||
output:
|
||||
retro_cost="resources/" + RDIR + "retro_cost_elec_s{simpl}_{clusters}.csv",
|
||||
floor_area="resources/" + RDIR + "floor_area_elec_s{simpl}_{clusters}.csv"
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_retro_cost/s{simpl}_{clusters}"
|
||||
script: "scripts/build_retro_cost.py"
|
||||
build_retro_cost_output = rules.build_retro_cost.output
|
||||
else:
|
||||
build_retro_cost_output = {}
|
||||
|
||||
|
||||
rule build_population_weighted_energy_totals:
|
||||
input:
|
||||
energy_totals='resources/' + RDIR + 'energy_totals.csv',
|
||||
clustered_pop_layout="resources/" + RDIR + "pop_layout_elec_s{simpl}_{clusters}.csv"
|
||||
output: "resources/" + RDIR + "pop_weighted_energy_totals_s{simpl}_{clusters}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=2000
|
||||
script: "scripts/build_population_weighted_energy_totals.py"
|
||||
|
||||
|
||||
rule build_shipping_demand:
|
||||
input:
|
||||
ports="data/attributed_ports.json",
|
||||
scope="resources/" + RDIR + "europe_shape.geojson",
|
||||
regions="resources/" + RDIR + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
demand="resources/" + RDIR + "energy_totals.csv"
|
||||
output: "resources/" + RDIR + "shipping_demand_s{simpl}_{clusters}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=2000
|
||||
script: "scripts/build_shipping_demand.py"
|
||||
|
||||
|
||||
rule build_transport_demand:
|
||||
input:
|
||||
clustered_pop_layout="resources/" + RDIR + "pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
pop_weighted_energy_totals="resources/" + RDIR + "pop_weighted_energy_totals_s{simpl}_{clusters}.csv",
|
||||
transport_data='resources/' + RDIR + 'transport_data.csv',
|
||||
traffic_data_KFZ="data/emobility/KFZ__count",
|
||||
traffic_data_Pkw="data/emobility/Pkw__count",
|
||||
temp_air_total="resources/" + RDIR + "temp_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
output:
|
||||
transport_demand="resources/" + RDIR + "transport_demand_s{simpl}_{clusters}.csv",
|
||||
transport_data="resources/" + RDIR + "transport_data_s{simpl}_{clusters}.csv",
|
||||
avail_profile="resources/" + RDIR + "avail_profile_s{simpl}_{clusters}.csv",
|
||||
dsm_profile="resources/" + RDIR + "dsm_profile_s{simpl}_{clusters}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=2000
|
||||
script: "scripts/build_transport_demand.py"
|
||||
|
||||
|
||||
rule prepare_sector_network:
|
||||
input:
|
||||
overrides="data/override_component_attrs",
|
||||
network='networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc',
|
||||
energy_totals_name='resources/' + RDIR + 'energy_totals.csv',
|
||||
eurostat=input_eurostat,
|
||||
pop_weighted_energy_totals="resources/" + RDIR + "pop_weighted_energy_totals_s{simpl}_{clusters}.csv",
|
||||
shipping_demand="resources/" + RDIR + "shipping_demand_s{simpl}_{clusters}.csv",
|
||||
transport_demand="resources/" + RDIR + "transport_demand_s{simpl}_{clusters}.csv",
|
||||
transport_data="resources/" + RDIR + "transport_data_s{simpl}_{clusters}.csv",
|
||||
avail_profile="resources/" + RDIR + "avail_profile_s{simpl}_{clusters}.csv",
|
||||
dsm_profile="resources/" + RDIR + "dsm_profile_s{simpl}_{clusters}.csv",
|
||||
co2_totals_name='resources/' + RDIR + 'co2_totals.csv',
|
||||
co2="data/eea/UNFCCC_v23.csv",
|
||||
biomass_potentials='resources/' + RDIR + 'biomass_potentials_s{simpl}_{clusters}.csv',
|
||||
heat_profile="data/heat_load_profile_BDEW.csv",
|
||||
costs="data/costs_{}.csv".format(config['costs']['year']) if config["foresight"] == "overnight" else "data/costs_{planning_horizons}.csv",
|
||||
profile_offwind_ac="resources/" + RDIR + "profile_offwind-ac.nc",
|
||||
profile_offwind_dc="resources/" + RDIR + "profile_offwind-dc.nc",
|
||||
h2_cavern="resources/" + RDIR + "salt_cavern_potentials_s{simpl}_{clusters}.csv",
|
||||
busmap_s="resources/" + RDIR + "busmap_elec_s{simpl}.csv",
|
||||
busmap="resources/" + RDIR + "busmap_elec_s{simpl}_{clusters}.csv",
|
||||
clustered_pop_layout="resources/" + RDIR + "pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
simplified_pop_layout="resources/" + RDIR + "pop_layout_elec_s{simpl}.csv",
|
||||
industrial_demand="resources/" + RDIR + "industrial_energy_demand_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
heat_demand_urban="resources/" + RDIR + "heat_demand_urban_elec_s{simpl}_{clusters}.nc",
|
||||
heat_demand_rural="resources/" + RDIR + "heat_demand_rural_elec_s{simpl}_{clusters}.nc",
|
||||
heat_demand_total="resources/" + RDIR + "heat_demand_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_total="resources/" + RDIR + "temp_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_rural="resources/" + RDIR + "temp_soil_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_urban="resources/" + RDIR + "temp_soil_urban_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_total="resources/" + RDIR + "temp_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_rural="resources/" + RDIR + "temp_air_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_urban="resources/" + RDIR + "temp_air_urban_elec_s{simpl}_{clusters}.nc",
|
||||
cop_soil_total="resources/" + RDIR + "cop_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_soil_rural="resources/" + RDIR + "cop_soil_rural_elec_s{simpl}_{clusters}.nc",
|
||||
cop_soil_urban="resources/" + RDIR + "cop_soil_urban_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_total="resources/" + RDIR + "cop_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_rural="resources/" + RDIR + "cop_air_rural_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_urban="resources/" + RDIR + "cop_air_urban_elec_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_total="resources/" + RDIR + "solar_thermal_total_elec_s{simpl}_{clusters}.nc" if config["sector"]["solar_thermal"] else [],
|
||||
solar_thermal_urban="resources/" + RDIR + "solar_thermal_urban_elec_s{simpl}_{clusters}.nc" if config["sector"]["solar_thermal"] else [],
|
||||
solar_thermal_rural="resources/" + RDIR + "solar_thermal_rural_elec_s{simpl}_{clusters}.nc" if config["sector"]["solar_thermal"] else [],
|
||||
**build_retro_cost_output,
|
||||
**build_biomass_transport_costs_output,
|
||||
**gas_infrastructure,
|
||||
**build_sequestration_potentials_output
|
||||
output: "results/" + RDIR + '/prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc'
|
||||
threads: 1
|
||||
resources: mem_mb=2000
|
||||
benchmark: RDIR + "benchmarks/prepare_network/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}"
|
||||
script: "scripts/prepare_sector_network.py"
|
||||
|
||||
|
||||
rule plot_network:
|
||||
input:
|
||||
network="results/networks/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
tech_costs=COSTS,
|
||||
overrides="data/override_component_attrs",
|
||||
network="results/" + RDIR + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
regions='resources/' + RDIR + 'regions_onshore_elec_s{simpl}_{clusters}.geojson'
|
||||
output:
|
||||
only_map="results/plots/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{attr}.{ext}",
|
||||
ext="results/plots/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{attr}_ext.{ext}",
|
||||
log:
|
||||
"logs/"
|
||||
+ RDIR
|
||||
+ "plot_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{attr}_{ext}.log",
|
||||
script:
|
||||
"scripts/plot_network.py"
|
||||
map="results/" + RDIR + "maps/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}-costs-all_{planning_horizons}.pdf",
|
||||
today="results/" + RDIR + "maps/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-today.pdf"
|
||||
threads: 2
|
||||
resources: mem_mb=10000
|
||||
benchmark: RDIR + "benchmarks/plot_network/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}"
|
||||
script: "scripts/plot_network.py"
|
||||
|
||||
|
||||
def input_make_summary(w):
|
||||
# It's mildly hacky to include the separate costs input as first entry
|
||||
if w.ll.endswith("all"):
|
||||
ll = config["scenario"]["ll"]
|
||||
if len(w.ll) == 4:
|
||||
ll = [l for l in ll if l[0] == w.ll[0]]
|
||||
else:
|
||||
ll = w.ll
|
||||
return [COSTS] + expand(
|
||||
"results/networks/" + RDIR + "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
ll=ll,
|
||||
**{
|
||||
k: config["scenario"][k] if getattr(w, k) == "all" else getattr(w, k)
|
||||
for k in ["simpl", "clusters", "opts"]
|
||||
}
|
||||
)
|
||||
rule copy_config:
|
||||
output: "results/" + RDIR + 'configs/config.yaml'
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: RDIR + "benchmarks/copy_config"
|
||||
script: "scripts/copy_config.py"
|
||||
|
||||
|
||||
rule copy_conda_env:
|
||||
output: "results/" + RDIR + 'configs/environment.yaml'
|
||||
threads: 1
|
||||
resources: mem_mb=500
|
||||
benchmark: "results/" + RDIR + "benchmarks/copy_conda_env"
|
||||
shell: "conda env export -f {output} --no-builds"
|
||||
|
||||
|
||||
rule make_summary:
|
||||
input:
|
||||
input_make_summary,
|
||||
output:
|
||||
directory(
|
||||
"results/summaries/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}"
|
||||
overrides="data/override_component_attrs",
|
||||
networks=expand(
|
||||
"results/" + RDIR + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
**config['scenario']
|
||||
),
|
||||
log:
|
||||
"logs/"
|
||||
+ RDIR
|
||||
+ "make_summary/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}.log",
|
||||
resources:
|
||||
mem_mb=1500,
|
||||
script:
|
||||
"scripts/make_summary.py"
|
||||
costs="data/costs_{}.csv".format(config['costs']['year']) if config["foresight"] == "overnight" else "data/costs_{}.csv".format(config['scenario']['planning_horizons'][0]),
|
||||
plots=expand(
|
||||
"results/" + RDIR + "maps/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}-costs-all_{planning_horizons}.pdf",
|
||||
**config['scenario']
|
||||
)
|
||||
output:
|
||||
nodal_costs="results/" + RDIR + 'csvs/nodal_costs.csv',
|
||||
nodal_capacities="results/" + RDIR + 'csvs/nodal_capacities.csv',
|
||||
nodal_cfs="results/" + RDIR + 'csvs/nodal_cfs.csv',
|
||||
cfs="results/" + RDIR + 'csvs/cfs.csv',
|
||||
costs="results/" + RDIR + 'csvs/costs.csv',
|
||||
capacities="results/" + RDIR + 'csvs/capacities.csv',
|
||||
curtailment="results/" + RDIR + 'csvs/curtailment.csv',
|
||||
energy="results/" + RDIR + 'csvs/energy.csv',
|
||||
supply="results/" + RDIR + 'csvs/supply.csv',
|
||||
supply_energy="results/" + RDIR + 'csvs/supply_energy.csv',
|
||||
prices="results/" + RDIR + 'csvs/prices.csv',
|
||||
weighted_prices="results/" + RDIR + 'csvs/weighted_prices.csv',
|
||||
market_values="results/" + RDIR + 'csvs/market_values.csv',
|
||||
price_statistics="results/" + RDIR + 'csvs/price_statistics.csv',
|
||||
metrics="results/" + RDIR + 'csvs/metrics.csv'
|
||||
threads: 2
|
||||
resources: mem_mb=10000
|
||||
benchmark: RDIR + "benchmarks/make_summary"
|
||||
script: "scripts/make_summary.py"
|
||||
|
||||
|
||||
rule plot_summary:
|
||||
input:
|
||||
"results/summaries/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}",
|
||||
costs="results/" + RDIR + 'csvs/costs.csv',
|
||||
energy="results/" + RDIR + 'csvs/energy.csv',
|
||||
balances="results/" + RDIR + 'csvs/supply_energy.csv',
|
||||
eurostat=input_eurostat,
|
||||
country_codes='data/Country_codes.csv',
|
||||
output:
|
||||
"results/plots/"
|
||||
+ RDIR
|
||||
+ "summary_{summary}_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}.{ext}",
|
||||
log:
|
||||
"logs/"
|
||||
+ RDIR
|
||||
+ "plot_summary/{summary}_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_{country}_{ext}.log",
|
||||
resources:
|
||||
mem_mb=1500,
|
||||
script:
|
||||
"scripts/plot_summary.py"
|
||||
costs="results/" + RDIR + 'graphs/costs.pdf',
|
||||
energy="results/" + RDIR + 'graphs/energy.pdf',
|
||||
balances="results/" + RDIR + 'graphs/balances-energy.pdf'
|
||||
threads: 2
|
||||
resources: mem_mb=10000
|
||||
benchmark: RDIR + "benchmarks/plot_summary"
|
||||
script: "scripts/plot_summary.py"
|
||||
|
||||
|
||||
def input_plot_p_nom_max(w):
|
||||
return [
|
||||
(
|
||||
"results/networks/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}{maybe_cluster}.nc".format(
|
||||
maybe_cluster=("" if c == "full" else ("_" + c)), **w
|
||||
)
|
||||
)
|
||||
for c in w.clusts.split(",")
|
||||
]
|
||||
if config["foresight"] == "overnight":
|
||||
|
||||
rule solve_network:
|
||||
input:
|
||||
overrides="data/override_component_attrs",
|
||||
network="results/" + RDIR + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
costs="data/costs_{}.csv".format(config['costs']['year']),
|
||||
config="results/" + RDIR + 'configs/config.yaml',
|
||||
#env=RDIR + 'configs/environment.yaml',
|
||||
output: "results/" + RDIR + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc"
|
||||
shadow: "shallow"
|
||||
log:
|
||||
solver=RDIR + "logs/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_solver.log",
|
||||
python=RDIR + "logs/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_python.log",
|
||||
memory=RDIR + "logs/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_memory.log"
|
||||
threads: config['solving']['solver'].get('threads', 4)
|
||||
resources: mem_mb=config['solving']['mem']
|
||||
benchmark: RDIR + "benchmarks/solve_network/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}"
|
||||
script: "scripts/solve_network.py"
|
||||
|
||||
|
||||
rule plot_p_nom_max:
|
||||
input:
|
||||
input_plot_p_nom_max,
|
||||
output:
|
||||
"results/plots/"
|
||||
+ RDIR
|
||||
+ "elec_s{simpl}_cum_p_nom_max_{clusts}_{techs}_{country}.{ext}",
|
||||
log:
|
||||
"logs/"
|
||||
+ RDIR
|
||||
+ "plot_p_nom_max/elec_s{simpl}_{clusts}_{techs}_{country}_{ext}.log",
|
||||
resources:
|
||||
mem_mb=1500,
|
||||
script:
|
||||
"scripts/plot_p_nom_max.py"
|
||||
if config["foresight"] == "myopic":
|
||||
|
||||
rule add_existing_baseyear:
|
||||
input:
|
||||
overrides="data/override_component_attrs",
|
||||
network="results/" + RDIR + '/prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc',
|
||||
powerplants='resources/' + RDIR + 'powerplants.csv',
|
||||
busmap_s="resources/" + RDIR + "busmap_elec_s{simpl}.csv",
|
||||
busmap="resources/" + RDIR + "busmap_elec_s{simpl}_{clusters}.csv",
|
||||
clustered_pop_layout="resources/" + RDIR + "pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
costs="data/costs_{}.csv".format(config['scenario']['planning_horizons'][0]),
|
||||
cop_soil_total="resources/" + RDIR + "cop_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_total="resources/" + RDIR + "cop_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
existing_heating='data/existing_infrastructure/existing_heating_raw.csv',
|
||||
country_codes='data/Country_codes.csv',
|
||||
existing_solar='data/existing_infrastructure/solar_capacity_IRENA.csv',
|
||||
existing_onwind='data/existing_infrastructure/onwind_capacity_IRENA.csv',
|
||||
existing_offwind='data/existing_infrastructure/offwind_capacity_IRENA.csv',
|
||||
output: "results/" + RDIR + '/prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc'
|
||||
wildcard_constraints:
|
||||
planning_horizons=config['scenario']['planning_horizons'][0] #only applies to baseyear
|
||||
threads: 1
|
||||
resources: mem_mb=2000
|
||||
benchmark: RDIR + '/benchmarks/add_existing_baseyear/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}'
|
||||
script: "scripts/add_existing_baseyear.py"
|
||||
|
||||
|
||||
def solved_previous_horizon(wildcards):
|
||||
planning_horizons = config["scenario"]["planning_horizons"]
|
||||
i = planning_horizons.index(int(wildcards.planning_horizons))
|
||||
planning_horizon_p = str(planning_horizons[i-1])
|
||||
return "results/" + RDIR + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_" + planning_horizon_p + ".nc"
|
||||
|
||||
|
||||
rule add_brownfield:
|
||||
input:
|
||||
overrides="data/override_component_attrs",
|
||||
network="results/" + RDIR + '/prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc',
|
||||
network_p=solved_previous_horizon, #solved network at previous time step
|
||||
costs="data/costs_{planning_horizons}.csv",
|
||||
cop_soil_total="resources/" + RDIR + "cop_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_total="resources/" + RDIR + "cop_air_total_elec_s{simpl}_{clusters}.nc"
|
||||
output: "results/" + RDIR + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc"
|
||||
threads: 4
|
||||
resources: mem_mb=10000
|
||||
benchmark: RDIR + '/benchmarks/add_brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}'
|
||||
script: "scripts/add_brownfield.py"
|
||||
|
||||
|
||||
ruleorder: add_existing_baseyear > add_brownfield
|
||||
|
||||
|
||||
rule solve_network_myopic:
|
||||
input:
|
||||
overrides="data/override_component_attrs",
|
||||
network="results/" + RDIR + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
costs="data/costs_{planning_horizons}.csv",
|
||||
config="results/" + RDIR + 'configs/config.yaml'
|
||||
output: "results/" + RDIR + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc"
|
||||
shadow: "shallow"
|
||||
log:
|
||||
solver=RDIR + "logs/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_solver.log",
|
||||
python=RDIR + "logs/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_python.log",
|
||||
memory=RDIR + "logs/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_memory.log"
|
||||
threads: 4
|
||||
resources: mem_mb=config['solving']['mem']
|
||||
benchmark: RDIR + "benchmarks/solve_network/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}"
|
||||
script: "scripts/solve_network.py"
|
||||
|
@ -9,16 +9,55 @@ logging:
|
||||
level: INFO
|
||||
format: '%(levelname)s:%(name)s:%(message)s'
|
||||
|
||||
logging_level: INFO
|
||||
|
||||
run:
|
||||
name: "" # use this to keep track of runs with different settings
|
||||
shared_cutouts: false # set to true to share the default cutout(s) across runs
|
||||
|
||||
foresight: overnight # options are overnight, myopic, perfect (perfect is not yet implemented)
|
||||
# if you use myopic or perfect foresight, set the investment years in "planning_horizons" below
|
||||
|
||||
scenario:
|
||||
simpl: ['']
|
||||
ll: ['copt']
|
||||
clusters: [37, 128, 256, 512, 1024]
|
||||
opts: [Co2L-3H]
|
||||
simpl:
|
||||
- ''
|
||||
ll: # allowed transmission line volume expansion, can be any float >= 1.0 with a prefix v|c (today) or "copt"
|
||||
- v1.0
|
||||
- v1.5
|
||||
clusters: # number of nodes in Europe, any integer between 37 (1 node per country-zone) and several hundred
|
||||
- 37
|
||||
- 128
|
||||
- 256
|
||||
- 512
|
||||
- 1024
|
||||
opts: # only relevant for PyPSA-Eur
|
||||
- ''
|
||||
sector_opts: # this is where the main scenario settings are
|
||||
- Co2L0-3H-T-H-B-I-A-solar+p3-dist1
|
||||
# to really understand the options here, look in scripts/prepare_sector_network.py
|
||||
# Co2Lx specifies the CO2 target in x% of the 1990 values; default will give default (5%);
|
||||
# Co2L0p25 will give 25% CO2 emissions; Co2Lm0p05 will give 5% negative emissions
|
||||
# xH is the temporal resolution; 3H is 3-hourly, i.e. one snapshot every 3 hours
|
||||
# single letters are sectors: T for land transport, H for building heating,
|
||||
# B for biomass supply, I for industry, shipping and aviation,
|
||||
# A for agriculture, forestry and fishing
|
||||
# solar+c0.5 reduces the capital cost of solar to 50\% of reference value
|
||||
# solar+p3 multiplies the available installable potential by factor 3
|
||||
# seq400 sets the potential of CO2 sequestration to 400 Mt CO2 per year
|
||||
# dist{n} includes distribution grids with investment cost of n times cost in data/costs.csv
|
||||
# for myopic/perfect foresight cb states the carbon budget in GtCO2 (cumulative
|
||||
# emissions throughout the transition path in the timeframe determined by the
|
||||
# planning_horizons), be:beta decay; ex:exponential decay
|
||||
# cb40ex0 distributes a carbon budget of 40 GtCO2 following an exponential
|
||||
# decay with initial growth rate 0
|
||||
planning_horizons: # investment years for myopic and perfect; for overnight, year of cost assumptions can be different and is defined under 'costs'
|
||||
- 2050
|
||||
# for example, set to
|
||||
# - 2020
|
||||
# - 2030
|
||||
# - 2040
|
||||
# - 2050
|
||||
# for myopic foresight
|
||||
|
||||
countries: ['AL', 'AT', 'BA', 'BE', 'BG', 'CH', 'CZ', 'DE', 'DK', 'EE', 'ES', 'FI', 'FR', 'GB', 'GR', 'HR', 'HU', 'IE', 'IT', 'LT', 'LU', 'LV', 'ME', 'MK', 'NL', 'NO', 'PL', 'PT', 'RO', 'RS', 'SE', 'SI', 'SK']
|
||||
|
||||
@ -37,6 +76,21 @@ enable:
|
||||
retrieve_natura_raster: true
|
||||
custom_busmap: false
|
||||
|
||||
retrieve_sector_databundle: true
|
||||
retrieve_cost_data: true
|
||||
|
||||
# CO2 budget as a fraction of 1990 emissions
|
||||
# this is over-ridden if CO2Lx is set in sector_opts
|
||||
# this is also over-ridden if cb is set in sector_opts
|
||||
co2_budget:
|
||||
2020: 0.7011648746
|
||||
2025: 0.5241935484
|
||||
2030: 0.2970430108
|
||||
2035: 0.1500896057
|
||||
2040: 0.0712365591
|
||||
2045: 0.0322580645
|
||||
2050: 0
|
||||
|
||||
electricity:
|
||||
voltages: [220., 300., 380.]
|
||||
gaslimit: false # global gas usage limit of X MWh_th
|
||||
@ -84,7 +138,9 @@ electricity:
|
||||
Onshore: [onwind]
|
||||
PV: [solar]
|
||||
|
||||
|
||||
atlite:
|
||||
cutout: ../pypsa-eur/cutouts/europe-2013-era5.nc
|
||||
nprocesses: 4
|
||||
show_progress: false # false saves time
|
||||
cutouts:
|
||||
@ -231,6 +287,287 @@ load:
|
||||
manual_adjustments: true # false
|
||||
scaling_factor: 1.0
|
||||
|
||||
# regulate what components with which carriers are kept from PyPSA-Eur;
|
||||
# some technologies are removed because they are implemented differently
|
||||
# (e.g. battery or H2 storage) or have different year-dependent costs
|
||||
# in PyPSA-Eur-Sec
|
||||
pypsa_eur:
|
||||
Bus:
|
||||
- AC
|
||||
Link:
|
||||
- DC
|
||||
Generator:
|
||||
- onwind
|
||||
- offwind-ac
|
||||
- offwind-dc
|
||||
- solar
|
||||
- ror
|
||||
StorageUnit:
|
||||
- PHS
|
||||
- hydro
|
||||
Store: []
|
||||
|
||||
energy:
|
||||
energy_totals_year: 2011
|
||||
base_emissions_year: 1990
|
||||
eurostat_report_year: 2016
|
||||
emissions: CO2 # "CO2" or "All greenhouse gases - (CO2 equivalent)"
|
||||
|
||||
biomass:
|
||||
year: 2030
|
||||
scenario: ENS_Med
|
||||
classes:
|
||||
solid biomass:
|
||||
- Agricultural waste
|
||||
- Fuelwood residues
|
||||
- Secondary Forestry residues - woodchips
|
||||
- Sawdust
|
||||
- Residues from landscape care
|
||||
- Municipal waste
|
||||
not included:
|
||||
- Sugar from sugar beet
|
||||
- Rape seed
|
||||
- "Sunflower, soya seed "
|
||||
- Bioethanol barley, wheat, grain maize, oats, other cereals and rye
|
||||
- Miscanthus, switchgrass, RCG
|
||||
- Willow
|
||||
- Poplar
|
||||
- FuelwoodRW
|
||||
- C&P_RW
|
||||
biogas:
|
||||
- Manure solid, liquid
|
||||
- Sludge
|
||||
|
||||
|
||||
solar_thermal:
|
||||
clearsky_model: simple # should be "simple" or "enhanced"?
|
||||
orientation:
|
||||
slope: 45.
|
||||
azimuth: 180.
|
||||
|
||||
# only relevant for foresight = myopic or perfect
|
||||
existing_capacities:
|
||||
grouping_years_power: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020, 2025, 2030]
|
||||
grouping_years_heat: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019] # these should not extend 2020
|
||||
threshold_capacity: 10
|
||||
conventional_carriers:
|
||||
- lignite
|
||||
- coal
|
||||
- oil
|
||||
- uranium
|
||||
|
||||
|
||||
sector:
|
||||
district_heating:
|
||||
potential: 0.6 # maximum fraction of urban demand which can be supplied by district heating
|
||||
# increase of today's district heating demand to potential maximum district heating share
|
||||
# progress = 0 means today's district heating share, progress = 1 means maximum fraction of urban demand is supplied by district heating
|
||||
progress:
|
||||
2020: 0.0
|
||||
2030: 0.3
|
||||
2040: 0.6
|
||||
2050: 1.0
|
||||
district_heating_loss: 0.15
|
||||
cluster_heat_buses: false # cluster residential and service heat buses to one to save memory
|
||||
bev_dsm_restriction_value: 0.75 #Set to 0 for no restriction on BEV DSM
|
||||
bev_dsm_restriction_time: 7 #Time at which SOC of BEV has to be dsm_restriction_value
|
||||
transport_heating_deadband_upper: 20.
|
||||
transport_heating_deadband_lower: 15.
|
||||
ICE_lower_degree_factor: 0.375 #in per cent increase in fuel consumption per degree above deadband
|
||||
ICE_upper_degree_factor: 1.6
|
||||
EV_lower_degree_factor: 0.98
|
||||
EV_upper_degree_factor: 0.63
|
||||
bev_dsm: true #turns on EV battery
|
||||
bev_availability: 0.5 #How many cars do smart charging
|
||||
bev_energy: 0.05 #average battery size in MWh
|
||||
bev_charge_efficiency: 0.9 #BEV (dis-)charging efficiency
|
||||
bev_plug_to_wheel_efficiency: 0.2 #kWh/km from EPA https://www.fueleconomy.gov/feg/ for Tesla Model S
|
||||
bev_charge_rate: 0.011 #3-phase charger with 11 kW
|
||||
bev_avail_max: 0.95
|
||||
bev_avail_mean: 0.8
|
||||
v2g: true #allows feed-in to grid from EV battery
|
||||
#what is not EV or FCEV is oil-fuelled ICE
|
||||
land_transport_fuel_cell_share:
|
||||
2020: 0
|
||||
2030: 0.05
|
||||
2040: 0.1
|
||||
2050: 0.15
|
||||
land_transport_electric_share:
|
||||
2020: 0
|
||||
2030: 0.25
|
||||
2040: 0.6
|
||||
2050: 0.85
|
||||
land_transport_ice_share:
|
||||
2020: 1
|
||||
2030: 0.7
|
||||
2040: 0.3
|
||||
2050: 0
|
||||
transport_fuel_cell_efficiency: 0.5
|
||||
transport_internal_combustion_efficiency: 0.3
|
||||
agriculture_machinery_electric_share: 0
|
||||
agriculture_machinery_oil_share: 1
|
||||
agriculture_machinery_fuel_efficiency: 0.7 # fuel oil per use
|
||||
agriculture_machinery_electric_efficiency: 0.3 # electricity per use
|
||||
MWh_MeOH_per_MWh_H2: 0.8787 # in LHV, source: DECHEMA (2017): Low carbon energy and feedstock for the European chemical industry , pg. 64.
|
||||
MWh_MeOH_per_tCO2: 4.0321 # in LHV, source: DECHEMA (2017): Low carbon energy and feedstock for the European chemical industry , pg. 64.
|
||||
MWh_MeOH_per_MWh_e: 3.6907 # in LHV, source: DECHEMA (2017): Low carbon energy and feedstock for the European chemical industry , pg. 64.
|
||||
shipping_hydrogen_liquefaction: false # whether to consider liquefaction costs for shipping H2 demands
|
||||
shipping_hydrogen_share:
|
||||
2020: 0
|
||||
2030: 0
|
||||
2040: 0
|
||||
2050: 0
|
||||
shipping_methanol_share:
|
||||
2020: 0
|
||||
2030: 0.3
|
||||
2040: 0.7
|
||||
2050: 1
|
||||
shipping_oil_share:
|
||||
2020: 1
|
||||
2030: 0.7
|
||||
2040: 0.3
|
||||
2050: 0
|
||||
shipping_methanol_efficiency: 0.46 # 10-15% higher https://www.iea-amf.org/app/webroot/files/file/Annex%20Reports/AMF_Annex_56.pdf, https://users.ugent.be/~lsileghe/documents/extended_abstract.pdf
|
||||
shipping_oil_efficiency: 0.40 #For conversion of fuel oil to propulsion in 2011
|
||||
aviation_demand_factor: 1. # relative aviation demand compared to today
|
||||
HVC_demand_factor: 1. # relative HVC demand compared to today
|
||||
time_dep_hp_cop: true #time dependent heat pump coefficient of performance
|
||||
heat_pump_sink_T: 55. # Celsius, based on DTU / large area radiators; used in build_cop_profiles.py
|
||||
# conservatively high to cover hot water and space heating in poorly-insulated buildings
|
||||
reduce_space_heat_exogenously: true # reduces space heat demand by a given factor (applied before losses in DH)
|
||||
# this can represent e.g. building renovation, building demolition, or if
|
||||
# the factor is negative: increasing floor area, increased thermal comfort, population growth
|
||||
reduce_space_heat_exogenously_factor: # per unit reduction in space heat demand
|
||||
# the default factors are determined by the LTS scenario from http://tool.european-calculator.eu/app/buildings/building-types-area/?levers=1ddd4444421213bdbbbddd44444ffffff11f411111221111211l212221
|
||||
2020: 0.10 # this results in a space heat demand reduction of 10%
|
||||
2025: 0.09 # first heat demand increases compared to 2020 because of larger floor area per capita
|
||||
2030: 0.09
|
||||
2035: 0.11
|
||||
2040: 0.16
|
||||
2045: 0.21
|
||||
2050: 0.29
|
||||
retrofitting: # co-optimises building renovation to reduce space heat demand
|
||||
retro_endogen: false # co-optimise space heat savings
|
||||
cost_factor: 1.0 # weight costs for building renovation
|
||||
interest_rate: 0.04 # for investment in building components
|
||||
annualise_cost: true # annualise the investment costs
|
||||
tax_weighting: false # weight costs depending on taxes in countries
|
||||
construction_index: true # weight costs depending on labour/material costs per country
|
||||
tes: true
|
||||
tes_tau: # 180 day time constant for centralised, 3 day for decentralised
|
||||
decentral: 3
|
||||
central: 180
|
||||
boilers: true
|
||||
oil_boilers: false
|
||||
biomass_boiler: true
|
||||
chp: true
|
||||
micro_chp: false
|
||||
solar_thermal: true
|
||||
solar_cf_correction: 0.788457 # = >>> 1/1.2683
|
||||
marginal_cost_storage: 0. #1e-4
|
||||
methanation: true
|
||||
helmeth: true
|
||||
coal_cc: false
|
||||
dac: true
|
||||
co2_vent: false
|
||||
allam_cycle: false
|
||||
SMR: true
|
||||
regional_co2_sequestration_potential:
|
||||
enable: false # enable regionally resolved geological co2 storage potential
|
||||
attribute: 'conservative estimate Mt'
|
||||
include_onshore: false # include onshore sequestration potentials
|
||||
min_size: 3 # Gt, sites with lower potential will be excluded
|
||||
max_size: 25 # Gt, max sequestration potential for any one site, TODO research suitable value
|
||||
years_of_storage: 25 # years until potential exhausted at optimised annual rate
|
||||
co2_sequestration_potential: 200 #MtCO2/a sequestration potential for Europe
|
||||
co2_sequestration_cost: 10 #EUR/tCO2 for sequestration of CO2
|
||||
co2_spatial: false
|
||||
co2network: false
|
||||
cc_fraction: 0.9 # default fraction of CO2 captured with post-combustion capture
|
||||
hydrogen_underground_storage: true
|
||||
hydrogen_underground_storage_locations:
|
||||
# - onshore # more than 50 km from sea
|
||||
- nearshore # within 50 km of sea
|
||||
# - offshore
|
||||
ammonia: false # can be false (no NH3 carrier), true (copperplated NH3), "regional" (regionalised NH3 without network)
|
||||
min_part_load_fischer_tropsch: 0.9 # p_min_pu
|
||||
min_part_load_methanolisation: 0.5 # p_min_pu
|
||||
use_fischer_tropsch_waste_heat: true
|
||||
use_fuel_cell_waste_heat: true
|
||||
use_electrolysis_waste_heat: false
|
||||
electricity_distribution_grid: true
|
||||
electricity_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv
|
||||
electricity_grid_connection: true # only applies to onshore wind and utility PV
|
||||
H2_network: true
|
||||
gas_network: false
|
||||
H2_retrofit: false # if set to True existing gas pipes can be retrofitted to H2 pipes
|
||||
# according to hydrogen backbone strategy (April, 2020) p.15
|
||||
# https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf
|
||||
# 60% of original natural gas capacity could be used in cost-optimal case as H2 capacity
|
||||
H2_retrofit_capacity_per_CH4: 0.6 # ratio for H2 capacity per original CH4 capacity of retrofitted pipelines
|
||||
gas_network_connectivity_upgrade: 1 # https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation
|
||||
gas_distribution_grid: true
|
||||
gas_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv
|
||||
biomass_spatial: false # regionally resolve biomass (e.g. potentials)
|
||||
biomass_transport: false # allow transport of solid biomass between nodes
|
||||
conventional_generation: # generator : carrier
|
||||
OCGT: gas
|
||||
biomass_to_liquid: false
|
||||
biosng: false
|
||||
|
||||
industry:
|
||||
St_primary_fraction: # fraction of steel produced via primary route versus secondary route (scrap+EAF); today fraction is 0.6
|
||||
2020: 0.6
|
||||
2025: 0.55
|
||||
2030: 0.5
|
||||
2035: 0.45
|
||||
2040: 0.4
|
||||
2045: 0.35
|
||||
2050: 0.3
|
||||
DRI_fraction: # fraction of the primary route converted to DRI + EAF
|
||||
2020: 0
|
||||
2025: 0
|
||||
2030: 0.05
|
||||
2035: 0.2
|
||||
2040: 0.4
|
||||
2045: 0.7
|
||||
2050: 1
|
||||
H2_DRI: 1.7 #H2 consumption in Direct Reduced Iron (DRI), MWh_H2,LHV/ton_Steel from 51kgH2/tSt in Vogl et al (2018) doi:10.1016/j.jclepro.2018.08.279
|
||||
elec_DRI: 0.322 #electricity consumption in Direct Reduced Iron (DRI) shaft, MWh/tSt HYBRIT brochure https://ssabwebsitecdn.azureedge.net/-/media/hybrit/files/hybrit_brochure.pdf
|
||||
Al_primary_fraction: # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4
|
||||
2020: 0.4
|
||||
2025: 0.375
|
||||
2030: 0.35
|
||||
2035: 0.325
|
||||
2040: 0.3
|
||||
2045: 0.25
|
||||
2050: 0.2
|
||||
MWh_NH3_per_tNH3: 5.166 # LHV
|
||||
MWh_CH4_per_tNH3_SMR: 10.8 # 2012's demand from https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf
|
||||
MWh_elec_per_tNH3_SMR: 0.7 # same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3
|
||||
MWh_H2_per_tNH3_electrolysis: 6.5 # from https://doi.org/10.1016/j.joule.2018.04.017, around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy)
|
||||
MWh_elec_per_tNH3_electrolysis: 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB)
|
||||
MWh_NH3_per_MWh_H2_cracker: 1.46 # https://github.com/euronion/trace/blob/44a5ff8401762edbef80eff9cfe5a47c8d3c8be4/data/efficiencies.csv
|
||||
NH3_process_emissions: 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28
|
||||
petrochemical_process_emissions: 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28
|
||||
HVC_primary_fraction: 1. # fraction of today's HVC produced via primary route
|
||||
HVC_mechanical_recycling_fraction: 0. # fraction of today's HVC produced via mechanical recycling
|
||||
HVC_chemical_recycling_fraction: 0. # fraction of today's HVC produced via chemical recycling
|
||||
HVC_production_today: 52. # MtHVC/a from DECHEMA (2017), Figure 16, page 107; includes ethylene, propylene and BTX
|
||||
MWh_elec_per_tHVC_mechanical_recycling: 0.547 # from SI of https://doi.org/10.1016/j.resconrec.2020.105010, Table S5, for HDPE, PP, PS, PET. LDPE would be 0.756.
|
||||
MWh_elec_per_tHVC_chemical_recycling: 6.9 # Material Economics (2019), page 125; based on pyrolysis and electric steam cracking
|
||||
chlorine_production_today: 9.58 # MtCl/a from DECHEMA (2017), Table 7, page 43
|
||||
MWh_elec_per_tCl: 3.6 # DECHEMA (2017), Table 6, page 43
|
||||
MWh_H2_per_tCl: -0.9372 # DECHEMA (2017), page 43; negative since hydrogen produced in chloralkali process
|
||||
methanol_production_today: 1.5 # MtMeOH/a from DECHEMA (2017), page 62
|
||||
MWh_elec_per_tMeOH: 0.167 # DECHEMA (2017), Table 14, page 65
|
||||
MWh_CH4_per_tMeOH: 10.25 # DECHEMA (2017), Table 14, page 65
|
||||
hotmaps_locate_missing: false
|
||||
reference_year: 2015
|
||||
# references:
|
||||
# DECHEMA (2017): https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf
|
||||
# Material Economics (2019): https://materialeconomics.com/latest-updates/industrial-transformation-2050
|
||||
|
||||
costs:
|
||||
year: 2030
|
||||
version: v0.5.0
|
||||
@ -244,6 +581,14 @@ costs:
|
||||
lifetime: 25
|
||||
"CO2 intensity": 0
|
||||
"discount rate": 0.07
|
||||
lifetime: 25 #default lifetime
|
||||
# From a Lion Hirth paper, also reflects average of Noothout et al 2016
|
||||
discountrate: 0.07
|
||||
# [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html # noqa: E501
|
||||
USD2013_to_EUR2013: 0.7532
|
||||
# Marginal and capital costs can be overwritten
|
||||
# capital_cost:
|
||||
# onwind: 500
|
||||
marginal_cost:
|
||||
solar: 0.01
|
||||
onwind: 0.015
|
||||
@ -256,6 +601,8 @@ costs:
|
||||
battery inverter: 0.
|
||||
emission_prices: # in currency per tonne emission, only used with the option Ep
|
||||
co2: 0.
|
||||
lines:
|
||||
length_factor: 1.25 #to estimate offwind connection costs
|
||||
|
||||
clustering:
|
||||
simplify_network:
|
||||
@ -279,6 +626,7 @@ clustering:
|
||||
ramp_limit_up: max
|
||||
ramp_limit_down: max
|
||||
efficiency: mean
|
||||
battery: 0.
|
||||
|
||||
solving:
|
||||
#tmpdir: "path/to/tmp"
|
||||
@ -365,69 +713,66 @@ solving:
|
||||
plotting:
|
||||
map:
|
||||
figsize: [7, 7]
|
||||
boundaries: [-10.2, 29, 35, 72]
|
||||
boundaries: [-11, 30, 34, 71]
|
||||
p_nom:
|
||||
bus_size_factor: 5.e+4
|
||||
linewidth_factor: 3.e+3
|
||||
color_geomap:
|
||||
ocean: white
|
||||
land: white
|
||||
eu_node_location:
|
||||
x: -5.5
|
||||
y: 46.
|
||||
|
||||
costs_max: 800
|
||||
costs_max: 1000
|
||||
costs_threshold: 1
|
||||
|
||||
energy_max: 15000.
|
||||
energy_min: -10000.
|
||||
energy_max: 20000
|
||||
energy_min: -20000
|
||||
energy_threshold: 50.
|
||||
vre_techs:
|
||||
- onwind
|
||||
- offwind-ac
|
||||
- offwind-dc
|
||||
- solar
|
||||
- ror
|
||||
renewable_storage_techs:
|
||||
- PHS
|
||||
- hydro
|
||||
conv_techs:
|
||||
- OCGT
|
||||
- CCGT
|
||||
- Nuclear
|
||||
- Coal
|
||||
storage_techs:
|
||||
- hydro+PHS
|
||||
- battery
|
||||
- H2
|
||||
load_carriers:
|
||||
- AC load
|
||||
AC_carriers:
|
||||
- AC line
|
||||
- AC transformer
|
||||
link_carriers:
|
||||
- DC line
|
||||
- Converter AC-DC
|
||||
heat_links:
|
||||
- heat pump
|
||||
- resistive heater
|
||||
- CHP heat
|
||||
- CHP electric
|
||||
- gas boiler
|
||||
- central heat pump
|
||||
- central resistive heater
|
||||
- central CHP heat
|
||||
- central CHP electric
|
||||
- central gas boiler
|
||||
heat_generators:
|
||||
- gas boiler
|
||||
- central gas boiler
|
||||
- solar thermal collector
|
||||
- central solar thermal collector
|
||||
|
||||
vre_techs: ["onwind", "offwind-ac", "offwind-dc", "solar", "ror"]
|
||||
conv_techs: ["OCGT", "CCGT", "Nuclear", "Coal"]
|
||||
storage_techs: ["hydro+PHS", "battery", "H2"]
|
||||
load_carriers: ["AC load"]
|
||||
AC_carriers: ["AC line", "AC transformer"]
|
||||
link_carriers: ["DC line", "Converter AC-DC"]
|
||||
tech_colors:
|
||||
"onwind": "#235ebc"
|
||||
"onshore wind": "#235ebc"
|
||||
'offwind': "#6895dd"
|
||||
'offwind-ac': "#6895dd"
|
||||
'offshore wind': "#6895dd"
|
||||
'offshore wind ac': "#6895dd"
|
||||
'offwind-dc': "#74c6f2"
|
||||
'offshore wind dc': "#74c6f2"
|
||||
"hydro": "#08ad97"
|
||||
"hydro+PHS": "#08ad97"
|
||||
"PHS": "#08ad97"
|
||||
"hydro reservoir": "#08ad97"
|
||||
'hydroelectricity': '#08ad97'
|
||||
"ror": "#4adbc8"
|
||||
"run of river": "#4adbc8"
|
||||
'solar': "#f9d002"
|
||||
'solar PV': "#f9d002"
|
||||
'solar thermal': '#ffef60'
|
||||
'biomass': '#0c6013'
|
||||
'solid biomass': '#06540d'
|
||||
'biogas': '#23932d'
|
||||
'waste': '#68896b'
|
||||
'geothermal': '#ba91b1'
|
||||
"OCGT": "#d35050"
|
||||
"gas": "#d35050"
|
||||
"natural gas": "#d35050"
|
||||
"CCGT": "#b20101"
|
||||
"nuclear": "#ff9000"
|
||||
"coal": "#707070"
|
||||
"lignite": "#9e5a01"
|
||||
"oil": "#262626"
|
||||
"H2": "#ea048a"
|
||||
"hydrogen storage": "#ea048a"
|
||||
"battery": "#b8ea04"
|
||||
"Electric load": "#f9d002"
|
||||
"electricity": "#f9d002"
|
||||
"lines": "#70af1d"
|
||||
"transmission lines": "#70af1d"
|
||||
"AC-AC": "#70af1d"
|
||||
"AC line": "#70af1d"
|
||||
"links": "#8a1caf"
|
||||
"HVDC links": "#8a1caf"
|
||||
"DC-DC": "#8a1caf"
|
||||
"DC link": "#8a1caf"
|
||||
nice_names:
|
||||
OCGT: "Open-Cycle Gas"
|
||||
CCGT: "Combined-Cycle Gas"
|
||||
@ -441,3 +786,198 @@ plotting:
|
||||
H2: "Hydrogen Storage"
|
||||
lines: "Transmission Lines"
|
||||
ror: "Run of River"
|
||||
|
||||
tech_colors:
|
||||
# wind
|
||||
onwind: "#235ebc"
|
||||
onshore wind: "#235ebc"
|
||||
offwind: "#6895dd"
|
||||
offshore wind: "#6895dd"
|
||||
offwind-ac: "#6895dd"
|
||||
offshore wind (AC): "#6895dd"
|
||||
offshore wind ac: "#6895dd"
|
||||
offwind-dc: "#74c6f2"
|
||||
offshore wind (DC): "#74c6f2"
|
||||
offshore wind dc: "#74c6f2"
|
||||
# water
|
||||
hydro: '#298c81'
|
||||
hydro reservoir: '#298c81'
|
||||
ror: '#3dbfb0'
|
||||
run of river: '#3dbfb0'
|
||||
hydroelectricity: '#298c81'
|
||||
PHS: '#51dbcc'
|
||||
hydro+PHS: "#08ad97"
|
||||
wave: '#a7d4cf'
|
||||
# solar
|
||||
solar: "#f9d002"
|
||||
solar PV: "#f9d002"
|
||||
solar thermal: '#ffbf2b'
|
||||
solar rooftop: '#ffea80'
|
||||
# gas
|
||||
OCGT: '#e0986c'
|
||||
OCGT marginal: '#e0986c'
|
||||
OCGT-heat: '#e0986c'
|
||||
gas boiler: '#db6a25'
|
||||
gas boilers: '#db6a25'
|
||||
gas boiler marginal: '#db6a25'
|
||||
gas: '#e05b09'
|
||||
fossil gas: '#e05b09'
|
||||
natural gas: '#e05b09'
|
||||
CCGT: '#a85522'
|
||||
CCGT marginal: '#a85522'
|
||||
allam: '#B98F76'
|
||||
gas for industry co2 to atmosphere: '#692e0a'
|
||||
gas for industry co2 to stored: '#8a3400'
|
||||
gas for industry: '#853403'
|
||||
gas for industry CC: '#692e0a'
|
||||
gas pipeline: '#ebbca0'
|
||||
gas pipeline new: '#a87c62'
|
||||
# oil
|
||||
oil: '#c9c9c9'
|
||||
oil boiler: '#adadad'
|
||||
agriculture machinery oil: '#949494'
|
||||
shipping oil: "#808080"
|
||||
land transport oil: '#afafaf'
|
||||
# nuclear
|
||||
Nuclear: '#ff8c00'
|
||||
Nuclear marginal: '#ff8c00'
|
||||
nuclear: '#ff8c00'
|
||||
uranium: '#ff8c00'
|
||||
# coal
|
||||
Coal: '#545454'
|
||||
coal: '#545454'
|
||||
Coal marginal: '#545454'
|
||||
solid: '#545454'
|
||||
Lignite: '#826837'
|
||||
lignite: '#826837'
|
||||
Lignite marginal: '#826837'
|
||||
# biomass
|
||||
biogas: '#e3d37d'
|
||||
biomass: '#baa741'
|
||||
solid biomass: '#baa741'
|
||||
solid biomass transport: '#baa741'
|
||||
solid biomass for industry: '#7a6d26'
|
||||
solid biomass for industry CC: '#47411c'
|
||||
solid biomass for industry co2 from atmosphere: '#736412'
|
||||
solid biomass for industry co2 to stored: '#47411c'
|
||||
biomass boiler: '#8A9A5B'
|
||||
biomass to liquid: '#32CD32'
|
||||
BioSNG: '#123456'
|
||||
# power transmission
|
||||
lines: '#6c9459'
|
||||
transmission lines: '#6c9459'
|
||||
electricity distribution grid: '#97ad8c'
|
||||
# electricity demand
|
||||
Electric load: '#110d63'
|
||||
electric demand: '#110d63'
|
||||
electricity: '#110d63'
|
||||
industry electricity: '#2d2a66'
|
||||
industry new electricity: '#2d2a66'
|
||||
agriculture electricity: '#494778'
|
||||
# battery + EVs
|
||||
battery: '#ace37f'
|
||||
battery storage: '#ace37f'
|
||||
home battery: '#80c944'
|
||||
home battery storage: '#80c944'
|
||||
BEV charger: '#baf238'
|
||||
V2G: '#e5ffa8'
|
||||
land transport EV: '#baf238'
|
||||
Li ion: '#baf238'
|
||||
# hot water storage
|
||||
water tanks: '#e69487'
|
||||
hot water storage: '#e69487'
|
||||
hot water charging: '#e69487'
|
||||
hot water discharging: '#e69487'
|
||||
# heat demand
|
||||
Heat load: '#cc1f1f'
|
||||
heat: '#cc1f1f'
|
||||
heat demand: '#cc1f1f'
|
||||
rural heat: '#ff5c5c'
|
||||
central heat: '#cc1f1f'
|
||||
decentral heat: '#750606'
|
||||
low-temperature heat for industry: '#8f2727'
|
||||
process heat: '#ff0000'
|
||||
agriculture heat: '#d9a5a5'
|
||||
# heat supply
|
||||
heat pumps: '#2fb537'
|
||||
heat pump: '#2fb537'
|
||||
air heat pump: '#36eb41'
|
||||
ground heat pump: '#2fb537'
|
||||
Ambient: '#98eb9d'
|
||||
CHP: '#8a5751'
|
||||
CHP CC: '#634643'
|
||||
CHP heat: '#8a5751'
|
||||
CHP electric: '#8a5751'
|
||||
district heating: '#e8beac'
|
||||
resistive heater: '#d8f9b8'
|
||||
retrofitting: '#8487e8'
|
||||
building retrofitting: '#8487e8'
|
||||
# hydrogen
|
||||
H2 for industry: "#f073da"
|
||||
H2 for shipping: "#ebaee0"
|
||||
H2: '#bf13a0'
|
||||
hydrogen: '#bf13a0'
|
||||
SMR: '#870c71'
|
||||
SMR CC: '#4f1745'
|
||||
H2 liquefaction: '#d647bd'
|
||||
hydrogen storage: '#bf13a0'
|
||||
H2 storage: '#bf13a0'
|
||||
land transport fuel cell: '#6b3161'
|
||||
H2 pipeline: '#f081dc'
|
||||
H2 pipeline retrofitted: '#ba99b5'
|
||||
H2 Fuel Cell: '#c251ae'
|
||||
H2 Electrolysis: '#ff29d9'
|
||||
# ammonia
|
||||
NH3: '#46caf0'
|
||||
ammonia: '#46caf0'
|
||||
ammonia store: '#00ace0'
|
||||
ammonia cracker: '#87d0e6'
|
||||
Haber-Bosch: '#076987'
|
||||
# syngas
|
||||
Sabatier: '#9850ad'
|
||||
methanation: '#c44ce6'
|
||||
methane: '#c44ce6'
|
||||
helmeth: '#e899ff'
|
||||
# synfuels
|
||||
Fischer-Tropsch: '#25c49a'
|
||||
liquid: '#25c49a'
|
||||
kerosene for aviation: '#a1ffe6'
|
||||
naphtha for industry: '#57ebc4'
|
||||
methanolisation: '#83d6d5'
|
||||
methanol: '#468c8b'
|
||||
shipping methanol: '#468c8b'
|
||||
# co2
|
||||
CC: '#f29dae'
|
||||
CCS: '#f29dae'
|
||||
CO2 sequestration: '#f29dae'
|
||||
DAC: '#ff5270'
|
||||
co2 stored: '#f2385a'
|
||||
co2: '#f29dae'
|
||||
co2 vent: '#ffd4dc'
|
||||
CO2 pipeline: '#f5627f'
|
||||
# emissions
|
||||
process emissions CC: '#000000'
|
||||
process emissions: '#222222'
|
||||
process emissions to stored: '#444444'
|
||||
process emissions to atmosphere: '#888888'
|
||||
oil emissions: '#aaaaaa'
|
||||
shipping oil emissions: "#555555"
|
||||
shipping methanol emissions: '#666666'
|
||||
land transport oil emissions: '#777777'
|
||||
agriculture machinery oil emissions: '#333333'
|
||||
# other
|
||||
shipping: '#03a2ff'
|
||||
power-to-heat: '#2fb537'
|
||||
power-to-gas: '#c44ce6'
|
||||
power-to-H2: '#ff29d9'
|
||||
power-to-liquid: '#25c49a'
|
||||
gas-to-power/heat: '#ee8340'
|
||||
waste: '#e3d37d'
|
||||
other: '#000000'
|
||||
geothermal: '#ba91b1'
|
||||
AC-AC: "#70af1d"
|
||||
AC line: "#70af1d"
|
||||
links: "#8a1caf"
|
||||
HVDC links: "#8a1caf"
|
||||
DC-DC: "#8a1caf"
|
||||
DC link: "#8a1caf"
|
||||
|
37
data/Country_codes.csv
Normal file
@ -0,0 +1,37 @@
|
||||
Country,2 letter code (ISO-3166-2),3 letter code (ISO-3166-3)
|
||||
Albania,AL,ALB
|
||||
Austria,AT,AUT
|
||||
Bosnia Herzegovina,BA,BIH
|
||||
Belgium,BE,BEL
|
||||
Bulgaria,BG,BGR
|
||||
Switzerland,CH,CHE
|
||||
Cyprus,CY,CYP
|
||||
Czech Republic,CZ,CZE
|
||||
Germany,DE,DEU
|
||||
Denmark,DK,DNK
|
||||
Spain,ES,ESP
|
||||
Estonia,EE,EST
|
||||
Finland,FI,FIN
|
||||
France,FR,FRA
|
||||
United Kingdom,GB,GBR
|
||||
Greece,GR,GRC
|
||||
Croatia,HR,HRV
|
||||
Hungary,HU,HUN
|
||||
Ireland,IE,IRL
|
||||
Iceland,IS,ISL
|
||||
Italy,IT,ITA
|
||||
Lithuania,LT,LTU
|
||||
Luxembourg,LU,LUX
|
||||
Latvia,LV,LVA
|
||||
Malta,MT,MLT
|
||||
Macedonia,MK,MKD
|
||||
Montenegro,ME,MNE
|
||||
Netherlands,NL,NLD
|
||||
Norway,NO,NOR
|
||||
Poland,PL,POL
|
||||
Portugal,PT,PRT
|
||||
Romania,RO,ROU
|
||||
Serbia,RS,SRB
|
||||
Slovakia,SK,SVK
|
||||
Slovenia,SI,SVN
|
||||
Sweden,SE,SWE
|
|
861
data/attributed_ports.json
Normal file
@ -0,0 +1,861 @@
|
||||
{
|
||||
"type": "FeatureCollection",
|
||||
"features": [
|
||||
{ "type": "Feature", "properties": { "Country": "United Arab Emirates", "Function": "1-345---", "LOCODE": "AEAUH", "Name": "Abu Dhabi", "NameWoDiac": "Abu Dhabi", "Status": "AI", "outflows": 41597.142851999997 }, "geometry": { "type": "Point", "coordinates": [ 54.366666666666667, 24.466666666666665 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Arab Emirates", "Function": "1-------", "LOCODE": "AERUW", "Name": "Ar Ruways", "NameWoDiac": "Ar Ruways", "Status": "RL", "outflows": 166556.0 }, "geometry": { "type": "Point", "coordinates": [ 52.733333333333334, 24.116666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Arab Emirates", "Function": "1-------", "LOCODE": "AEKLF", "Name": "Khor al Fakkan", "NameWoDiac": "Khor al Fakkan", "Status": "RL", "outflows": 790406.5 }, "geometry": { "type": "Point", "coordinates": [ 56.35, 25.333333333333332 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Arab Emirates", "Function": "1-3-----", "LOCODE": "AEMKH", "Name": "Mina Khalid", "NameWoDiac": "Mina Khalid", "Status": "RL", "outflows": 646965.0 }, "geometry": { "type": "Point", "coordinates": [ 55.366666666666667, 25.35 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Arab Emirates", "Function": "1-------", "LOCODE": "AEKHL", "Name": "Mina Khalifa\/Abu Dhabi", "NameWoDiac": "Mina Khalifa\/Abu Dhabi", "Status": "RL", "outflows": 18341458.820419993 }, "geometry": { "type": "Point", "coordinates": [ 54.666666666666664, 24.833333333333332 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Arab Emirates", "Function": "1--4----", "LOCODE": "AEQIW", "Name": "Umm al Qaiwain", "NameWoDiac": "Umm al Qaiwain", "Status": "AI", "outflows": 14196.0 }, "geometry": { "type": "Point", "coordinates": [ 55.55, 25.566666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Antigua and Barbuda", "Function": "1-------", "LOCODE": "AGSJO", "Name": "Saint John's", "NameWoDiac": "Saint John's", "Status": "AI", "outflows": 208663.0 }, "geometry": { "type": "Point", "coordinates": [ -61.85, 17.116666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Argentina", "Function": "1--4----", "LOCODE": "ARBHI", "Name": "Bahía Blanca", "NameWoDiac": "Bahia Blanca", "Status": "AI", "outflows": 677327.625 }, "geometry": { "type": "Point", "coordinates": [ -62.283333333333331, -38.716666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Argentina", "Function": "12345---", "LOCODE": "ARBUE", "Name": "Buenos Aires", "NameWoDiac": "Buenos Aires", "Status": "AI", "outflows": 11083411.036479998 }, "geometry": { "type": "Point", "coordinates": [ -58.666666666666664, -34.583333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Argentina", "Function": "1-345---", "LOCODE": "ARMDQ", "Name": "Mar del Plata", "NameWoDiac": "Mar del Plata", "Status": "AI", "outflows": 24960.0 }, "geometry": { "type": "Point", "coordinates": [ -57.533333333333331, -38.05 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Argentina", "Function": "1--4----", "LOCODE": "ARPUD", "Name": "Puerto Deseado", "NameWoDiac": "Puerto Deseado", "Status": "AI", "outflows": 24960.0 }, "geometry": { "type": "Point", "coordinates": [ -65.9, -47.75 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Argentina", "Function": "1--4----", "LOCODE": "ARPMY", "Name": "Puerto Madryn", "NameWoDiac": "Puerto Madryn", "Status": "AI", "outflows": 671555.625 }, "geometry": { "type": "Point", "coordinates": [ -65.033333333333331, -42.75 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Argentina", "Function": "12345---", "LOCODE": "ARROS", "Name": "Rosario", "NameWoDiac": "Rosario", "Status": "AI", "outflows": 110227.0 }, "geometry": { "type": "Point", "coordinates": [ -60.65, -32.95 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Argentina", "Function": "1-------", "LOCODE": "ARSAE", "Name": "San Antonio Este", "NameWoDiac": "San Antonio Este", "Status": "RQ", "outflows": 23075.0 }, "geometry": { "type": "Point", "coordinates": [ -64.733333333333334, -40.8 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Argentina", "Function": "1--4----", "LOCODE": "ARUSH", "Name": "Ushuaia", "NameWoDiac": "Ushuaia", "Status": "AI", "outflows": 30732.0 }, "geometry": { "type": "Point", "coordinates": [ -68.3, -54.8 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Argentina", "Function": "1-------", "LOCODE": "ARZAE", "Name": "Zárate", "NameWoDiac": "Zarate", "Status": "AI", "outflows": 164645.0 }, "geometry": { "type": "Point", "coordinates": [ -59.033333333333331, -34.1 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "American Samoa", "Function": "1--45---", "LOCODE": "ASPPG", "Name": "Pago Pago", "NameWoDiac": "Pago Pago", "Status": "AI", "outflows": 338184.5 }, "geometry": { "type": "Point", "coordinates": [ -170.7, 14.266666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "12345---", "LOCODE": "AUADL", "Name": "Adelaide", "NameWoDiac": "Adelaide", "Status": "AC", "outflows": 5338947.2004299983 }, "geometry": { "type": "Point", "coordinates": [ 138.583333333333343, -34.916666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "12345---", "LOCODE": "AUBNE", "Name": "Brisbane", "NameWoDiac": "Brisbane", "Status": "AC", "outflows": 8402703.6401499975 }, "geometry": { "type": "Point", "coordinates": [ 153.01666666666668, -27.466666666666665 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "12345---", "LOCODE": "AUDRW", "Name": "Darwin", "NameWoDiac": "Darwin", "Status": "AC", "outflows": 88640.416664000004 }, "geometry": { "type": "Point", "coordinates": [ 130.833333333333343, -12.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "12345---", "LOCODE": "AUMEL", "Name": "Melbourne", "NameWoDiac": "Melbourne", "Status": "AC", "outflows": 9957826.0957300067 }, "geometry": { "type": "Point", "coordinates": [ 144.966666666666669, -37.81666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "12345---", "LOCODE": "AUSYD", "Name": "Sydney", "NameWoDiac": "Sydney", "Status": "AC", "outflows": 10352110.143530006 }, "geometry": { "type": "Point", "coordinates": [ 151.2, -33.85 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Aruba", "Function": "1-------", "LOCODE": "AWBAR", "Name": "Barcadera", "NameWoDiac": "Barcadera", "Status": "RL", "outflows": 65431.8 }, "geometry": { "type": "Point", "coordinates": [ -69.983333333333334, 12.483333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Bangladesh", "Function": "1--45---", "LOCODE": "BDCGP", "Name": "Chattogram", "NameWoDiac": "Chattogram", "Status": "AI", "outflows": 1379549.0523300001 }, "geometry": { "type": "Point", "coordinates": [ 91.833333333333329, 22.333333333333332 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Belgium", "Function": "12345---", "LOCODE": "BEANR", "Name": "Antwerpen", "NameWoDiac": "Antwerpen", "Status": "AI", "outflows": 51827814.560638025 }, "geometry": { "type": "Point", "coordinates": [ 4.416666666666667, 51.216666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Belgium", "Function": "1234----", "LOCODE": "BEGNE", "Name": "Gent (Ghent)", "NameWoDiac": "Gent (Ghent)", "Status": "AI", "outflows": 13260.0 }, "geometry": { "type": "Point", "coordinates": [ 3.716666666666667, 51.05 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Belgium", "Function": "1-3-----", "LOCODE": "BEZEE", "Name": "Zeebrugge", "NameWoDiac": "Zeebrugge", "Status": "AI", "outflows": 5650583.2502299985 }, "geometry": { "type": "Point", "coordinates": [ 3.2, 51.333333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Bahrain", "Function": "1-------", "LOCODE": "BHMIN", "Name": "Mina Sulman Port", "NameWoDiac": "Mina Sulman Port", "Status": "AA", "outflows": 632118.5 }, "geometry": { "type": "Point", "coordinates": [ 50.616666666666667, 26.2 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Bonaire, Sint Eustatius and Saba", "Function": "1-------", "LOCODE": "BQKRA", "Name": "Kralendijk", "NameWoDiac": "Kralendijk", "Status": "AI", "outflows": 117162.5 }, "geometry": { "type": "Point", "coordinates": [ -68.266666666666666, 12.15 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "-23-----", "LOCODE": "BRIGI", "Name": "Itaguaí", "NameWoDiac": "Itaguai", "Status": "RL", "outflows": 2879859.0476199985 }, "geometry": { "type": "Point", "coordinates": [ -43.766666666666666, -22.866666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1-3-----", "LOCODE": "BRIOA", "Name": "Itapoá", "NameWoDiac": "Itapoa", "Status": "RL", "outflows": 9027277.19 }, "geometry": { "type": "Point", "coordinates": [ -48.6, -26.116666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1-34----", "LOCODE": "BRNVT", "Name": "Navegantes", "NameWoDiac": "Navegantes", "Status": "AI", "outflows": 10279036.91334 }, "geometry": { "type": "Point", "coordinates": [ -48.65, -26.9 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1--4----", "LOCODE": "BRPNG", "Name": "Paranaguá", "NameWoDiac": "Paranagua", "Status": "AI", "outflows": 13802196.524050001 }, "geometry": { "type": "Point", "coordinates": [ -48.5, -25.516666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "12------", "LOCODE": "BRPEC", "Name": "Pecém Pt\/São Gonçalo do Amarante", "NameWoDiac": "Pecem Pt\/Sao Goncalo do Amarante", "Status": "AA", "outflows": 2174063.6046599997 }, "geometry": { "type": "Point", "coordinates": [ -38.866666666666667, -3.533333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "123-567-", "LOCODE": "BRRIO", "Name": "Rio de Janeiro", "NameWoDiac": "Rio de Janeiro", "Status": "AA", "outflows": 9600221.3041699976 }, "geometry": { "type": "Point", "coordinates": [ -43.233333333333334, -22.883333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1-------", "LOCODE": "BRMCP", "Name": "Santana Pt.\/Macapá", "NameWoDiac": "Santana Pt.\/Macapa", "Status": "AA", "outflows": 837504.77784000011 }, "geometry": { "type": "Point", "coordinates": [ -51.166666666666664, -0.05 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1234----", "LOCODE": "BRSSZ", "Name": "Santos", "NameWoDiac": "Santos", "Status": "AI", "outflows": 17682777.003890004 }, "geometry": { "type": "Point", "coordinates": [ -46.333333333333336, -23.95 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1-34----", "LOCODE": "BRSLZ", "Name": "São Luís", "NameWoDiac": "Sao Luis", "Status": "AI", "outflows": 45240.0 }, "geometry": { "type": "Point", "coordinates": [ -44.3, -2.5 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1-------", "LOCODE": "BRVIX", "Name": "Vitória Pt", "NameWoDiac": "Vitoria Pt", "Status": "AA", "outflows": 738129.52788000007 }, "geometry": { "type": "Point", "coordinates": [ -40.333333333333336, -20.316666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Bahamas", "Function": "1--45---", "LOCODE": "BSNAS", "Name": "Nassau", "NameWoDiac": "Nassau", "Status": "AI", "outflows": 62842.0 }, "geometry": { "type": "Point", "coordinates": [ -77.35, 25.083333333333332 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Belize", "Function": "1-34----", "LOCODE": "BZBGK", "Name": "Big Creek", "NameWoDiac": "Big Creek", "Status": "RL", "outflows": 199368.0 }, "geometry": { "type": "Point", "coordinates": [ -88.4, 16.516666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Canada", "Function": "1-34----", "LOCODE": "CANWP", "Name": "Argentia", "NameWoDiac": "Argentia", "Status": "AI", "outflows": 27248.000001 }, "geometry": { "type": "Point", "coordinates": [ -54.0, 47.3 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Canada", "Function": "1-34-6--", "LOCODE": "CASJB", "Name": "Saint-John", "NameWoDiac": "Saint-John", "Status": "AS", "outflows": 389420.2 }, "geometry": { "type": "Point", "coordinates": [ -66.066666666666663, 45.266666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Canada", "Function": "1-3-----", "LOCODE": "CASJF", "Name": "Saint-John's", "NameWoDiac": "Saint-John's", "Status": "AS", "outflows": 26845.0 }, "geometry": { "type": "Point", "coordinates": [ -52.733333333333334, 47.56666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Congo, The Democratic Republic of the", "Function": "1-3-----", "LOCODE": "CDBNW", "Name": "Banana", "NameWoDiac": "Banana", "Status": "RL", "outflows": 48681.0 }, "geometry": { "type": "Point", "coordinates": [ 12.401211892732039, -6.003633266930797 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Congo", "Function": "1--45---", "LOCODE": "CGPNR", "Name": "Pointe Noire", "NameWoDiac": "Pointe Noire", "Status": "AI", "outflows": 3473713.5811700015 }, "geometry": { "type": "Point", "coordinates": [ 11.85, -4.8 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Côte d'Ivoire", "Function": "1--45---", "LOCODE": "CIABJ", "Name": "Abidjan", "NameWoDiac": "Abidjan", "Status": "AI", "outflows": 3248845.4334399998 }, "geometry": { "type": "Point", "coordinates": [ -4.016666666666667, 5.333333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Côte d'Ivoire", "Function": "1-34----", "LOCODE": "CISPY", "Name": "San-Pédro", "NameWoDiac": "San-Pedro", "Status": "AI", "outflows": 2312502.0286400001 }, "geometry": { "type": "Point", "coordinates": [ -6.616666666666667, 4.733333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Chile", "Function": "1--4----", "LOCODE": "CLANF", "Name": "Antofagasta", "NameWoDiac": "Antofagasta", "Status": "AI", "outflows": 2136460.625 }, "geometry": { "type": "Point", "coordinates": [ -70.38333333333334, -23.633333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Chile", "Function": "1-34----", "LOCODE": "CLARI", "Name": "Arica", "NameWoDiac": "Arica", "Status": "AI", "outflows": 1400600.825 }, "geometry": { "type": "Point", "coordinates": [ -70.316666666666663, -18.483333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Chile", "Function": "123-----", "LOCODE": "CLCNL", "Name": "Coronel", "NameWoDiac": "Coronel", "Status": "AI", "outflows": 5437390.8332000002 }, "geometry": { "type": "Point", "coordinates": [ -73.15, -37.016666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Chile", "Function": "1--4----", "LOCODE": "CLIQQ", "Name": "Iquique", "NameWoDiac": "Iquique", "Status": "AI", "outflows": 1915647.5 }, "geometry": { "type": "Point", "coordinates": [ -70.13333333333334, -20.216666666666665 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Chile", "Function": "123-----", "LOCODE": "CLLQN", "Name": "Lirquén", "NameWoDiac": "Lirquen", "Status": "AI", "outflows": 3185838.4995000004 }, "geometry": { "type": "Point", "coordinates": [ -72.983333333333334, -36.7 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Chile", "Function": "1-------", "LOCODE": "CLMJS", "Name": "Mejillones", "NameWoDiac": "Mejillones", "Status": "AI", "outflows": 32362.2 }, "geometry": { "type": "Point", "coordinates": [ -70.45, -23.1 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Chile", "Function": "123-----", "LOCODE": "CLPAG", "Name": "Puerto Angamos", "NameWoDiac": "Puerto Angamos", "Status": "RL", "outflows": 5408319.3663000017 }, "geometry": { "type": "Point", "coordinates": [ -70.45, -23.083333333333332 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Chile", "Function": "1-34----", "LOCODE": "CLPUQ", "Name": "Punta Arenas", "NameWoDiac": "Punta Arenas", "Status": "AI", "outflows": 18174.0 }, "geometry": { "type": "Point", "coordinates": [ -70.933333333333337, -53.133333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Chile", "Function": "123-----", "LOCODE": "CLSAI", "Name": "San Antonio", "NameWoDiac": "San Antonio", "Status": "AI", "outflows": 9417069.025 }, "geometry": { "type": "Point", "coordinates": [ -71.6, -33.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Chile", "Function": "1-3-----", "LOCODE": "CLSVE", "Name": "San Vicente", "NameWoDiac": "San Vicente", "Status": "AI", "outflows": 945075.625 }, "geometry": { "type": "Point", "coordinates": [ -73.13333333333334, -36.7 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Chile", "Function": "1234----", "LOCODE": "CLVAP", "Name": "Valparaiso", "NameWoDiac": "Valparaiso", "Status": "AI", "outflows": 2059925.0 }, "geometry": { "type": "Point", "coordinates": [ -71.63333333333334, -33.033333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNCFD", "Name": "Caofeidian Pt", "NameWoDiac": "Caofeidian Pt", "Status": "AS", "outflows": 168350.0 }, "geometry": { "type": "Point", "coordinates": [ 118.533333333333331, 38.95 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1----6--", "LOCODE": "CNDCB", "Name": "DA CHAN BAY", "NameWoDiac": "DA CHAN BAY", "Status": "RL", "outflows": 4367401.0713399984 }, "geometry": { "type": "Point", "coordinates": [ 113.86666666666666, 22.533333333333335 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNDGG", "Name": "Dongguan Pt", "NameWoDiac": "Dongguan Pt", "Status": "AS", "outflows": 94354.0 }, "geometry": { "type": "Point", "coordinates": [ 113.75, 23.033333333333335 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNDJK", "Name": "Dongjiangkou", "NameWoDiac": "Dongjiangkou", "Status": "AS", "outflows": 386750.0 }, "geometry": { "type": "Point", "coordinates": [ 119.52253982618285, 35.308885331582253 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "--3-----", "LOCODE": "CNFQG", "Name": "Fuqing", "NameWoDiac": "Fuqing", "Status": "RL", "outflows": 1164780.9333599997 }, "geometry": { "type": "Point", "coordinates": [ 119.36666666666666, 25.716666666666665 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNHUI", "Name": "Huizhou Pt", "NameWoDiac": "Huizhou Pt", "Status": "AS", "outflows": 27300.0 }, "geometry": { "type": "Point", "coordinates": [ 114.36666666666666, 23.083333333333332 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNHMN", "Name": "Humen Pt", "NameWoDiac": "Humen Pt", "Status": "AS", "outflows": 630027.5 }, "geometry": { "type": "Point", "coordinates": [ 113.666666666666671, 22.833333333333332 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-3-----", "LOCODE": "CNJGY", "Name": "Jiangyin", "NameWoDiac": "Jiangyin", "Status": "RL", "outflows": 594906.0 }, "geometry": { "type": "Point", "coordinates": [ 119.3, 25.466666666666665 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNJNZ", "Name": "Jinzhou Pt", "NameWoDiac": "Jinzhou Pt", "Status": "AS", "outflows": 684866.0 }, "geometry": { "type": "Point", "coordinates": [ 121.15, 41.116666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNLYG", "Name": "Lianyungang", "NameWoDiac": "Lianyungang", "Status": "AS", "outflows": 9288988.8094500005 }, "geometry": { "type": "Point", "coordinates": [ 119.433333333333337, 34.716666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNNSA", "Name": "Nansha Pt", "NameWoDiac": "Nansha Pt", "Status": "AS", "outflows": 42484636.038412996 }, "geometry": { "type": "Point", "coordinates": [ 113.583333333333329, 22.75 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNNTG", "Name": "Nantong Pt", "NameWoDiac": "Nantong Pt", "Status": "AS", "outflows": 261618.5 }, "geometry": { "type": "Point", "coordinates": [ 120.85, 32.016666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNSHP", "Name": "Qinhuangdao Pt", "NameWoDiac": "Qinhuangdao Pt", "Status": "AS", "outflows": 105300.0 }, "geometry": { "type": "Point", "coordinates": [ 119.583333333333329, 39.916666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNQZJ", "Name": "Quanzhou Pt", "NameWoDiac": "Quanzhou Pt", "Status": "AS", "outflows": 512451.33335000003 }, "geometry": { "type": "Point", "coordinates": [ 118.6, 24.933333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNRZH", "Name": "Rizhao Pt", "NameWoDiac": "Rizhao Pt", "Status": "AS", "outflows": 1075073.00003 }, "geometry": { "type": "Point", "coordinates": [ 119.533333333333331, 35.383333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNSHK", "Name": "Shekou Pt", "NameWoDiac": "Shekou Pt", "Status": "AS", "outflows": 74635666.140550002 }, "geometry": { "type": "Point", "coordinates": [ 113.916666666666671, 22.483333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNSHD", "Name": "Shidao Pt", "NameWoDiac": "Shidao Pt", "Status": "AS", "outflows": 54886.0 }, "geometry": { "type": "Point", "coordinates": [ 122.433333333333337, 36.866666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNWIH", "Name": "Waihai", "NameWoDiac": "Waihai", "Status": "AS", "outflows": 50050.0 }, "geometry": { "type": "Point", "coordinates": [ 113.13333333333334, 22.583333333333332 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1--4----", "LOCODE": "CNWEF", "Name": "Weifang Pt", "NameWoDiac": "Weifang Pt", "Status": "AS", "outflows": 65923.0 }, "geometry": { "type": "Point", "coordinates": [ 119.1, 36.716666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1--45---", "LOCODE": "CNWEI", "Name": "Weihai", "NameWoDiac": "Weihai", "Status": "AS", "outflows": 238257.5 }, "geometry": { "type": "Point", "coordinates": [ 122.11666666666666, 37.516666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNYPG", "Name": "Yangpu Pt", "NameWoDiac": "Yangpu Pt", "Status": "AS", "outflows": 872543.16658000019 }, "geometry": { "type": "Point", "coordinates": [ 109.2, 19.7 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNYTN", "Name": "Yantian Pt", "NameWoDiac": "Yantian Pt", "Status": "AS", "outflows": 74187678.537459999 }, "geometry": { "type": "Point", "coordinates": [ 119.86666666666666, 26.85 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNYIK", "Name": "Yingkou Pt", "NameWoDiac": "Yingkou Pt", "Status": "AS", "outflows": 1421671.0 }, "geometry": { "type": "Point", "coordinates": [ 122.216666666666669, 40.65 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNZJG", "Name": "Zhangjiagang", "NameWoDiac": "Zhangjiagang", "Status": "AS", "outflows": 196865.5 }, "geometry": { "type": "Point", "coordinates": [ 120.533333333333331, 31.866666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNZZU", "Name": "Zhangzhou Pt", "NameWoDiac": "Zhangzhou Pt", "Status": "AS", "outflows": 340964.0 }, "geometry": { "type": "Point", "coordinates": [ 117.65, 24.516666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "China", "Function": "1-------", "LOCODE": "CNZUH", "Name": "Zhuhai Pt", "NameWoDiac": "Zhuhai Pt", "Status": "AS", "outflows": 929467.5 }, "geometry": { "type": "Point", "coordinates": [ 113.566666666666663, 22.283333333333335 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Colombia", "Function": "1--4----", "LOCODE": "COLET", "Name": "Leticia", "NameWoDiac": "Leticia", "Status": "AI", "outflows": 9675.0 }, "geometry": { "type": "Point", "coordinates": [ -69.933333333333337, -4.216666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Colombia", "Function": "1--4----", "LOCODE": "COTLU", "Name": "Tolú", "NameWoDiac": "Tolu", "Status": "AI", "outflows": 9675.0 }, "geometry": { "type": "Point", "coordinates": [ -75.583333333333329, 9.533333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Colombia", "Function": "1--4----", "LOCODE": "COTRB", "Name": "Turbo", "NameWoDiac": "Turbo", "Status": "AI", "outflows": 799731.40001499979 }, "geometry": { "type": "Point", "coordinates": [ -76.716666666666669, 8.083333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Costa Rica", "Function": "123-----", "LOCODE": "CRCAL", "Name": "Caldera", "NameWoDiac": "Caldera", "Status": "RL", "outflows": 704191.8 }, "geometry": { "type": "Point", "coordinates": [ -84.716666666666669, 9.95 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Costa Rica", "Function": "1-3-----", "LOCODE": "CRMOB", "Name": "Moín", "NameWoDiac": "Moin", "Status": "RL", "outflows": 2884497.4165249998 }, "geometry": { "type": "Point", "coordinates": [ -83.083333333333329, 10.0 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Costa Rica", "Function": "1-3-----", "LOCODE": "CRLIO", "Name": "Puerto Limón", "NameWoDiac": "Puerto Limon", "Status": "AI", "outflows": 2372283.3334299996 }, "geometry": { "type": "Point", "coordinates": [ -83.033333333333331, 10.0 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cuba", "Function": "1234----", "LOCODE": "CUMAR", "Name": "Mariel", "NameWoDiac": "Mariel", "Status": "RL", "outflows": 370296.8 }, "geometry": { "type": "Point", "coordinates": [ -82.75, 23.0 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cabo Verde", "Function": "1-3-----", "LOCODE": "CVMIN", "Name": "Mindelo", "NameWoDiac": "Mindelo", "Status": "RL", "outflows": 114309.0 }, "geometry": { "type": "Point", "coordinates": [ -25.0, 16.883333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Curaçao", "Function": "1-------", "LOCODE": "CWWIL", "Name": "Willemstad", "NameWoDiac": "Willemstad", "Status": "AI", "outflows": 721990.3 }, "geometry": { "type": "Point", "coordinates": [ -68.916666666666671, 12.1 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Christmas Island", "Function": "1-------", "LOCODE": "CXFFC", "Name": "Flying Fish Cove", "NameWoDiac": "Flying Fish Cove", "Status": "RL", "outflows": 2520.0 }, "geometry": { "type": "Point", "coordinates": [ 105.716666666666669, -10.416666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cyprus", "Function": "1-3-5---", "LOCODE": "CYLMS", "Name": "Limassol", "NameWoDiac": "Limassol", "Status": "AA", "outflows": 2366252.75 }, "geometry": { "type": "Point", "coordinates": [ 33.05, 34.68333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Germany", "Function": "123-----", "LOCODE": "DEBKE", "Name": "Brake", "NameWoDiac": "Brake", "Status": "AF", "outflows": 27774.0 }, "geometry": { "type": "Point", "coordinates": [ 8.483333333333333, 53.333333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Germany", "Function": "123-----", "LOCODE": "DECUX", "Name": "Cuxhaven", "NameWoDiac": "Cuxhaven", "Status": "AF", "outflows": 128258.0 }, "geometry": { "type": "Point", "coordinates": [ 8.7, 53.883333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Germany", "Function": "1234----", "LOCODE": "DEEME", "Name": "Emden", "NameWoDiac": "Emden", "Status": "AF", "outflows": 14598.0 }, "geometry": { "type": "Point", "coordinates": [ 7.216666666666667, 53.366666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Germany", "Function": "1234----", "LOCODE": "DEKEL", "Name": "Kiel", "NameWoDiac": "Kiel", "Status": "AF", "outflows": 14040.0 }, "geometry": { "type": "Point", "coordinates": [ 10.133333333333333, 54.333333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Germany", "Function": "12345---", "LOCODE": "DERSK", "Name": "Rostock", "NameWoDiac": "Rostock", "Status": "AF", "outflows": 7984.0 }, "geometry": { "type": "Point", "coordinates": [ 12.133333333333333, 54.083333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Germany", "Function": "1234----", "LOCODE": "DEWVN", "Name": "Wilhelmshaven", "NameWoDiac": "Wilhelmshaven", "Status": "AF", "outflows": 7664957.3927999986 }, "geometry": { "type": "Point", "coordinates": [ 8.133333333333333, 53.516666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Denmark", "Function": "12345---", "LOCODE": "DKAAR", "Name": "Aarhus", "NameWoDiac": "Aarhus", "Status": "AF", "outflows": 4009844.4282799996 }, "geometry": { "type": "Point", "coordinates": [ 10.216666666666667, 56.15 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Denmark", "Function": "12345---", "LOCODE": "DKCPH", "Name": "København", "NameWoDiac": "Kobenhavn", "Status": "AF", "outflows": 138606.0 }, "geometry": { "type": "Point", "coordinates": [ 12.583333333333334, 55.666666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Dominican Republic", "Function": "1-3--6--", "LOCODE": "DOCAU", "Name": "Caucedo", "NameWoDiac": "Caucedo", "Status": "RL", "outflows": 11771542.79576 }, "geometry": { "type": "Point", "coordinates": [ -69.63333333333334, 18.416666666666668 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Dominican Republic", "Function": "123-----", "LOCODE": "DOMAN", "Name": "Manzanillo", "NameWoDiac": "Manzanillo", "Status": "RL", "outflows": 53258.4 }, "geometry": { "type": "Point", "coordinates": [ -71.75, 19.7 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Algeria", "Function": "123456--", "LOCODE": "DZALG", "Name": "Alger (Algiers)", "NameWoDiac": "Alger (Algiers)", "Status": "AI", "outflows": 835952.4 }, "geometry": { "type": "Point", "coordinates": [ 3.05, 36.75 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Algeria", "Function": "123-----", "LOCODE": "DZAZW", "Name": "Arzew", "NameWoDiac": "Arzew", "Status": "RL", "outflows": 24660.0 }, "geometry": { "type": "Point", "coordinates": [ -0.316666666666667, 35.866666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Algeria", "Function": "123-----", "LOCODE": "DZGHZ", "Name": "Ghazaouet", "NameWoDiac": "Ghazaouet", "Status": "RL", "outflows": 72735.0 }, "geometry": { "type": "Point", "coordinates": [ -1.85, 35.1 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Ecuador", "Function": "1--4----", "LOCODE": "ECESM", "Name": "Esmeraldas", "NameWoDiac": "Esmeraldas", "Status": "AI", "outflows": 153990.2 }, "geometry": { "type": "Point", "coordinates": [ -79.7, 0.983333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Ecuador", "Function": "1--45---", "LOCODE": "ECGYE", "Name": "Guayaquil", "NameWoDiac": "Guayaquil", "Status": "AI", "outflows": 8368052.2252000012 }, "geometry": { "type": "Point", "coordinates": [ -79.9, -2.166666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Ecuador", "Function": "--3--6--", "LOCODE": "ECPSJ", "Name": "Posorja", "NameWoDiac": "Posorja", "Status": "RL", "outflows": 1776250.6667999995 }, "geometry": { "type": "Point", "coordinates": [ -80.25, -2.7 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Ecuador", "Function": "1-------", "LOCODE": "ECPBO", "Name": "Puerto Bolívar", "NameWoDiac": "Puerto Bolivar", "Status": "AI", "outflows": 1601516.8 }, "geometry": { "type": "Point", "coordinates": [ -79.983333333333334, -3.266666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Estonia", "Function": "1------B", "LOCODE": "EEKND", "Name": "Kunda", "NameWoDiac": "Kunda", "Status": "AA", "outflows": 4176.0 }, "geometry": { "type": "Point", "coordinates": [ 26.533333333333335, 59.516666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Estonia", "Function": "1------B", "LOCODE": "EEMUG", "Name": "Muuga", "NameWoDiac": "Muuga", "Status": "AA", "outflows": 74880.0 }, "geometry": { "type": "Point", "coordinates": [ 24.966666666666665, 59.5 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Estonia", "Function": "-23----B", "LOCODE": "EEPLA", "Name": "Paldiski", "NameWoDiac": "Paldiski", "Status": "AA", "outflows": 90009.0 }, "geometry": { "type": "Point", "coordinates": [ 24.05, 59.35 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Estonia", "Function": "1--45---", "LOCODE": "EETLL", "Name": "Tallinn", "NameWoDiac": "Tallinn", "Status": "AI", "outflows": 493596.99998000002 }, "geometry": { "type": "Point", "coordinates": [ 24.733333333333334, 59.43333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Egypt", "Function": "1234----", "LOCODE": "EGDAM", "Name": "Dumyat (Damietta)", "NameWoDiac": "Dumyat (Damietta)", "Status": "RL", "outflows": 9993066.850010002 }, "geometry": { "type": "Point", "coordinates": [ 31.816666666666666, 31.416666666666668 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Egypt", "Function": "1--45---", "LOCODE": "EGALY", "Name": "El Iskandariya (Alexandria)", "NameWoDiac": "El Iskandariya (Alexandria)", "Status": "AI", "outflows": 6389301.2997899996 }, "geometry": { "type": "Point", "coordinates": [ 29.916666666666668, 31.183333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Egypt", "Function": "1-------", "LOCODE": "EGSOK", "Name": "Sokhna Port", "NameWoDiac": "Sokhna Port", "Status": "RQ", "outflows": 3639356.7318400005 }, "geometry": { "type": "Point", "coordinates": [ 32.35, 29.65 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Eritrea", "Function": "1234----", "LOCODE": "ERMSW", "Name": "Massawa (Mitsiwa)", "NameWoDiac": "Massawa (Mitsiwa)", "Status": "AI", "outflows": 44242.0 }, "geometry": { "type": "Point", "coordinates": [ 39.45, 15.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1234----", "LOCODE": "ESLEI", "Name": "Almería", "NameWoDiac": "Almeria", "Status": "AI", "outflows": 123708.0 }, "geometry": { "type": "Point", "coordinates": [ -2.45, 36.833333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "12345---", "LOCODE": "ESBIO", "Name": "Bilbao", "NameWoDiac": "Bilbao", "Status": "AI", "outflows": 757628.79999199987 }, "geometry": { "type": "Point", "coordinates": [ -2.966666666666667, 43.25 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "123-----", "LOCODE": "ESCAR", "Name": "Cartagena", "NameWoDiac": "Cartagena", "Status": "AA", "outflows": 161718.0 }, "geometry": { "type": "Point", "coordinates": [ -0.983333333333333, 37.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "123-----", "LOCODE": "ESCAS", "Name": "Castellón de la Plana", "NameWoDiac": "Castellon de la Plana", "Status": "AI", "outflows": 2188540.79158 }, "geometry": { "type": "Point", "coordinates": [ -0.033333333333333, 39.983333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "123-----", "LOCODE": "ESFRO", "Name": "Ferrol", "NameWoDiac": "Ferrol", "Status": "AI", "outflows": 165064.5 }, "geometry": { "type": "Point", "coordinates": [ -8.25, 43.483333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1234----", "LOCODE": "ESGIJ", "Name": "Gijón", "NameWoDiac": "Gijon", "Status": "AI", "outflows": 356746.0 }, "geometry": { "type": "Point", "coordinates": [ -5.666666666666667, 43.533333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1--4----", "LOCODE": "ESACE", "Name": "Lanzarote", "NameWoDiac": "Lanzarote", "Status": "AI", "outflows": 421980.0 }, "geometry": { "type": "Point", "coordinates": [ -13.533333333333333, 28.966666666666665 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1-3456--", "LOCODE": "ESLPA", "Name": "Las Palmas de Gran Canaria", "NameWoDiac": "Las Palmas de Gran Canaria", "Status": "AI", "outflows": 5009347.5287000006 }, "geometry": { "type": "Point", "coordinates": [ -15.416666666666666, 28.1 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1--45---", "LOCODE": "ESAGP", "Name": "Málaga", "NameWoDiac": "Malaga", "Status": "AI", "outflows": 439868.0 }, "geometry": { "type": "Point", "coordinates": [ -4.416666666666667, 36.716666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1-34----", "LOCODE": "ESMLN", "Name": "Melilla", "NameWoDiac": "Melilla", "Status": "AI", "outflows": 45500.0 }, "geometry": { "type": "Point", "coordinates": [ -2.883333333333333, 35.31666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "123-----", "LOCODE": "ESSAG", "Name": "Sagunto", "NameWoDiac": "Sagunto", "Status": "AI", "outflows": 417560.0 }, "geometry": { "type": "Point", "coordinates": [ -0.266666666666667, 39.68333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1--4----", "LOCODE": "ESSPC", "Name": "Santa Cruz de La Palma", "NameWoDiac": "Santa Cruz de La Palma", "Status": "AI", "outflows": 245440.0 }, "geometry": { "type": "Point", "coordinates": [ -17.766666666666666, 28.683333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1-3-----", "LOCODE": "ESVIL", "Name": "Villagarcía de Arosa", "NameWoDiac": "Villagarcia de Arosa", "Status": "AI", "outflows": 130988.0 }, "geometry": { "type": "Point", "coordinates": [ -8.75, 42.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-34----", "LOCODE": "FITKU", "Name": "Åbo (Turku)", "NameWoDiac": "Abo (Turku)", "Status": "AI", "outflows": 16263.0 }, "geometry": { "type": "Point", "coordinates": [ 22.283333333333335, 60.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-34----", "LOCODE": "FITKU", "Name": "Turku (Åbo)", "NameWoDiac": "Turku (Abo)", "Status": "AI", "outflows": 16263.0 }, "geometry": { "type": "Point", "coordinates": [ 22.283333333333335, 60.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-34----", "LOCODE": "FIPOR", "Name": "Björneborg (Pori)", "NameWoDiac": "Bjorneborg (Pori)", "Status": "AI", "outflows": 5220.0 }, "geometry": { "type": "Point", "coordinates": [ 21.8, 61.483333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-34----", "LOCODE": "FIPOR", "Name": "Pori (Björneborg)", "NameWoDiac": "Pori (Bjorneborg)", "Status": "AI", "outflows": 5220.0 }, "geometry": { "type": "Point", "coordinates": [ 21.8, 61.483333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-------", "LOCODE": "FIHMN", "Name": "Fredrikshamn (Hamina)", "NameWoDiac": "Fredrikshamn (Hamina)", "Status": "AI", "outflows": 4437.0 }, "geometry": { "type": "Point", "coordinates": [ 27.2, 60.56666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-------", "LOCODE": "FIHMN", "Name": "Hamina (Fredrikshamn)", "NameWoDiac": "Hamina (Fredrikshamn)", "Status": "AI", "outflows": 4437.0 }, "geometry": { "type": "Point", "coordinates": [ 27.2, 60.56666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "123-----", "LOCODE": "FIPRS", "Name": "Jakobstad (Pietarsaari)", "NameWoDiac": "Jakobstad (Pietarsaari)", "Status": "AI", "outflows": 9396.0 }, "geometry": { "type": "Point", "coordinates": [ 22.783333333333335, 63.68333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "123-----", "LOCODE": "FIPRS", "Name": "Pietarsaari (Jakobstad)", "NameWoDiac": "Pietarsaari (Jakobstad)", "Status": "AI", "outflows": 9396.0 }, "geometry": { "type": "Point", "coordinates": [ 22.783333333333335, 63.68333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "123-----", "LOCODE": "FIKOK", "Name": "Karleby (Kokkola)", "NameWoDiac": "Karleby (Kokkola)", "Status": "AI", "outflows": 39182.0 }, "geometry": { "type": "Point", "coordinates": [ 23.116666666666667, 63.833333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "123-----", "LOCODE": "FIKOK", "Name": "Kokkola (Karleby)", "NameWoDiac": "Kokkola (Karleby)", "Status": "AI", "outflows": 39182.0 }, "geometry": { "type": "Point", "coordinates": [ 23.116666666666667, 63.833333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-34----", "LOCODE": "FIKEM", "Name": "Kemi\/Torneå (Kemi\/Tornio)", "NameWoDiac": "Kemi\/Tornea (Kemi\/Tornio)", "Status": "AI", "outflows": 106574.0 }, "geometry": { "type": "Point", "coordinates": [ 24.566666666666666, 65.733333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-34----", "LOCODE": "FIKEM", "Name": "Kemi\/Tornio (Kemi\/Torneå)", "NameWoDiac": "Kemi\/Tornio (Kemi\/Tornea)", "Status": "AI", "outflows": 106574.0 }, "geometry": { "type": "Point", "coordinates": [ 24.566666666666666, 65.733333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "123----B", "LOCODE": "FIKTK", "Name": "Kotka", "NameWoDiac": "Kotka", "Status": "AC", "outflows": 1116795.4999200001 }, "geometry": { "type": "Point", "coordinates": [ 26.916666666666668, 60.466666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "123----B", "LOCODE": "FIRAU", "Name": "Rauma (Raumo)", "NameWoDiac": "Rauma (Raumo)", "Status": "AC", "outflows": 705561.49998000008 }, "geometry": { "type": "Point", "coordinates": [ 21.5, 61.133333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "123----B", "LOCODE": "FIRAU", "Name": "Raumo (Rauma)", "NameWoDiac": "Raumo (Rauma)", "Status": "AC", "outflows": 705561.49998000008 }, "geometry": { "type": "Point", "coordinates": [ 21.5, 61.133333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-------", "LOCODE": "FITOR", "Name": "Torneå (Tornio)", "NameWoDiac": "Tornea (Tornio)", "Status": "AI", "outflows": 91624.0 }, "geometry": { "type": "Point", "coordinates": [ 24.183333333333334, 65.85 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-------", "LOCODE": "FITOR", "Name": "Tornio (Torneå)", "NameWoDiac": "Tornio (Tornea)", "Status": "AI", "outflows": 91624.0 }, "geometry": { "type": "Point", "coordinates": [ 24.183333333333334, 65.85 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Fiji", "Function": "123-----", "LOCODE": "FJLTK", "Name": "Lautoka", "NameWoDiac": "Lautoka", "Status": "RL", "outflows": 490393.0 }, "geometry": { "type": "Point", "coordinates": [ 177.45, -17.616666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Fiji", "Function": "1--45---", "LOCODE": "FJSUV", "Name": "Suva", "NameWoDiac": "Suva", "Status": "AI", "outflows": 535295.0 }, "geometry": { "type": "Point", "coordinates": [ 178.45, -18.133333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Faroe Islands", "Function": "1-3-----", "LOCODE": "FOKOL", "Name": "Kollafjördur", "NameWoDiac": "Kollafjordur", "Status": "RL", "outflows": 82628.0 }, "geometry": { "type": "Point", "coordinates": [ -6.883333333333333, 62.116666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Faroe Islands", "Function": "1-------", "LOCODE": "FOTHO", "Name": "Thorshavn", "NameWoDiac": "Thorshavn", "Status": "RL", "outflows": 91104.0 }, "geometry": { "type": "Point", "coordinates": [ -6.766666666666667, 62.016666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "12------", "LOCODE": "FRBAS", "Name": "Bassens", "NameWoDiac": "Bassens", "Status": "AF", "outflows": 33930.0 }, "geometry": { "type": "Point", "coordinates": [ -0.516666666666667, 44.9 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "1234----", "LOCODE": "FRBES", "Name": "Brest", "NameWoDiac": "Brest", "Status": "AF", "outflows": 107185.0 }, "geometry": { "type": "Point", "coordinates": [ -4.483333333333333, 48.4 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "12--5---", "LOCODE": "FRDKK", "Name": "Dunkerque", "NameWoDiac": "Dunkerque", "Status": "AF", "outflows": 4450642.0836299993 }, "geometry": { "type": "Point", "coordinates": [ 2.383333333333333, 51.033333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "123---7-", "LOCODE": "FRFOS", "Name": "Fos-sur-Mer", "NameWoDiac": "Fos-sur-Mer", "Status": "AF", "outflows": 18248513.215530016 }, "geometry": { "type": "Point", "coordinates": [ 4.933333333333334, 43.43333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "1-------", "LOCODE": "FRLPE", "Name": "la Pallice", "NameWoDiac": "la Pallice", "Status": "AF", "outflows": 22725.0 }, "geometry": { "type": "Point", "coordinates": [ -1.216666666666667, 46.166666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "12-4----", "LOCODE": "FRLRH", "Name": "La Rochelle", "NameWoDiac": "La Rochelle", "Status": "AF", "outflows": 33930.0 }, "geometry": { "type": "Point", "coordinates": [ -1.15, 46.166666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "12345---", "LOCODE": "FRLEH", "Name": "Le Havre", "NameWoDiac": "Le Havre", "Status": "AF", "outflows": 35976285.665610015 }, "geometry": { "type": "Point", "coordinates": [ 0.1, 49.5 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "12-45---", "LOCODE": "FRMRS", "Name": "Marseille", "NameWoDiac": "Marseille", "Status": "AF", "outflows": 629024.0 }, "geometry": { "type": "Point", "coordinates": [ 5.4, 43.3 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "123-----", "LOCODE": "FRMTX", "Name": "Montoir-de-Bretagne", "NameWoDiac": "Montoir-de-Bretagne", "Status": "AF", "outflows": 1130547.1665700004 }, "geometry": { "type": "Point", "coordinates": [ -2.15, 47.333333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "12------", "LOCODE": "FRPOV", "Name": "Port-Vendres", "NameWoDiac": "Port-Vendres", "Status": "AF", "outflows": 21450.0 }, "geometry": { "type": "Point", "coordinates": [ 3.116666666666667, 42.516666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "1-3-----", "LOCODE": "FRRAD", "Name": "Radicatel", "NameWoDiac": "Radicatel", "Status": "RL", "outflows": 42900.000003000001 }, "geometry": { "type": "Point", "coordinates": [ 0.5, 49.5 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "1-34----", "LOCODE": "FRURO", "Name": "Rouen", "NameWoDiac": "Rouen", "Status": "AF", "outflows": 34842.0 }, "geometry": { "type": "Point", "coordinates": [ 1.1, 49.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "123-----", "LOCODE": "FRSET", "Name": "Sète", "NameWoDiac": "Sete", "Status": "AF", "outflows": 34041.0 }, "geometry": { "type": "Point", "coordinates": [ 3.7, 43.4 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "France", "Function": "12-4----", "LOCODE": "FRTLN", "Name": "Toulon", "NameWoDiac": "Toulon", "Status": "AF", "outflows": 1080.0 }, "geometry": { "type": "Point", "coordinates": [ 5.933333333333334, 43.116666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1--4----", "LOCODE": "GBABD", "Name": "Aberdeen", "NameWoDiac": "Aberdeen", "Status": "AF", "outflows": 48681.0 }, "geometry": { "type": "Point", "coordinates": [ -2.1, 57.133333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1--4-6--", "LOCODE": "GBBEL", "Name": "Belfast", "NameWoDiac": "Belfast", "Status": "AF", "outflows": 137826.0 }, "geometry": { "type": "Point", "coordinates": [ -5.916666666666667, 54.983333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBGRG", "Name": "Grangemouth", "NameWoDiac": "Grangemouth", "Status": "AF", "outflows": 192244.0 }, "geometry": { "type": "Point", "coordinates": [ -3.716666666666667, 56.0 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBGRK", "Name": "Greenock", "NameWoDiac": "Greenock", "Status": "AF", "outflows": 275567.66664999997 }, "geometry": { "type": "Point", "coordinates": [ -4.75, 55.93333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBHUL", "Name": "Hull", "NameWoDiac": "Hull", "Status": "AF", "outflows": 219740.33333800005 }, "geometry": { "type": "Point", "coordinates": [ -0.316666666666667, 53.733333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBIMM", "Name": "Immingham", "NameWoDiac": "Immingham", "Status": "AF", "outflows": 329625.0 }, "geometry": { "type": "Point", "coordinates": [ -0.216666666666667, 53.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1--4----", "LOCODE": "GBLIV", "Name": "Liverpool", "NameWoDiac": "Liverpool", "Status": "AF", "outflows": 1673890.2916200003 }, "geometry": { "type": "Point", "coordinates": [ -3.0, 53.416666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "123--6--", "LOCODE": "GBLGP", "Name": "London Gateway Port", "NameWoDiac": "London Gateway Port", "Status": "RL", "outflows": 21704403.092420008 }, "geometry": { "type": "Point", "coordinates": [ 0.483333333333333, 51.5 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBTEE", "Name": "Teesport", "NameWoDiac": "Teesport", "Status": "AF", "outflows": 556920.0 }, "geometry": { "type": "Point", "coordinates": [ -1.15, 54.583333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBTYN", "Name": "Tyne", "NameWoDiac": "Tyne", "Status": "RQ", "outflows": 31668.0 }, "geometry": { "type": "Point", "coordinates": [ -1.433333333333333, 55.0 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "French Guiana", "Function": "1-------", "LOCODE": "GFDDC", "Name": "Dégrad des Cannes", "NameWoDiac": "Degrad des Cannes", "Status": "RL", "outflows": 286520.0 }, "geometry": { "type": "Point", "coordinates": [ -52.266666666666666, 4.85 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Greenland", "Function": "1-34----", "LOCODE": "GLGOH", "Name": "Nuuk (Godthaab)", "NameWoDiac": "Nuuk (Godthaab)", "Status": "AI", "outflows": 23426.0 }, "geometry": { "type": "Point", "coordinates": [ -51.75, 64.183333333333337 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Guadeloupe", "Function": "1--45---", "LOCODE": "GPPTP", "Name": "Point-à-Pitre Apt", "NameWoDiac": "Point-a-Pitre Apt", "Status": "AF", "outflows": 1970512.9165490004 }, "geometry": { "type": "Point", "coordinates": [ -61.516666666666666, 16.266666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Greece", "Function": "1--4----", "LOCODE": "GRHER", "Name": "Heraklion (Iraklion)", "NameWoDiac": "Heraklion (Iraklion)", "Status": "AI", "outflows": 23582.0 }, "geometry": { "type": "Point", "coordinates": [ 25.166666666666668, 35.333333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Greece", "Function": "1--4----", "LOCODE": "GRHER", "Name": "Iraklion (Heraklion)", "NameWoDiac": "Iraklion (Heraklion)", "Status": "AI", "outflows": 23582.0 }, "geometry": { "type": "Point", "coordinates": [ 25.166666666666668, 35.333333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Greece", "Function": "1-------", "LOCODE": "GRPIR", "Name": "Piraeus", "NameWoDiac": "Piraeus", "Status": "AI", "outflows": 25227137.508840002 }, "geometry": { "type": "Point", "coordinates": [ 23.616666666666667, 37.93333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Greece", "Function": "1--45---", "LOCODE": "GRSKG", "Name": "Thessaloníki", "NameWoDiac": "Thessaloniki", "Status": "AI", "outflows": 790815.99999000016 }, "geometry": { "type": "Point", "coordinates": [ 22.95, 40.633333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Greece", "Function": "1--4----", "LOCODE": "GRVOL", "Name": "Vólos", "NameWoDiac": "Volos", "Status": "AI", "outflows": 23582.0 }, "geometry": { "type": "Point", "coordinates": [ 22.95, 39.366666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Guatemala", "Function": "1-------", "LOCODE": "GTSTC", "Name": "Puerto Santo Tomás de Castilla", "NameWoDiac": "Puerto Santo Tomas de Castilla", "Status": "AI", "outflows": 1241734.0000599998 }, "geometry": { "type": "Point", "coordinates": [ -88.61666666666666, 15.7 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Guam", "Function": "--3-----", "LOCODE": "GUPIT", "Name": "Piti", "NameWoDiac": "Piti", "Status": "RL", "outflows": 52903.5 }, "geometry": { "type": "Point", "coordinates": [ 144.683333333333337, 13.433333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Guinea-Bissau", "Function": "1-345---", "LOCODE": "GWOXB", "Name": "Bissau", "NameWoDiac": "Bissau", "Status": "AI", "outflows": 114309.0 }, "geometry": { "type": "Point", "coordinates": [ -15.583333333333334, 11.85 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Croatia", "Function": "123-----", "LOCODE": "HRPLE", "Name": "Ploce", "NameWoDiac": "Ploce", "Status": "RL", "outflows": 136773.0 }, "geometry": { "type": "Point", "coordinates": [ 17.433333333333334, 43.05 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Croatia", "Function": "1234----", "LOCODE": "HRRJK", "Name": "Rijeka", "NameWoDiac": "Rijeka", "Status": "AI", "outflows": 3818455.3333799997 }, "geometry": { "type": "Point", "coordinates": [ 14.4, 45.333333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Croatia", "Function": "1234----", "LOCODE": "HRSPU", "Name": "Split", "NameWoDiac": "Split", "Status": "AI", "outflows": 63609.0 }, "geometry": { "type": "Point", "coordinates": [ 16.45, 43.5 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Haiti", "Function": "1--4----", "LOCODE": "HTCAP", "Name": "Cap-Haïtien", "NameWoDiac": "Cap-Haitien", "Status": "AI", "outflows": 47268.0 }, "geometry": { "type": "Point", "coordinates": [ -72.2, 19.75 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Haiti", "Function": "1-------", "LOCODE": "HTLFF", "Name": "Lafiteau", "NameWoDiac": "Lafiteau", "Status": "AI", "outflows": 1098127.3333000003 }, "geometry": { "type": "Point", "coordinates": [ -72.433333333333337, 18.483333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1--4----", "LOCODE": "IDBPN", "Name": "Balikpapan", "NameWoDiac": "Balikpapan", "Status": "AI", "outflows": 77320.75 }, "geometry": { "type": "Point", "coordinates": [ 116.833333333333329, -1.283333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-3-----", "LOCODE": "IDBTM", "Name": "Batam Island", "NameWoDiac": "Batam Island", "Status": "RL", "outflows": 7335.5 }, "geometry": { "type": "Point", "coordinates": [ 104.033333333333331, 1.083333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-------", "LOCODE": "IDBEN", "Name": "Benete", "NameWoDiac": "Benete", "Status": "RL", "outflows": 12681.75 }, "geometry": { "type": "Point", "coordinates": [ 116.716666666666669, -8.866666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-------", "LOCODE": "IDBOA", "Name": "Benoa", "NameWoDiac": "Benoa", "Status": "RL", "outflows": 6747.0 }, "geometry": { "type": "Point", "coordinates": [ 115.216666666666669, -8.766666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "12345---", "LOCODE": "IDJKT", "Name": "Jakarta, Java", "NameWoDiac": "Jakarta, Java", "Status": "AI", "outflows": 12060454.992969999 }, "geometry": { "type": "Point", "coordinates": [ 106.833333333333329, -6.133333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-345---", "LOCODE": "IDDJJ", "Name": "Jayapura, Irian Jaya", "NameWoDiac": "Jayapura, Irian Jaya", "Status": "AI", "outflows": 136162.0 }, "geometry": { "type": "Point", "coordinates": [ 140.7, -2.533333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-3-----", "LOCODE": "IDKUM", "Name": "Kumai", "NameWoDiac": "Kumai", "Status": "RL", "outflows": 4238.0 }, "geometry": { "type": "Point", "coordinates": [ 111.716666666666669, -2.733333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-3-----", "LOCODE": "IDMAK", "Name": "Makassar", "NameWoDiac": "Makassar", "Status": "RL", "outflows": 664450.0 }, "geometry": { "type": "Point", "coordinates": [ 119.4, -5.116666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1234----", "LOCODE": "IDPDG", "Name": "Padang", "NameWoDiac": "Padang", "Status": "AI", "outflows": 74470.25 }, "geometry": { "type": "Point", "coordinates": [ 100.35, -0.95 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-3-----", "LOCODE": "IDPER", "Name": "Perawang", "NameWoDiac": "Perawang", "Status": "RL", "outflows": 3627.0 }, "geometry": { "type": "Point", "coordinates": [ 102.86666666666666, 1.066666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-345---", "LOCODE": "IDSRG", "Name": "Semarang", "NameWoDiac": "Semarang", "Status": "AI", "outflows": 2529727.4165999996 }, "geometry": { "type": "Point", "coordinates": [ 110.483333333333334, -6.966666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "123456--", "LOCODE": "IDSUB", "Name": "Surabaya", "NameWoDiac": "Surabaya", "Status": "AI", "outflows": 5004081.1427500024 }, "geometry": { "type": "Point", "coordinates": [ 112.75, -7.233333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1--4----", "LOCODE": "IDTNJ", "Name": "Tanjungpinang", "NameWoDiac": "Tanjungpinang", "Status": "AI", "outflows": 3068.0 }, "geometry": { "type": "Point", "coordinates": [ 104.45, 0.916666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-------", "LOCODE": "IDTMK", "Name": "Timika", "NameWoDiac": "Timika", "Status": "RQ", "outflows": 3240.0 }, "geometry": { "type": "Point", "coordinates": [ 136.55, -4.75 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-------", "LOCODE": "IDTUA", "Name": "Tual", "NameWoDiac": "Tual", "Status": "RQ", "outflows": 12207.0 }, "geometry": { "type": "Point", "coordinates": [ 132.73333333333332, -5.633333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Ireland", "Function": "1-345---", "LOCODE": "IEWAT", "Name": "Waterford", "NameWoDiac": "Waterford", "Status": "AF", "outflows": 86515.0 }, "geometry": { "type": "Point", "coordinates": [ -7.1, 52.25 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Israel", "Function": "1--45---", "LOCODE": "ILHFA", "Name": "Haifa", "NameWoDiac": "Haifa", "Status": "AI", "outflows": 8470527.0681299977 }, "geometry": { "type": "Point", "coordinates": [ 34.983333333333334, 32.8 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "12345---", "LOCODE": "INMAA", "Name": "Chennai (ex Madras)", "NameWoDiac": "Chennai (ex Madras)", "Status": "AA", "outflows": 2818763.3167999992 }, "geometry": { "type": "Point", "coordinates": [ 80.283333333333331, 13.083333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "1234-6--", "LOCODE": "INCOK", "Name": "Cochin", "NameWoDiac": "Cochin", "Status": "AA", "outflows": 2453568.0832799999 }, "geometry": { "type": "Point", "coordinates": [ 76.233333333333334, 9.966666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "--3--6--", "LOCODE": "INHZR", "Name": "Hazira", "NameWoDiac": "Hazira", "Status": "RL", "outflows": 5911162.5861400003 }, "geometry": { "type": "Point", "coordinates": [ 72.62343557464672, 21.09641041428134 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "1234-6--", "LOCODE": "INIXY", "Name": "Kandla", "NameWoDiac": "Kandla", "Status": "AA", "outflows": 817280.5 }, "geometry": { "type": "Point", "coordinates": [ 70.216666666666669, 23.033333333333335 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "123-----", "LOCODE": "INKTP", "Name": "Kattupalli Port", "NameWoDiac": "Kattupalli Port", "Status": "RL", "outflows": 1964901.8999300003 }, "geometry": { "type": "Point", "coordinates": [ 80.38333333333334, 13.3 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "1--45---", "LOCODE": "INCCU", "Name": "Kolkata (ex Calcutta)", "NameWoDiac": "Kolkata (ex Calcutta)", "Status": "AA", "outflows": 303853.53334000002 }, "geometry": { "type": "Point", "coordinates": [ 88.35, 22.566666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "123-----", "LOCODE": "INMRM", "Name": "Marmagao (Marmugao)", "NameWoDiac": "Marmagao (Marmugao)", "Status": "AA", "outflows": 100178.0 }, "geometry": { "type": "Point", "coordinates": [ 73.783333333333331, 15.4 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "123-----", "LOCODE": "INMRM", "Name": "Marmugao (Marmagao)", "NameWoDiac": "Marmugao (Marmagao)", "Status": "AA", "outflows": 100178.0 }, "geometry": { "type": "Point", "coordinates": [ 73.783333333333331, 15.4 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "123456--", "LOCODE": "INBOM", "Name": "Mumbai (ex Bombay)", "NameWoDiac": "Mumbai (ex Bombay)", "Status": "AA", "outflows": 126915.25 }, "geometry": { "type": "Point", "coordinates": [ 72.816666666666663, 18.966666666666665 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "123-----", "LOCODE": "INPRT", "Name": "Paradip Garh", "NameWoDiac": "Paradip Garh", "Status": "AA", "outflows": 28080.0 }, "geometry": { "type": "Point", "coordinates": [ 86.61666666666666, 20.316666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "123-----", "LOCODE": "INPAV", "Name": "Pipavav (Victor) Port", "NameWoDiac": "Pipavav (Victor) Port", "Status": "AA", "outflows": 6333654.3638700033 }, "geometry": { "type": "Point", "coordinates": [ 71.55, 20.966666666666665 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "123--6--", "LOCODE": "INTUT", "Name": "Tuticorin", "NameWoDiac": "Tuticorin", "Status": "AA", "outflows": 1224891.0 }, "geometry": { "type": "Point", "coordinates": [ 78.13333333333334, 8.783333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "1234-6--", "LOCODE": "INVTZ", "Name": "Visakhapatnam", "NameWoDiac": "Visakhapatnam", "Status": "AA", "outflows": 2172514.4999899995 }, "geometry": { "type": "Point", "coordinates": [ 83.3, 17.7 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Iraq", "Function": "123-----", "LOCODE": "IQUQR", "Name": "Umm Qasr Port", "NameWoDiac": "Umm Qasr Port", "Status": "RL", "outflows": 3640547.5715799998 }, "geometry": { "type": "Point", "coordinates": [ 47.93333333333333, 30.033333333333335 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Iran, Islamic Republic of", "Function": "1-3-----", "LOCODE": "IRASA", "Name": "Asaluyeh", "NameWoDiac": "Asaluyeh", "Status": "RL", "outflows": 3060.0 }, "geometry": { "type": "Point", "coordinates": [ 52.6, 27.466666666666665 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Iran, Islamic Republic of", "Function": "1--4----", "LOCODE": "IRBND", "Name": "Bandar Abbas", "NameWoDiac": "Bandar Abbas", "Status": "AI", "outflows": 1154182.75 }, "geometry": { "type": "Point", "coordinates": [ 56.266666666666666, 27.183333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Iran, Islamic Republic of", "Function": "1-34----", "LOCODE": "IRBKM", "Name": "Bandar Khomeini", "NameWoDiac": "Bandar Khomeini", "Status": "RL", "outflows": 85644.0 }, "geometry": { "type": "Point", "coordinates": [ 49.1, 30.433333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Iran, Islamic Republic of", "Function": "1-34----", "LOCODE": "IRBUZ", "Name": "Bushehr", "NameWoDiac": "Bushehr", "Status": "AI", "outflows": 85644.0 }, "geometry": { "type": "Point", "coordinates": [ 50.833333333333336, 28.966666666666665 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Iceland", "Function": "1-------", "LOCODE": "ISREY", "Name": "Reykjavík", "NameWoDiac": "Reykjavik", "Status": "AC", "outflows": 327138.50000099995 }, "geometry": { "type": "Point", "coordinates": [ -21.95, 64.15 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1-34----", "LOCODE": "ITAOI", "Name": "Ancona", "NameWoDiac": "Ancona", "Status": "AI", "outflows": 1251219.6666600001 }, "geometry": { "type": "Point", "coordinates": [ 13.5, 43.633333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1-34----", "LOCODE": "ITBRI", "Name": "Bari", "NameWoDiac": "Bari", "Status": "AI", "outflows": 123851.0 }, "geometry": { "type": "Point", "coordinates": [ 16.85, 41.133333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1-34----", "LOCODE": "ITCAG", "Name": "Cagliari", "NameWoDiac": "Cagliari", "Status": "AI", "outflows": 61347.0 }, "geometry": { "type": "Point", "coordinates": [ 9.116666666666667, 39.216666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1-------", "LOCODE": "ITCTA", "Name": "Catania", "NameWoDiac": "Catania", "Status": "AI", "outflows": 112515.0 }, "geometry": { "type": "Point", "coordinates": [ 15.1, 37.5 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1-------", "LOCODE": "ITCVV", "Name": "Civitavecchia", "NameWoDiac": "Civitavecchia", "Status": "AI", "outflows": 2179445.6662 }, "geometry": { "type": "Point", "coordinates": [ 11.8, 42.1 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "12345---", "LOCODE": "ITGOA", "Name": "Genova", "NameWoDiac": "Genova", "Status": "AI", "outflows": 23896971.132049996 }, "geometry": { "type": "Point", "coordinates": [ 8.95, 44.416666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1-------", "LOCODE": "ITGIT", "Name": "Gioia Tauro", "NameWoDiac": "Gioia Tauro", "Status": "AI", "outflows": 16628557.647730002 }, "geometry": { "type": "Point", "coordinates": [ 15.9, 38.416666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1-------", "LOCODE": "ITSPE", "Name": "La Spezia", "NameWoDiac": "La Spezia", "Status": "AI", "outflows": 12785874.433700003 }, "geometry": { "type": "Point", "coordinates": [ 9.833333333333334, 44.116666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1-------", "LOCODE": "ITLIV", "Name": "Livorno", "NameWoDiac": "Livorno", "Status": "AI", "outflows": 8253720.2853500005 }, "geometry": { "type": "Point", "coordinates": [ 10.316666666666666, 43.55 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1234----", "LOCODE": "ITNAP", "Name": "Napoli", "NameWoDiac": "Napoli", "Status": "AI", "outflows": 4010591.4281000006 }, "geometry": { "type": "Point", "coordinates": [ 14.25, 40.833333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1234----", "LOCODE": "ITOLB", "Name": "Olbia", "NameWoDiac": "Olbia", "Status": "RL", "outflows": 11076.0 }, "geometry": { "type": "Point", "coordinates": [ 9.516666666666667, 40.916666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1--4----", "LOCODE": "ITPMO", "Name": "Palermo", "NameWoDiac": "Palermo", "Status": "AI", "outflows": 35997.0 }, "geometry": { "type": "Point", "coordinates": [ 13.366666666666667, 38.116666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "123-----", "LOCODE": "ITSVN", "Name": "Savona", "NameWoDiac": "Savona", "Status": "AI", "outflows": 43661.0 }, "geometry": { "type": "Point", "coordinates": [ 8.5, 44.283333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1--4----", "LOCODE": "ITTPS", "Name": "Trapani", "NameWoDiac": "Trapani", "Status": "AI", "outflows": 41808.0 }, "geometry": { "type": "Point", "coordinates": [ 12.483333333333333, 38.016666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "123-----", "LOCODE": "ITVDL", "Name": "Vado Ligure", "NameWoDiac": "Vado Ligure", "Status": "RL", "outflows": 1281768.42842 }, "geometry": { "type": "Point", "coordinates": [ 8.45, 44.266666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "12345--B", "LOCODE": "ITVCE", "Name": "Venezia", "NameWoDiac": "Venezia", "Status": "AI", "outflows": 1408195.6666600001 }, "geometry": { "type": "Point", "coordinates": [ 12.333333333333334, 45.43333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Jordan", "Function": "1--4----", "LOCODE": "JOAQJ", "Name": "Al 'Aqabah", "NameWoDiac": "Al 'Aqabah", "Status": "RL", "outflows": 5019094.2318399996 }, "geometry": { "type": "Point", "coordinates": [ 35.0, 29.533333333333335 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "--3-----", "LOCODE": "JPHTD", "Name": "Hakata", "NameWoDiac": "Hakata", "Status": "RL", "outflows": 3054288.2499700007 }, "geometry": { "type": "Point", "coordinates": [ 133.1, 34.18333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "--3-----", "LOCODE": "JPISS", "Name": "Isa", "NameWoDiac": "Isa", "Status": "AF", "outflows": 362101.99997 }, "geometry": { "type": "Point", "coordinates": [ 130.6, 32.05 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "12345---", "LOCODE": "JPKKJ", "Name": "Kitakyushu", "NameWoDiac": "Kitakyushu", "Status": "AF", "outflows": 476762.0 }, "geometry": { "type": "Point", "coordinates": [ 130.833333333333343, 33.833333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "12345---", "LOCODE": "JPUKB", "Name": "Kobe", "NameWoDiac": "Kobe", "Status": "AF", "outflows": 16494507.892490005 }, "geometry": { "type": "Point", "coordinates": [ 135.166666666666657, 34.68333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "123-----", "LOCODE": "JPMJR", "Name": "Mitajiri", "NameWoDiac": "Mitajiri", "Status": "AF", "outflows": 18720.0 }, "geometry": { "type": "Point", "coordinates": [ 131.583333333333343, 34.033333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "123-5---", "LOCODE": "JPMOJ", "Name": "Moji\/Kitakyushu", "NameWoDiac": "Moji\/Kitakyushu", "Status": "AF", "outflows": 2497337.91658 }, "geometry": { "type": "Point", "coordinates": [ 130.966666666666669, 33.9 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--45---", "LOCODE": "JPOSA", "Name": "Osaka", "NameWoDiac": "Osaka", "Status": "AF", "outflows": 9088752.8333900012 }, "geometry": { "type": "Point", "coordinates": [ 135.5, 34.666666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPSEN", "Name": "Satsumasendai", "NameWoDiac": "Satsumasendai", "Status": "AF", "outflows": 1041560.0000199999 }, "geometry": { "type": "Point", "coordinates": [ 130.25, 31.816666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "12345---", "LOCODE": "JPTYO", "Name": "Tokyo", "NameWoDiac": "Tokyo", "Status": "AF", "outflows": 20969567.582899991 }, "geometry": { "type": "Point", "coordinates": [ 139.75, 35.68333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "12345---", "LOCODE": "JPYOK", "Name": "Yokohama", "NameWoDiac": "Yokohama", "Status": "AF", "outflows": 26921996.624540005 }, "geometry": { "type": "Point", "coordinates": [ 139.65, 35.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cambodia", "Function": "1-34--7-", "LOCODE": "KHKOS", "Name": "Kâmpóng Saôm", "NameWoDiac": "Kampong Saom", "Status": "AI", "outflows": 1342444.99985 }, "geometry": { "type": "Point", "coordinates": [ 103.516666666666666, 10.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Comoros", "Function": "1-3-----", "LOCODE": "KMMUT", "Name": "Mutsamudu, Anjouan", "NameWoDiac": "Mutsamudu, Anjouan", "Status": "RL", "outflows": 143131.33335 }, "geometry": { "type": "Point", "coordinates": [ 44.383333333333333, -12.15 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Saint Kitts and Nevis", "Function": "1--4----", "LOCODE": "KNCHA", "Name": "Charlestown", "NameWoDiac": "Charlestown", "Status": "RL", "outflows": 230958.0 }, "geometry": { "type": "Point", "coordinates": [ -62.616666666666667, 17.133333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Korea, Republic of", "Function": "1234567-", "LOCODE": "KRPUS", "Name": "Busan", "NameWoDiac": "Busan", "Status": "AF", "outflows": 97226625.829958007 }, "geometry": { "type": "Point", "coordinates": [ 129.05, 35.133333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Korea, Republic of", "Function": "1-------", "LOCODE": "KRTSN", "Name": "Daesan\/Seosan", "NameWoDiac": "Daesan\/Seosan", "Status": "AF", "outflows": 391261.0 }, "geometry": { "type": "Point", "coordinates": [ 126.36666666666666, 37.0 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Korea, Republic of", "Function": "1-3-----", "LOCODE": "KRTJI", "Name": "Dangjin", "NameWoDiac": "Dangjin", "Status": "AF", "outflows": 80514.0 }, "geometry": { "type": "Point", "coordinates": [ 126.783333333333331, 36.966666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Korea, Republic of", "Function": "1234----", "LOCODE": "KRKUV", "Name": "Gunsan", "NameWoDiac": "Gunsan", "Status": "AF", "outflows": 367380.0 }, "geometry": { "type": "Point", "coordinates": [ 126.716666666666669, 35.983333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Korea, Republic of", "Function": "123-----", "LOCODE": "KRKAN", "Name": "Gwangyang", "NameWoDiac": "Gwangyang", "Status": "AF", "outflows": 16515872.093510004 }, "geometry": { "type": "Point", "coordinates": [ 127.7, 34.93333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Korea, Republic of", "Function": "123-----", "LOCODE": "KRINC", "Name": "Incheon", "NameWoDiac": "Incheon", "Status": "AF", "outflows": 7323842.7736799996 }, "geometry": { "type": "Point", "coordinates": [ 126.61666666666666, 37.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Korea, Republic of", "Function": "123-----", "LOCODE": "KRMAS", "Name": "Masan", "NameWoDiac": "Masan", "Status": "AF", "outflows": 292464.0 }, "geometry": { "type": "Point", "coordinates": [ 128.566666666666663, 35.2 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Korea, Republic of", "Function": "123-----", "LOCODE": "KRMOK", "Name": "Mokpo", "NameWoDiac": "Mokpo", "Status": "AF", "outflows": 64792.0 }, "geometry": { "type": "Point", "coordinates": [ 126.38333333333334, 34.8 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Korea, Republic of", "Function": "1234----", "LOCODE": "KRKPO", "Name": "Pohang", "NameWoDiac": "Pohang", "Status": "AF", "outflows": 704296.66661000007 }, "geometry": { "type": "Point", "coordinates": [ 129.366666666666674, 36.033333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Korea, Republic of", "Function": "123--6--", "LOCODE": "KRPTK", "Name": "Pyeongtaek", "NameWoDiac": "Pyeongtaek", "Status": "AF", "outflows": 201565.00002000004 }, "geometry": { "type": "Point", "coordinates": [ 127.1, 36.966666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Korea, Republic of", "Function": "1234----", "LOCODE": "KRUSN", "Name": "Ulsan", "NameWoDiac": "Ulsan", "Status": "AF", "outflows": 4923083.7499700002 }, "geometry": { "type": "Point", "coordinates": [ 129.316666666666663, 35.533333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Kuwait", "Function": "1-3--6--", "LOCODE": "KWSAA", "Name": "Shuaiba", "NameWoDiac": "Shuaiba", "Status": "RL", "outflows": 770515.0 }, "geometry": { "type": "Point", "coordinates": [ 48.133333333333333, 29.033333333333335 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Kuwait", "Function": "1-------", "LOCODE": "KWSWK", "Name": "Shuwaikh", "NameWoDiac": "Shuwaikh", "Status": "RL", "outflows": 272129.0 }, "geometry": { "type": "Point", "coordinates": [ 47.93333333333333, 29.35 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cayman Islands", "Function": "1-34----", "LOCODE": "KYGEC", "Name": "Georgetown, Grand Cayman", "NameWoDiac": "Georgetown, Grand Cayman", "Status": "AI", "outflows": 20059.0 }, "geometry": { "type": "Point", "coordinates": [ -81.38333333333334, 19.3 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Lebanon", "Function": "1--45---", "LOCODE": "LBBEY", "Name": "Beirut", "NameWoDiac": "Beirut", "Status": "AI", "outflows": 8332419.5043999981 }, "geometry": { "type": "Point", "coordinates": [ 35.483333333333334, 33.833333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Saint Lucia", "Function": "1-3-----", "LOCODE": "LCCAS", "Name": "Castries", "NameWoDiac": "Castries", "Status": "RL", "outflows": 395089.06669000001 }, "geometry": { "type": "Point", "coordinates": [ -60.966666666666669, 14.016666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sri Lanka", "Function": "12345---", "LOCODE": "LKCMB", "Name": "Colombo", "NameWoDiac": "Colombo", "Status": "AI", "outflows": 40970827.24107001 }, "geometry": { "type": "Point", "coordinates": [ 79.85, 6.916666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Liberia", "Function": "1-345---", "LOCODE": "LRMLW", "Name": "Monrovia", "NameWoDiac": "Monrovia", "Status": "AI", "outflows": 467272.00002000009 }, "geometry": { "type": "Point", "coordinates": [ -10.8, 6.3 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Libya", "Function": "1-3-----", "LOCODE": "LYKHO", "Name": "Al Khums", "NameWoDiac": "Al Khums", "Status": "RL", "outflows": 230254.00001 }, "geometry": { "type": "Point", "coordinates": [ 14.266666666666667, 32.65 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Morocco", "Function": "1--45---", "LOCODE": "MACAS", "Name": "Casablanca", "NameWoDiac": "Casablanca", "Status": "AI", "outflows": 2434027.9715000005 }, "geometry": { "type": "Point", "coordinates": [ -7.6, 33.583333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Moldova, Republic of", "Function": "1-3-----", "LOCODE": "MDGIU", "Name": "Giurgiulesti", "NameWoDiac": "Giurgiulesti", "Status": "RL", "outflows": 1560.0 }, "geometry": { "type": "Point", "coordinates": [ 28.183333333333334, 45.466666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Montenegro", "Function": "123-----", "LOCODE": "MEBAR", "Name": "Bar", "NameWoDiac": "Bar", "Status": "RL", "outflows": 257803.0 }, "geometry": { "type": "Point", "coordinates": [ 19.083333333333332, 42.083333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Madagascar", "Function": "1-------", "LOCODE": "MGEHL", "Name": "Ehoala", "NameWoDiac": "Ehoala", "Status": "RL", "outflows": 19864.0 }, "geometry": { "type": "Point", "coordinates": [ 46.95, -25.066666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Madagascar", "Function": "1-34----", "LOCODE": "MGNOS", "Name": "Nosy-Be", "NameWoDiac": "Nosy-Be", "Status": "AI", "outflows": 60888.0 }, "geometry": { "type": "Point", "coordinates": [ 48.25, -13.333333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Marshall Islands", "Function": "1--4----", "LOCODE": "MHMAJ", "Name": "Majuro", "NameWoDiac": "Majuro", "Status": "AI", "outflows": 238090.66668200004 }, "geometry": { "type": "Point", "coordinates": [ 171.383333333333326, 7.1 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Myanmar", "Function": "123-----", "LOCODE": "MMTLA", "Name": "Thilawa", "NameWoDiac": "Thilawa", "Status": "RL", "outflows": 629785.00001999992 }, "geometry": { "type": "Point", "coordinates": [ 96.25, 16.65 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Myanmar", "Function": "123-----", "LOCODE": "MMTLA", "Name": "Thilawa", "NameWoDiac": "Thilawa", "Status": "RL", "outflows": 629785.00001999992 }, "geometry": { "type": "Point", "coordinates": [ 96.25, 16.65 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Malta", "Function": "1-------", "LOCODE": "MTMAR", "Name": "Marsaxlokk", "NameWoDiac": "Marsaxlokk", "Status": "AA", "outflows": 12264680.76361 }, "geometry": { "type": "Point", "coordinates": [ 14.533333333333333, 35.833333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mauritius", "Function": "1-3-----", "LOCODE": "MUPMA", "Name": "Port Mathurin", "NameWoDiac": "Port Mathurin", "Status": "RL", "outflows": 3451.5 }, "geometry": { "type": "Point", "coordinates": [ 63.416666666666664, -19.683333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Maldives", "Function": "1--45---", "LOCODE": "MVMLE", "Name": "Male", "NameWoDiac": "Male", "Status": "AI", "outflows": 224938.42858000004 }, "geometry": { "type": "Point", "coordinates": [ 73.5, 4.166666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mexico", "Function": "1-3-----", "LOCODE": "MXATM", "Name": "Altamira", "NameWoDiac": "Altamira", "Status": "RL", "outflows": 6907067.8431760017 }, "geometry": { "type": "Point", "coordinates": [ -97.916666666666671, 22.4 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mexico", "Function": "1--4----", "LOCODE": "MXCOA", "Name": "Coatzacoalcos", "NameWoDiac": "Coatzacoalcos", "Status": "AI", "outflows": 9100.0 }, "geometry": { "type": "Point", "coordinates": [ -94.4, 18.133333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mexico", "Function": "1--4----", "LOCODE": "MXESE", "Name": "Ensenada", "NameWoDiac": "Ensenada", "Status": "AI", "outflows": 3482019.6660800003 }, "geometry": { "type": "Point", "coordinates": [ -116.6, 31.85 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mexico", "Function": "1--4----", "LOCODE": "MXGYM", "Name": "Guaymas", "NameWoDiac": "Guaymas", "Status": "AI", "outflows": 15320.0 }, "geometry": { "type": "Point", "coordinates": [ -110.88333333333334, 27.916666666666668 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mexico", "Function": "1-------", "LOCODE": "MXLZC", "Name": "Lázaro Cárdenas", "NameWoDiac": "Lazaro Cardenas", "Status": "AI", "outflows": 9280527.0998299997 }, "geometry": { "type": "Point", "coordinates": [ -102.183333333333337, 17.95 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mexico", "Function": "1-34----", "LOCODE": "MXZLO", "Name": "Manzanillo", "NameWoDiac": "Manzanillo", "Status": "AI", "outflows": 14861828.233399997 }, "geometry": { "type": "Point", "coordinates": [ -104.3, 19.05 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mexico", "Function": "1--4----", "LOCODE": "MXMZT", "Name": "Mazatlan", "NameWoDiac": "Mazatlan", "Status": "AI", "outflows": 258563.0 }, "geometry": { "type": "Point", "coordinates": [ -106.4, 23.4 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mexico", "Function": "--3-----", "LOCODE": "MXPRO", "Name": "Paraiso", "NameWoDiac": "Paraiso", "Status": "RL", "outflows": 771394.2 }, "geometry": { "type": "Point", "coordinates": [ -92.2, 18.183333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mexico", "Function": "1-3-----", "LOCODE": "MXPMD", "Name": "Puerto Madero", "NameWoDiac": "Puerto Madero", "Status": "AI", "outflows": 82680.0 }, "geometry": { "type": "Point", "coordinates": [ -92.416666666666671, 14.716666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mexico", "Function": "1-3-----", "LOCODE": "MXPMS", "Name": "Puerto Morelos", "NameWoDiac": "Puerto Morelos", "Status": "RL", "outflows": 13533.0 }, "geometry": { "type": "Point", "coordinates": [ -86.86666666666666, 20.833333333333332 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mexico", "Function": "1--4----", "LOCODE": "MXTAM", "Name": "Tampico", "NameWoDiac": "Tampico", "Status": "AI", "outflows": 33951.0 }, "geometry": { "type": "Point", "coordinates": [ -97.86666666666666, 22.25 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mexico", "Function": "1-------", "LOCODE": "MXTUX", "Name": "Tuxpan", "NameWoDiac": "Tuxpan", "Status": "AI", "outflows": 21541.0 }, "geometry": { "type": "Point", "coordinates": [ -97.4, 20.95 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mexico", "Function": "1-345---", "LOCODE": "MXVER", "Name": "Veracruz", "NameWoDiac": "Veracruz", "Status": "AI", "outflows": 8795504.2708560005 }, "geometry": { "type": "Point", "coordinates": [ -96.083333333333329, 19.2 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Malaysia", "Function": "1--4----", "LOCODE": "MYPEN", "Name": "Penang (Georgetown)", "NameWoDiac": "Penang (Georgetown)", "Status": "AI", "outflows": 3938506.0 }, "geometry": { "type": "Point", "coordinates": [ 100.316666666666663, 5.416666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Malaysia", "Function": "123-5---", "LOCODE": "MYPKG", "Name": "Port Klang (Pelabuhan Klang)", "NameWoDiac": "Port Klang (Pelabuhan Klang)", "Status": "RL", "outflows": 58866748.817210026 }, "geometry": { "type": "Point", "coordinates": [ 101.4, 3.0 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Malaysia", "Function": "123-----", "LOCODE": "MYTPP", "Name": "Tanjung Pelepas", "NameWoDiac": "Tanjung Pelepas", "Status": "RL", "outflows": 36861511.888539977 }, "geometry": { "type": "Point", "coordinates": [ 103.55, 1.366666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Namibia", "Function": "1--4----", "LOCODE": "NALUD", "Name": "Lüderitz", "NameWoDiac": "Luderitz", "Status": "AI", "outflows": 43992.0 }, "geometry": { "type": "Point", "coordinates": [ 15.166666666666666, -26.65 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "New Caledonia", "Function": "1--45---", "LOCODE": "NCNOU", "Name": "Nouméa", "NameWoDiac": "Noumea", "Status": "AI", "outflows": 1152154.3332800004 }, "geometry": { "type": "Point", "coordinates": [ 166.45, -22.266666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "New Caledonia", "Function": "1--45---", "LOCODE": "NCNOU", "Name": "Nouméa", "NameWoDiac": "Noumea", "Status": "AI", "outflows": 1152154.3332800004 }, "geometry": { "type": "Point", "coordinates": [ 166.45, -22.266666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Nigeria", "Function": "--3-----", "LOCODE": "NGLKK", "Name": "Lekki", "NameWoDiac": "Lekki", "Status": "RL", "outflows": 23036.0 }, "geometry": { "type": "Point", "coordinates": [ 3.1, 6.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Nigeria", "Function": "1-3-----", "LOCODE": "NGONN", "Name": "Onne", "NameWoDiac": "Onne", "Status": "RL", "outflows": 1341939.73318 }, "geometry": { "type": "Point", "coordinates": [ 7.15, 4.716666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Nicaragua", "Function": "1-3--6--", "LOCODE": "NIRAM", "Name": "Rama", "NameWoDiac": "Rama", "Status": "RL", "outflows": 9106.5 }, "geometry": { "type": "Point", "coordinates": [ -84.216666666666669, 12.15 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Netherlands", "Function": "12345---", "LOCODE": "NLAMS", "Name": "Amsterdam", "NameWoDiac": "Amsterdam", "Status": "AF", "outflows": 87949.333334999988 }, "geometry": { "type": "Point", "coordinates": [ 4.816666666666666, 52.4 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Netherlands", "Function": "1-3-----", "LOCODE": "NLBOT", "Name": "Botlek", "NameWoDiac": "Botlek", "Status": "AF", "outflows": 33735.0 }, "geometry": { "type": "Point", "coordinates": [ 4.283333333333333, 51.883333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Netherlands", "Function": "123-----", "LOCODE": "NLIJM", "Name": "IJmuiden\/Velsen", "NameWoDiac": "IJmuiden\/Velsen", "Status": "AF", "outflows": 9516.0 }, "geometry": { "type": "Point", "coordinates": [ 4.6, 52.466666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Netherlands", "Function": "123-----", "LOCODE": "NLMOE", "Name": "Moerdijk", "NameWoDiac": "Moerdijk", "Status": "AF", "outflows": 172497.0 }, "geometry": { "type": "Point", "coordinates": [ 4.566666666666666, 51.68333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Netherlands", "Function": "12345---", "LOCODE": "NLRTM", "Name": "Rotterdam", "NameWoDiac": "Rotterdam", "Status": "AF", "outflows": 60986246.198820002 }, "geometry": { "type": "Point", "coordinates": [ 4.5, 51.916666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Netherlands", "Function": "1-3-----", "LOCODE": "NLTNZ", "Name": "Terneuzen", "NameWoDiac": "Terneuzen", "Status": "AF", "outflows": 24232.0 }, "geometry": { "type": "Point", "coordinates": [ 3.816666666666666, 51.466666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Netherlands", "Function": "123-----", "LOCODE": "NLVLI", "Name": "Vlissingen", "NameWoDiac": "Vlissingen", "Status": "AF", "outflows": 935022.40001200011 }, "geometry": { "type": "Point", "coordinates": [ 3.7, 51.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-34----", "LOCODE": "NOAES", "Name": "Ålesund", "NameWoDiac": "Alesund", "Status": "AF", "outflows": 450729.5 }, "geometry": { "type": "Point", "coordinates": [ 6.15, 62.466666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOARD", "Name": "Årdalstangen", "NameWoDiac": "Ardalstangen", "Status": "AA", "outflows": 23400.0 }, "geometry": { "type": "Point", "coordinates": [ 7.7, 61.233333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-------", "LOCODE": "NOAVE", "Name": "Averøy", "NameWoDiac": "Averoy", "Status": "AA", "outflows": 34164.0 }, "geometry": { "type": "Point", "coordinates": [ 7.666666666666667, 63.05 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1234----", "LOCODE": "NOBGO", "Name": "Bergen", "NameWoDiac": "Bergen", "Status": "AA", "outflows": 330739.5 }, "geometry": { "type": "Point", "coordinates": [ 5.316666666666666, 60.383333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1234----", "LOCODE": "NOBOO", "Name": "Bodø", "NameWoDiac": "Bodo", "Status": "AA", "outflows": 9516.0 }, "geometry": { "type": "Point", "coordinates": [ 14.366666666666667, 67.283333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOBVK", "Name": "Brevik", "NameWoDiac": "Brevik", "Status": "AA", "outflows": 50128.0 }, "geometry": { "type": "Point", "coordinates": [ 9.7, 59.05 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "123-----", "LOCODE": "NODRM", "Name": "Drammen", "NameWoDiac": "Drammen", "Status": "AA", "outflows": 145713.0 }, "geometry": { "type": "Point", "coordinates": [ 10.233333333333333, 59.733333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOEGE", "Name": "Egersund", "NameWoDiac": "Egersund", "Status": "AA", "outflows": 142428.0 }, "geometry": { "type": "Point", "coordinates": [ 6.0, 58.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-34----", "LOCODE": "NOFRO", "Name": "Florø", "NameWoDiac": "Floro", "Status": "AA", "outflows": 203580.0 }, "geometry": { "type": "Point", "coordinates": [ 5.016666666666667, 61.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "123-----", "LOCODE": "NOFRK", "Name": "Fredrikstad", "NameWoDiac": "Fredrikstad", "Status": "AA", "outflows": 111033.0 }, "geometry": { "type": "Point", "coordinates": [ 10.916666666666666, 59.2 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-------", "LOCODE": "NOFUS", "Name": "Fusa", "NameWoDiac": "Fusa", "Status": "AA", "outflows": 99528.0 }, "geometry": { "type": "Point", "coordinates": [ 5.616666666666667, 60.2 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOGLO", "Name": "Glomfjord", "NameWoDiac": "Glomfjord", "Status": "AA", "outflows": 34164.0 }, "geometry": { "type": "Point", "coordinates": [ 13.933333333333334, 66.8 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-34----", "LOCODE": "NOHFT", "Name": "Hammerfest", "NameWoDiac": "Hammerfest", "Status": "AA", "outflows": 9516.0 }, "geometry": { "type": "Point", "coordinates": [ 23.666666666666668, 70.65 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOHRD", "Name": "Harstad", "NameWoDiac": "Harstad", "Status": "AA", "outflows": 9516.0 }, "geometry": { "type": "Point", "coordinates": [ 16.533333333333335, 68.783333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-34----", "LOCODE": "NOHAU", "Name": "Haugesund", "NameWoDiac": "Haugesund", "Status": "AA", "outflows": 337486.5 }, "geometry": { "type": "Point", "coordinates": [ 5.25, 59.4 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOHVI", "Name": "Håvik", "NameWoDiac": "Havik", "Status": "AA", "outflows": 116610.0 }, "geometry": { "type": "Point", "coordinates": [ 5.316666666666666, 59.3 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "--3-----", "LOCODE": "NOHLA", "Name": "Holla", "NameWoDiac": "Holla", "Status": "RL", "outflows": 45630.0 }, "geometry": { "type": "Point", "coordinates": [ 9.183333333333334, 59.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOHYR", "Name": "Høyanger", "NameWoDiac": "Hoyanger", "Status": "AA", "outflows": 39357.5 }, "geometry": { "type": "Point", "coordinates": [ 6.05, 61.216666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOHOY", "Name": "Husøy - Tønsberg", "NameWoDiac": "Husoy - Tonsberg", "Status": "AA", "outflows": 17160.0 }, "geometry": { "type": "Point", "coordinates": [ 10.45, 59.233333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOIKR", "Name": "Ikornnes", "NameWoDiac": "Ikornnes", "Status": "AA", "outflows": 69888.0 }, "geometry": { "type": "Point", "coordinates": [ 6.55, 62.383333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "123-----", "LOCODE": "NOKRS", "Name": "Kristiansand", "NameWoDiac": "Kristiansand", "Status": "AA", "outflows": 86460.0 }, "geometry": { "type": "Point", "coordinates": [ 7.983333333333333, 58.133333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "123-----", "LOCODE": "NOLAR", "Name": "Larvik", "NameWoDiac": "Larvik", "Status": "AA", "outflows": 123903.0 }, "geometry": { "type": "Point", "coordinates": [ 10.016666666666667, 59.033333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOMAY", "Name": "Måløy", "NameWoDiac": "Maloy", "Status": "AF", "outflows": 347613.5 }, "geometry": { "type": "Point", "coordinates": [ 5.1, 61.93333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-34----", "LOCODE": "NOMOL", "Name": "Molde", "NameWoDiac": "Molde", "Status": "AA", "outflows": 9516.0 }, "geometry": { "type": "Point", "coordinates": [ 7.15, 62.733333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1234----", "LOCODE": "NOMJF", "Name": "Mosjøen", "NameWoDiac": "Mosjoen", "Status": "AF", "outflows": 42276.0 }, "geometry": { "type": "Point", "coordinates": [ 13.2, 65.833333333333329 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "123-----", "LOCODE": "NOMSS", "Name": "Moss", "NameWoDiac": "Moss", "Status": "AA", "outflows": 51012.0 }, "geometry": { "type": "Point", "coordinates": [ 10.65, 59.416666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOODD", "Name": "Odda", "NameWoDiac": "Odda", "Status": "AA", "outflows": 19240.0 }, "geometry": { "type": "Point", "coordinates": [ 6.533333333333333, 60.06666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOORK", "Name": "Orkanger", "NameWoDiac": "Orkanger", "Status": "AA", "outflows": 132567.5 }, "geometry": { "type": "Point", "coordinates": [ 9.833333333333334, 63.31666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "12345---", "LOCODE": "NOOSL", "Name": "Oslo", "NameWoDiac": "Oslo", "Status": "AA", "outflows": 370877.0 }, "geometry": { "type": "Point", "coordinates": [ 10.733333333333333, 59.9 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOSAT", "Name": "Salten", "NameWoDiac": "Salten", "Status": "AA", "outflows": 34164.0 }, "geometry": { "type": "Point", "coordinates": [ 15.583333333333334, 67.36666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1234----", "LOCODE": "NOSVG", "Name": "Stavanger", "NameWoDiac": "Stavanger", "Status": "AI", "outflows": 99528.0 }, "geometry": { "type": "Point", "coordinates": [ 5.75, 58.966666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-34----", "LOCODE": "NOSKN", "Name": "Stokmarknes", "NameWoDiac": "Stokmarknes", "Status": "AA", "outflows": 34164.0 }, "geometry": { "type": "Point", "coordinates": [ 14.9, 68.566666666666663 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOSUN", "Name": "Sunndalsøra", "NameWoDiac": "Sunndalsora", "Status": "AF", "outflows": 107250.0 }, "geometry": { "type": "Point", "coordinates": [ 8.55, 62.666666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOSVE", "Name": "Svelgen", "NameWoDiac": "Svelgen", "Status": "AA", "outflows": 34164.0 }, "geometry": { "type": "Point", "coordinates": [ 5.283333333333333, 61.766666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-34----", "LOCODE": "NOSVJ", "Name": "Svolvær", "NameWoDiac": "Svolvar", "Status": "AA", "outflows": 9516.0 }, "geometry": { "type": "Point", "coordinates": [ 14.55, 68.216666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-3-----", "LOCODE": "NOTAE", "Name": "Tananger", "NameWoDiac": "Tananger", "Status": "AA", "outflows": 348445.5 }, "geometry": { "type": "Point", "coordinates": [ 5.583333333333333, 58.916666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-34----", "LOCODE": "NOTOS", "Name": "Tromsø", "NameWoDiac": "Tromso", "Status": "AI", "outflows": 9516.0 }, "geometry": { "type": "Point", "coordinates": [ 18.966666666666665, 69.666666666666671 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1234----", "LOCODE": "NOTRD", "Name": "Trondheim", "NameWoDiac": "Trondheim", "Status": "AA", "outflows": 9516.0 }, "geometry": { "type": "Point", "coordinates": [ 10.4, 63.43333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Nauru", "Function": "1--45---", "LOCODE": "NRINU", "Name": "Nauru Island", "NameWoDiac": "Nauru Island", "Status": "AI", "outflows": 3756.0 }, "geometry": { "type": "Point", "coordinates": [ 166.916666666666657, -0.55 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "New Zealand", "Function": "12345---", "LOCODE": "NZAKL", "Name": "Auckland", "NameWoDiac": "Auckland", "Status": "AC", "outflows": 3839723.3548399992 }, "geometry": { "type": "Point", "coordinates": [ 174.8, -36.833333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "New Zealand", "Function": "123-----", "LOCODE": "NZBLU", "Name": "Bluff", "NameWoDiac": "Bluff", "Status": "AC", "outflows": 537012.66663 }, "geometry": { "type": "Point", "coordinates": [ 168.316666666666663, -46.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "New Zealand", "Function": "1-3-----", "LOCODE": "NZLYT", "Name": "Lyttelton", "NameWoDiac": "Lyttelton", "Status": "AC", "outflows": 2992885.6903999997 }, "geometry": { "type": "Point", "coordinates": [ 172.716666666666669, -43.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "New Zealand", "Function": "1-3-----", "LOCODE": "NZMAP", "Name": "Marsden Point", "NameWoDiac": "Marsden Point", "Status": "AC", "outflows": 722904.00003 }, "geometry": { "type": "Point", "coordinates": [ 174.5, -35.833333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "New Zealand", "Function": "1--4----", "LOCODE": "NZNPE", "Name": "Napier", "NameWoDiac": "Napier", "Status": "AC", "outflows": 3423163.5692899991 }, "geometry": { "type": "Point", "coordinates": [ 176.9, -39.466666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "New Zealand", "Function": "1-34----", "LOCODE": "NZNSN", "Name": "Nelson", "NameWoDiac": "Nelson", "Status": "AC", "outflows": 1229461.9998700004 }, "geometry": { "type": "Point", "coordinates": [ 173.26666666666668, -41.25 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "New Zealand", "Function": "1-------", "LOCODE": "NZPOE", "Name": "Port Chalmers", "NameWoDiac": "Port Chalmers", "Status": "AC", "outflows": 1736542.9262700006 }, "geometry": { "type": "Point", "coordinates": [ 170.6, -45.81666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "New Zealand", "Function": "1234----", "LOCODE": "NZTRG", "Name": "Tauranga", "NameWoDiac": "Tauranga", "Status": "AI", "outflows": 6568750.5691900002 }, "geometry": { "type": "Point", "coordinates": [ 176.166666666666657, -37.68333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "New Zealand", "Function": "1234----", "LOCODE": "NZTIU", "Name": "Timaru", "NameWoDiac": "Timaru", "Status": "AC", "outflows": 1399570.2597300003 }, "geometry": { "type": "Point", "coordinates": [ 171.25, -44.383333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "New Zealand", "Function": "1234----", "LOCODE": "NZWLG", "Name": "Wellington", "NameWoDiac": "Wellington", "Status": "AC", "outflows": 1605903.3093099999 }, "geometry": { "type": "Point", "coordinates": [ 174.783333333333331, -41.266666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Panama", "Function": "1-345---", "LOCODE": "PAONX", "Name": "Colón", "NameWoDiac": "Colon", "Status": "AI", "outflows": 5425996.6880400013 }, "geometry": { "type": "Point", "coordinates": [ -79.86666666666666, 9.35 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Panama", "Function": "1-------", "LOCODE": "PACTB", "Name": "Cristóbal", "NameWoDiac": "Cristobal", "Status": "AI", "outflows": 7696418.2510899995 }, "geometry": { "type": "Point", "coordinates": [ -79.9, 9.35 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Panama", "Function": "1-345---", "LOCODE": "PAPTY", "Name": "Panamá, Ciudad de", "NameWoDiac": "Panama, Ciudad de", "Status": "AI", "outflows": 13494.0 }, "geometry": { "type": "Point", "coordinates": [ -79.533333333333331, 8.966666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Panama", "Function": "1-------", "LOCODE": "PAROD", "Name": "Rodman", "NameWoDiac": "Rodman", "Status": "RL", "outflows": 4784764.0453200005 }, "geometry": { "type": "Point", "coordinates": [ -79.566666666666663, 8.95 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "French Polynesia", "Function": "1--4----", "LOCODE": "PFBOB", "Name": "Bora Bora", "NameWoDiac": "Bora Bora", "Status": "AI", "outflows": 726.75 }, "geometry": { "type": "Point", "coordinates": [ -151.75, -16.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "French Polynesia", "Function": "1--45---", "LOCODE": "PFPPT", "Name": "Papeete", "NameWoDiac": "Papeete", "Status": "AI", "outflows": 1092395.0833000003 }, "geometry": { "type": "Point", "coordinates": [ -149.616666666666674, -17.55 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Papua New Guinea", "Function": "1--4----", "LOCODE": "PGMAG", "Name": "Madang", "NameWoDiac": "Madang", "Status": "AI", "outflows": 168130.0 }, "geometry": { "type": "Point", "coordinates": [ 145.783333333333331, -5.216666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Papua New Guinea", "Function": "1-------", "LOCODE": "PGMTK", "Name": "Motukea Island", "NameWoDiac": "Motukea Island", "Status": "RL", "outflows": 301007.5 }, "geometry": { "type": "Point", "coordinates": [ 147.1, -9.433333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1-3--6--", "LOCODE": "PHBTG", "Name": "Batangas\/Luzon", "NameWoDiac": "Batangas\/Luzon", "Status": "AI", "outflows": 1811559.5 }, "geometry": { "type": "Point", "coordinates": [ 121.05, 13.75 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1-34----", "LOCODE": "PHGES", "Name": "General Santos", "NameWoDiac": "General Santos", "Status": "AI", "outflows": 925870.83340999996 }, "geometry": { "type": "Point", "coordinates": [ 125.15, 6.116666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1-3-----", "LOCODE": "PHTGO", "Name": "Tagoloan", "NameWoDiac": "Tagoloan", "Status": "RL", "outflows": 12150.0 }, "geometry": { "type": "Point", "coordinates": [ 124.75, 8.533333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Poland", "Function": "123-----", "LOCODE": "PLGDY", "Name": "Gdynia", "NameWoDiac": "Gdynia", "Status": "RL", "outflows": 1377819.1666200003 }, "geometry": { "type": "Point", "coordinates": [ 18.55, 54.5 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Poland", "Function": "123-----", "LOCODE": "PLSWI", "Name": "Swinoujscie", "NameWoDiac": "Swinoujscie", "Status": "RL", "outflows": 16263.0 }, "geometry": { "type": "Point", "coordinates": [ 14.25, 53.9 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Puerto Rico", "Function": "1--45---", "LOCODE": "PRSJU", "Name": "San Juan", "NameWoDiac": "San Juan", "Status": "AI", "outflows": 914875.50003 }, "geometry": { "type": "Point", "coordinates": [ -66.083333333333329, 18.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "1-3-----", "LOCODE": "PTCNL", "Name": "Caniçal", "NameWoDiac": "Canical", "Status": "RL", "outflows": 70018.0 }, "geometry": { "type": "Point", "coordinates": [ -16.733333333333334, 32.733333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "123-----", "LOCODE": "PTFDF", "Name": "Figueira da Foz", "NameWoDiac": "Figueira da Foz", "Status": "AI", "outflows": 26754.0 }, "geometry": { "type": "Point", "coordinates": [ -8.866666666666667, 40.15 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "1-34----", "LOCODE": "PTHOR", "Name": "Horta", "NameWoDiac": "Horta", "Status": "AI", "outflows": 32292.0 }, "geometry": { "type": "Point", "coordinates": [ -28.633333333333333, 38.533333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "123-----", "LOCODE": "PTLEI", "Name": "Leixões", "NameWoDiac": "Leixoes", "Status": "AI", "outflows": 1619530.783304 }, "geometry": { "type": "Point", "coordinates": [ -8.683333333333334, 41.18333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "12345---", "LOCODE": "PTLIS", "Name": "Lisboa", "NameWoDiac": "Lisboa", "Status": "AI", "outflows": 1373631.1667299997 }, "geometry": { "type": "Point", "coordinates": [ -9.133333333333333, 38.716666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "--3-----", "LOCODE": "PTPIC", "Name": "Pico", "NameWoDiac": "Pico", "Status": "RL", "outflows": 23192.0 }, "geometry": { "type": "Point", "coordinates": [ -8.416666666666666, 41.68333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "1-345---", "LOCODE": "PTPDL", "Name": "Ponta Delgada", "NameWoDiac": "Ponta Delgada", "Status": "AI", "outflows": 109096.0 }, "geometry": { "type": "Point", "coordinates": [ -25.666666666666668, 37.733333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "1--4---B", "LOCODE": "PTPXO", "Name": "Porto Santo Island", "NameWoDiac": "Porto Santo Island", "Status": "AI", "outflows": 28236.0 }, "geometry": { "type": "Point", "coordinates": [ -16.333333333333332, 33.06666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "1-3-----", "LOCODE": "PTPRG", "Name": "Praia da Graciosa", "NameWoDiac": "Praia da Graciosa", "Status": "AI", "outflows": 19500.0 }, "geometry": { "type": "Point", "coordinates": [ -27.966666666666665, 39.05 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "1-3-----", "LOCODE": "PTPRV", "Name": "Praia da Vitória", "NameWoDiac": "Praia da Vitoria", "Status": "AI", "outflows": 109096.0 }, "geometry": { "type": "Point", "coordinates": [ -27.066666666666666, 38.733333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "1-3-----", "LOCODE": "PTSCF", "Name": "Santa Cruz das Flores", "NameWoDiac": "Santa Cruz das Flores", "Status": "RL", "outflows": 16146.0 }, "geometry": { "type": "Point", "coordinates": [ -31.116666666666667, 39.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "123-----", "LOCODE": "PTSET", "Name": "Setúbal", "NameWoDiac": "Setubal", "Status": "AI", "outflows": 443319.5 }, "geometry": { "type": "Point", "coordinates": [ -8.9, 38.533333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "1234----", "LOCODE": "PTSIE", "Name": "Sines", "NameWoDiac": "Sines", "Status": "AI", "outflows": 11424189.365200002 }, "geometry": { "type": "Point", "coordinates": [ -8.866666666666667, 37.95 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "1-3-----", "LOCODE": "PTVEL", "Name": "Velas", "NameWoDiac": "Velas", "Status": "AI", "outflows": 47190.0 }, "geometry": { "type": "Point", "coordinates": [ -28.216666666666665, 38.68333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Portugal", "Function": "1-3-----", "LOCODE": "PTVDP", "Name": "Vila do Porto", "NameWoDiac": "Vila do Porto", "Status": "RL", "outflows": 13468.0 }, "geometry": { "type": "Point", "coordinates": [ -25.15, 36.93333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Paraguay", "Function": "1--45---", "LOCODE": "PYASU", "Name": "Asunción", "NameWoDiac": "Asuncion", "Status": "AI", "outflows": 13793.0 }, "geometry": { "type": "Point", "coordinates": [ -57.666666666666664, -25.266666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Qatar", "Function": "1-------", "LOCODE": "QAHMD", "Name": "BGN\/PCGN1956 - HAMAD", "NameWoDiac": "BGN\/PCGN1956 - HAMAD", "Status": "RL", "outflows": 11570563.360890001 }, "geometry": { "type": "Point", "coordinates": [ 51.616666666666667, 25.0 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Qatar", "Function": "1----6--", "LOCODE": "QAMES", "Name": "Mesaieed", "NameWoDiac": "Mesaieed", "Status": "RQ", "outflows": 87230.0 }, "geometry": { "type": "Point", "coordinates": [ 51.916666666666664, 25.633333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Romania", "Function": "1234-6--", "LOCODE": "ROCND", "Name": "Constanta", "NameWoDiac": "Constanta", "Status": "AI", "outflows": 4202750.0668100007 }, "geometry": { "type": "Point", "coordinates": [ 28.65, 44.18333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Russian Federation", "Function": "123-----", "LOCODE": "RUBRK", "Name": "Lomonosov", "NameWoDiac": "Lomonosov", "Status": "RL", "outflows": 172926.0 }, "geometry": { "type": "Point", "coordinates": [ 29.733333333333334, 59.9 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Russian Federation", "Function": "123--6--", "LOCODE": "RUNVS", "Name": "Novorossiysk", "NameWoDiac": "Novorossiysk", "Status": "RL", "outflows": 2856095.6668099994 }, "geometry": { "type": "Point", "coordinates": [ 37.766666666666666, 44.716666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Russian Federation", "Function": "12345---", "LOCODE": "RULED", "Name": "Saint Petersburg (ex Leningrad)", "NameWoDiac": "Saint Petersburg (ex Leningrad)", "Status": "AI", "outflows": 2197863.9046789999 }, "geometry": { "type": "Point", "coordinates": [ 30.25, 59.883333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Russian Federation", "Function": "123-----", "LOCODE": "RUULU", "Name": "Ust'-Luga", "NameWoDiac": "Ust'-Luga", "Status": "RL", "outflows": 217892.99998 }, "geometry": { "type": "Point", "coordinates": [ 28.316666666666666, 59.666666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Russian Federation", "Function": "1-------", "LOCODE": "RUVYP", "Name": "Vostochnyy Port", "NameWoDiac": "Vostochnyy Port", "Status": "RL", "outflows": 694044.00000000012 }, "geometry": { "type": "Point", "coordinates": [ 133.05, 42.766666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Russian Federation", "Function": "1-------", "LOCODE": "RUZAR", "Name": "Zarubino", "NameWoDiac": "Zarubino", "Status": "RL", "outflows": 8476.0 }, "geometry": { "type": "Point", "coordinates": [ 131.083333333333343, 42.616666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Saudi Arabia", "Function": "12345---", "LOCODE": "SADMM", "Name": "Ad Dammam", "NameWoDiac": "Ad Dammam", "Status": "RL", "outflows": 11255729.646892 }, "geometry": { "type": "Point", "coordinates": [ 50.1, 26.416666666666668 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Saudi Arabia", "Function": "1--45---", "LOCODE": "SAJED", "Name": "Jeddah", "NameWoDiac": "Jeddah", "Status": "AI", "outflows": 28479677.911780011 }, "geometry": { "type": "Point", "coordinates": [ 39.166666666666664, 21.533333333333335 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Saudi Arabia", "Function": "1-3-----", "LOCODE": "SAKAC", "Name": "King Abdullah City", "NameWoDiac": "King Abdullah City", "Status": "RQ", "outflows": 13582128.147299998 }, "geometry": { "type": "Point", "coordinates": [ 39.083333333333336, 22.4 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Saudi Arabia", "Function": "1-34----", "LOCODE": "SAYNB", "Name": "Yanbu al-Bahr", "NameWoDiac": "Yanbu al-Bahr", "Status": "AI", "outflows": 49257.0 }, "geometry": { "type": "Point", "coordinates": [ 38.033333333333331, 24.083333333333332 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "123-----", "LOCODE": "SEAHU", "Name": "Åhus", "NameWoDiac": "Ahus", "Status": "AA", "outflows": 33696.0 }, "geometry": { "type": "Point", "coordinates": [ 14.283333333333333, 55.916666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "1--4----", "LOCODE": "SEGVX", "Name": "Gävle", "NameWoDiac": "Gavle", "Status": "AA", "outflows": 278876.0 }, "geometry": { "type": "Point", "coordinates": [ 17.166666666666668, 60.666666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "12345---", "LOCODE": "SEGOT", "Name": "Göteborg", "NameWoDiac": "Goteborg", "Status": "AA", "outflows": 3614371.4282800001 }, "geometry": { "type": "Point", "coordinates": [ 11.966666666666667, 57.716666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "1234----", "LOCODE": "SEHAD", "Name": "Halmstad", "NameWoDiac": "Halmstad", "Status": "AA", "outflows": 48750.0 }, "geometry": { "type": "Point", "coordinates": [ 12.85, 56.666666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "1--4----", "LOCODE": "SEKSD", "Name": "Karlstad", "NameWoDiac": "Karlstad", "Status": "AA", "outflows": 3312.0 }, "geometry": { "type": "Point", "coordinates": [ 13.5, 59.366666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "1234----", "LOCODE": "SENRK", "Name": "Norrköping", "NameWoDiac": "Norrkoping", "Status": "AA", "outflows": 296309.0 }, "geometry": { "type": "Point", "coordinates": [ 16.183333333333334, 58.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "123-----", "LOCODE": "SEOSK", "Name": "Oskarshamn", "NameWoDiac": "Oskarshamn", "Status": "AA", "outflows": 84688.5 }, "geometry": { "type": "Point", "coordinates": [ 16.433333333333334, 57.266666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "123-----", "LOCODE": "SEOXE", "Name": "Oxelösund", "NameWoDiac": "Oxelosund", "Status": "AA", "outflows": 73031.833334999988 }, "geometry": { "type": "Point", "coordinates": [ 17.1, 58.666666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "123-----", "LOCODE": "SEPIT", "Name": "Piteå", "NameWoDiac": "Pitea", "Status": "AA", "outflows": 67392.0 }, "geometry": { "type": "Point", "coordinates": [ 21.5, 65.333333333333329 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "123--6--", "LOCODE": "SESOE", "Name": "Södertälje", "NameWoDiac": "Sodertalje", "Status": "AA", "outflows": 54799.333335000003 }, "geometry": { "type": "Point", "coordinates": [ 17.616666666666667, 59.2 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "12345---", "LOCODE": "SESTO", "Name": "Stockholm", "NameWoDiac": "Stockholm", "Status": "AA", "outflows": 227955.0 }, "geometry": { "type": "Point", "coordinates": [ 18.05, 59.333333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "1-34----", "LOCODE": "SESDL", "Name": "Sundsvall", "NameWoDiac": "Sundsvall", "Status": "AA", "outflows": 51928.5 }, "geometry": { "type": "Point", "coordinates": [ 17.3, 62.383333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "1234----", "LOCODE": "SEUME", "Name": "Umeå", "NameWoDiac": "Umea", "Status": "AI", "outflows": 51928.5 }, "geometry": { "type": "Point", "coordinates": [ 20.25, 63.833333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "1234----", "LOCODE": "SEVST", "Name": "Västerås", "NameWoDiac": "Vasteras", "Status": "AA", "outflows": 21103.333335000003 }, "geometry": { "type": "Point", "coordinates": [ 16.55, 59.616666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Syrian Arab Republic", "Function": "1--4----", "LOCODE": "SYLTK", "Name": "Latakia", "NameWoDiac": "Latakia", "Status": "AI", "outflows": 719300.0 }, "geometry": { "type": "Point", "coordinates": [ 35.783333333333331, 35.516666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Syrian Arab Republic", "Function": "1-3-----", "LOCODE": "SYTTS", "Name": "Tartus", "NameWoDiac": "Tartus", "Status": "RL", "outflows": 103493.0 }, "geometry": { "type": "Point", "coordinates": [ 35.9, 34.9 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Thailand", "Function": "12345---", "LOCODE": "THBKK", "Name": "Bangkok", "NameWoDiac": "Bangkok", "Status": "AI", "outflows": 4526246.8335100003 }, "geometry": { "type": "Point", "coordinates": [ 100.516666666666666, 13.75 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Thailand", "Function": "1-3-----", "LOCODE": "THLCH", "Name": "Laem Chabang", "NameWoDiac": "Laem Chabang", "Status": "RL", "outflows": 21757591.196550008 }, "geometry": { "type": "Point", "coordinates": [ 100.88333333333334, 13.083333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Thailand", "Function": "---4----", "LOCODE": "THHKT", "Name": "Phuket International Apt", "NameWoDiac": "Phuket International Apt", "Status": "AA", "outflows": 44898.75 }, "geometry": { "type": "Point", "coordinates": [ 98.316666666666663, 8.116666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Thailand", "Function": "1-3-----", "LOCODE": "THSCS", "Name": "Sahathai Coastal Seaport", "NameWoDiac": "Sahathai Coastal Seaport", "Status": "RQ", "outflows": 91563.33335 }, "geometry": { "type": "Point", "coordinates": [ 100.533333333333331, 13.65 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Timor-Leste", "Function": "1-34----", "LOCODE": "TLDIL", "Name": "Dili", "NameWoDiac": "Dili", "Status": "RL", "outflows": 34187.75 }, "geometry": { "type": "Point", "coordinates": [ 125.566666666666663, -8.55 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Tonga", "Function": "1--45---", "LOCODE": "TOTBU", "Name": "Nuku'alofa", "NameWoDiac": "Nuku'alofa", "Status": "AI", "outflows": 178599.5 }, "geometry": { "type": "Point", "coordinates": [ -175.2, -21.133333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "--3-----", "LOCODE": "TRPAM", "Name": "Ambarli", "NameWoDiac": "Ambarli", "Status": "RL", "outflows": 14411413.266529994 }, "geometry": { "type": "Point", "coordinates": [ 39.166666666666664, 41.033333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "1234----", "LOCODE": "TRAYT", "Name": "Antalya", "NameWoDiac": "Antalya", "Status": "AI", "outflows": 111670.0 }, "geometry": { "type": "Point", "coordinates": [ 30.6, 36.833333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "1234----", "LOCODE": "TRBDM", "Name": "Bandirma", "NameWoDiac": "Bandirma", "Status": "AI", "outflows": 19968.0 }, "geometry": { "type": "Point", "coordinates": [ 27.966666666666665, 40.35 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "--3-----", "LOCODE": "TRELI", "Name": "Eregli", "NameWoDiac": "Eregli", "Status": "RL", "outflows": 46215.0 }, "geometry": { "type": "Point", "coordinates": [ 34.05, 37.5 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "123-----", "LOCODE": "TREYP", "Name": "Evyap Port \/Kocaeli", "NameWoDiac": "Evyap Port \/Kocaeli", "Status": "RL", "outflows": 2234864.6663000002 }, "geometry": { "type": "Point", "coordinates": [ 29.7, 40.766666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "123-----", "LOCODE": "TRGEB", "Name": "Gebze", "NameWoDiac": "Gebze", "Status": "RL", "outflows": 3850254.1414999994 }, "geometry": { "type": "Point", "coordinates": [ 29.416666666666668, 40.783333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "1-------", "LOCODE": "TRGEM", "Name": "Gemlik", "NameWoDiac": "Gemlik", "Status": "RL", "outflows": 5852461.2414100012 }, "geometry": { "type": "Point", "coordinates": [ 29.15, 40.416666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "123-----", "LOCODE": "TRISK", "Name": "Iskenderun", "NameWoDiac": "Iskenderun", "Status": "RL", "outflows": 5577045.5832400005 }, "geometry": { "type": "Point", "coordinates": [ 36.166666666666664, 36.583333333333336 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "12345---", "LOCODE": "TRIZM", "Name": "Izmir", "NameWoDiac": "Izmir", "Status": "AI", "outflows": 3559402.8750300007 }, "geometry": { "type": "Point", "coordinates": [ 27.15, 38.416666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "123-----", "LOCODE": "TRIZT", "Name": "Izmit", "NameWoDiac": "Izmit", "Status": "RL", "outflows": 8619638.1665099971 }, "geometry": { "type": "Point", "coordinates": [ 29.95, 40.783333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "123-----", "LOCODE": "TRKMX", "Name": "Kumport", "NameWoDiac": "Kumport", "Status": "RQ", "outflows": 829400.0 }, "geometry": { "type": "Point", "coordinates": [ 28.816666666666666, 40.95 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "1-------", "LOCODE": "TRLMA", "Name": "Limas", "NameWoDiac": "Limas", "Status": "RQ", "outflows": 31720.0 }, "geometry": { "type": "Point", "coordinates": [ 26.916666666666668, 38.75 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "123-----", "LOCODE": "TRMAD", "Name": "Mardas", "NameWoDiac": "Mardas", "Status": "RQ", "outflows": 103532.0 }, "geometry": { "type": "Point", "coordinates": [ 28.95, 41.016666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "123-----", "LOCODE": "TRMER", "Name": "Mersin", "NameWoDiac": "Mersin", "Status": "RL", "outflows": 9929684.1327900011 }, "geometry": { "type": "Point", "coordinates": [ 34.633333333333333, 36.716666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "1--4----", "LOCODE": "TRSSX", "Name": "Samsun", "NameWoDiac": "Samsun", "Status": "AI", "outflows": 105306.5 }, "geometry": { "type": "Point", "coordinates": [ 36.333333333333336, 41.283333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "1234----", "LOCODE": "TRTEK", "Name": "Tekirdag", "NameWoDiac": "Tekirdag", "Status": "AI", "outflows": 4941615.3749799989 }, "geometry": { "type": "Point", "coordinates": [ 27.516666666666666, 40.966666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "1-34----", "LOCODE": "TRTZX", "Name": "Trabzon", "NameWoDiac": "Trabzon", "Status": "AI", "outflows": 14760.0 }, "geometry": { "type": "Point", "coordinates": [ 39.733333333333334, 41.0 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "1-3-----", "LOCODE": "TRYPO", "Name": "Yilport", "NameWoDiac": "Yilport", "Status": "RL", "outflows": 253751.33331 }, "geometry": { "type": "Point", "coordinates": [ 29.533333333333335, 40.766666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Trinidad and Tobago", "Function": "1--45---", "LOCODE": "TTPOS", "Name": "Port-of-Spain", "NameWoDiac": "Port-of-Spain", "Status": "AI", "outflows": 1136813.0 }, "geometry": { "type": "Point", "coordinates": [ -61.516666666666666, 10.65 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Trinidad and Tobago", "Function": "1--45---", "LOCODE": "TTPOS", "Name": "Port-of-Spain", "NameWoDiac": "Port-of-Spain", "Status": "AI", "outflows": 1136813.0 }, "geometry": { "type": "Point", "coordinates": [ -61.516666666666666, 10.65 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Taiwan, Province of China", "Function": "1--45---", "LOCODE": "TWTPE", "Name": "Taipei", "NameWoDiac": "Taipei", "Status": "AI", "outflows": 10793107.077210007 }, "geometry": { "type": "Point", "coordinates": [ 121.516666666666666, 25.033333333333335 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Tanzania, United Republic of", "Function": "12345---", "LOCODE": "TZDAR", "Name": "Dar es Salaam", "NameWoDiac": "Dar es Salaam", "Status": "AI", "outflows": 1404403.5674399997 }, "geometry": { "type": "Point", "coordinates": [ 39.283333333333331, -6.8 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Ukraine", "Function": "123-----", "LOCODE": "UAILK", "Name": "Chornomorsk", "NameWoDiac": "Chornomorsk", "Status": "AA", "outflows": 1398819.4999800001 }, "geometry": { "type": "Point", "coordinates": [ 30.666666666666668, 46.31666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Ukraine", "Function": "1234-6--", "LOCODE": "UAODS", "Name": "Odesa", "NameWoDiac": "Odesa", "Status": "AA", "outflows": 2843490.8999800007 }, "geometry": { "type": "Point", "coordinates": [ 30.75, 46.5 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Ukraine", "Function": "1-------", "LOCODE": "UAYUZ", "Name": "Yuzhnyi", "NameWoDiac": "Yuzhnyi", "Status": "AA", "outflows": 1861645.5 }, "geometry": { "type": "Point", "coordinates": [ 31.016666666666666, 46.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "123-----", "LOCODE": "USBAL", "Name": "Baltimore", "NameWoDiac": "Baltimore", "Status": "RL", "outflows": 6053080.2448899997 }, "geometry": { "type": "Point", "coordinates": [ -76.61666666666666, 39.283333333333331 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "-23-----", "LOCODE": "USACL", "Name": "Chester", "NameWoDiac": "Chester", "Status": "RL", "outflows": 109902.0 }, "geometry": { "type": "Point", "coordinates": [ -72.583333333333329, 43.266666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "--3----B", "LOCODE": "USEPI", "Name": "Eastport", "NameWoDiac": "Eastport", "Status": "RN", "outflows": 28364.0 }, "geometry": { "type": "Point", "coordinates": [ -67.000460366215606, 44.918963897792032 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1-3-----", "LOCODE": "USFEB", "Name": "Fernandina Beach", "NameWoDiac": "Fernandina Beach", "Status": "RL", "outflows": 2700.0 }, "geometry": { "type": "Point", "coordinates": [ -81.45, 30.666666666666668 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "--3--6--", "LOCODE": "USGFP", "Name": "Gulfport", "NameWoDiac": "Gulfport", "Status": "RQ", "outflows": 179625.33335 }, "geometry": { "type": "Point", "coordinates": [ -89.084906220322893, 30.378156457739781 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1-345---", "LOCODE": "USHNL", "Name": "Honolulu", "NameWoDiac": "Honolulu", "Status": "AI", "outflows": 808514.83334000001 }, "geometry": { "type": "Point", "coordinates": [ -157.85, 21.3 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "-23--6--", "LOCODE": "USHKA", "Name": "Houston", "NameWoDiac": "Houston", "Status": "RL", "outflows": 14456458.251239998 }, "geometry": { "type": "Point", "coordinates": [ -149.816666666666663, 61.633333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1234----", "LOCODE": "USLGB", "Name": "Long Beach", "NameWoDiac": "Long Beach", "Status": "AI", "outflows": 12114713.79308 }, "geometry": { "type": "Point", "coordinates": [ -118.183333333333337, 33.766666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "12345---", "LOCODE": "USNYC", "Name": "New York", "NameWoDiac": "New York", "Status": "AI", "outflows": 27396473.865290001 }, "geometry": { "type": "Point", "coordinates": [ -74.0, 40.7 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "--3--6--", "LOCODE": "USNFF", "Name": "Norfolk", "NameWoDiac": "Norfolk", "Status": "RL", "outflows": 20779844.877009999 }, "geometry": { "type": "Point", "coordinates": [ -73.2, 42.0 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "-23-----", "LOCODE": "USKND", "Name": "Oakland", "NameWoDiac": "Oakland", "Status": "RL", "outflows": 17163885.235119998 }, "geometry": { "type": "Point", "coordinates": [ -122.220254629629636, 37.932904795821436 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "-23--6--", "LOCODE": "USPDP", "Name": "Philadelphia", "NameWoDiac": "Philadelphia", "Status": "RL", "outflows": 5743740.1835829979 }, "geometry": { "type": "Point", "coordinates": [ -75.716666666666669, 44.15 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1-34----", "LOCODE": "USPEF", "Name": "Port Everglades", "NameWoDiac": "Port Everglades", "Status": "RN", "outflows": 3155879.7381200008 }, "geometry": { "type": "Point", "coordinates": [ -80.13333333333334, 26.1 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1234-6--", "LOCODE": "USNTD", "Name": "Port Hueneme", "NameWoDiac": "Port Hueneme", "Status": "AI", "outflows": 585733.2 }, "geometry": { "type": "Point", "coordinates": [ -119.183333333333337, 34.133333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1-3-----", "LOCODE": "USPME", "Name": "Port Manatee", "NameWoDiac": "Port Manatee", "Status": "RL", "outflows": 88523.5 }, "geometry": { "type": "Point", "coordinates": [ -82.55, 27.633333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1-34----", "LOCODE": "USSAN", "Name": "San Diego", "NameWoDiac": "San Diego", "Status": "AI", "outflows": 60060.0 }, "geometry": { "type": "Point", "coordinates": [ -117.15, 32.7 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1-34----", "LOCODE": "USSCK", "Name": "Stockton", "NameWoDiac": "Stockton", "Status": "AI", "outflows": 27774.0 }, "geometry": { "type": "Point", "coordinates": [ -121.283333333333331, 37.95 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USILM", "Name": "Wilmington", "NameWoDiac": "Wilmington", "Status": "AI", "outflows": 2749421.5816000002 }, "geometry": { "type": "Point", "coordinates": [ -77.933333333333337, 34.216666666666669 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Uruguay", "Function": "--3-----", "LOCODE": "UYPTP", "Name": "Punta Pereyra", "NameWoDiac": "Punta Pereyra", "Status": "RQ", "outflows": 7800.0 }, "geometry": { "type": "Point", "coordinates": [ -58.06666666666667, -34.233333333333334 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Saint Vincent and the Grenadines", "Function": "1--45---", "LOCODE": "VCKTN", "Name": "Kingstown", "NameWoDiac": "Kingstown", "Status": "RL", "outflows": 225040.4 }, "geometry": { "type": "Point", "coordinates": [ -61.216666666666669, 13.133333333333333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Venezuela, Bolivarian Republic of", "Function": "1--4----", "LOCODE": "VEPLA", "Name": "Palúa", "NameWoDiac": "Palua", "Status": "AI", "outflows": 15540.0 }, "geometry": { "type": "Point", "coordinates": [ -62.666666666666664, 8.35 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Virgin Islands, U.S.", "Function": "1-------", "LOCODE": "VICTD", "Name": "Christiansted, Saint Croix", "NameWoDiac": "Christiansted, Saint Croix", "Status": "AI", "outflows": 11076.0 }, "geometry": { "type": "Point", "coordinates": [ -64.75, 17.75 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Viet Nam", "Function": "--3-----", "LOCODE": "VNC8Q", "Name": "Chu Lai", "NameWoDiac": "Chu Lai", "Status": "RL", "outflows": 233142.0 }, "geometry": { "type": "Point", "coordinates": [ 108.7, 15.4 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Viet Nam", "Function": "1--4----", "LOCODE": "VNDAD", "Name": "Da Nang", "NameWoDiac": "Da Nang", "Status": "AI", "outflows": 3019963.9167599995 }, "geometry": { "type": "Point", "coordinates": [ 108.216666666666669, 16.066666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Viet Nam", "Function": "1-3456--", "LOCODE": "VNSGN", "Name": "Ho Chi Minh City", "NameWoDiac": "Ho Chi Minh City", "Status": "AI", "outflows": 12782452.750279998 }, "geometry": { "type": "Point", "coordinates": [ 106.666666666666671, 10.766666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Viet Nam", "Function": "1-3-----", "LOCODE": "VNNGH", "Name": "Nghi Son", "NameWoDiac": "Nghi Son", "Status": "RL", "outflows": 43602.0 }, "geometry": { "type": "Point", "coordinates": [ 105.833333333333329, 19.333333333333332 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Viet Nam", "Function": "1-34----", "LOCODE": "VNUIH", "Name": "Qui Nhon", "NameWoDiac": "Qui Nhon", "Status": "AI", "outflows": 418626.0 }, "geometry": { "type": "Point", "coordinates": [ 109.216666666666669, 13.766666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Viet Nam", "Function": "1-34----", "LOCODE": "VNVUT", "Name": "Vung Tau", "NameWoDiac": "Vung Tau", "Status": "RL", "outflows": 21025136.034170005 }, "geometry": { "type": "Point", "coordinates": [ 107.066666666666663, 10.35 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Wallis and Futuna", "Function": "---4----", "LOCODE": "WFFUT", "Name": "Vele Futuna I. Apt", "NameWoDiac": "Vele Futuna I. Apt", "Status": "AI", "outflows": 10200.0 }, "geometry": { "type": "Point", "coordinates": [ -178.083333333333343, -14.316666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mayotte", "Function": "1-3-----", "LOCODE": "YTLON", "Name": "Longoni", "NameWoDiac": "Longoni", "Status": "AA", "outflows": 298158.99997999996 }, "geometry": { "type": "Point", "coordinates": [ 45.166666666666664, -12.716666666666667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "South Africa", "Function": "12345---", "LOCODE": "ZACPT", "Name": "Cape Town", "NameWoDiac": "Cape Town", "Status": "AF", "outflows": 4902763.6243000003 }, "geometry": { "type": "Point", "coordinates": [ 18.416666666666668, -33.916666666666664 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "South Africa", "Function": "-----6--", "LOCODE": "ZAZBA", "Name": "Coega", "NameWoDiac": "Coega", "Status": "RL", "outflows": 3467734.6668099998 }, "geometry": { "type": "Point", "coordinates": [ 25.666666666666668, -33.766666666666666 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "South Africa", "Function": "12345---", "LOCODE": "ZADUR", "Name": "Durban", "NameWoDiac": "Durban", "Status": "AI", "outflows": 8754191.1218599975 }, "geometry": { "type": "Point", "coordinates": [ 31.016666666666666, -29.85 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Arab Emirates", "Function": "1-3-----", "LOCODE": "AEAJM", "Name": "Ajman", "NameWoDiac": "Ajman", "Status": "RL", "outflows": 73567.0 }, "geometry": { "type": "Point", "coordinates": [ 55.47878, 25.40177 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Arab Emirates", "Function": "1-------", "LOCODE": "AEJEA", "Name": "Jebel Ali", "NameWoDiac": "Jebel Ali", "Status": "QQ", "outflows": 44524119.850148 }, "geometry": { "type": "Point", "coordinates": [ 55.10811, 25.00255 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Anguilla", "Function": "---45---", "LOCODE": "AIAXA", "Name": "Anguilla", "NameWoDiac": "Anguilla", "Status": "AI", "outflows": 230958.0 }, "geometry": { "type": "Point", "coordinates": [ -63.09375, 18.17648 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Albania", "Function": "1-------", "LOCODE": "ALDRZ", "Name": "Durrës", "NameWoDiac": "Durres", "Status": "RL", "outflows": 134307.0 }, "geometry": { "type": "Point", "coordinates": [ 19.45469, 41.32355 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Albania", "Function": "1-------", "LOCODE": "ALDRZ", "Name": "Durrës", "NameWoDiac": "Durres", "Status": "RL", "outflows": 134307.0 }, "geometry": { "type": "Point", "coordinates": [ 19.45469, 41.32355 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Angola", "Function": "1--4----", "LOCODE": "AOCAB", "Name": "Cabinda", "NameWoDiac": "Cabinda", "Status": "AI", "outflows": 2673.25 }, "geometry": { "type": "Point", "coordinates": [ 12.2, -5.55 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Angola", "Function": "1---5---", "LOCODE": "AOLOB", "Name": "Lobito", "NameWoDiac": "Lobito", "Status": "RL", "outflows": 210369.4 }, "geometry": { "type": "Point", "coordinates": [ 13.53601, -12.3644 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Angola", "Function": "1--45---", "LOCODE": "AOLAD", "Name": "Luanda", "NameWoDiac": "Luanda", "Status": "AI", "outflows": 2439604.518850001 }, "geometry": { "type": "Point", "coordinates": [ 13.23432, -8.83682 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Angola", "Function": "0-------", "LOCODE": "AOMAL", "Name": "Malongo", "NameWoDiac": "Malongo", "Status": "RQ", "outflows": 8707.5 }, "geometry": { "type": "Point", "coordinates": [ 12.19802179783948, -5.396406481852449 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Angola", "Function": "1--4----", "LOCODE": "AOMSZ", "Name": "Namibe", "NameWoDiac": "Namibe", "Status": "AI", "outflows": 61242.5 }, "geometry": { "type": "Point", "coordinates": [ 12.15222, -15.19611 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Angola", "Function": "1--4----", "LOCODE": "AOSZA", "Name": "Soyo", "NameWoDiac": "Soyo", "Status": "AI", "outflows": 79583.4 }, "geometry": { "type": "Point", "coordinates": [ 12.36894, -6.1349 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "123-----", "LOCODE": "AUBEL", "Name": "Bell Bay", "NameWoDiac": "Bell Bay", "Status": "AC", "outflows": 537012.66663 }, "geometry": { "type": "Point", "coordinates": [ 146.87, -41.13 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "1--4----", "LOCODE": "AUBWT", "Name": "Burnie", "NameWoDiac": "Burnie", "Status": "AC", "outflows": 54600.0 }, "geometry": { "type": "Point", "coordinates": [ 145.90375, -41.05584 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "1--4----", "LOCODE": "AUCNS", "Name": "Cairns", "NameWoDiac": "Cairns", "Status": "AC", "outflows": 806.0 }, "geometry": { "type": "Point", "coordinates": [ 145.76613, -16.92366 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "1-------", "LOCODE": "AUDAM", "Name": "Dampier", "NameWoDiac": "Dampier", "Status": "AC", "outflows": 2273.75 }, "geometry": { "type": "Point", "coordinates": [ 116.71256, -20.66275 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "1--4----", "LOCODE": "AUDPO", "Name": "Devonport", "NameWoDiac": "Devonport", "Status": "AC", "outflows": 11960.0 }, "geometry": { "type": "Point", "coordinates": [ 146.35152, -41.17695 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "1--4----", "LOCODE": "AUFRE", "Name": "Fremantle", "NameWoDiac": "Fremantle", "Status": "AC", "outflows": 4485214.6003799979 }, "geometry": { "type": "Point", "coordinates": [ 115.74557, -32.05632 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "1--4----", "LOCODE": "AUGEX", "Name": "Geelong", "NameWoDiac": "Geelong", "Status": "AC", "outflows": 3084.0 }, "geometry": { "type": "Point", "coordinates": [ 144.36069, -38.14711 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "1--4----", "LOCODE": "AUNTL", "Name": "Newcastle", "NameWoDiac": "Newcastle", "Status": "AI", "outflows": 69717.0 }, "geometry": { "type": "Point", "coordinates": [ 151.7801, -32.92953 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "123-----", "LOCODE": "AUPBT", "Name": "Port Botany", "NameWoDiac": "Port Botany", "Status": "AC", "outflows": 47151.0 }, "geometry": { "type": "Point", "coordinates": [ 151.22277, -33.97447 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "1--4----", "LOCODE": "AUPKL", "Name": "Port Kembla", "NameWoDiac": "Port Kembla", "Status": "AC", "outflows": 33267.0 }, "geometry": { "type": "Point", "coordinates": [ 150.9012, -34.4818 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "1--4----", "LOCODE": "AUTSV", "Name": "Townsville", "NameWoDiac": "Townsville", "Status": "AI", "outflows": 227206.58331800002 }, "geometry": { "type": "Point", "coordinates": [ 146.80569, -19.26639 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Australia", "Function": "1--4----", "LOCODE": "AUWEI", "Name": "Weipa", "NameWoDiac": "Weipa", "Status": "AC", "outflows": 806.0 }, "geometry": { "type": "Point", "coordinates": [ 141.87883, -12.62346 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Aruba", "Function": "1---5---", "LOCODE": "AWORJ", "Name": "Oranjestad", "NameWoDiac": "Oranjestad", "Status": "AI", "outflows": 721990.3 }, "geometry": { "type": "Point", "coordinates": [ -70.02703, 12.52398 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Barbados", "Function": "1--45---", "LOCODE": "BBBGI", "Name": "Bridgetown", "NameWoDiac": "Bridgetown", "Status": "AI", "outflows": 687251.06668999989 }, "geometry": { "type": "Point", "coordinates": [ -59.62021, 13.10732 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Bangladesh", "Function": "1-------", "LOCODE": "BDMGL", "Name": "Mongla", "NameWoDiac": "Mongla", "Status": "RQ", "outflows": 65143.0 }, "geometry": { "type": "Point", "coordinates": [ 89.61095, 22.47223 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Bulgaria", "Function": "1-------", "LOCODE": "BGBOJ", "Name": "Burgas", "NameWoDiac": "Burgas", "Status": "AC", "outflows": 535001.99997999996 }, "geometry": { "type": "Point", "coordinates": [ 27.46781, 42.50606 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Bulgaria", "Function": "1--4----", "LOCODE": "BGVAR", "Name": "Varna", "NameWoDiac": "Varna", "Status": "AI", "outflows": 147810.0 }, "geometry": { "type": "Point", "coordinates": [ 27.91667, 43.21667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Benin", "Function": "1--45---", "LOCODE": "BJCOO", "Name": "Cotonou", "NameWoDiac": "Cotonou", "Status": "AI", "outflows": 4812454.6643299991 }, "geometry": { "type": "Point", "coordinates": [ 2.41833, 6.36536 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Bermuda", "Function": "1--45---", "LOCODE": "BMBDA", "Name": "Hamilton", "NameWoDiac": "Hamilton", "Status": "AI", "outflows": 13100.0 }, "geometry": { "type": "Point", "coordinates": [ -64.78303, 32.2949 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1--4----", "LOCODE": "BRFOR", "Name": "Fortaleza", "NameWoDiac": "Fortaleza", "Status": "AI", "outflows": 278482.75 }, "geometry": { "type": "Point", "coordinates": [ -38.54306, -3.71722 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1--4----", "LOCODE": "BRIOS", "Name": "Ilheus", "NameWoDiac": "Ilheus", "Status": "AI", "outflows": 36877.75 }, "geometry": { "type": "Point", "coordinates": [ -39.03949, -14.79364 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1-------", "LOCODE": "BRIBB", "Name": "Imbituba", "NameWoDiac": "Imbituba", "Status": "AI", "outflows": 378681.33330999996 }, "geometry": { "type": "Point", "coordinates": [ -48.67028, -28.24 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1--4----", "LOCODE": "BRITJ", "Name": "Itajai", "NameWoDiac": "Itajai", "Status": "AI", "outflows": 4871215.6998899989 }, "geometry": { "type": "Point", "coordinates": [ -48.66194, -26.90778 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1--4----", "LOCODE": "BRMAO", "Name": "Manaus", "NameWoDiac": "Manaus", "Status": "AI", "outflows": 1385527.97796 }, "geometry": { "type": "Point", "coordinates": [ -60.025, -3.10194 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1--4----", "LOCODE": "BRNAT", "Name": "Natal", "NameWoDiac": "Natal", "Status": "AI", "outflows": 241605.0 }, "geometry": { "type": "Point", "coordinates": [ -35.20944, -5.795 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1--4----", "LOCODE": "BRRIG", "Name": "Rio Grande", "NameWoDiac": "Rio Grande", "Status": "AI", "outflows": 10184119.863509998 }, "geometry": { "type": "Point", "coordinates": [ -43.18223, -22.90642 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1--4----", "LOCODE": "BRSSA", "Name": "Salvador", "NameWoDiac": "Salvador", "Status": "AI", "outflows": 8800539.5732199997 }, "geometry": { "type": "Point", "coordinates": [ -38.51083, -12.97111 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Brazil", "Function": "1-------", "LOCODE": "BRSUA", "Name": "Suape", "NameWoDiac": "Suape", "Status": "RQ", "outflows": 5878585.3904299997 }, "geometry": { "type": "Point", "coordinates": [ -38.62083, -12.74083 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Belize", "Function": "1--45---", "LOCODE": "BZBZE", "Name": "Belize City", "NameWoDiac": "Belize City", "Status": "AI", "outflows": 469495.0 }, "geometry": { "type": "Point", "coordinates": [ -88.19756, 17.49952 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Canada", "Function": "1--4----", "LOCODE": "CAHAL", "Name": "Halifax", "NameWoDiac": "Halifax", "Status": "AS", "outflows": 4454972.4670409998 }, "geometry": { "type": "Point", "coordinates": [ -63.57291, 44.6464 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Canada", "Function": "1--45---", "LOCODE": "CAMTR", "Name": "Montreal", "NameWoDiac": "Montreal", "Status": "AS", "outflows": 2304234.075 }, "geometry": { "type": "Point", "coordinates": [ -73.58781, 45.50884 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Canada", "Function": "1-------", "LOCODE": "CANWE", "Name": "New Westminster", "NameWoDiac": "New Westminster", "Status": "AS", "outflows": 27774.0 }, "geometry": { "type": "Point", "coordinates": [ -122.91092, 49.20678 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Canada", "Function": "1--4----", "LOCODE": "CAPRR", "Name": "Prince Rupert", "NameWoDiac": "Prince Rupert", "Status": "AS", "outflows": 2510218.7498600003 }, "geometry": { "type": "Point", "coordinates": [ -130.32098, 54.31507 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Canada", "Function": "1--4----", "LOCODE": "CASQA", "Name": "Squamish", "NameWoDiac": "Squamish", "Status": "AS", "outflows": 9606.0 }, "geometry": { "type": "Point", "coordinates": [ -122.95396, 50.11817 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Canada", "Function": "1--45---", "LOCODE": "CATOR", "Name": "Toronto", "NameWoDiac": "Toronto", "Status": "AS", "outflows": 5720.0 }, "geometry": { "type": "Point", "coordinates": [ -79.4163, 43.70011 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Canada", "Function": "1--45---", "LOCODE": "CAVAN", "Name": "Vancouver", "NameWoDiac": "Vancouver", "Status": "AS", "outflows": 11959843.503790002 }, "geometry": { "type": "Point", "coordinates": [ -123.11934, 49.24966 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cook Islands", "Function": "1--45---", "LOCODE": "CKAIT", "Name": "Aitutaki", "NameWoDiac": "Aitutaki", "Status": "AI", "outflows": 40320.0 }, "geometry": { "type": "Point", "coordinates": [ -159.79293, -18.85195 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cook Islands", "Function": "1--45---", "LOCODE": "CKRAR", "Name": "Rarotonga", "NameWoDiac": "Rarotonga", "Status": "AI", "outflows": 41157.0 }, "geometry": { "type": "Point", "coordinates": [ -159.77545, -21.2075 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cameroon", "Function": "1--45---", "LOCODE": "CMDLA", "Name": "Douala", "NameWoDiac": "Douala", "Status": "AI", "outflows": 1089387.80006 }, "geometry": { "type": "Point", "coordinates": [ 9.70428, 4.04827 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cameroon", "Function": "1--4----", "LOCODE": "CMKBI", "Name": "Kribi", "NameWoDiac": "Kribi", "Status": "AI", "outflows": 1338743.54556 }, "geometry": { "type": "Point", "coordinates": [ 9.90765, 2.93725 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Colombia", "Function": "1--45---", "LOCODE": "COBAQ", "Name": "Barranquilla", "NameWoDiac": "Barranquilla", "Status": "AI", "outflows": 1238849.9999530001 }, "geometry": { "type": "Point", "coordinates": [ -74.78132, 10.96854 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Colombia", "Function": "1--4----", "LOCODE": "COBUN", "Name": "Buenaventura", "NameWoDiac": "Buenaventura", "Status": "AI", "outflows": 12125518.600159997 }, "geometry": { "type": "Point", "coordinates": [ -77.03116, 3.8801 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Colombia", "Function": "1--4----", "LOCODE": "COCTG", "Name": "Cartagena", "NameWoDiac": "Cartagena", "Status": "AI", "outflows": 16624367.157963 }, "geometry": { "type": "Point", "coordinates": [ -75.51444, 10.39972 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Colombia", "Function": "1--4----", "LOCODE": "COSMR", "Name": "Santa Marta", "NameWoDiac": "Santa Marta", "Status": "AI", "outflows": 1906046.5665720007 }, "geometry": { "type": "Point", "coordinates": [ -74.19904, 11.24079 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cuba", "Function": "---4----", "LOCODE": "CUMOA", "Name": "Moa", "NameWoDiac": "Moa", "Status": "AI", "outflows": 65431.8 }, "geometry": { "type": "Point", "coordinates": [ -74.95075, 20.65776 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cuba", "Function": "1--4----", "LOCODE": "CUSCU", "Name": "Santiago de Cuba", "NameWoDiac": "Santiago de Cuba", "Status": "AI", "outflows": 63230.0 }, "geometry": { "type": "Point", "coordinates": [ -75.82667, 20.02083 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cabo Verde", "Function": "0-------", "LOCODE": "CVPAL", "Name": "Palmeira", "NameWoDiac": "Palmeira", "Status": "RQ", "outflows": 13234.0 }, "geometry": { "type": "Point", "coordinates": [ -22.98348, 16.75754 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cabo Verde", "Function": "1--4----", "LOCODE": "CVRAI", "Name": "Praia", "NameWoDiac": "Praia", "Status": "AI", "outflows": 114309.0 }, "geometry": { "type": "Point", "coordinates": [ -23.51254, 14.93152 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Cabo Verde", "Function": "0-------", "LOCODE": "CVSAR", "Name": "Sal Rei", "NameWoDiac": "Sal Rei", "Status": "RQ", "outflows": 25421.5 }, "geometry": { "type": "Point", "coordinates": [ -22.91722, 16.17611 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Germany", "Function": "12345---", "LOCODE": "DEBRE", "Name": "Bremen", "NameWoDiac": "Bremen", "Status": "AF", "outflows": 197153.69999199998 }, "geometry": { "type": "Point", "coordinates": [ 8.80717, 53.07582 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Germany", "Function": "1234----", "LOCODE": "DEBRV", "Name": "Bremerhaven", "NameWoDiac": "Bremerhaven", "Status": "AF", "outflows": 21710907.495360006 }, "geometry": { "type": "Point", "coordinates": [ 8.59298, 53.53615 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Germany", "Function": "12345---", "LOCODE": "DEHAM", "Name": "Hamburg", "NameWoDiac": "Hamburg", "Status": "AF", "outflows": 42669313.486039981 }, "geometry": { "type": "Point", "coordinates": [ 9.99302, 53.55073 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Germany", "Function": "12345---", "LOCODE": "DELBC", "Name": "Lübeck", "NameWoDiac": "Lubeck", "Status": "AF", "outflows": 295233.5 }, "geometry": { "type": "Point", "coordinates": [ 10.68729, 53.86893 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Germany", "Function": "123-----", "LOCODE": "DETRV", "Name": "Travemünde", "NameWoDiac": "Travemunde", "Status": "AF", "outflows": 73746.0 }, "geometry": { "type": "Point", "coordinates": [ 10.8709, 53.96304 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Djibouti", "Function": "1--45---", "LOCODE": "DJJIB", "Name": "Djibouti", "NameWoDiac": "Djibouti", "Status": "AI", "outflows": 4852561.0352500007 }, "geometry": { "type": "Point", "coordinates": [ 43.14503, 11.58901 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Denmark", "Function": "12345---", "LOCODE": "DKAAL", "Name": "Aalborg", "NameWoDiac": "Aalborg", "Status": "AF", "outflows": 74932.0 }, "geometry": { "type": "Point", "coordinates": [ 9.9187, 57.048 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Denmark", "Function": "1234----", "LOCODE": "DKEBJ", "Name": "Esbjerg", "NameWoDiac": "Esbjerg", "Status": "AF", "outflows": 28620.0 }, "geometry": { "type": "Point", "coordinates": [ 8.45187, 55.47028 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Denmark", "Function": "12--5---", "LOCODE": "DKFRC", "Name": "Fredericia", "NameWoDiac": "Fredericia", "Status": "AF", "outflows": 245869.0 }, "geometry": { "type": "Point", "coordinates": [ 9.75257, 55.56568 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Denmark", "Function": "123-----", "LOCODE": "DKGRE", "Name": "Grenaa", "NameWoDiac": "Grenaa", "Status": "AF", "outflows": 16263.0 }, "geometry": { "type": "Point", "coordinates": [ 10.87825, 56.41578 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Denmark", "Function": "123-----", "LOCODE": "DKHUN", "Name": "Hundested", "NameWoDiac": "Hundested", "Status": "AF", "outflows": 16263.0 }, "geometry": { "type": "Point", "coordinates": [ 11.85044, 55.96397 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Denmark", "Function": "12------", "LOCODE": "DKSKA", "Name": "Skagen", "NameWoDiac": "Skagen", "Status": "AF", "outflows": 56420.0 }, "geometry": { "type": "Point", "coordinates": [ 10.58394, 57.72093 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Dominica", "Function": "1-------", "LOCODE": "DMRSU", "Name": "Roseau", "NameWoDiac": "Roseau", "Status": "AI", "outflows": 370965.4 }, "geometry": { "type": "Point", "coordinates": [ -61.38808, 15.30174 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Dominican Republic", "Function": "1-------", "LOCODE": "DOBCC", "Name": "Boca Chica", "NameWoDiac": "Boca Chica", "Status": "AI", "outflows": 333493.3333 }, "geometry": { "type": "Point", "coordinates": [ -69.6, 18.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Dominican Republic", "Function": "1-------", "LOCODE": "DOPOP", "Name": "Puerto Plata", "NameWoDiac": "Puerto Plata", "Status": "AI", "outflows": 712651.3333000001 }, "geometry": { "type": "Point", "coordinates": [ -70.6884, 19.79344 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Algeria", "Function": "1-------", "LOCODE": "DZMOS", "Name": "Mostaganem", "NameWoDiac": "Mostaganem", "Status": "QQ", "outflows": 20553.75 }, "geometry": { "type": "Point", "coordinates": [ 0.08918, 35.93115 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Algeria", "Function": "1--4----", "LOCODE": "DZORN", "Name": "Oran", "NameWoDiac": "Oran", "Status": "AI", "outflows": 210402.15 }, "geometry": { "type": "Point", "coordinates": [ -0.63588, 35.69906 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Egypt", "Function": "1-------", "LOCODE": "EGEDK", "Name": "El Dekheila", "NameWoDiac": "El Dekheila", "Status": "RQ", "outflows": 265833.75 }, "geometry": { "type": "Point", "coordinates": [ 29.82126, 31.13133 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Egypt", "Function": "1--4----", "LOCODE": "EGPSD", "Name": "Port Said", "NameWoDiac": "Port Said", "Status": "AI", "outflows": 20587604.955879994 }, "geometry": { "type": "Point", "coordinates": [ 32.3019, 31.26531 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1-------", "LOCODE": "ESALG", "Name": "Algeciras", "NameWoDiac": "Algeciras", "Status": "AI", "outflows": 27490011.70193002 }, "geometry": { "type": "Point", "coordinates": [ -5.45051, 36.13326 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "12345---", "LOCODE": "ESALC", "Name": "Alicante", "NameWoDiac": "Alicante", "Status": "AI", "outflows": 317642.0 }, "geometry": { "type": "Point", "coordinates": [ -0.48149, 38.34517 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "12345---", "LOCODE": "ESBCN", "Name": "Barcelona", "NameWoDiac": "Barcelona", "Status": "AI", "outflows": 22873062.028563999 }, "geometry": { "type": "Point", "coordinates": [ 2.15899, 41.38879 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1-------", "LOCODE": "ESCAD", "Name": "Cadiz", "NameWoDiac": "Cadiz", "Status": "AI", "outflows": 248618.5 }, "geometry": { "type": "Point", "coordinates": [ -6.2891, 36.52672 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1-------", "LOCODE": "ESCEU", "Name": "Ceuta", "NameWoDiac": "Ceuta", "Status": "AI", "outflows": 45500.0 }, "geometry": { "type": "Point", "coordinates": [ -5.32042, 35.88919 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "123-----", "LOCODE": "ESHUV", "Name": "Huelva", "NameWoDiac": "Huelva", "Status": "AI", "outflows": 191763.0 }, "geometry": { "type": "Point", "coordinates": [ -6.94004, 37.26638 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1--4----", "LOCODE": "ESFUE", "Name": "Puerto del Rosario-Fuerteventura", "NameWoDiac": "Puerto del Rosario-Fuerteventura", "Status": "AI", "outflows": 219128.0 }, "geometry": { "type": "Point", "coordinates": [ -13.86272, 28.50038 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1---5---", "LOCODE": "ESSCT", "Name": "Santa Cruz de Tenerife", "NameWoDiac": "Santa Cruz de Tenerife", "Status": "AI", "outflows": 640000.0 }, "geometry": { "type": "Point", "coordinates": [ -16.25462, 28.46824 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1234----", "LOCODE": "ESSDR", "Name": "Santander", "NameWoDiac": "Santander", "Status": "AI", "outflows": 23634.0 }, "geometry": { "type": "Point", "coordinates": [ -3.80444, 43.46472 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "12345---", "LOCODE": "ESSVQ", "Name": "Sevilla", "NameWoDiac": "Sevilla", "Status": "AI", "outflows": 49842.0 }, "geometry": { "type": "Point", "coordinates": [ -5.97317, 37.38283 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1234----", "LOCODE": "ESTAR", "Name": "Tarragona", "NameWoDiac": "Tarragona", "Status": "AI", "outflows": 977262.0 }, "geometry": { "type": "Point", "coordinates": [ 1.25, 41.11667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "12345---", "LOCODE": "ESVLC", "Name": "Valencia", "NameWoDiac": "Valencia", "Status": "AI", "outflows": 32174699.419024002 }, "geometry": { "type": "Point", "coordinates": [ -0.37739, 39.46975 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Spain", "Function": "1--4----", "LOCODE": "ESVGO", "Name": "Vigo", "NameWoDiac": "Vigo", "Status": "AI", "outflows": 929140.33332400001 }, "geometry": { "type": "Point", "coordinates": [ -8.72264, 42.23282 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-------", "LOCODE": "FIHKO", "Name": "Hangö (Hanko)", "NameWoDiac": "Hango (Hanko)", "Status": "AI", "outflows": 134144.0 }, "geometry": { "type": "Point", "coordinates": [ 22.95, 59.83333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-------", "LOCODE": "FIHKO", "Name": "Hanko (Hangö)", "NameWoDiac": "Hanko (Hango)", "Status": "AI", "outflows": 134144.0 }, "geometry": { "type": "Point", "coordinates": [ 22.95, 59.83333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-------", "LOCODE": "FIHEL", "Name": "Helsingfors (Helsinki)", "NameWoDiac": "Helsingfors (Helsinki)", "Status": "AI", "outflows": 745328.99995000008 }, "geometry": { "type": "Point", "coordinates": [ 24.93545, 60.16952 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-------", "LOCODE": "FIHEL", "Name": "Helsinki (Helsingfors)", "NameWoDiac": "Helsinki (Helsingfors)", "Status": "AI", "outflows": 745328.99995000008 }, "geometry": { "type": "Point", "coordinates": [ 24.93545, 60.16952 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-3-----", "LOCODE": "FIVKO", "Name": "Valko (Valkom)", "NameWoDiac": "Valko (Valkom)", "Status": "AC", "outflows": 84688.5 }, "geometry": { "type": "Point", "coordinates": [ 26.24664, 60.41392 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Finland", "Function": "1-3-----", "LOCODE": "FIVKO", "Name": "Valkom (Valko)", "NameWoDiac": "Valkom (Valko)", "Status": "AC", "outflows": 84688.5 }, "geometry": { "type": "Point", "coordinates": [ 26.24664, 60.41392 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Gabon", "Function": "1--45---", "LOCODE": "GALBV", "Name": "Libreville", "NameWoDiac": "Libreville", "Status": "AI", "outflows": 414222.00002999994 }, "geometry": { "type": "Point", "coordinates": [ 9.45356, 0.39241 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Gabon", "Function": "1--45---", "LOCODE": "GAPOG", "Name": "Port Gentil", "NameWoDiac": "Port Gentil", "Status": "AI", "outflows": 148566.9 }, "geometry": { "type": "Point", "coordinates": [ 8.78151, -0.71933 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBBLY", "Name": "Blyth", "NameWoDiac": "Blyth", "Status": "AF", "outflows": 13208.0 }, "geometry": { "type": "Point", "coordinates": [ -1.50856, 55.12708 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1234----", "LOCODE": "GBBRS", "Name": "Bristol", "NameWoDiac": "Bristol", "Status": "AF", "outflows": 213286.66665 }, "geometry": { "type": "Point", "coordinates": [ -2.59665, 51.45523 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1---5---", "LOCODE": "GBDVR", "Name": "Dover", "NameWoDiac": "Dover", "Status": "AF", "outflows": 17290.0 }, "geometry": { "type": "Point", "coordinates": [ 1.31257, 51.12598 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBFXT", "Name": "Felixstowe", "NameWoDiac": "Felixstowe", "Status": "AF", "outflows": 23949484.180700015 }, "geometry": { "type": "Point", "coordinates": [ 1.3511, 51.96375 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBFOY", "Name": "Fowey", "NameWoDiac": "Fowey", "Status": "AF", "outflows": 4941.0 }, "geometry": { "type": "Point", "coordinates": [ -4.6386, 50.33634 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBHRW", "Name": "Harwich", "NameWoDiac": "Harwich", "Status": "AF", "outflows": 61540.0 }, "geometry": { "type": "Point", "coordinates": [ 1.28437, 51.94194 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBPOO", "Name": "Poole", "NameWoDiac": "Poole", "Status": "AF", "outflows": 8502.0 }, "geometry": { "type": "Point", "coordinates": [ -1.98458, 50.71429 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1--4----", "LOCODE": "GBPME", "Name": "Portsmouth", "NameWoDiac": "Portsmouth", "Status": "AF", "outflows": 142997.400009 }, "geometry": { "type": "Point", "coordinates": [ -1.09125, 50.79899 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBSCR", "Name": "Scrabster", "NameWoDiac": "Scrabster", "Status": "AF", "outflows": 9204.0 }, "geometry": { "type": "Point", "coordinates": [ -3.54627, 58.61277 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBSHS", "Name": "Sheerness", "NameWoDiac": "Sheerness", "Status": "AF", "outflows": 21112.0 }, "geometry": { "type": "Point", "coordinates": [ 0.76252, 51.44042 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1--4----", "LOCODE": "GBSOU", "Name": "Southampton", "NameWoDiac": "Southampton", "Status": "AF", "outflows": 12580879.097799998 }, "geometry": { "type": "Point", "coordinates": [ -1.40428, 50.90395 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United Kingdom", "Function": "1-------", "LOCODE": "GBTIL", "Name": "Tilbury", "NameWoDiac": "Tilbury", "Status": "AF", "outflows": 1408139.0 }, "geometry": { "type": "Point", "coordinates": [ 0.35856, 51.46248 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Grenada", "Function": "1-------", "LOCODE": "GDSTG", "Name": "Saint George's", "NameWoDiac": "Saint George's", "Status": "AI", "outflows": 454265.06669000001 }, "geometry": { "type": "Point", "coordinates": [ -61.75226, 12.05288 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Georgia", "Function": "1--4----", "LOCODE": "GEBUS", "Name": "Batumi", "NameWoDiac": "Batumi", "Status": "AI", "outflows": 176479.99998 }, "geometry": { "type": "Point", "coordinates": [ 41.63392, 41.64228 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Georgia", "Function": "1-------", "LOCODE": "GEPTI", "Name": "Poti", "NameWoDiac": "Poti", "Status": "QQ", "outflows": 241566.0 }, "geometry": { "type": "Point", "coordinates": [ 41.67384, 42.14272 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Ghana", "Function": "1--45---", "LOCODE": "GHTKD", "Name": "Takoradi", "NameWoDiac": "Takoradi", "Status": "AI", "outflows": 343811.4 }, "geometry": { "type": "Point", "coordinates": [ -1.76029, 4.89816 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Ghana", "Function": "1-------", "LOCODE": "GHTEM", "Name": "Tema", "NameWoDiac": "Tema", "Status": "QQ", "outflows": 7407893.3644899996 }, "geometry": { "type": "Point", "coordinates": [ -0.01657, 5.6698 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Gibraltar", "Function": "1--45---", "LOCODE": "GIGIB", "Name": "Gibraltar", "NameWoDiac": "Gibraltar", "Status": "AI", "outflows": 67977.0 }, "geometry": { "type": "Point", "coordinates": [ -5.35257, 36.14474 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Greenland", "Function": "1--4----", "LOCODE": "GLJHS", "Name": "Sisimiut (Holsteinsborg)", "NameWoDiac": "Sisimiut (Holsteinsborg)", "Status": "AI", "outflows": 23426.0 }, "geometry": { "type": "Point", "coordinates": [ -53.6735, 66.93946 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Gambia", "Function": "1--45---", "LOCODE": "GMBJL", "Name": "Banjul", "NameWoDiac": "Banjul", "Status": "AI", "outflows": 184275.0 }, "geometry": { "type": "Point", "coordinates": [ -16.57803, 13.45274 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Guinea", "Function": "1--45---", "LOCODE": "GNCKY", "Name": "Conakry", "NameWoDiac": "Conakry", "Status": "AI", "outflows": 676607.90476000018 }, "geometry": { "type": "Point", "coordinates": [ -13.67729, 9.53795 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Equatorial Guinea", "Function": "1--45---", "LOCODE": "GQBSG", "Name": "Bata", "NameWoDiac": "Bata", "Status": "RQ", "outflows": 454067.0 }, "geometry": { "type": "Point", "coordinates": [ 9.76582, 1.86391 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Equatorial Guinea", "Function": "1--4----", "LOCODE": "GQSSG", "Name": "Malabo", "NameWoDiac": "Malabo", "Status": "AI", "outflows": 133795.9 }, "geometry": { "type": "Point", "coordinates": [ 8.78166, 3.75578 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Guatemala", "Function": "1--4----", "LOCODE": "GTPBR", "Name": "Puerto Barrios", "NameWoDiac": "Puerto Barrios", "Status": "AI", "outflows": 547993.33336599998 }, "geometry": { "type": "Point", "coordinates": [ -88.59444, 15.72778 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Guyana", "Function": "1--45---", "LOCODE": "GYGEO", "Name": "Georgetown", "NameWoDiac": "Georgetown", "Status": "AI", "outflows": 428041.33332200005 }, "geometry": { "type": "Point", "coordinates": [ -58.15527, 6.80448 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Hong Kong", "Function": "1--45---", "LOCODE": "HKHKG", "Name": "Hong Kong", "NameWoDiac": "Hong Kong", "Status": "AI", "outflows": 80530648.252739042 }, "geometry": { "type": "Point", "coordinates": [ 114.17469, 22.27832 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Honduras", "Function": "1-------", "LOCODE": "HNPCA", "Name": "Puerto Castilla", "NameWoDiac": "Puerto Castilla", "Status": "RQ", "outflows": 75387.0 }, "geometry": { "type": "Point", "coordinates": [ -85.96667, 16.01667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Honduras", "Function": "1---5---", "LOCODE": "HNPCR", "Name": "Puerto Cortés", "NameWoDiac": "Puerto Cortes", "Status": "AI", "outflows": 1674222.3333919998 }, "geometry": { "type": "Point", "coordinates": [ -87.92968, 15.82562 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Honduras", "Function": "1-------", "LOCODE": "HNSLO", "Name": "San Lorenzo", "NameWoDiac": "San Lorenzo", "Status": "RQ", "outflows": 67860.0 }, "geometry": { "type": "Point", "coordinates": [ -87.44722, 13.42417 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Haiti", "Function": "1--45---", "LOCODE": "HTPAP", "Name": "Port-au-Prince", "NameWoDiac": "Port-au-Prince", "Status": "AI", "outflows": 783664.91664000018 }, "geometry": { "type": "Point", "coordinates": [ -72.33881, 18.54349 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1--4----", "LOCODE": "IDBDJ", "Name": "Banjarmasin", "NameWoDiac": "Banjarmasin", "Status": "AI", "outflows": 17848.0 }, "geometry": { "type": "Point", "coordinates": [ 114.59075, -3.31987 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-------", "LOCODE": "IDBLW", "Name": "Belawan, Sumatra", "NameWoDiac": "Belawan, Sumatra", "Status": "QQ", "outflows": 494328.25003 }, "geometry": { "type": "Point", "coordinates": [ 98.6832, 3.7755 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-------", "LOCODE": "IDBIT", "Name": "Bitung, Sulawesi", "NameWoDiac": "Bitung, Sulawesi", "Status": "QQ", "outflows": 215154.58334000001 }, "geometry": { "type": "Point", "coordinates": [ 125.12824, 1.44059 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1--4----", "LOCODE": "IDGTO", "Name": "Gorontalo, Sulawesi", "NameWoDiac": "Gorontalo, Sulawesi", "Status": "AI", "outflows": 42718.00001 }, "geometry": { "type": "Point", "coordinates": [ 123.3908, -0.8985 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1--4----", "LOCODE": "IDKDI", "Name": "Kendari, Sulawesi", "NameWoDiac": "Kendari, Sulawesi", "Status": "AI", "outflows": 7988.5 }, "geometry": { "type": "Point", "coordinates": [ 122.51507, -3.9778 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1--4----", "LOCODE": "IDLUW", "Name": "Luwuk", "NameWoDiac": "Luwuk", "Status": "AI", "outflows": 720.0 }, "geometry": { "type": "Point", "coordinates": [ 122.7875, -0.9516 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1--45---", "LOCODE": "IDMES", "Name": "Medan, Sumatra", "NameWoDiac": "Medan, Sumatra", "Status": "AI", "outflows": 45136.0 }, "geometry": { "type": "Point", "coordinates": [ 98.66667, 3.58333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1--4----", "LOCODE": "IDPLM", "Name": "Palembang, Sumatra", "NameWoDiac": "Palembang, Sumatra", "Status": "AI", "outflows": 106646.75 }, "geometry": { "type": "Point", "coordinates": [ 104.7458, -2.91673 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-------", "LOCODE": "IDPNJ", "Name": "Panjang", "NameWoDiac": "Panjang", "Status": "RQ", "outflows": 1532041.4998899996 }, "geometry": { "type": "Point", "coordinates": [ 100.6199, 0.3087 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1--45---", "LOCODE": "IDPNK", "Name": "Pontianak, Kalimantan", "NameWoDiac": "Pontianak, Kalimantan", "Status": "AI", "outflows": 35776.0 }, "geometry": { "type": "Point", "coordinates": [ 109.325, -0.03194 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1--4----", "LOCODE": "IDSRI", "Name": "Samarinda, Kalimantan", "NameWoDiac": "Samarinda, Kalimantan", "Status": "AI", "outflows": 34320.0 }, "geometry": { "type": "Point", "coordinates": [ 117.14583, -0.49167 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1--4----", "LOCODE": "IDSOQ", "Name": "Sorong", "NameWoDiac": "Sorong", "Status": "AI", "outflows": 125268.0 }, "geometry": { "type": "Point", "coordinates": [ 131.26104, -0.87956 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1-------", "LOCODE": "IDTRK", "Name": "Tarakan, Kalimantan", "NameWoDiac": "Tarakan, Kalimantan", "Status": "QQ", "outflows": 5213.0 }, "geometry": { "type": "Point", "coordinates": [ 117.59152, 3.31332 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Indonesia", "Function": "1--4----", "LOCODE": "IDTLI", "Name": "Tolitoli", "NameWoDiac": "Tolitoli", "Status": "AI", "outflows": 3328.0 }, "geometry": { "type": "Point", "coordinates": [ 121.1679, 1.2718 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Ireland", "Function": "1--45---", "LOCODE": "IEORK", "Name": "Cork", "NameWoDiac": "Cork", "Status": "AF", "outflows": 316459.0 }, "geometry": { "type": "Point", "coordinates": [ -8.47061, 51.89797 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Ireland", "Function": "12-45---", "LOCODE": "IEDUB", "Name": "Dublin", "NameWoDiac": "Dublin", "Status": "AF", "outflows": 453417.25 }, "geometry": { "type": "Point", "coordinates": [ -6.24889, 53.33306 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Israel", "Function": "1-------", "LOCODE": "ILASH", "Name": "Ashdod", "NameWoDiac": "Ashdod", "Status": "QQ", "outflows": 5463055.0830800012 }, "geometry": { "type": "Point", "coordinates": [ 34.64966, 31.79213 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "1-------", "LOCODE": "INENR", "Name": "Ennore", "NameWoDiac": "Ennore", "Status": "AA", "outflows": 263657.33331999998 }, "geometry": { "type": "Point", "coordinates": [ 80.32835, 13.24751 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "1-------", "LOCODE": "INHAL", "Name": "Haldia", "NameWoDiac": "Haldia", "Status": "AA", "outflows": 182909.25 }, "geometry": { "type": "Point", "coordinates": [ 88.10975, 22.06046 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "1-------", "LOCODE": "INKRI", "Name": "Krishnapatnam", "NameWoDiac": "Krishnapatnam", "Status": "AA", "outflows": 2290663.6664799997 }, "geometry": { "type": "Point", "coordinates": [ 80.12388, 14.28874 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "1--4----", "LOCODE": "INIXE", "Name": "Mangalore", "NameWoDiac": "Mangalore", "Status": "AA", "outflows": 139500.0 }, "geometry": { "type": "Point", "coordinates": [ 74.85603, 12.91723 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "1-------", "LOCODE": "INMUN", "Name": "Mundra", "NameWoDiac": "Mundra", "Status": "AA", "outflows": 19811914.337299995 }, "geometry": { "type": "Point", "coordinates": [ 69.7219, 22.83918 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "India", "Function": "1--4----", "LOCODE": "INIXZ", "Name": "Port Blair", "NameWoDiac": "Port Blair", "Status": "AA", "outflows": 14150.5 }, "geometry": { "type": "Point", "coordinates": [ 92.74635, 11.66613 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Iraq", "Function": "1-------", "LOCODE": "IQALF", "Name": "Abu Al Fulus", "NameWoDiac": "Abu Al Fulus", "Status": "RQ", "outflows": 14131.0 }, "geometry": { "type": "Point", "coordinates": [ 48.04246, 30.44783 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Iraq", "Function": "1-------", "LOCODE": "IQBSR", "Name": "Basra", "NameWoDiac": "Basra", "Status": "AI", "outflows": 7524.0 }, "geometry": { "type": "Point", "coordinates": [ 47.7804, 30.50852 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Iceland", "Function": "1-------", "LOCODE": "ISGRF", "Name": "Grundarfjørdur", "NameWoDiac": "Grundarfjordur", "Status": "AC", "outflows": 280000.5 }, "geometry": { "type": "Point", "coordinates": [ -23.26313, 64.92427 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Iceland", "Function": "1-------", "LOCODE": "ISRFJ", "Name": "Reydarfjørdur", "NameWoDiac": "Reydarfjordur", "Status": "AC", "outflows": 157748.5 }, "geometry": { "type": "Point", "coordinates": [ -14.21832, 65.03164 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1-------", "LOCODE": "ITMDC", "Name": "Marina di Carrara", "NameWoDiac": "Marina di Carrara", "Status": "AI", "outflows": 164793.0 }, "geometry": { "type": "Point", "coordinates": [ 10.04142, 44.03837 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1-------", "LOCODE": "ITMNF", "Name": "Monfalcone", "NameWoDiac": "Monfalcone", "Status": "AI", "outflows": 23587.5 }, "geometry": { "type": "Point", "coordinates": [ 13.53292, 45.80463 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1-------", "LOCODE": "ITPOZ", "Name": "Pozzuoli", "NameWoDiac": "Pozzuoli", "Status": "AI", "outflows": 42042.0 }, "geometry": { "type": "Point", "coordinates": [ 14.0952, 40.84394 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1-------", "LOCODE": "ITRAN", "Name": "Ravenna", "NameWoDiac": "Ravenna", "Status": "AI", "outflows": 1216610.5 }, "geometry": { "type": "Point", "coordinates": [ 12.20121, 44.41344 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1-3-----", "LOCODE": "ITSAL", "Name": "Salerno", "NameWoDiac": "Salerno", "Status": "AI", "outflows": 2238415.25 }, "geometry": { "type": "Point", "coordinates": [ 14.79328, 40.67545 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Italy", "Function": "1--4----", "LOCODE": "ITTRS", "Name": "Trieste", "NameWoDiac": "Trieste", "Status": "AI", "outflows": 4531748.0 }, "geometry": { "type": "Point", "coordinates": [ 13.77678, 45.64953 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Jamaica", "Function": "1--45---", "LOCODE": "JMKIN", "Name": "Kingston", "NameWoDiac": "Kingston", "Status": "AI", "outflows": 8626072.544909995 }, "geometry": { "type": "Point", "coordinates": [ -76.79358, 17.99702 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Jamaica", "Function": "1--4----", "LOCODE": "JMMBJ", "Name": "Montego Bay", "NameWoDiac": "Montego Bay", "Status": "AI", "outflows": 628021.3333000001 }, "geometry": { "type": "Point", "coordinates": [ -77.91883, 18.47116 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPABU", "Name": "Aburatsu", "NameWoDiac": "Aburatsu", "Status": "AF", "outflows": 53352.0 }, "geometry": { "type": "Point", "coordinates": [ 144.26971, 44.02127 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--4----", "LOCODE": "JPAXT", "Name": "Akita", "NameWoDiac": "Akita", "Status": "AF", "outflows": 278377.66667000001 }, "geometry": { "type": "Point", "coordinates": [ 140.11667, 39.71667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPCHB", "Name": "Chiba", "NameWoDiac": "Chiba", "Status": "AF", "outflows": 607568.0 }, "geometry": { "type": "Point", "coordinates": [ 140.11667, 35.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPFKY", "Name": "Fukuyama, Hiroshima", "NameWoDiac": "Fukuyama, Hiroshima", "Status": "AF", "outflows": 508612.0 }, "geometry": { "type": "Point", "coordinates": [ 133.36667, 34.48333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--4----", "LOCODE": "JPHHE", "Name": "Hachinohe", "NameWoDiac": "Hachinohe", "Status": "AF", "outflows": 291243.33335000003 }, "geometry": { "type": "Point", "coordinates": [ 141.5, 40.5 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--4----", "LOCODE": "JPHIJ", "Name": "Hiroshima", "NameWoDiac": "Hiroshima", "Status": "AF", "outflows": 658970.0 }, "geometry": { "type": "Point", "coordinates": [ 132.45, 34.4 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPHTC", "Name": "Hitachi", "NameWoDiac": "Hitachi", "Status": "AF", "outflows": 110110.0 }, "geometry": { "type": "Point", "coordinates": [ 140.65, 36.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPHSM", "Name": "Hososhima", "NameWoDiac": "Hososhima", "Status": "AF", "outflows": 354289.0 }, "geometry": { "type": "Point", "coordinates": [ 131.66667, 32.43333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPIMB", "Name": "Imabari", "NameWoDiac": "Imabari", "Status": "AF", "outflows": 83772.0 }, "geometry": { "type": "Point", "coordinates": [ 133.00023, 34.07001 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPIMI", "Name": "Imari", "NameWoDiac": "Imari", "Status": "AF", "outflows": 232752.0 }, "geometry": { "type": "Point", "coordinates": [ 129.87877, 33.27362 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPIWK", "Name": "Iwakuni", "NameWoDiac": "Iwakuni", "Status": "AF", "outflows": 248404.0 }, "geometry": { "type": "Point", "coordinates": [ 132.22, 34.16297 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPKNZ", "Name": "Kanazawa", "NameWoDiac": "Kanazawa", "Status": "AF", "outflows": 500785.99996999995 }, "geometry": { "type": "Point", "coordinates": [ 136.61667, 36.6 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPKSM", "Name": "Kashima, Ibaraki", "NameWoDiac": "Kashima, Ibaraki", "Status": "AF", "outflows": 103584.0 }, "geometry": { "type": "Point", "coordinates": [ 140.64474, 35.96536 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPKWS", "Name": "Kawasaki", "NameWoDiac": "Kawasaki", "Status": "AF", "outflows": 1377583.9999500001 }, "geometry": { "type": "Point", "coordinates": [ 139.71722, 35.52056 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--4----", "LOCODE": "JPKCZ", "Name": "Kochi", "NameWoDiac": "Kochi", "Status": "AF", "outflows": 97578.0 }, "geometry": { "type": "Point", "coordinates": [ 133.53333, 33.55 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--4----", "LOCODE": "JPKMJ", "Name": "Kumamoto", "NameWoDiac": "Kumamoto", "Status": "AF", "outflows": 44460.0 }, "geometry": { "type": "Point", "coordinates": [ 130.69181, 32.80589 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPMAI", "Name": "Maizuru", "NameWoDiac": "Maizuru", "Status": "AF", "outflows": 113464.0 }, "geometry": { "type": "Point", "coordinates": [ 135.33333, 35.45 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--4----", "LOCODE": "JPMYJ", "Name": "Matsuyama", "NameWoDiac": "Matsuyama", "Status": "AF", "outflows": 213629.0 }, "geometry": { "type": "Point", "coordinates": [ 132.76574, 33.83916 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPMII", "Name": "Miike, Fukuoka", "NameWoDiac": "Miike, Fukuoka", "Status": "AF", "outflows": 16640.0 }, "geometry": { "type": "Point", "coordinates": [ 130.47791, 33.05207 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPMIZ", "Name": "Mizushima", "NameWoDiac": "Mizushima", "Status": "AF", "outflows": 727415.0 }, "geometry": { "type": "Point", "coordinates": [ 133.73896, 34.5298 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPMUR", "Name": "Muroran", "NameWoDiac": "Muroran", "Status": "AF", "outflows": 115517.99996999998 }, "geometry": { "type": "Point", "coordinates": [ 140.98806, 42.31722 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--4----", "LOCODE": "JPNGS", "Name": "Nagasaki", "NameWoDiac": "Nagasaki", "Status": "AF", "outflows": 44460.0 }, "geometry": { "type": "Point", "coordinates": [ 129.88333, 32.75 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--45---", "LOCODE": "JPNGO", "Name": "Nagoya, Aichi", "NameWoDiac": "Nagoya, Aichi", "Status": "AF", "outflows": 14485316.083789002 }, "geometry": { "type": "Point", "coordinates": [ 136.90641, 35.18147 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--45---", "LOCODE": "JPNAH", "Name": "Naha, Okinawa", "NameWoDiac": "Naha, Okinawa", "Status": "AF", "outflows": 770354.0 }, "geometry": { "type": "Point", "coordinates": [ 127.68333, 26.21667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPNAO", "Name": "Naoetsu", "NameWoDiac": "Naoetsu", "Status": "AF", "outflows": 166443.33335 }, "geometry": { "type": "Point", "coordinates": [ 138.25, 37.18333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPKIJ", "Name": "Niigata", "NameWoDiac": "Niigata", "Status": "AF", "outflows": 632488.99997 }, "geometry": { "type": "Point", "coordinates": [ 139.00589, 37.88637 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--4----", "LOCODE": "JPOIT", "Name": "Oita", "NameWoDiac": "Oita", "Status": "AF", "outflows": 336869.0 }, "geometry": { "type": "Point", "coordinates": [ 131.6, 33.23333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPOMZ", "Name": "Omaezaki", "NameWoDiac": "Omaezaki", "Status": "AF", "outflows": 642421.0 }, "geometry": { "type": "Point", "coordinates": [ 138.21934, 34.59882 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPONA", "Name": "Onahama", "NameWoDiac": "Onahama", "Status": "AF", "outflows": 204940.6667 }, "geometry": { "type": "Point", "coordinates": [ 140.9, 36.95 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPOTK", "Name": "Otake", "NameWoDiac": "Otake", "Status": "AF", "outflows": 36348.0 }, "geometry": { "type": "Point", "coordinates": [ 132.22063, 34.20754 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--4----", "LOCODE": "JPOTR", "Name": "Otaru", "NameWoDiac": "Otaru", "Status": "AF", "outflows": 78000.0 }, "geometry": { "type": "Point", "coordinates": [ 141.00222, 43.18944 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPSMN", "Name": "Sakaiminato", "NameWoDiac": "Sakaiminato", "Status": "AF", "outflows": 329679.99997 }, "geometry": { "type": "Point", "coordinates": [ 133.23094, 35.53774 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPSKT", "Name": "Sakata", "NameWoDiac": "Sakata", "Status": "AF", "outflows": 421338.66667000001 }, "geometry": { "type": "Point", "coordinates": [ 139.855, 38.91667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPSBS", "Name": "Shibushi", "NameWoDiac": "Shibushi", "Status": "AF", "outflows": 490971.0 }, "geometry": { "type": "Point", "coordinates": [ 131.10114, 31.476 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPSMZ", "Name": "Shimizu", "NameWoDiac": "Shimizu", "Status": "AF", "outflows": 5351577.999760001 }, "geometry": { "type": "Point", "coordinates": [ 142.88472, 43.00611 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--4----", "LOCODE": "JPTAK", "Name": "Takamatsu", "NameWoDiac": "Takamatsu", "Status": "AF", "outflows": 188292.0 }, "geometry": { "type": "Point", "coordinates": [ 134.05, 34.33333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--4----", "LOCODE": "JPTKS", "Name": "Tokushima", "NameWoDiac": "Tokushima", "Status": "AF", "outflows": 148044.0 }, "geometry": { "type": "Point", "coordinates": [ 134.56667, 34.06667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPTKY", "Name": "Tokuyama", "NameWoDiac": "Tokuyama", "Status": "AF", "outflows": 456888.25 }, "geometry": { "type": "Point", "coordinates": [ 131.81667, 34.05 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--4----", "LOCODE": "JPTMK", "Name": "Tomakomai", "NameWoDiac": "Tomakomai", "Status": "AF", "outflows": 929244.33331999998 }, "geometry": { "type": "Point", "coordinates": [ 141.60333, 42.63694 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPTHS", "Name": "Toyohashi", "NameWoDiac": "Toyohashi", "Status": "AF", "outflows": 181584.0 }, "geometry": { "type": "Point", "coordinates": [ 137.38333, 34.76667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPTRG", "Name": "Tsuruga", "NameWoDiac": "Tsuruga", "Status": "AF", "outflows": 121550.0 }, "geometry": { "type": "Point", "coordinates": [ 136.0558, 35.64547 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1--4----", "LOCODE": "JPUBJ", "Name": "Ube", "NameWoDiac": "Ube", "Status": "AF", "outflows": 22490.0 }, "geometry": { "type": "Point", "coordinates": [ 131.25111, 33.94306 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPWAK", "Name": "Wakayama", "NameWoDiac": "Wakayama", "Status": "AF", "outflows": 63765.0 }, "geometry": { "type": "Point", "coordinates": [ 135.16667, 34.23333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPYAT", "Name": "Yatsushiro", "NameWoDiac": "Yatsushiro", "Status": "AF", "outflows": 61100.0 }, "geometry": { "type": "Point", "coordinates": [ 130.59952, 32.50439 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Japan", "Function": "1-------", "LOCODE": "JPYKK", "Name": "Yokkaichi", "NameWoDiac": "Yokkaichi", "Status": "AF", "outflows": 3523652.1667400002 }, "geometry": { "type": "Point", "coordinates": [ 136.61667, 34.96667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Kenya", "Function": "1--45---", "LOCODE": "KEMBA", "Name": "Mombasa", "NameWoDiac": "Mombasa", "Status": "AI", "outflows": 2290456.6388300001 }, "geometry": { "type": "Point", "coordinates": [ 39.66359, -4.05466 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Kiribati", "Function": "1--4----", "LOCODE": "KITRW", "Name": "Tarawa", "NameWoDiac": "Tarawa", "Status": "AI", "outflows": 136326.0 }, "geometry": { "type": "Point", "coordinates": [ 172.97696, 1.3278 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Comoros", "Function": "1--45---", "LOCODE": "KMYVA", "Name": "Moroni", "NameWoDiac": "Moroni", "Status": "AI", "outflows": 131275.33335 }, "geometry": { "type": "Point", "coordinates": [ 43.25506, -11.70216 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Lebanon", "Function": "1--4----", "LOCODE": "LBKYE", "Name": "Tripoli", "NameWoDiac": "Tripoli", "Status": "AI", "outflows": 2038156.25 }, "geometry": { "type": "Point", "coordinates": [ 35.84415, 34.43352 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Lithuania", "Function": "1--4----", "LOCODE": "LTKLJ", "Name": "Klaipeda", "NameWoDiac": "Klaipeda", "Status": "AI", "outflows": 1242325.5 }, "geometry": { "type": "Point", "coordinates": [ 21.13912, 55.7068 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Latvia", "Function": "1--45---", "LOCODE": "LVRIX", "Name": "Riga", "NameWoDiac": "Riga", "Status": "AI", "outflows": 944970.0 }, "geometry": { "type": "Point", "coordinates": [ 24.10589, 56.946 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Libya", "Function": "1--45---", "LOCODE": "LYBEN", "Name": "Bingazi (Benghazi)", "NameWoDiac": "Bingazi (Benghazi)", "Status": "AI", "outflows": 296981.0 }, "geometry": { "type": "Point", "coordinates": [ 20.06859, 32.11486 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Libya", "Function": "1--4----", "LOCODE": "LYMRA", "Name": "Misurata", "NameWoDiac": "Misurata", "Status": "AI", "outflows": 757750.00001000008 }, "geometry": { "type": "Point", "coordinates": [ 15.09254, 32.37535 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Libya", "Function": "1--4----", "LOCODE": "LYTIP", "Name": "Tripoli", "NameWoDiac": "Tripoli", "Status": "AI", "outflows": 281045.0 }, "geometry": { "type": "Point", "coordinates": [ 13.18733, 32.88743 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Morocco", "Function": "1--4----", "LOCODE": "MAAGA", "Name": "Agadir", "NameWoDiac": "Agadir", "Status": "AI", "outflows": 593660.57139000006 }, "geometry": { "type": "Point", "coordinates": [ -9.59815, 30.42018 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Morocco", "Function": "1-------", "LOCODE": "MANDR", "Name": "Nador", "NameWoDiac": "Nador", "Status": "AI", "outflows": 45500.0 }, "geometry": { "type": "Point", "coordinates": [ -2.93352, 35.16813 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Morocco", "Function": "123-----", "LOCODE": "MAPTM", "Name": "Tanger Med", "NameWoDiac": "Tanger Med", "Status": "AI", "outflows": 29213268.307420008 }, "geometry": { "type": "Point", "coordinates": [ -5.56323, 35.82674 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Madagascar", "Function": "1--4----", "LOCODE": "MGDIE", "Name": "Antsiranana", "NameWoDiac": "Antsiranana", "Status": "AI", "outflows": 113468.0 }, "geometry": { "type": "Point", "coordinates": [ 49.29188, -12.31732 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Madagascar", "Function": "1--4----", "LOCODE": "MGMJN", "Name": "Majunga (Mahajanga)", "NameWoDiac": "Majunga (Mahajanga)", "Status": "AI", "outflows": 125324.0 }, "geometry": { "type": "Point", "coordinates": [ 46.31667, -15.71667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Madagascar", "Function": "1--45---", "LOCODE": "MGTMM", "Name": "Tamatave (Toamasina)", "NameWoDiac": "Tamatave (Toamasina)", "Status": "AI", "outflows": 396084.0 }, "geometry": { "type": "Point", "coordinates": [ 49.40234, -18.1492 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Madagascar", "Function": "1--4----", "LOCODE": "MGTLE", "Name": "Tulear (Toliara)", "NameWoDiac": "Tulear (Toliara)", "Status": "AI", "outflows": 19864.0 }, "geometry": { "type": "Point", "coordinates": [ 43.66667, -23.35 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Marshall Islands", "Function": "---4----", "LOCODE": "MHKWA", "Name": "Kwajalein", "NameWoDiac": "Kwajalein", "Status": "AI", "outflows": 48316.66667 }, "geometry": { "type": "Point", "coordinates": [ 167.73919, 8.77479 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Myanmar", "Function": "1--45---", "LOCODE": "MMRGN", "Name": "Yangon", "NameWoDiac": "Yangon", "Status": "AI", "outflows": 937558.00004999992 }, "geometry": { "type": "Point", "coordinates": [ 96.15611, 16.80528 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Myanmar", "Function": "1--45---", "LOCODE": "MMRGN", "Name": "Yangon", "NameWoDiac": "Yangon", "Status": "AI", "outflows": 937558.00004999992 }, "geometry": { "type": "Point", "coordinates": [ 96.15611, 16.80528 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Martinique", "Function": "1-345---", "LOCODE": "MQFDF", "Name": "Fort-de-France", "NameWoDiac": "Fort-de-France", "Status": "AI", "outflows": 1924423.5832689998 }, "geometry": { "type": "Point", "coordinates": [ -61.07418, 14.60365 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mauritania", "Function": "1--4----", "LOCODE": "MRNDB", "Name": "Nouadhibou", "NameWoDiac": "Nouadhibou", "Status": "AI", "outflows": 197029.5 }, "geometry": { "type": "Point", "coordinates": [ -17.03842, 20.94188 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mauritania", "Function": "1--45---", "LOCODE": "MRNKC", "Name": "Nouakchott", "NameWoDiac": "Nouakchott", "Status": "AI", "outflows": 334524.0 }, "geometry": { "type": "Point", "coordinates": [ -15.9785, 18.08581 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Montserrat", "Function": "1---5---", "LOCODE": "MSPLY", "Name": "Plymouth", "NameWoDiac": "Plymouth", "Status": "RQ", "outflows": 230958.0 }, "geometry": { "type": "Point", "coordinates": [ -62.21292, 16.70555 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mauritius", "Function": "1--4----", "LOCODE": "MUPLU", "Name": "Port Louis", "NameWoDiac": "Port Louis", "Status": "QQ", "outflows": 7415942.3854999971 }, "geometry": { "type": "Point", "coordinates": [ 57.49889, -20.16194 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Malaysia", "Function": "1-------", "LOCODE": "MYBTU", "Name": "Bintulu, Sarawak", "NameWoDiac": "Bintulu, Sarawak", "Status": "AI", "outflows": 670234.5 }, "geometry": { "type": "Point", "coordinates": [ 113.03333, 3.16667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Malaysia", "Function": "1-345---", "LOCODE": "MYBKI", "Name": "Kota Kinabalu, Sabah", "NameWoDiac": "Kota Kinabalu, Sabah", "Status": "AI", "outflows": 710049.1667 }, "geometry": { "type": "Point", "coordinates": [ 116.0724, 5.9749 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Malaysia", "Function": "1--45---", "LOCODE": "MYKCH", "Name": "Kuching, Sarawak", "NameWoDiac": "Kuching, Sarawak", "Status": "AI", "outflows": 276603.6 }, "geometry": { "type": "Point", "coordinates": [ 110.33333, 1.55 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Malaysia", "Function": "1--4----", "LOCODE": "MYLBU", "Name": "Labuan, Sabah", "NameWoDiac": "Labuan, Sabah", "Status": "AI", "outflows": 68835.0 }, "geometry": { "type": "Point", "coordinates": [ 115.26924, 5.28883 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Malaysia", "Function": "1--4----", "LOCODE": "MYMKZ", "Name": "Malacca", "NameWoDiac": "Malacca", "Status": "AI", "outflows": 2862.0 }, "geometry": { "type": "Point", "coordinates": [ 102.2405, 2.196 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Malaysia", "Function": "1-------", "LOCODE": "MYPGU", "Name": "Pasir Gudang, Johor", "NameWoDiac": "Pasir Gudang, Johor", "Status": "QQ", "outflows": 3893274.6667500003 }, "geometry": { "type": "Point", "coordinates": [ 103.878, 1.4726 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Malaysia", "Function": "1--4----", "LOCODE": "MYSDK", "Name": "Sandakan, Sabah", "NameWoDiac": "Sandakan, Sabah", "Status": "AI", "outflows": 18720.0 }, "geometry": { "type": "Point", "coordinates": [ 118.1179, 5.8402 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Malaysia", "Function": "1--4----", "LOCODE": "MYSBW", "Name": "Sibu, Sarawak", "NameWoDiac": "Sibu, Sarawak", "Status": "AI", "outflows": 2250.0 }, "geometry": { "type": "Point", "coordinates": [ 111.81667, 2.3 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Malaysia", "Function": "1--4----", "LOCODE": "MYTWU", "Name": "Tawau, Sabah", "NameWoDiac": "Tawau, Sabah", "Status": "AI", "outflows": 241236.6667 }, "geometry": { "type": "Point", "coordinates": [ 117.89115, 4.24482 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mozambique", "Function": "1--45---", "LOCODE": "MZBEW", "Name": "Beira", "NameWoDiac": "Beira", "Status": "AI", "outflows": 862537.00003 }, "geometry": { "type": "Point", "coordinates": [ 34.83889, -19.84361 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mozambique", "Function": "1--45---", "LOCODE": "MZMPM", "Name": "Maputo", "NameWoDiac": "Maputo", "Status": "AI", "outflows": 871116.20004999987 }, "geometry": { "type": "Point", "coordinates": [ 32.58322, -25.96553 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mozambique", "Function": "1--4----", "LOCODE": "MZMNC", "Name": "Nacala", "NameWoDiac": "Nacala", "Status": "AI", "outflows": 668056.99998000008 }, "geometry": { "type": "Point", "coordinates": [ 40.68538, -14.56257 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Mozambique", "Function": "1--4----", "LOCODE": "MZUEL", "Name": "Quelimane", "NameWoDiac": "Quelimane", "Status": "AI", "outflows": 8034.0 }, "geometry": { "type": "Point", "coordinates": [ 36.88833, -17.87861 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Namibia", "Function": "1-------", "LOCODE": "NAWVB", "Name": "Walvis Bay", "NameWoDiac": "Walvis Bay", "Status": "QQ", "outflows": 2144542.8666100004 }, "geometry": { "type": "Point", "coordinates": [ 14.50528, -22.9575 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Nigeria", "Function": "1-------", "LOCODE": "NGAPP", "Name": "Apapa", "NameWoDiac": "Apapa", "Status": "QQ", "outflows": 1959193.7340199992 }, "geometry": { "type": "Point", "coordinates": [ 3.35901, 6.4488 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Nigeria", "Function": "1--4----", "LOCODE": "NGCBQ", "Name": "Calabar", "NameWoDiac": "Calabar", "Status": "AI", "outflows": 7150.0 }, "geometry": { "type": "Point", "coordinates": [ 8.32695, 4.95893 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Nigeria", "Function": "1--45---", "LOCODE": "NGLOS", "Name": "Lagos", "NameWoDiac": "Lagos", "Status": "AI", "outflows": 1767326.6668199997 }, "geometry": { "type": "Point", "coordinates": [ 3.39467, 6.45407 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Nigeria", "Function": "1--4----", "LOCODE": "NGPHC", "Name": "Port Harcourt", "NameWoDiac": "Port Harcourt", "Status": "AI", "outflows": 46634.9 }, "geometry": { "type": "Point", "coordinates": [ 7.0134, 4.77742 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Nicaragua", "Function": "1---5---", "LOCODE": "NICIO", "Name": "Corinto", "NameWoDiac": "Corinto", "Status": "AI", "outflows": 510767.4 }, "geometry": { "type": "Point", "coordinates": [ -87.17304, 12.4825 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Norway", "Function": "1-------", "LOCODE": "NOGJM", "Name": "Gjemnes", "NameWoDiac": "Gjemnes", "Status": "AI", "outflows": 135486.0 }, "geometry": { "type": "Point", "coordinates": [ 8.08604, 62.89225 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Oman", "Function": "1--4----", "LOCODE": "OMSLL", "Name": "Salalah", "NameWoDiac": "Salalah", "Status": "AI", "outflows": 20488113.65606999 }, "geometry": { "type": "Point", "coordinates": [ 54.09237, 17.01505 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Oman", "Function": "1-------", "LOCODE": "OMSOH", "Name": "Sohar", "NameWoDiac": "Sohar", "Status": "QQ", "outflows": 5253518.9085 }, "geometry": { "type": "Point", "coordinates": [ 56.70937, 24.34745 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Panama", "Function": "1-------", "LOCODE": "PAPAM", "Name": "Almirante", "NameWoDiac": "Almirante", "Status": "AI", "outflows": 265850.0 }, "geometry": { "type": "Point", "coordinates": [ -82.4018, 9.30091 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Panama", "Function": "1-------", "LOCODE": "PABLB", "Name": "Balboa", "NameWoDiac": "Balboa", "Status": "AI", "outflows": 13017890.895410001 }, "geometry": { "type": "Point", "coordinates": [ -79.56672, 8.94814 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Panama", "Function": "--3-----", "LOCODE": "PACSO", "Name": "Coco Solo", "NameWoDiac": "Coco Solo", "Status": "RQ", "outflows": 340795.0 }, "geometry": { "type": "Point", "coordinates": [ -79.88168, 9.37091 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Panama", "Function": "123-----", "LOCODE": "PAMIT", "Name": "Manzanillo", "NameWoDiac": "Manzanillo", "Status": "AI", "outflows": 13509667.606659999 }, "geometry": { "type": "Point", "coordinates": [ -81.16667, 7.53667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Peru", "Function": "1-------", "LOCODE": "PECLL", "Name": "Callao", "NameWoDiac": "Callao", "Status": "AI", "outflows": 15247664.791890001 }, "geometry": { "type": "Point", "coordinates": [ -77.11814, -12.05659 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Peru", "Function": "1--4----", "LOCODE": "PEILQ", "Name": "Ilo", "NameWoDiac": "Ilo", "Status": "AI", "outflows": 83616.0 }, "geometry": { "type": "Point", "coordinates": [ -71.34108, -17.63185 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Peru", "Function": "1--4----", "LOCODE": "PEIQT", "Name": "Iquitos", "NameWoDiac": "Iquitos", "Status": "AI", "outflows": 9675.0 }, "geometry": { "type": "Point", "coordinates": [ -73.25383, -3.74912 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Peru", "Function": "1-------", "LOCODE": "PEMRI", "Name": "Matarani", "NameWoDiac": "Matarani", "Status": "AI", "outflows": 98962.5 }, "geometry": { "type": "Point", "coordinates": [ -72.10563, -16.99639 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Peru", "Function": "1-------", "LOCODE": "PEPAI", "Name": "Paita", "NameWoDiac": "Paita", "Status": "AI", "outflows": 1763103.4120800004 }, "geometry": { "type": "Point", "coordinates": [ -81.11444, -5.08917 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Peru", "Function": "1--4----", "LOCODE": "PEPIO", "Name": "Pisco", "NameWoDiac": "Pisco", "Status": "AI", "outflows": 121628.0 }, "geometry": { "type": "Point", "coordinates": [ -76.20538, -13.71029 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Papua New Guinea", "Function": "1--4----", "LOCODE": "PGGUR", "Name": "Alotau", "NameWoDiac": "Alotau", "Status": "AI", "outflows": 15808.0 }, "geometry": { "type": "Point", "coordinates": [ 150.45742, -10.31509 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Papua New Guinea", "Function": "1--4----", "LOCODE": "PGBUA", "Name": "Buka", "NameWoDiac": "Buka", "Status": "AI", "outflows": 15808.0 }, "geometry": { "type": "Point", "coordinates": [ 154.67098, -5.43261 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Papua New Guinea", "Function": "1-------", "LOCODE": "PGKIM", "Name": "Kimbe", "NameWoDiac": "Kimbe", "Status": "QQ", "outflows": 99364.0 }, "geometry": { "type": "Point", "coordinates": [ 150.13766, -5.55085 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Papua New Guinea", "Function": "1--4----", "LOCODE": "PGLAE", "Name": "Lae", "NameWoDiac": "Lae", "Status": "AI", "outflows": 836183.91665300005 }, "geometry": { "type": "Point", "coordinates": [ 146.99611, -6.72333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Papua New Guinea", "Function": "1--4----", "LOCODE": "PGPOM", "Name": "Port Moresby", "NameWoDiac": "Port Moresby", "Status": "AI", "outflows": 402247.08331199997 }, "geometry": { "type": "Point", "coordinates": [ 147.15089, -9.47723 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Papua New Guinea", "Function": "1--4----", "LOCODE": "PGRAB", "Name": "Rabaul", "NameWoDiac": "Rabaul", "Status": "AI", "outflows": 115172.0 }, "geometry": { "type": "Point", "coordinates": [ 152.16297, -4.20037 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Papua New Guinea", "Function": "1--4----", "LOCODE": "PGWWK", "Name": "Wewak", "NameWoDiac": "Wewak", "Status": "AI", "outflows": 43795.0 }, "geometry": { "type": "Point", "coordinates": [ 143.63229, -3.54964 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1--4----", "LOCODE": "PHBCD", "Name": "Bacolod, Negros", "NameWoDiac": "Bacolod, Negros", "Status": "AI", "outflows": 18806.0 }, "geometry": { "type": "Point", "coordinates": [ 122.95, 10.66667 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1--4----", "LOCODE": "PHCGY", "Name": "Cagayan de Oro, Mindanao", "NameWoDiac": "Cagayan de Oro, Mindanao", "Status": "AI", "outflows": 1437089.1667599997 }, "geometry": { "type": "Point", "coordinates": [ 124.64722, 8.48222 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1--4----", "LOCODE": "PHCEB", "Name": "Cebu", "NameWoDiac": "Cebu", "Status": "AI", "outflows": 1378464.0 }, "geometry": { "type": "Point", "coordinates": [ 123.89071, 10.31672 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1--4----", "LOCODE": "PHCBO", "Name": "Cotabato, Mindanao", "NameWoDiac": "Cotabato, Mindanao", "Status": "AI", "outflows": 29328.0 }, "geometry": { "type": "Point", "coordinates": [ 124.24639, 7.22361 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1--4----", "LOCODE": "PHDGT", "Name": "Dumaguete", "NameWoDiac": "Dumaguete", "Status": "AI", "outflows": 27546.0 }, "geometry": { "type": "Point", "coordinates": [ 123.30261, 9.30722 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1--45---", "LOCODE": "PHMNL", "Name": "Manila", "NameWoDiac": "Manila", "Status": "AI", "outflows": 7135131.1431800006 }, "geometry": { "type": "Point", "coordinates": [ 120.9822, 14.6042 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1--4----", "LOCODE": "PHOZC", "Name": "Ozamis, Mindanao", "NameWoDiac": "Ozamis, Mindanao", "Status": "AI", "outflows": 10976.0 }, "geometry": { "type": "Point", "coordinates": [ 123.8405, 8.1481 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1-3-----", "LOCODE": "PHPLC", "Name": "Polloc", "NameWoDiac": "Polloc", "Status": "RQ", "outflows": 11193.0 }, "geometry": { "type": "Point", "coordinates": [ 124.22088, 7.3534 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1--4----", "LOCODE": "PHPPS", "Name": "Puerto Princesa, Palawan", "NameWoDiac": "Puerto Princesa, Palawan", "Status": "AI", "outflows": 9100.0 }, "geometry": { "type": "Point", "coordinates": [ 118.73528, 9.73917 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1--4----", "LOCODE": "PHSFS", "Name": "Subic Bay", "NameWoDiac": "Subic Bay", "Status": "AI", "outflows": 1621178.0 }, "geometry": { "type": "Point", "coordinates": [ 120.27987, 14.78899 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1--4----", "LOCODE": "PHTAG", "Name": "Tagbilaran, Bohol", "NameWoDiac": "Tagbilaran, Bohol", "Status": "AI", "outflows": 4320.0 }, "geometry": { "type": "Point", "coordinates": [ 123.85219, 9.65556 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Philippines", "Function": "1--4----", "LOCODE": "PHZAM", "Name": "Zamboanga", "NameWoDiac": "Zamboanga", "Status": "AI", "outflows": 67509.0 }, "geometry": { "type": "Point", "coordinates": [ 122.07389, 6.91028 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Pakistan", "Function": "1-34----", "LOCODE": "PKGWD", "Name": "Gwadar", "NameWoDiac": "Gwadar", "Status": "AI", "outflows": 145535.0 }, "geometry": { "type": "Point", "coordinates": [ 62.32541, 25.12163 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Pakistan", "Function": "12345---", "LOCODE": "PKKHI", "Name": "Karachi", "NameWoDiac": "Karachi", "Status": "AI", "outflows": 11738106.441340001 }, "geometry": { "type": "Point", "coordinates": [ 67.0104, 24.8608 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Poland", "Function": "1--4----", "LOCODE": "PLGDN", "Name": "Gdansk", "NameWoDiac": "Gdansk", "Status": "AI", "outflows": 6373121.0499060033 }, "geometry": { "type": "Point", "coordinates": [ 18.64912, 54.35227 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Poland", "Function": "1--45---", "LOCODE": "PLSZZ", "Name": "Szczecin", "NameWoDiac": "Szczecin", "Status": "AI", "outflows": 101530.0 }, "geometry": { "type": "Point", "coordinates": [ 14.55302, 53.42894 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Palau", "Function": "1--4----", "LOCODE": "PWROR", "Name": "Koror", "NameWoDiac": "Koror", "Status": "AI", "outflows": 30420.0 }, "geometry": { "type": "Point", "coordinates": [ 134.47326, 7.33978 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Russian Federation", "Function": "1--4----", "LOCODE": "RUARH", "Name": "Arkhangelsk", "NameWoDiac": "Arkhangelsk", "Status": "AI", "outflows": 390.0 }, "geometry": { "type": "Point", "coordinates": [ 40.5433, 64.5401 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Russian Federation", "Function": "1-------", "LOCODE": "RUDUD", "Name": "Dudinka", "NameWoDiac": "Dudinka", "Status": "QQ", "outflows": 16796.0 }, "geometry": { "type": "Point", "coordinates": [ 86.17778, 69.40583 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Russian Federation", "Function": "1--4----", "LOCODE": "RUKGD", "Name": "Kaliningrad", "NameWoDiac": "Kaliningrad", "Status": "AI", "outflows": 133061.5 }, "geometry": { "type": "Point", "coordinates": [ 20.51095, 54.70649 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Russian Federation", "Function": "1-------", "LOCODE": "RUKOR", "Name": "Korsakov", "NameWoDiac": "Korsakov", "Status": "QQ", "outflows": 19067.0 }, "geometry": { "type": "Point", "coordinates": [ 142.77722, 46.6342 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Russian Federation", "Function": "---4----", "LOCODE": "RUGDX", "Name": "Magadan", "NameWoDiac": "Magadan", "Status": "AI", "outflows": 27664.0 }, "geometry": { "type": "Point", "coordinates": [ 150.80347, 59.5638 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Russian Federation", "Function": "1--4----", "LOCODE": "RUPKC", "Name": "Petropavlovsk-Kamchatskiy", "NameWoDiac": "Petropavlovsk-Kamchatskiy", "Status": "AI", "outflows": 10478.0 }, "geometry": { "type": "Point", "coordinates": [ 158.65076, 53.04444 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Russian Federation", "Function": "1--4----", "LOCODE": "RUVVO", "Name": "Vladivostok", "NameWoDiac": "Vladivostok", "Status": "AI", "outflows": 1273681.4999099998 }, "geometry": { "type": "Point", "coordinates": [ 131.87353, 43.10562 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Saudi Arabia", "Function": "1-------", "LOCODE": "SAJUB", "Name": "Jubail", "NameWoDiac": "Jubail", "Status": "QQ", "outflows": 6234394.5950499978 }, "geometry": { "type": "Point", "coordinates": [ 49.62251, 27.0174 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Seychelles", "Function": "1-------", "LOCODE": "SCPOV", "Name": "Port Victoria", "NameWoDiac": "Port Victoria", "Status": "QQ", "outflows": 611771.76191000012 }, "geometry": { "type": "Point", "coordinates": [ 55.45501, -4.62001 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sudan", "Function": "1--45---", "LOCODE": "SDPZU", "Name": "Port Sudan", "NameWoDiac": "Port Sudan", "Status": "AI", "outflows": 308535.0 }, "geometry": { "type": "Point", "coordinates": [ 37.21644, 19.61745 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "12-4----", "LOCODE": "SEHEL", "Name": "Helsingborg", "NameWoDiac": "Helsingborg", "Status": "AI", "outflows": 634088.0 }, "geometry": { "type": "Point", "coordinates": [ 12.69437, 56.04673 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sweden", "Function": "123-----", "LOCODE": "SEVAG", "Name": "Varberg", "NameWoDiac": "Varberg", "Status": "AA", "outflows": 82628.0 }, "geometry": { "type": "Point", "coordinates": [ 12.25078, 57.10557 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Singapore", "Function": "1--45---", "LOCODE": "SGSIN", "Name": "Singapore", "NameWoDiac": "Singapore", "Status": "AI", "outflows": 126673817.40886995 }, "geometry": { "type": "Point", "coordinates": [ 103.85007, 1.28967 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Slovenia", "Function": "1-------", "LOCODE": "SIKOP", "Name": "Koper", "NameWoDiac": "Koper", "Status": "RL", "outflows": 4814941.1666899994 }, "geometry": { "type": "Point", "coordinates": [ 13.72944, 45.54694 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Sierra Leone", "Function": "1--45---", "LOCODE": "SLFNA", "Name": "Freetown", "NameWoDiac": "Freetown", "Status": "AI", "outflows": 292305.0 }, "geometry": { "type": "Point", "coordinates": [ -13.2356, 8.48714 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Senegal", "Function": "1--45---", "LOCODE": "SNDKR", "Name": "Dakar", "NameWoDiac": "Dakar", "Status": "AI", "outflows": 2417263.262 }, "geometry": { "type": "Point", "coordinates": [ -17.44406, 14.6937 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Somalia", "Function": "1--4----", "LOCODE": "SOBBO", "Name": "Berbera", "NameWoDiac": "Berbera", "Status": "AI", "outflows": 215094.5 }, "geometry": { "type": "Point", "coordinates": [ 45.01432, 10.43959 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Somalia", "Function": "1--4----", "LOCODE": "SOKMU", "Name": "Kismayu", "NameWoDiac": "Kismayu", "Status": "AI", "outflows": 188773.0 }, "geometry": { "type": "Point", "coordinates": [ 42.54536, -0.35817 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Somalia", "Function": "1--45---", "LOCODE": "SOMGQ", "Name": "Mogadishu", "NameWoDiac": "Mogadishu", "Status": "AI", "outflows": 437501.99997999996 }, "geometry": { "type": "Point", "coordinates": [ 45.34375, 2.03711 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Suriname", "Function": "1--45---", "LOCODE": "SRPBM", "Name": "Paramaribo", "NameWoDiac": "Paramaribo", "Status": "AI", "outflows": 538931.33332199999 }, "geometry": { "type": "Point", "coordinates": [ -55.16682, 5.86638 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Suriname", "Function": "1--45---", "LOCODE": "SRPBM", "Name": "Paramaribo", "NameWoDiac": "Paramaribo", "Status": "AI", "outflows": 538931.33332199999 }, "geometry": { "type": "Point", "coordinates": [ -55.16682, 5.86638 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "El Salvador", "Function": "1-3-----", "LOCODE": "SVAQJ", "Name": "Acajutla", "NameWoDiac": "Acajutla", "Status": "AI", "outflows": 495947.4 }, "geometry": { "type": "Point", "coordinates": [ -89.8275, 13.59278 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "El Salvador", "Function": "1--45---", "LOCODE": "SVSAL", "Name": "San Salvador", "NameWoDiac": "San Salvador", "Status": "AI", "outflows": 388752.0 }, "geometry": { "type": "Point", "coordinates": [ -89.18718, 13.68935 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Togo", "Function": "1--45---", "LOCODE": "TGLFW", "Name": "Lome", "NameWoDiac": "Lome", "Status": "AI", "outflows": 6445382.4134400021 }, "geometry": { "type": "Point", "coordinates": [ 1.22154, 6.12874 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Thailand", "Function": "1-------", "LOCODE": "THSRI", "Name": "Sriracha", "NameWoDiac": "Sriracha", "Status": "QQ", "outflows": 58522.5 }, "geometry": { "type": "Point", "coordinates": [ 100.93111, 13.17372 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Tunisia", "Function": "1234----", "LOCODE": "TNBIZ", "Name": "Bizerte", "NameWoDiac": "Bizerte", "Status": "QQ", "outflows": 106117.5 }, "geometry": { "type": "Point", "coordinates": [ 9.87391, 37.27442 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Tunisia", "Function": "1234----", "LOCODE": "TNSFA", "Name": "Sfax", "NameWoDiac": "Sfax", "Status": "AI", "outflows": 72212.33334 }, "geometry": { "type": "Point", "coordinates": [ 10.76028, 34.74056 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Tunisia", "Function": "1234----", "LOCODE": "TNSUS", "Name": "Sousse", "NameWoDiac": "Sousse", "Status": "QQ", "outflows": 43545.0 }, "geometry": { "type": "Point", "coordinates": [ 10.63699, 35.82539 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Tunisia", "Function": "12345---", "LOCODE": "TNTUN", "Name": "Tunis", "NameWoDiac": "Tunis", "Status": "AI", "outflows": 59748.0 }, "geometry": { "type": "Point", "coordinates": [ 10.16579, 36.81897 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "1-------", "LOCODE": "TRALI", "Name": "Aliaga", "NameWoDiac": "Aliaga", "Status": "RL", "outflows": 8740753.932889998 }, "geometry": { "type": "Point", "coordinates": [ 26.97203, 38.79975 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "1-3-----", "LOCODE": "TRDRC", "Name": "Derince", "NameWoDiac": "Derince", "Status": "QQ", "outflows": 303927.0 }, "geometry": { "type": "Point", "coordinates": [ 29.81472, 40.75694 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "1-3-----", "LOCODE": "TRHAY", "Name": "Haydarpasa", "NameWoDiac": "Haydarpasa", "Status": "QQ", "outflows": 220592.66669000004 }, "geometry": { "type": "Point", "coordinates": [ 29.02459, 40.99596 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Turkey", "Function": "1-------", "LOCODE": "TRYAR", "Name": "Yarimca", "NameWoDiac": "Yarimca", "Status": "QQ", "outflows": 895813.99998000008 }, "geometry": { "type": "Point", "coordinates": [ 31.14194, 39.08361 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--45---", "LOCODE": "USANC", "Name": "Anchorage", "NameWoDiac": "Anchorage", "Status": "AI", "outflows": 61671.99999 }, "geometry": { "type": "Point", "coordinates": [ -149.90028, 61.21806 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USBPT", "Name": "Beaumont", "NameWoDiac": "Beaumont", "Status": "AI", "outflows": 34041.0 }, "geometry": { "type": "Point", "coordinates": [ -94.10185, 30.08605 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--45---", "LOCODE": "USBOS", "Name": "Boston", "NameWoDiac": "Boston", "Status": "AI", "outflows": 1565893.3335999998 }, "geometry": { "type": "Point", "coordinates": [ -71.05977, 42.35843 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "--3-----", "LOCODE": "USBCK", "Name": "Brunswick", "NameWoDiac": "Brunswick", "Status": "RL", "outflows": 48681.0 }, "geometry": { "type": "Point", "coordinates": [ -74.45182, 40.48622 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "--3-----", "LOCODE": "USCAT", "Name": "Camden", "NameWoDiac": "Camden", "Status": "RQ", "outflows": 176498.0 }, "geometry": { "type": "Point", "coordinates": [ -75.11962, 39.92595 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USCHS", "Name": "Charleston", "NameWoDiac": "Charleston", "Status": "AI", "outflows": 23192728.69687001 }, "geometry": { "type": "Point", "coordinates": [ -79.924426675273111, 32.785017342562952 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "--3-----", "LOCODE": "USCAV", "Name": "Cleveland", "NameWoDiac": "Cleveland", "Status": "RQ", "outflows": 1974.0 }, "geometry": { "type": "Point", "coordinates": [ -81.69541, 41.4995 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USCRP", "Name": "Corpus Christi", "NameWoDiac": "Corpus Christi", "Status": "AI", "outflows": 53712.0 }, "geometry": { "type": "Point", "coordinates": [ -97.39638, 27.80058 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USDUT", "Name": "Dutch Harbor", "NameWoDiac": "Dutch Harbor", "Status": "AI", "outflows": 378795.99998999998 }, "geometry": { "type": "Point", "coordinates": [ -166.5422, 53.8898 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1-34----", "LOCODE": "USPAE", "Name": "Everett", "NameWoDiac": "Everett", "Status": "AI", "outflows": 152295.00003000002 }, "geometry": { "type": "Point", "coordinates": [ -122.20208, 47.97898 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "---4----", "LOCODE": "USFEP", "Name": "Freeport", "NameWoDiac": "Freeport", "Status": "AI", "outflows": 751787.11118999997 }, "geometry": { "type": "Point", "coordinates": [ -70.10311, 43.85702 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USGLS", "Name": "Galveston", "NameWoDiac": "Galveston", "Status": "AI", "outflows": 47326.5 }, "geometry": { "type": "Point", "coordinates": [ -94.7977, 29.30135 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1-3-----", "LOCODE": "USGLC", "Name": "Gloucester City", "NameWoDiac": "Gloucester City", "Status": "RN", "outflows": 59686.5 }, "geometry": { "type": "Point", "coordinates": [ -70.66313, 42.61405 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "---4----", "LOCODE": "USIJX", "Name": "Jacksonville", "NameWoDiac": "Jacksonville", "Status": "AI", "outflows": 5087986.3044199999 }, "geometry": { "type": "Point", "coordinates": [ -81.65565, 30.33218 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "---4----", "LOCODE": "USADQ", "Name": "Kodiak", "NameWoDiac": "Kodiak", "Status": "AI", "outflows": 61671.99999 }, "geometry": { "type": "Point", "coordinates": [ -152.40533, 57.78852 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--45---", "LOCODE": "USLAX", "Name": "Los Angeles", "NameWoDiac": "Los Angeles", "Status": "AI", "outflows": 12755714.048839999 }, "geometry": { "type": "Point", "coordinates": [ -118.24368, 34.05223 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--45---", "LOCODE": "USMIA", "Name": "Miami", "NameWoDiac": "Miami", "Status": "AI", "outflows": 6651073.40288 }, "geometry": { "type": "Point", "coordinates": [ -80.19366, 25.77427 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USMOB", "Name": "Mobile", "NameWoDiac": "Mobile", "Status": "AI", "outflows": 3378854.4003 }, "geometry": { "type": "Point", "coordinates": [ -88.04305, 30.69436 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1-3-----", "LOCODE": "USMRH", "Name": "Morehead City", "NameWoDiac": "Morehead City", "Status": "RN", "outflows": 44898.75 }, "geometry": { "type": "Point", "coordinates": [ -76.72604, 34.72294 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "12345---", "LOCODE": "USMSY", "Name": "New Orleans", "NameWoDiac": "New Orleans", "Status": "AI", "outflows": 8818359.6138159968 }, "geometry": { "type": "Point", "coordinates": [ -90.07507, 29.95465 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USPFN", "Name": "Panama City", "NameWoDiac": "Panama City", "Status": "AI", "outflows": 82722.0 }, "geometry": { "type": "Point", "coordinates": [ -85.65983, 30.15946 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USPWM", "Name": "Portland", "NameWoDiac": "Portland", "Status": "AI", "outflows": 27248.000001 }, "geometry": { "type": "Point", "coordinates": [ -122.67621, 45.52345 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USPDX", "Name": "Portland", "NameWoDiac": "Portland", "Status": "AI", "outflows": 336570.0 }, "geometry": { "type": "Point", "coordinates": [ -122.67621, 45.52345 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USSAV", "Name": "Savannah", "NameWoDiac": "Savannah", "Status": "AI", "outflows": 26558703.755599998 }, "geometry": { "type": "Point", "coordinates": [ -81.09983, 32.08354 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--45---", "LOCODE": "USSEA", "Name": "Seattle", "NameWoDiac": "Seattle", "Status": "AI", "outflows": 10283805.920580002 }, "geometry": { "type": "Point", "coordinates": [ -122.33207, 47.60621 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USTIW", "Name": "Tacoma", "NameWoDiac": "Tacoma", "Status": "AI", "outflows": 4139226.6189899999 }, "geometry": { "type": "Point", "coordinates": [ -122.44429, 47.25288 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--45---", "LOCODE": "USTPA", "Name": "Tampa", "NameWoDiac": "Tampa", "Status": "AI", "outflows": 1911998.4003 }, "geometry": { "type": "Point", "coordinates": [ -82.45843, 27.94752 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1-3-----", "LOCODE": "USVAN", "Name": "Vancouver", "NameWoDiac": "Vancouver", "Status": "RN", "outflows": 65700.0 }, "geometry": { "type": "Point", "coordinates": [ -122.66149, 45.63873 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USPBI", "Name": "West Palm Beach", "NameWoDiac": "West Palm Beach", "Status": "AI", "outflows": 222144.0 }, "geometry": { "type": "Point", "coordinates": [ -80.05337, 26.71534 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "United States", "Function": "1--4----", "LOCODE": "USILG", "Name": "Wilmington", "NameWoDiac": "Wilmington", "Status": "AI", "outflows": 290589.0 }, "geometry": { "type": "Point", "coordinates": [ -75.54659, 39.74595 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Uruguay", "Function": "1--45---", "LOCODE": "UYMVD", "Name": "Montevideo", "NameWoDiac": "Montevideo", "Status": "AF", "outflows": 11543641.215 }, "geometry": { "type": "Point", "coordinates": [ -56.18816, -34.90328 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Virgin Islands, U.S.", "Function": "1-------", "LOCODE": "VICHA", "Name": "Charlotte Amalie, Saint Thomas", "NameWoDiac": "Charlotte Amalie, Saint Thomas", "Status": "AI", "outflows": 307918.0 }, "geometry": { "type": "Point", "coordinates": [ -64.9307, 18.3419 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Viet Nam", "Function": "1-------", "LOCODE": "VNHPH", "Name": "Haiphong", "NameWoDiac": "Haiphong", "Status": "AI", "outflows": 10072807.932540001 }, "geometry": { "type": "Point", "coordinates": [ 106.68345, 20.86481 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Vanuatu", "Function": "1--45---", "LOCODE": "VUVLI", "Name": "Port Vila", "NameWoDiac": "Port Vila", "Status": "AI", "outflows": 453739.0 }, "geometry": { "type": "Point", "coordinates": [ 168.31366, -17.73648 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Vanuatu", "Function": "1-------", "LOCODE": "VUSAN", "Name": "Santo", "NameWoDiac": "Santo", "Status": "RQ", "outflows": 206498.5 }, "geometry": { "type": "Point", "coordinates": [ 167.16235, -15.51989 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Samoa", "Function": "1--45---", "LOCODE": "WSAPW", "Name": "Apia", "NameWoDiac": "Apia", "Status": "AI", "outflows": 339021.5 }, "geometry": { "type": "Point", "coordinates": [ -171.76666, -13.83333 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Yemen", "Function": "1--45---", "LOCODE": "YEADE", "Name": "Aden", "NameWoDiac": "Aden", "Status": "AI", "outflows": 126082.5 }, "geometry": { "type": "Point", "coordinates": [ 45.03667, 12.77944 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "Yemen", "Function": "1--4----", "LOCODE": "YEMKX", "Name": "Mukalla", "NameWoDiac": "Mukalla", "Status": "AI", "outflows": 30745.0 }, "geometry": { "type": "Point", "coordinates": [ 49.12424, 14.54248 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "South Africa", "Function": "1234----", "LOCODE": "ZAELS", "Name": "East London", "NameWoDiac": "East London", "Status": "AF", "outflows": 15600.0 }, "geometry": { "type": "Point", "coordinates": [ 27.91162, -33.01529 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "South Africa", "Function": "1--45---", "LOCODE": "ZAPLZ", "Name": "Port Elizabeth", "NameWoDiac": "Port Elizabeth", "Status": "AF", "outflows": 2557154.4621100002 }, "geometry": { "type": "Point", "coordinates": [ 25.61494, -33.96109 ] } },
|
||||
{ "type": "Feature", "properties": { "Country": "South Africa", "Function": "1--4----", "LOCODE": "ZARCB", "Name": "Richards Bay", "NameWoDiac": "Richards Bay", "Status": "AF", "outflows": 164538.86664000002 }, "geometry": { "type": "Point", "coordinates": [ 32.03768, -28.78301 ] } }
|
||||
]
|
||||
}
|
34
data/district_heat_share.csv
Normal file
@ -0,0 +1,34 @@
|
||||
country,share to satisfy heat demand (residential) in percent,capacity[MWth]
|
||||
AT,14,11200
|
||||
BG,16,6162
|
||||
BA,8,
|
||||
HR,6.3,2221
|
||||
CZ,40,
|
||||
DK,65,
|
||||
FI,38,23390
|
||||
FR,5,
|
||||
DE,13.8,
|
||||
HU,7.92875588637399,8549
|
||||
IS,90,8079000
|
||||
IE,0.8,
|
||||
IT,3,8727
|
||||
LV,73,2254
|
||||
LT,56,
|
||||
MK,23.7745607009008,636
|
||||
NO,4,3400
|
||||
PL,42,54912
|
||||
PT,0.070754716981132,34
|
||||
RS,25,5821
|
||||
SI,8.86,1739
|
||||
ES,0.251589260787732,1273
|
||||
SE,50.4,
|
||||
UK,2,
|
||||
BY,70,
|
||||
EE,52,5406
|
||||
KO,3,207
|
||||
RO,23,9962
|
||||
SK,54,15000
|
||||
NL,4,9800
|
||||
CH,4,2792
|
||||
AL,0,
|
||||
ME,0,
|
|
31
data/existing_infrastructure/existing_heating_raw.csv
Normal file
@ -0,0 +1,31 @@
|
||||
,gas boiler,coal boiler,oil boiler,resistive heater,air heat pump,ground heat pump
|
||||
Austria,9.32,0.4,15.42,0,0.72,1.077
|
||||
Belgium,28.39,1.19,19.53,3.14,0.17,0.061
|
||||
Bulgaria,0.16,3.68,0.04,3.46,1.01,0.045
|
||||
Croatia,8.39,0.03,2.88,1.53,0,0
|
||||
Czech Republic,9.26,1.02,0.1,2.73,0.35,0.263
|
||||
Denmark,4.82,0,3.67,2.19,1.9,0.381
|
||||
Estonia,0.22,0.02,0.12,0.27,0.33,0.1
|
||||
Finland,0,0.04,3.79,10.3,1.98,0.58
|
||||
France,76.85,1.03,46.03,87.24,26.14,1.97
|
||||
Germany,131.09,0.44,132.04,0,2.38,3.29
|
||||
Greece,2.17,0.03,18.13,5.91,0,0
|
||||
Hungary,21.21,1.3,0.04,0.06,0.03,0.035
|
||||
Ireland,4.32,0.8,4.85,1.03,0.03,0.03
|
||||
Italy,112.68,1.89,3.33,6.61,54.98,0.6
|
||||
Latvia,1.53,0.4,0,0.03,0,0
|
||||
Lithuania,0,0,0,0,0.01,0.02
|
||||
Luxembourg,0.79,0,0.77,0.09,0.01,0.001
|
||||
Netherlands,81.41,0,0.1,0.1,1.82,0.849
|
||||
Poland,8.25,24.75,9.04,5.96,0.01,0.04
|
||||
Portugal,4.79,0,0.2,21.26,1.58,0.064
|
||||
Romania,16.56,0.32,0.03,0.72,0,0
|
||||
Slovakia,8.05,0.19,0.01,0.55,0.06,0.015
|
||||
Slovenia,0.4,0,1.08,0.4,0.03,0.056
|
||||
Spain,48.99,0.51,17.95,56.58,1.15,0.016
|
||||
Sweden,1.01,0,0.77,3.76,3.42,4.813
|
||||
United Kingdom,160.49,1.26,7.39,13.81,0.81,0.21
|
||||
Norway,,,,,2.91,0.334
|
||||
Switzerland,,,,,1,0.849
|
||||
Serbia,,,,,,
|
||||
Bosnia Herzegovina,,,,,,
|
|
34
data/existing_infrastructure/offwind_capacity_IRENA.csv
Normal file
@ -0,0 +1,34 @@
|
||||
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018
|
||||
Albania,,,,,,,,,,,,,,,,,,,
|
||||
Austria,,,,,,,,,,,,,,,,,,,
|
||||
Belgium,,,,,,,,,,31.5,196.5,196.5,381,707.7,707.7,712,712.2,877.2,1185.9
|
||||
Bosnia Herzg,,,,,,,,,,,,,,,,,,,
|
||||
Bulgaria,,,,,,,,,,,,,,,,,,,
|
||||
Croatia,,,,,,,,,,,,,,,,,,,
|
||||
Czechia,,,,,,,,,,,,,,,,,,,
|
||||
Denmark,50,50,214,423.4,423.4,423.4,423.4,423.4,423.4,660.9,867.9,871.5,921.9,1271.1,1271.1,1271.1,1271.1,1263.8,1700.8
|
||||
Estonia,,,,,,,,,,,,,,,,,,,
|
||||
Finland,,,,,,,,,24,24,26.3,26.3,26.3,26.3,26.3,32,32,72.7,72.7
|
||||
France,,,,,,,,,,,,,,,,,,2,2
|
||||
Germany,,,,,,,,,,35,80,188,268,508,994,3283,4132,5406,6396
|
||||
Greece,,,,,,,,,,,,,,,,,,,
|
||||
Hungary,,,,,,,,,,,,,,,,,,,
|
||||
Ireland,,,,,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2
|
||||
Italy,,,,,,,,,,,,,,,,,,,
|
||||
Latvia,,,,,,,,,,,,,,,,,,,
|
||||
Lithuania,,,,,,,,,,,,,,,,,,,
|
||||
Luxembourg,,,,,,,,,,,,,,,,,,,
|
||||
Montenegro,,,,,,,,,,,,,,,,,,,
|
||||
Netherlands,,,,,,,108,108,228,228,228,228,228,228,228,357,957,957,957
|
||||
North Macedonia,,,,,,,,,,,,,,,,,,,
|
||||
Norway,,,,,,,,,,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3
|
||||
Poland,,,,,,,,,,,,,,,,,,,
|
||||
Portugal,,,,,,,,,,,,1.9,2,2,2,2,,,
|
||||
Romania,,,,,,,,,,,,,,,,,,,
|
||||
Serbia,,,,,,,,,,,,,,,,,,,
|
||||
Slovakia,,,,,,,,,,,,,,,,,,,
|
||||
Slovenia,,,,,,,,,,,,,,,,,,,
|
||||
Spain,,,,,,,,,,,,,,5,5,5,5,5,5
|
||||
Sweden,13,22,22,22,22,22,22,131,133,163,163,163,163,212,213,213,203,203,203
|
||||
Switzerland,,,,,,,,,,,,,,,,,,,
|
||||
UK,3.8,3.8,3.8,63.8,123.8,213.8,303.8,393.8,596.2,951.2,1341.5,1838.3,2995.5,3696,4501.3,5093.4,5293.4,6987.9,8216.5
|
|
34
data/existing_infrastructure/onwind_capacity_IRENA.csv
Normal file
@ -0,0 +1,34 @@
|
||||
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018
|
||||
Albania,,,,,,,,,,,,,,,,,,,
|
||||
Austria,50,67,109,322,581,825.2,968.3,991.2,992,1001,1015.8,1106,1337.2,1674.5,2110.3,2488.7,2730,2886.7,3132.7
|
||||
Belgium,14,26,31,67,96,167,212,276,324,576.5,715.5,872.5,989,1072.3,1236.3,1464,1657.8,1919.3,2074.8
|
||||
Bosnia Herzg,,,,,,,,,,,,0.3,0.3,0.3,0.3,0.3,0.3,0.3,50.9
|
||||
Bulgaria,,,,,1,8,27,30,114,333,488,541,677,683,699,699,699,698.4,698.9
|
||||
Croatia,,,,,6,6,17,17,17,70,79,130,180,254,339,418,483,576.1,586.3
|
||||
Czechia,2,,6.4,10.6,16.5,22,43.5,113.8,150,193,213,213,258,262,278,281,282,308.2,316.2
|
||||
Denmark,2340.1,2447.2,2680.6,2696.6,2700.4,2704.5,2712.3,2700.9,2739.5,2821.2,2934,3080.5,3240.1,3547.9,3615.4,3805.9,3974.5,4225.8,4419.8
|
||||
Estonia,,,1,3,7,31,31,50,77,104,108,180,266,248,275,300,310,311.8,310
|
||||
Finland,38,39,43,52,82,82,86,110,119,123,170.7,172.7,230.7,420.7,600.7,973,1533,1971.3,1968.3
|
||||
France,38,66,138,218,358,690,1412,2223,3403,4582,5912,6758,7607.5,8156,9201.4,10298.2,11566.6,13497.4,14898.1
|
||||
Germany,6095,8754,12001,14381,16419,18248,20474,22116,22794,25697,26823,28524,30711,32969,37620,41297,45303,50174,52447
|
||||
Greece,226,270,287,371,470,491,749,846,1022,1171,1298,1640,1753,1809,1978,2091,2370,2624,2877.5
|
||||
Hungary,,1,1,3,3,17,33,61,134,203,293,331,325,329,329,329,329,329,329
|
||||
Ireland,116.5,122.9,134.8,210.3,311.2,468.1,651.3,715.3,917.1,1226.1,1365.2,1559.4,1679.2,1983,2258.1,2426,2760.8,3292.8,3650.9
|
||||
Italy,363,664,780,874,1127,1635,1902,2702,3525,4879,5794,6918,8102,8542,8683,9137,9384,9736.6,10230.2
|
||||
Latvia,2,2,22,26,26,26,26,26,28,29,30,36,59,65.9,68.9,68.2,69.9,77.1,78.2
|
||||
Lithuania,,,,,1,1,31,47,54,98,133,202,275,279,288,436,509,518,533
|
||||
Luxembourg,14,13.9,13.9,20.5,34.9,34.9,34.9,34.9,42.9,42.9,43.7,44.5,58.3,58.3,58.3,63.8,119.7,119.7,122.9
|
||||
Montenegro,,,,,,,,,,,,,,,,,,72,118
|
||||
Netherlands,447,486,672,905,1075,1224,1453,1641,1921,1994,2009,2088,2205,2485,2637,3034,3300,3245,3436
|
||||
North Macedonia,,,,,,,,,,,,,,,37,37,37,37,37
|
||||
Norway,13,13,97,97,152,265,284,348,395,420.7,422.7,509.7,702.7,815.7,856.7,864.7,880.7,1204.7,1708
|
||||
Poland,4,19,32,35,40,121,172,306,526,709,1108,1800,2564,3429,3836,4886,5747,5759.4,5766.1
|
||||
Portugal,83,125,190,268,553,1064,1681,2201,2857,3326,3796,4254.4,4409.6,4607.9,4854.6,4934.8,5124.1,5124.1,5172.4
|
||||
Romania,,,,,,1,1,3,5,15,389,988,1822,2773,3244,3130,3025,3029.8,3032.3
|
||||
Serbia,,,,,,,,,,,,,0.5,0.5,0.5,10.4,17,25,25
|
||||
Slovakia,,,,3,3,5,5,5,5,3,3,3,3,5,3,3,3,4,3
|
||||
Slovenia,,,,,,,,,,,,,,4,4,5,5,5,5.2
|
||||
Spain,2206,3397,4891,5945,8317,9918,11722,14820,16555,19176,20693,21529,22789,22953,22920,22938,22985,23119.5,23400.1
|
||||
Sweden,196,273,335,395,453,500,563,692,956,1312,1854,2601,3443,3982,4875,5606,6232,6408,7097
|
||||
Switzerland,3,5,5,5,9,12,12,12,14,18,42,46,49,60,60,60,75,75,75
|
||||
UK,408.2,489.2,530.2,678.2,809.2,1351.2,1651.2,2083.2,2849.8,3470.8,4079.8,4758,6035,7586.3,8572.7,9212.2,10832.3,12596.9,13553.9
|
|
34
data/existing_infrastructure/solar_capacity_IRENA.csv
Normal file
@ -0,0 +1,34 @@
|
||||
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018
|
||||
Albania,,0.1,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.3,0.4,0.6,0.7,0.8,0.9,1.1,1,1,1
|
||||
Austria,5,7,9,23,27,21,22.4,24.2,30.1,48.9,88.8,174.1,337.5,626,785.2,937.1,1096,1269,1437.6
|
||||
Belgium,,,1,1,1,2,2,20,62,386,1007,1979,2647,2902,3015.2,3131.7,3327,3616.2,3986.5
|
||||
Bosnia Herzg,,,,0.1,0.2,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,1.3,7.2,8.2,14.1,16,18.2
|
||||
Bulgaria,,,,,,,,0,0.1,2,25,154,1013,1020,1026,1029,1028,1035.6,1032.7
|
||||
Croatia,,,,,,,,,,0.3,0.3,0.3,4,19,33,47.8,55.8,60,67.7
|
||||
Czechia,0.1,0.1,0.2,0.3,0.4,0.6,0.8,4,39.5,464.6,1727,1913,2022,2063.5,2067.4,2074.9,2067.9,2069.5,2075.1
|
||||
Denmark,1,1,2,2,2,3,3,3,3,5,7,17,402,571,607,782.1,851,906.4,998
|
||||
Estonia,,,,,,,,,,0.1,0.1,0.2,0.4,1.5,3.3,6.5,10,15,31.9
|
||||
Finland,2,3,3,3,4,4,5,5,6,6,7,7,8,9,11,17,39,82,140
|
||||
France,7,7,8,9,11,13,15,26,80,277,1044,3003.6,4358.8,5277.3,6034.4,7137.5,7702.1,8610.4,9617
|
||||
Germany,114,195,260,435,1105,2056,2899,4170,6120,10564,18004,25914,34075,36708,37898,39222,40677,42291,45179
|
||||
Greece,,1,1,1,1,1,5,9,12,46,202,612,1536,2579,2596,2604,2604,2605.5,2651.6
|
||||
Hungary,,,,,,,,0.4,1,1,2,4,12,35,89,172,235,344,726
|
||||
Ireland,,,,,,,,,,0.6,0.7,0.8,0.9,1,1.6,2.4,5.9,15.7,24.2
|
||||
Italy,19,20,22,26,31,34,45,110,483,1264,3592,13131,16785,18185,18594,18901,19283,19682.3,20107.6
|
||||
Latvia,,,,,,,,,,,,,0.2,0.2,0.2,0.2,0.7,0.7,2
|
||||
Lithuania,,,,,,,,,0.1,0.1,0.1,0.3,7,68,69,69,70,73.8,82
|
||||
Luxembourg,,0.2,1.6,14.2,23.6,23.6,23.7,23.9,24.6,26.4,29.5,40.7,74.7,95,109.9,116.3,121.9,128.1,130.6
|
||||
Montenegro,,,,,,,0,0.2,0.4,0.4,0.6,0.8,0.9,1.1,2.1,2.7,3.1,3.4,3.4
|
||||
Netherlands,13,21,26,46,50,51,53,54,59,69,90,149,369,746,1048,1515,2049,2903,4522
|
||||
North Macedonia,,,,,,,,,,,0,2,4,7,15,17,16.7,16.7,20.6
|
||||
Norway,6,6,6,7,7,7,8,8,8.3,8.7,9.1,9.5,10,11,13,15,26.7,44.9,68.4
|
||||
Poland,,,,,,,,,,,,1.1,1.3,2.4,27.2,107.8,187.2,287.1,562
|
||||
Portugal,1,1,1,2,2,2,3,24,59,115,134,172,238,296,415,447,512.8,579.2,667.4
|
||||
Romania,,,,,,,,,0.1,0.1,0.1,1,41,761,1293,1326,1372,1374.1,1385.8
|
||||
Serbia,,,,,,0.1,0.2,0.4,0.9,1.2,1.3,1.5,3.1,4.7,6,9,11,10,10
|
||||
Slovakia,,,,,,,,,,,19,496,513,533,533,533,533,528,472
|
||||
Slovenia,,,0,0,0,0,0.2,0.6,1,4,12,57,142,187,223,238,233,246.8,221.3
|
||||
Spain,10,13,17,22,33,52,130,494,3384,3423,3873,4283,4569,4690,4697,4704,4713,4723,4763.5
|
||||
Sweden,3,3,3,4,4,4,5,6,8,9,11,12,24,43,60,104,153,402,492
|
||||
Switzerland,16,18,20,22,24,28,30,37,49,79,125,223,437,756,1061,1394,1664,1906,2171
|
||||
UK,2,3,4,6,8,11,14,18,23,27,95,1000,1753,2937,5528,9601.2,11930.5,12781.8,13118.3
|
|
25
data/heat_load_profile.csv
Normal file
@ -0,0 +1,25 @@
|
||||
hour,residential space weekday,residential space weekend,residential water weekday,residential water weekend,services space weekday,services space weekend,services water weekday,services water weekend
|
||||
0,0.9181438689,0.9421512708,1,1,0.9181438689,0.9421512708,1,1
|
||||
1,0.9172359071,0.9400891069,1,1,0.9172359071,0.9400891069,1,1
|
||||
2,0.9269464481,0.9461062015,1,1,0.9269464481,0.9461062015,1,1
|
||||
3,0.9415047932,0.9535084941,1,1,0.9415047932,0.9535084941,1,1
|
||||
4,0.9656299507,0.9651094993,1,1,0.9656299507,0.9651094993,1,1
|
||||
5,1.0221166443,0.9834676747,1,1,1.0221166443,0.9834676747,1,1
|
||||
6,1.1553090493,1.0124171051,1,1,1.1553090493,1.0124171051,1,1
|
||||
7,1.2093411031,1.0446615927,1,1,1.2093411031,1.0446615927,1,1
|
||||
8,1.1470295942,1.088203419,1,1,1.1470295942,1.088203419,1,1
|
||||
9,1.0877191341,1.1110334576,1,1,1.0877191341,1.1110334576,1,1
|
||||
10,1.0418327372,1.0926752822,1,1,1.0418327372,1.0926752822,1,1
|
||||
11,1.0062977133,1.055488209,1,1,1.0062977133,1.055488209,1,1
|
||||
12,0.9837030359,1.0251266112,1,1,0.9837030359,1.0251266112,1,1
|
||||
13,0.9667570278,0.9990015154,1,1,0.9667570278,0.9990015154,1,1
|
||||
14,0.9548320932,0.9782897278,1,1,0.9548320932,0.9782897278,1,1
|
||||
15,0.9509232061,0.9698167237,1,1,0.9509232061,0.9698167237,1,1
|
||||
16,0.9636973319,0.974288587,1,1,0.9636973319,0.974288587,1,1
|
||||
17,0.9799372563,0.9886456216,1,1,0.9799372563,0.9886456216,1,1
|
||||
18,1.0046501848,1.0084159643,1,1,1.0046501848,1.0084159643,1,1
|
||||
19,1.0079452419,1.0171243296,1,1,1.0079452419,1.0171243296,1,1
|
||||
20,0.9860566481,0.9994722379,1,1,0.9860566481,0.9994722379,1,1
|
||||
21,0.9705228074,0.982761591,1,1,0.9705228074,0.982761591,1,1
|
||||
22,0.9586485819,0.9698167237,1,1,0.9586485819,0.9698167237,1,1
|
||||
23,0.9335023778,0.9515079292,1,1,0.9335023778,0.9515079292,1,1
|
|
25
data/heat_load_profile_BDEW.csv
Normal file
@ -0,0 +1,25 @@
|
||||
,residential space weekday,residential space weekend,services space weekday,services space weekend,residential water weekday,residential water weekend,services water weekday,services water weekend
|
||||
0,0.5437843306385036,0.5391846410003029,0.740230434593118,0.7918173557545402,1.0,1.0,1.0,1.0
|
||||
1,0.5690496225400243,0.5641534370440313,0.7642025524842398,0.7929627291950984,1.0,1.0,1.0,1.0
|
||||
2,0.5624023211873742,0.5575494117194042,0.8264420882344785,0.8961602364492307,1.0,1.0,1.0,1.0
|
||||
3,0.6120351867307156,0.6074588966300298,0.9338477492552973,1.066547622880321,1.0,1.0,1.0,1.0
|
||||
4,0.8210089232467712,0.8188451841881503,1.1288089786462463,1.2779268432155158,1.0,1.0,1.0,1.0
|
||||
5,1.2287073985428116,1.2315677844536332,1.3311522394966053,1.2808129834243316,1.0,1.0,1.0,1.0
|
||||
6,1.327953505819319,1.3349874311629708,1.3976491755316236,1.3076676145167292,1.0,1.0,1.0,1.0
|
||||
7,1.2533048874868005,1.2584095945395426,1.3529869654334066,1.239881414312941,1.0,1.0,1.0,1.0
|
||||
8,1.204661538907097,1.206562127967529,1.2631870820835946,1.157513929299677,1.0,1.0,1.0,1.0
|
||||
9,1.1511425365003825,1.152931252109671,1.183486516733693,1.1001631309844286,1.0,1.0,1.0,1.0
|
||||
10,1.0982914366923946,1.0987739728887453,1.1056637898031139,1.0553379006911972,1.0,1.0,1.0,1.0
|
||||
11,1.0602079991199889,1.0598534287519163,1.0536117591812475,0.9953570175561463,1.0,1.0,1.0,1.0
|
||||
12,1.0430483470403709,1.042552786631541,1.0075511014823457,0.9238971341830102,1.0,1.0,1.0,1.0
|
||||
13,1.023765876994618,1.0234573235486537,0.983633820661761,0.928978159404834,1.0,1.0,1.0,1.0
|
||||
14,1.0250355817085612,1.0241187665206792,0.973887563496691,0.9277637088455348,1.0,1.0,1.0,1.0
|
||||
15,1.0419068035344277,1.0407369052119213,0.968639109712126,0.940383626933661,1.0,1.0,1.0,1.0
|
||||
16,1.0886607269753739,1.0871365340901091,0.9776106671510321,0.9762628252848075,1.0,1.0,1.0,1.0
|
||||
17,1.1391891744979068,1.1377875788466947,0.9713068946564802,0.9923707220696051,1.0,1.0,1.0,1.0
|
||||
18,1.1813708458227477,1.1815796155786216,0.97710710371407,0.9822063279944322,1.0,1.0,1.0,1.0
|
||||
19,1.2048721952031847,1.2066686818939167,0.9620977486617706,0.9872726025741575,1.0,1.0,1.0,1.0
|
||||
20,1.1883594612741015,1.1911629803333679,0.9096499832485738,0.9736368622053816,1.0,1.0,1.0,1.0
|
||||
21,1.0841006081889941,1.0875548281900813,0.7954827338259405,0.8733383541170725,1.0,1.0,1.0,1.0
|
||||
22,0.8887378869444746,0.8893062174837649,0.7007233800713178,0.7753100551108082,1.0,1.0,1.0,1.0
|
||||
23,0.6584028044030574,0.6576606192147261,0.6910405618412271,0.756430842996538,1.0,1.0,1.0,1.0
|
|
25
data/heat_load_profile_DK_AdamJensen.csv
Normal file
@ -0,0 +1,25 @@
|
||||
hour,weekday,weekend
|
||||
0,0.9181438689,0.9421512708
|
||||
1,0.9172359071,0.9400891069
|
||||
2,0.9269464481,0.9461062015
|
||||
3,0.9415047932,0.9535084941
|
||||
4,0.9656299507,0.9651094993
|
||||
5,1.0221166443,0.9834676747
|
||||
6,1.1553090493,1.0124171051
|
||||
7,1.2093411031,1.0446615927
|
||||
8,1.1470295942,1.088203419
|
||||
9,1.0877191341,1.1110334576
|
||||
10,1.0418327372,1.0926752822
|
||||
11,1.0062977133,1.055488209
|
||||
12,0.9837030359,1.0251266112
|
||||
13,0.9667570278,0.9990015154
|
||||
14,0.9548320932,0.9782897278
|
||||
15,0.9509232061,0.9698167237
|
||||
16,0.9636973319,0.974288587
|
||||
17,0.9799372563,0.9886456216
|
||||
18,1.0046501848,1.0084159643
|
||||
19,1.0079452419,1.0171243296
|
||||
20,0.9860566481,0.9994722379
|
||||
21,0.9705228074,0.982761591
|
||||
22,0.9586485819,0.9698167237
|
||||
23,0.9335023778,0.9515079292
|
|
31
data/hydrogen_salt_cavern_potentials.csv
Normal file
@ -0,0 +1,31 @@
|
||||
ct,TWh
|
||||
AT,
|
||||
BA,
|
||||
BE,
|
||||
BG,
|
||||
CH,
|
||||
CZ,
|
||||
DE,4500
|
||||
DK,700
|
||||
EE,
|
||||
ES,350
|
||||
FI,
|
||||
FR,
|
||||
GB,1050
|
||||
GR,120
|
||||
HR,
|
||||
HU,
|
||||
IE,
|
||||
IT,
|
||||
LT,
|
||||
LU,
|
||||
LV,
|
||||
NL,150
|
||||
NO,
|
||||
PL,120
|
||||
PT,400
|
||||
RO,
|
||||
RS,
|
||||
SE,
|
||||
SI,
|
||||
SK,
|
|
3
data/override_component_attrs/buses.csv
Normal file
@ -0,0 +1,3 @@
|
||||
attribute,type,unit,default,description,status
|
||||
location,string,n/a,n/a,Reference to original electricity bus,Input (optional)
|
||||
unit,string,n/a,MWh,Unit of the bus (descriptive only), Input (optional)
|
|
4
data/override_component_attrs/generators.csv
Normal file
@ -0,0 +1,4 @@
|
||||
attribute,type,unit,default,description,status
|
||||
carrier,string,n/a,n/a,carrier,Input (optional)
|
||||
lifetime,float,years,inf,lifetime,Input (optional)
|
||||
build_year,int,year ,0,build year,Input (optional)
|
|
13
data/override_component_attrs/links.csv
Normal file
@ -0,0 +1,13 @@
|
||||
attribute,type,unit,default,description,status
|
||||
bus2,string,n/a,n/a,2nd bus,Input (optional)
|
||||
bus3,string,n/a,n/a,3rd bus,Input (optional)
|
||||
bus4,string,n/a,n/a,4th bus,Input (optional)
|
||||
efficiency2,static or series,per unit,1,2nd bus efficiency,Input (optional)
|
||||
efficiency3,static or series,per unit,1,3rd bus efficiency,Input (optional)
|
||||
efficiency4,static or series,per unit,1,4th bus efficiency,Input (optional)
|
||||
p2,series,MW,0,2nd bus output,Output
|
||||
p3,series,MW,0,3rd bus output,Output
|
||||
p4,series,MW,0,4th bus output,Output
|
||||
carrier,string,n/a,n/a,carrier,Input (optional)
|
||||
lifetime,float,years,inf,lifetime,Input (optional)
|
||||
build_year,int,year ,0,build year,Input (optional)
|
|
2
data/override_component_attrs/loads.csv
Normal file
@ -0,0 +1,2 @@
|
||||
attribute,type,unit,default,description,status
|
||||
carrier,string,n/a,n/a,carrier,Input (optional)
|
|
4
data/override_component_attrs/stores.csv
Normal file
@ -0,0 +1,4 @@
|
||||
attribute,type,unit,default,description,status
|
||||
carrier,string,n/a,n/a,carrier,Input (optional)
|
||||
lifetime,float,years,inf,lifetime,Input (optional)
|
||||
build_year,int,year ,0,build year,Input (optional)
|
|
49
data/retro/comparative_level_investment.csv
Normal file
@ -0,0 +1,49 @@
|
||||
NA_ITEM,Price level indices (EU28=100),,,,,,,,,
|
||||
PPP_CAT,Actual individual consumption,,,,,,,,,
|
||||
,,,,,,,,,,
|
||||
GEO/TIME,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018
|
||||
European Union - 28 countries,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0
|
||||
Belgium,113.6,111.9,112.4,111.5,111.0,108.9,106.3,110.3,112.3,112.5
|
||||
Bulgaria,47.1,45.7,45.5,45.0,44.2,42.6,42.2,43.2,45.1,46.3
|
||||
Czech Republic,64.5,66.6,68.9,66.9,63.3,58.3,58.4,60.5,62.4,65.0
|
||||
Denmark,141.7,140.0,139.9,140.0,139.3,138.5,135.0,140.0,138.9,138.1
|
||||
Germany,104.6,103.1,102.2,101.1,102.5,101.5,100.4,102.6,103.7,104.1
|
||||
Estonia,67.5,66.0,67.2,67.6,69.9,69.9,68.9,71.0,73.9,76.3
|
||||
Ireland,129.9,122.7,122.5,120.5,123.2,124.9,122.2,126.5,129.1,129.2
|
||||
Greece,93.6,95.4,94.9,91.9,87.8,83.8,81.0,82.3,83.0,81.8
|
||||
Spain,97.5,98.7,98.5,95.8,95.1,92.7,90.0,92.7,93.7,93.7
|
||||
France,111.2,109.9,109.6,108.7,107.0,106.0,104.0,105.8,107.1,107.4
|
||||
Croatia,70.2,70.1,68.1,65.5,64.5,62.5,60.7,61.3,63.0,64.0
|
||||
Italy,103.6,100.4,101.5,101.1,102.3,102.6,100.3,101.1,101.6,101.4
|
||||
Cyprus,92.0,94.6,95.8,96.0,95.2,92.0,88.5,89.8,91.2,90.6
|
||||
Latvia,68.1,62.3,65.5,65.9,66.0,66.0,64.2,66.9,68.3,69.5
|
||||
Lithuania,60.3,57.8,58.3,58.0,57.8,56.9,55.9,58.3,60.0,61.4
|
||||
Luxembourg,130.0,136.5,136.0,135.8,135.1,135.7,132.1,137.0,139.9,141.6
|
||||
Hungary,58.2,57.4,56.4,54.9,54.4,53.4,53.3,56.2,59.4,59.0
|
||||
Malta,75.8,76.6,78.0,78.0,80.8,80.5,79.8,81.4,81.9,83.4
|
||||
Netherlands,108.5,112.3,112.7,111.3,111.9,111.9,109.6,113.8,114.6,114.8
|
||||
Austria,109.9,109.2,110.1,108.9,109.1,109.1,107.2,110.2,112.8,113.7
|
||||
Poland,53.1,55.2,53.7,52.1,52.4,52.5,51.1,50.9,53.5,54.3
|
||||
Portugal,85.2,85.0,85.3,82.7,81.1,80.4,78.7,81.6,83.5,84.6
|
||||
Romania,49.1,46.9,47.7,45.6,47.8,47.6,47.2,46.8,48.0,48.6
|
||||
Slovenia,85.3,84.3,83.7,81.8,82.1,81.5,79.8,82.3,82.7,83.8
|
||||
Slovakia,66.6,62.5,63.4,63.4,63.4,63.3,62.3,63.6,65.4,66.1
|
||||
Finland,121.0,120.3,121.6,121.8,124.0,122.9,119.6,122.8,123.3,123.4
|
||||
Sweden,109.5,124.6,131.7,134.3,140.5,133.6,128.8,135.3,134.5,126.9
|
||||
United Kingdom,107.5,111.4,111.3,118.6,117.0,123.6,134.7,123.5,117.6,117.7
|
||||
Iceland,94.9,107.6,109.6,111.6,116.0,123.4,132.5,154.5,172.3,163.7
|
||||
Norway,142.4,158.8,165.3,172.5,166.9,157.2,152.2,155.0,157.3,155.4
|
||||
Switzerland,131.6,146.4,161.7,160.6,155.1,153.0,167.0,169.8,167.1,159.1
|
||||
Candidate and potential candidate countries except Turkey and Kosovo (under United Nations Security Council Resolution 1244/99),48.0,45.6,47.1,44.8,46.4,45.2,43.4,44.4,46.0,47.5
|
||||
Montenegro,52.3,49.5,49.3,50.1,50.5,49.3,48.0,48.7,50.5,51.1
|
||||
North Macedonia,41.4,41.3,42.7,42.1,42.5,41.9,40.9,41.7,43.2,43.3
|
||||
Albania,46.2,42.8,42.1,40.6,41.9,41.5,39.8,43.0,43.5,46.6
|
||||
Serbia,48.3,45.0,48.0,44.5,47.3,45.5,43.1,43.8,46.1,47.9
|
||||
Turkey,55.4,61.2,54.7,58.5,57.7,51.6,50.5,50.2,45.4,37.0
|
||||
Bosnia and Herzegovina,51.6,50.7,50.6,49.2,49.1,48.4,47.0,47.5,48.2,48.9
|
||||
Kosovo (under United Nations Security Council Resolution 1244/99),:,:,:,:,:,:,:,:,:,:
|
||||
United States,92.4,98,93.3,101.2,100.3,99,115.9,121.1,120.8,115.2
|
||||
Japan,115.1,126.1,127.8,133.8,101.7,94.8,96.5,113,109.4,103.9
|
||||
,,,,,,,,,,
|
||||
"Source: Eurostat Purchasing power parities (PPPs), price level indices and real expenditures for ESA 2010 aggregates (2019)",,,,,,,,,,
|
||||
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Comparative_price_levels_for_investment,,,,,,,,,,
|
|
63129
data/retro/data_building_stock.csv
Normal file
164
data/retro/electricity_taxes_eu.csv
Normal file
@ -0,0 +1,164 @@
|
||||
Electricity prices for household consumers - bi-annual data (from 2007 onwards) [nrg_pc_204],,,,
|
||||
,,,,
|
||||
Last update,30.10.19,,,
|
||||
Extracted on,14.11.19,,,
|
||||
Source of data,Eurostat,,,
|
||||
,,,,
|
||||
PRODUCT,Electrical energy,,,
|
||||
CONSOM,Band DC : 2 500 kWh < Consumption < 5 000 kWh,,,
|
||||
UNIT,Kilowatt-hour,,,
|
||||
TIME,2018S1,,,
|
||||
,,,,
|
||||
CURRENCY,Euro,Euro,Euro,
|
||||
GEO/TAX,Excluding taxes and levies,Excluding VAT and other recoverable taxes and levies,All taxes and levies included,% cost without taxes
|
||||
European Union - 28 countries,0.1285,0.1756,0.2052,0.626218323586745
|
||||
"Euro area (EA11-2000, EA12-2006, EA13-2007, EA15-2008, EA16-2010, EA17-2013, EA18-2014, EA19)",0.1331,0.1855,0.2188,0.608318098720293
|
||||
Belgium,0.1903,0.2279,0.2733,0.696304427369191
|
||||
Bulgaria,0.0816,0.0816,0.0979,0.833503575076609
|
||||
Czech Republic,0.1286,0.1298,0.1573,0.817546090273363
|
||||
Denmark,0.1011,0.2501,0.3126,0.32341650671785
|
||||
Germany,0.1379,0.2510,0.2987,0.461667224640107
|
||||
Estonia,0.0989,0.1123,0.1348,0.733679525222552
|
||||
Ireland,0.1846,0.2087,0.2369,0.779231743351625
|
||||
Greece,0.1132,0.1482,0.1672,0.677033492822967
|
||||
Spain,0.1873,0.1969,0.2383,0.785984053713806
|
||||
France,0.1134,0.1492,0.1748,0.648741418764302
|
||||
Croatia,0.1020,0.1160,0.1311,0.778032036613272
|
||||
Italy,0.1285,0.1873,0.2067,0.621673923560716
|
||||
Cyprus,0.1445,0.1606,0.1893,0.763338615953513
|
||||
Latvia,0.1035,0.1266,0.1531,0.676028739386022
|
||||
Lithuania,0.0771,0.0906,0.1097,0.702825888787603
|
||||
Luxembourg,0.1283,0.1547,0.1671,0.767803710353082
|
||||
Hungary,0.0885,0.0885,0.1123,0.78806767586821
|
||||
Malta,0.1209,0.1224,0.1285,0.940856031128405
|
||||
Netherlands,0.1187,0.1410,0.1706,0.6957796014068
|
||||
Austria,0.1232,0.1638,0.1966,0.626653102746694
|
||||
Poland,0.0906,0.1146,0.1410,0.642553191489362
|
||||
Portugal,0.1007,0.1826,0.2246,0.448352626892253
|
||||
Romania,0.0990,0.1120,0.1333,0.742685671417854
|
||||
Slovenia,0.1108,0.1322,0.1613,0.686918784872908
|
||||
Slovakia,0.0942,0.1305,0.1566,0.601532567049808
|
||||
Finland,0.1074,0.1300,0.1612,0.666253101736973
|
||||
Sweden,0.1202,0.1513,0.1891,0.635642517186674
|
||||
United Kingdom,0.1347,0.1797,0.1887,0.713831478537361
|
||||
Iceland,0.1222,0.1246,0.1545,0.790938511326861
|
||||
Liechtenstein,:,:,:,#VALUE!
|
||||
Norway,0.1254,0.1434,0.1751,0.716162193032553
|
||||
Montenegro,0.0828,0.0844,0.1024,0.80859375
|
||||
North Macedonia,0.0662,0.0662,0.0781,0.847631241997439
|
||||
Albania,:,:,:,#VALUE!
|
||||
Serbia,0.0539,0.0587,0.0705,0.764539007092199
|
||||
Turkey,0.0727,0.0766,0.0904,0.804203539823009
|
||||
Bosnia and Herzegovina,0.0722,0.0738,0.0864,0.835648148148148
|
||||
Kosovo (under United Nations Security Council Resolution 1244/99),0.0569,0.0586,0.0633,0.898894154818325
|
||||
Moldova,0.1020,0.1020,0.1020,1
|
||||
Ukraine,0.0342,0.0342,0.0410,0.834146341463415
|
||||
,,,0.157271052631579,
|
||||
Special value:,,,,
|
||||
:,not available,,,
|
||||
,,,,
|
||||
PRODUCT,Electrical energy,,,
|
||||
CONSOM,Band DC : 2 500 kWh < Consumption < 5 000 kWh,,,
|
||||
UNIT,Kilowatt-hour,,,
|
||||
TIME,2018S2,,,
|
||||
,,,,
|
||||
CURRENCY,Euro,Euro,Euro,
|
||||
GEO/TAX,Excluding taxes and levies,Excluding VAT and other recoverable taxes and levies,All taxes and levies included,
|
||||
European Union - 28 countries,0.1329,0.1810,0.2113,
|
||||
"Euro area (EA11-2000, EA12-2006, EA13-2007, EA15-2008, EA16-2010, EA17-2013, EA18-2014, EA19)",0.1376,0.1902,0.2242,
|
||||
Belgium,0.1998,0.2429,0.2937,
|
||||
Bulgaria,0.0838,0.0838,0.1005,
|
||||
Czechia,0.1299,0.1311,0.1586,
|
||||
Denmark,0.1116,0.2499,0.3123,
|
||||
Germany (until 1990 former territory of the FRG),0.1378,0.2521,0.3000,
|
||||
Estonia,0.1048,0.1182,0.1418,
|
||||
Ireland,0.2006,0.2237,0.2539,
|
||||
Greece,0.1125,0.1458,0.1646,
|
||||
Spain,0.1947,0.2047,0.2477,
|
||||
France,0.1168,0.1537,0.1799,
|
||||
Croatia,0.1028,0.1169,0.1321,
|
||||
Italy,0.1416,0.1964,0.2161,
|
||||
Cyprus,0.1745,0.1850,0.2183,
|
||||
Latvia,0.1041,0.1249,0.1511,
|
||||
Lithuania,0.0771,0.0906,0.1097,
|
||||
Luxembourg,0.1302,0.1566,0.1691,
|
||||
Hungary,0.0880,0.0880,0.1118,
|
||||
Malta,0.1229,0.1244,0.1306,
|
||||
Netherlands,0.1212,0.1420,0.1707,
|
||||
Austria,0.1265,0.1676,0.2012,
|
||||
Poland,0.0889,0.1135,0.1396,
|
||||
Portugal,0.1028,0.1864,0.2293,
|
||||
Romania,0.0964,0.1107,0.1317,
|
||||
Slovenia,0.1125,0.1342,0.1638,
|
||||
Slovakia,0.0849,0.1218,0.1462,
|
||||
Finland,0.1144,0.1369,0.1698,
|
||||
Sweden,0.1287,0.1592,0.1990,
|
||||
United Kingdom,0.1401,0.1927,0.2024,
|
||||
Iceland,0.1152,0.1175,0.1457,
|
||||
Liechtenstein,:,:,:,
|
||||
Norway,0.1382,0.1562,0.1907,
|
||||
Montenegro,0.0829,0.0848,0.1030,
|
||||
North Macedonia,0.0667,0.0667,0.0787,
|
||||
Albania,0.0759,0.0759,0.0910,
|
||||
Serbia,0.0542,0.0591,0.0709,
|
||||
Turkey,0.0688,0.0726,0.0857,
|
||||
Bosnia and Herzegovina,0.0729,0.0744,0.0871,
|
||||
Kosovo (under United Nations Security Council Resolution 1244/99),0.0579,0.0591,0.0638,
|
||||
Moldova,0.0960,0.0960,0.1029,
|
||||
Ukraine,0.0342,0.0342,0.0410,
|
||||
,,,,
|
||||
Special value:,,,,
|
||||
:,not available,,,
|
||||
,,,,
|
||||
PRODUCT,Electrical energy,,,
|
||||
CONSOM,Band DC : 2 500 kWh < Consumption < 5 000 kWh,,,
|
||||
UNIT,Kilowatt-hour,,,
|
||||
TIME,2019S1,,,
|
||||
,,,,
|
||||
CURRENCY,Euro,Euro,Euro,
|
||||
GEO/TAX,Excluding taxes and levies,Excluding VAT and other recoverable taxes and levies,All taxes and levies included,
|
||||
European Union - 28 countries,0.1351,0.1841,0.2147,
|
||||
"Euro area (EA11-2000, EA12-2006, EA13-2007, EA15-2008, EA16-2010, EA17-2013, EA18-2014, EA19)",0.1396,0.1928,0.2270,
|
||||
Belgium,0.1965,0.2355,0.2839,
|
||||
Bulgaria,0.0831,0.0831,0.0997,
|
||||
Czechia,0.1433,0.1444,0.1748,
|
||||
Denmark,0.1084,0.2387,0.2984,
|
||||
Germany (until 1990 former territory of the FRG),0.1473,0.2595,0.3088,
|
||||
Estonia,0.0982,0.1131,0.1357,
|
||||
Ireland,0.2027,0.2134,0.2423,
|
||||
Greece,0.1139,0.1482,0.1650,
|
||||
Spain,0.1889,0.1986,0.2403,
|
||||
France,0.1138,0.1508,0.1765,
|
||||
Croatia,0.1028,0.1169,0.1321,
|
||||
Italy,0.1432,0.2090,0.2301,
|
||||
Cyprus,0.1762,0.1867,0.2203,
|
||||
Latvia,0.1136,0.1347,0.1629,
|
||||
Lithuania,0.0947,0.1037,0.1255,
|
||||
Luxembourg,0.1326,0.1666,0.1798,
|
||||
Hungary,0.0882,0.0882,0.1120,
|
||||
Malta,0.1228,0.1243,0.1305,
|
||||
Netherlands,0.1357,0.1708,0.2052,
|
||||
Austria,0.1316,0.1695,0.2034,
|
||||
Poland,0.0884,0.1092,0.1343,
|
||||
Portugal,0.1103,0.1751,0.2154,
|
||||
Romania,0.0983,0.1141,0.1358,
|
||||
Slovenia,0.1125,0.1339,0.1634,
|
||||
Slovakia,0.0962,0.1314,0.1577,
|
||||
Finland,0.1173,0.1398,0.1734,
|
||||
Sweden,0.1297,0.1612,0.2015,
|
||||
United Kingdom,0.1450,0.2021,0.2122,
|
||||
Iceland,0.1112,0.1134,0.1406,
|
||||
Liechtenstein,:,:,:,
|
||||
Norway,0.1360,0.1529,0.1867,
|
||||
Montenegro,0.0834,0.0850,0.1032,
|
||||
North Macedonia,:,:,:,
|
||||
Albania,:,:,:,
|
||||
Serbia,0.0541,0.0589,0.0706,
|
||||
Turkey,0.0684,0.0718,0.0847,
|
||||
Bosnia and Herzegovina,0.0729,0.0746,0.0873,
|
||||
Kosovo (under United Nations Security Council Resolution 1244/99),0.0537,0.0556,0.0600,
|
||||
Moldova,0.0936,0.0936,0.0936,
|
||||
Ukraine,0.0369,0.0369,0.0442,
|
||||
,,,,
|
||||
Special value:,,,,
|
||||
:,not available,,,
|
|
17
data/retro/floor_area_missing.csv
Normal file
@ -0,0 +1,17 @@
|
||||
country,sector,estimated,value,source,,comments,population [in Million],
|
||||
AL,residential,0,64,p.13 1.6 million m² = 2.5% of total floor area,https://www.buildup.eu/sites/default/files/content/sled_albania_residential_building_eng.pdf,,,
|
||||
AL,services,0,,,,,,
|
||||
BA,residential,0,125.89,Tabula,https://episcope.eu/building-typology/country/ba/,strong differences ? other source claims more than 300 Million m²,,https://www.buildup.eu/sites/default/files/content/sled_serbia_building_eng.pdf
|
||||
BA,services,0,,,,,,
|
||||
RS,residential,0,72.3,Odyssee(2011),https://odyssee.enerdata.net/database/,,,
|
||||
RS,services,0,,,,,,
|
||||
MK,residential,0,,"Worldbank p.7 Skopje 75% residential, 25% commercial",http://documents.albankaldawli.org/curated/ar/838951574180734318/pdf/Project-Information-Document-North-Macedonia-Public-Sector-Energy-Efficiency-Project-P149990.pdf,15 % live in illegal constructed buildings ? not part of the statistics,2.1,
|
||||
MK,services,0,,,,,,
|
||||
ME,residential,0,19.625,p.13 0.314 million m² = 1.6% of total floor area,buildup.eu/sites/default/files/content/sled_montenegro_building_eng.pdf,Only 50 % of the floor area is heated p.12,,buildup.eu/sites/default/files/content/sled_montenegro_building_eng.pdf
|
||||
ME,services,0,,,,,,
|
||||
CH,residential,0,99.45,Odyssee(2015),,,,
|
||||
CH,services,1,78.1392857142857,p.8 44%floor area is services,https://bta.climate-kic.org/wp-content/uploads/2018/04/171123-CK-BTA-DEF-BMB_SWITZERLAND_.pdf,,,
|
||||
NO,residential,0,121.55,Odyssee(2015),,,,
|
||||
NO,services,0,115.21,Odyssee(2015),,,,
|
||||
PL,residential,0,1028.41,EU Building Database,,,,
|
||||
PL,services,0,498.84,EU Building Database,,,,
|
|
7
data/retro/retro_cost_germany.csv
Normal file
@ -0,0 +1,7 @@
|
||||
component,cost_fix,cost_var,life_time,comment,additional source
|
||||
wall,70.34,2.36,40,Agora Energiewende p.110,
|
||||
floor,39.39,1.3,40,Agora Energiewende p.110,
|
||||
roof,75.61,1.3,40,Agora Energiewende p.110,https://www.baulinks.de/webplugin/2018/1524.php4
|
||||
window,nan,nan,35,,
|
||||
source: p.37 https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-10-29_texte_132-2019_energieaufwand-gebaeudekonzepte.pdf,,,https://www.agora-energiewende.de/en/publications/building-sector-efficiency-a-crucial-component-of-the-energy-transition/,,
|
||||
,,,p.115,,
|
|
9
data/retro/u_values_poland.csv
Normal file
@ -0,0 +1,9 @@
|
||||
component,Before 1945,1945 - 1969,1970 - 1979,1980 - 1989,1990 - 1999,2000 - 2010,Post 2010,sector
|
||||
Walls,1.7,1.4,0.9,0.9,0.6,0.4,1.7,residential
|
||||
Windows,4.6,3.6,2.6,2.6,2.1,2.1,2.1,residential
|
||||
Roof,0.8,0.7,0.6,0.6,0.6,0.4,0.33,residential
|
||||
Floor,1.9,1.4,1.2,1.1,0.9,0.6,0.45,residential
|
||||
Walls,1.3,1.3,1.3,0.8,0.6,0.6,0.6,services
|
||||
Windows,4.7,3.7,2.6,2.6,2.3,2.1,2.1,services
|
||||
Roof,1,0.9,0.7,0.5,0.3,0.3,0.3,services
|
||||
Floor,1.6,1.2,1.2,1.1,1,0.7,0.7,services
|
|
8
data/retro/window_assumptions.csv
Normal file
@ -0,0 +1,8 @@
|
||||
strength,u_value,cost,u_limit,comment
|
||||
[m],[W/m^2K],EUR/m^2,[W/m^2K],
|
||||
0.076,1.34,180.08,3.5,Double-glazing
|
||||
0.197,0.8,225,1.3,Triple-glazing
|
||||
,,,,
|
||||
"source: https://www.agora-energiewende.de/en/publications/building-sector-efficiency-a-crucial-component-of-the-energy-transition/
|
||||
p.115
|
||||
",,,,
|
|
30
data/urban_percent.csv
Normal file
@ -0,0 +1,30 @@
|
||||
AT,66
|
||||
BA,40
|
||||
BE,98
|
||||
BG,74
|
||||
CH,74
|
||||
CZ,73
|
||||
DE,75
|
||||
DK,88
|
||||
EE,68
|
||||
ES,80
|
||||
FI,84
|
||||
FR,80
|
||||
GB,83
|
||||
GR,78
|
||||
HR,59
|
||||
HU,71
|
||||
IE,63
|
||||
IT,69
|
||||
LT,67
|
||||
LU,90
|
||||
LV,67
|
||||
NL,90
|
||||
NO,80
|
||||
PL,61
|
||||
PT,63
|
||||
RO,55
|
||||
RS,56
|
||||
SE,86
|
||||
SI,50
|
||||
SK,54
|
|
@ -1,7 +1,10 @@
|
||||
<<<<<<< HEAD
|
||||
# SPDX-FileCopyrightText: 2017-2023 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
=======
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
# Makefile for Sphinx documentation
|
||||
#
|
||||
|
||||
|
77
doc/conf.py
@ -1,9 +1,12 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
<<<<<<< HEAD
|
||||
# SPDX-FileCopyrightText: 20017-2020 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# -*- coding: utf-8 -*-
|
||||
=======
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
#
|
||||
# PyPSA documentation build configuration file, created by
|
||||
# sphinx-quickstart on Tue Jan 5 10:04:42 2016.
|
||||
@ -37,6 +40,10 @@ sys.path.insert(0, os.path.abspath("../scripts"))
|
||||
extensions = [
|
||||
#'sphinx.ext.autodoc',
|
||||
#'sphinx.ext.autosummary',
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
"sphinx.ext.autosectionlabel",
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
"sphinx.ext.intersphinx",
|
||||
"sphinx.ext.todo",
|
||||
"sphinx.ext.mathjax",
|
||||
@ -66,9 +73,15 @@ source_suffix = ".rst"
|
||||
master_doc = "index"
|
||||
|
||||
# General information about the project.
|
||||
<<<<<<< HEAD
|
||||
project = "PyPSA-Eur"
|
||||
copyright = "2017-2023 Jonas Hoersch (KIT, FIAS), Fabian Hofmann (TUB, FIAS), David Schlachtberger (FIAS), Tom Brown (TUB, KIT, FIAS); 2019-2023 Fabian Neumann (TUB, KIT)"
|
||||
author = "Jonas Hoersch (KIT, FIAS), Fabian Hofmann (TUB, FIAS), David Schlachtberger (FIAS), Tom Brown (TUB, KIT, FIAS), Fabian Neumann (TUB, KIT)"
|
||||
=======
|
||||
project = "PyPSA-Eur-Sec"
|
||||
copyright = "2019-2023 Tom Brown (KIT, TUB), Marta Victoria (Aarhus University), Lisa Zeyen (KIT, TUB), Fabian Neumann (TUB)"
|
||||
author = "2019-2023 Tom Brown (KIT, TUB), Marta Victoria (Aarhus University), Lisa Zeyen (KIT, TUB), Fabian Neumann (TUB)"
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
# The version info for the project you're documenting, acts as replacement for
|
||||
# |version| and |release|, also used in various other places throughout the
|
||||
@ -84,7 +97,11 @@ release = "0.7.0"
|
||||
#
|
||||
# This is also used if you do content translation via gettext catalogs.
|
||||
# Usually you set "language" from the command line for these cases.
|
||||
<<<<<<< HEAD
|
||||
language = "en"
|
||||
=======
|
||||
language = None
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
# There are two options for replacing |today|: either, you set today to some
|
||||
# non-false value, then it is used:
|
||||
@ -128,15 +145,24 @@ todo_include_todos = True
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
<<<<<<< HEAD
|
||||
html_theme = "sphinx_book_theme"
|
||||
=======
|
||||
html_theme = "sphinx_rtd_theme"
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
# Theme options are theme-specific and customize the look and feel of a theme
|
||||
# further. For a list of options available for each theme, see the
|
||||
# documentation.
|
||||
html_theme_options = {
|
||||
<<<<<<< HEAD
|
||||
"repository_url": "https://github.com/pypsa/pypsa-eur",
|
||||
"use_repository_button": True,
|
||||
"show_navbar_depth": 2,
|
||||
=======
|
||||
"display_version": True,
|
||||
"sticky_navigation": True,
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
}
|
||||
|
||||
|
||||
@ -145,26 +171,47 @@ html_theme_options = {
|
||||
|
||||
# The name for this set of Sphinx documents. If None, it defaults to
|
||||
# "<project> v<release> documentation".
|
||||
<<<<<<< HEAD
|
||||
html_title = "PyPSA-Eur"
|
||||
=======
|
||||
# html_title = None
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
# A shorter title for the navigation bar. Default is the same as html_title.
|
||||
# html_short_title = None
|
||||
|
||||
# The name of an image file (relative to this directory) to place at the top
|
||||
# of the sidebar.
|
||||
<<<<<<< HEAD
|
||||
html_logo = "img/pypsa-logo.png"
|
||||
=======
|
||||
# html_logo = None
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
# The name of an image file (within the static path) to use as favicon of the
|
||||
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
|
||||
# pixels large.
|
||||
# html_favicon = None
|
||||
|
||||
<<<<<<< HEAD
|
||||
# These folders are copied to the documentation's HTML output
|
||||
# html_static_path = ["_static"]
|
||||
|
||||
# These paths are either relative to html_static_path
|
||||
# or fully qualified paths (eg. https://...)
|
||||
# html_css_files = ["theme_overrides.css"]
|
||||
=======
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ["_static"]
|
||||
|
||||
html_context = {
|
||||
"css_files": [
|
||||
"_static/theme_overrides.css", # override wide tables in RTD theme
|
||||
],
|
||||
}
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
# Add any extra paths that contain custom files (such as robots.txt or
|
||||
# .htaccess) here, relative to this directory. These files are copied
|
||||
@ -227,7 +274,11 @@ html_logo = "img/pypsa-logo.png"
|
||||
# html_search_scorer = 'scorer.js'
|
||||
|
||||
# Output file base name for HTML help builder.
|
||||
<<<<<<< HEAD
|
||||
htmlhelp_basename = "PyPSAEurdoc"
|
||||
=======
|
||||
htmlhelp_basename = "PyPSAEurSecdoc"
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
# -- Options for LaTeX output ---------------------------------------------
|
||||
|
||||
@ -246,7 +297,17 @@ latex_elements = {
|
||||
# (source start file, target name, title,
|
||||
# author, documentclass [howto, manual, or own class]).
|
||||
latex_documents = [
|
||||
<<<<<<< HEAD
|
||||
(master_doc, "PyPSA-Eur.tex", "PyPSA-Eur Documentation", "author", "manual"),
|
||||
=======
|
||||
(
|
||||
master_doc,
|
||||
"PyPSA-Eur-Sec.tex",
|
||||
"PyPSA-Eur-Sec Documentation",
|
||||
"author",
|
||||
"manual",
|
||||
),
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
]
|
||||
|
||||
|
||||
@ -254,8 +315,13 @@ latex_documents = [
|
||||
rinoh_documents = [
|
||||
(
|
||||
master_doc, # top-level file (index.rst)
|
||||
<<<<<<< HEAD
|
||||
"PyPSA-Eur", # output (target.pdf)
|
||||
"PyPSA-Eur Documentation", # document title
|
||||
=======
|
||||
"PyPSA-Eur-Sec", # output (target.pdf)
|
||||
"PyPSA-Eur-Sec Documentation", # document title
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
"author",
|
||||
)
|
||||
] # document author
|
||||
@ -286,7 +352,11 @@ rinoh_documents = [
|
||||
|
||||
# One entry per manual page. List of tuples
|
||||
# (source start file, name, description, authors, manual section).
|
||||
<<<<<<< HEAD
|
||||
man_pages = [(master_doc, "pypsa-eur", "PyPSA-Eur Documentation", [author], 1)]
|
||||
=======
|
||||
man_pages = [(master_doc, "pypsa-eur-sec", "PyPSA-Eur-Sec Documentation", [author], 1)]
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
# If true, show URL addresses after external links.
|
||||
# man_show_urls = False
|
||||
@ -300,10 +370,17 @@ man_pages = [(master_doc, "pypsa-eur", "PyPSA-Eur Documentation", [author], 1)]
|
||||
texinfo_documents = [
|
||||
(
|
||||
master_doc,
|
||||
<<<<<<< HEAD
|
||||
"PyPSA-Eur",
|
||||
"PyPSA-Eur Documentation",
|
||||
author,
|
||||
"PyPSA-Eur",
|
||||
=======
|
||||
"PyPSA-Eur-Sec",
|
||||
"PyPSA-Eur-Sec Documentation",
|
||||
author,
|
||||
"PyPSA-Eur-Sec",
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
"One line description of project.",
|
||||
"Miscellaneous",
|
||||
),
|
||||
|
29
doc/data.csv
Normal file
@ -0,0 +1,29 @@
|
||||
description,file/folder,licence,source
|
||||
JRC IDEES database,jrc-idees-2015/,CC BY 4.0,https://ec.europa.eu/jrc/en/potencia/jrc-idees
|
||||
urban/rural fraction,urban_percent.csv,unknown,unknown
|
||||
JRC biomass potentials,biomass/,unknown,https://doi.org/10.2790/39014
|
||||
JRC ENSPRESO biomass potentials,remote,CC BY 4.0,https://data.jrc.ec.europa.eu/dataset/74ed5a04-7d74-4807-9eab-b94774309d9f
|
||||
EEA emission statistics,eea/UNFCCC_v23.csv,EEA standard re-use policy,https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
|
||||
Eurostat Energy Balances,eurostat-energy_balances-*/,Eurostat,https://ec.europa.eu/eurostat/web/energy/data/energy-balances
|
||||
Swiss energy statistics from Swiss Federal Office of Energy,switzerland-sfoe/,unknown,http://www.bfe.admin.ch/themen/00526/00541/00542/02167/index.html?dossier_id=02169
|
||||
BASt emobility statistics,emobility/,unknown,http://www.bast.de/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Stundenwerte.html?nn=626916
|
||||
BDEW heating profile,heat_load_profile_BDEW.csv,unknown,https://github.com/oemof/demandlib
|
||||
heating profiles for Aarhus,heat_load_profile_DK_AdamJensen.csv,unknown,Adam Jensen MA thesis at Aarhus University
|
||||
George Lavidas wind/wave costs,WindWaveWEC_GLTB.xlsx,unknown,George Lavidas
|
||||
country codes,Country_codes.csv,CC BY 4.0,Marta Victoria
|
||||
co2 budgets,co2_budget.csv,CC BY 4.0,https://arxiv.org/abs/2004.11009
|
||||
existing heating potentials,existing_infrastructure/existing_heating_raw.csv,unknown,https://ec.europa.eu/energy/studies/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment_en?redir=1
|
||||
IRENA existing VRE capacities,existing_infrastructure/{solar|onwind|offwind}_capcity_IRENA.csv,unknown,https://www.irena.org/Statistics/Download-Data
|
||||
USGS ammonia production,myb1-2017-nitro.xls,unknown,https://www.usgs.gov/centers/nmic/nitrogen-statistics-and-information
|
||||
hydrogen salt cavern potentials,h2_salt_caverns_GWh_per_sqkm.geojson,CC BY 4.0,https://doi.org/10.1016/j.ijhydene.2019.12.161 https://doi.org/10.20944/preprints201910.0187.v1
|
||||
international port trade volumes,attributed_ports.json,CC BY 4.0,https://datacatalog.worldbank.org/search/dataset/0038118/Global---International-Ports
|
||||
hotmaps industrial site database,Industrial_Database.csv,CC BY 4.0,https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database
|
||||
Hotmaps building stock data,data_building_stock.csv,CC BY 4.0,https://gitlab.com/hotmaps/building-stock
|
||||
U-values Poland,u_values_poland.csv,unknown,https://data.europa.eu/euodp/de/data/dataset/building-stock-observatory
|
||||
Floor area missing in hotmaps building stock data,floor_area_missing.csv,unknown,https://data.europa.eu/euodp/de/data/dataset/building-stock-observatory
|
||||
Comparative level investment,comparative_level_investment.csv,Eurostat,https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Comparative_price_levels_for_investment
|
||||
Electricity taxes,electricity_taxes_eu.csv,Eurostat,https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en
|
||||
Building topologies and corresponding standard values,tabula-calculator-calcsetbuilding.csv,unknown,https://episcope.eu/fileadmin/tabula/public/calc/tabula-calculator.xlsx
|
||||
Retrofitting thermal envelope costs for Germany,retro_cost_germany.csv,unknown,https://www.iwu.de/forschung/handlungslogiken/kosten-energierelevanter-bau-und-anlagenteile-bei-modernisierung/
|
||||
District heating most countries,jrc-idees-2015/,CC BY 4.0,https://ec.europa.eu/jrc/en/potencia/jrc-idees,,
|
||||
District heating missing countries,district_heat_share.csv,unknown,https://www.euroheat.org/knowledge-hub/country-profiles,,
|
Can't render this file because it has a wrong number of fields in line 28.
|
157
doc/index.rst
@ -1,3 +1,4 @@
|
||||
<<<<<<< HEAD
|
||||
..
|
||||
SPDX-FileCopyrightText: 2019-2023 The PyPSA-Eur Authors
|
||||
|
||||
@ -51,6 +52,100 @@ Transformation in Energy Systems <https:/www.ensys.tu-berlin.de>`_ at the
|
||||
developed within the `IAI <http://www.iai.kit.edu>`_ at the `Karlsruhe Institute of
|
||||
Technology (KIT) <http://www.kit.edu/english/index.php>`_ and by the `Renewable
|
||||
Energy Group
|
||||
=======
|
||||
PyPSA-Eur-Sec: A Sector-Coupled Open Optimisation Model of the European Energy System
|
||||
=====================================================================================
|
||||
|
||||
.. image:: https://img.shields.io/github/v/release/pypsa/pypsa-eur-sec?include_prereleases
|
||||
:alt: GitHub release (latest by date including pre-releases)
|
||||
|
||||
.. image:: https://readthedocs.org/projects/pypsa-eur-sec/badge/?version=latest
|
||||
:target: https://pypsa-eur-sec.readthedocs.io/en/latest/?badge=latest
|
||||
:alt: Documentation Status
|
||||
|
||||
.. image:: https://img.shields.io/github/license/pypsa/pypsa-eur-sec
|
||||
:alt: GitHub
|
||||
|
||||
.. image:: https://img.shields.io/github/repo-size/pypsa/pypsa-eur-sec
|
||||
:alt: GitHub repo size
|
||||
|
||||
|
||||
PyPSA-Eur-Sec is an open model dataset of the European energy system at the
|
||||
transmission network level that covers the full ENTSO-E area.
|
||||
|
||||
PyPSA-Eur-Sec builds on the electricity generation and transmission
|
||||
model `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_ to add demand
|
||||
and supply for the following sectors: transport, space and water
|
||||
heating, biomass, energy consumption in the agriculture, industry
|
||||
and industrial feedstocks, carbon management, carbon capture and usage/sequestration.
|
||||
This completes the energy system and includes all greenhouse gas emitters except waste management, agriculture,
|
||||
forestry and land use.
|
||||
|
||||
|
||||
**WARNING**: PyPSA-Eur-Sec is under active development and has several
|
||||
`limitations <https://pypsa-eur-sec.readthedocs.io/en/latest/limitations.html>`_ which
|
||||
you should understand before using the model. The github repository
|
||||
`issues <https://github.com/PyPSA/pypsa-eur-sec/issues>`_ collect known
|
||||
topics we are working on (please feel free to help or make suggestions).
|
||||
The `documentation <https://pypsa-eur-sec.readthedocs.io/>`_ remains somewhat
|
||||
patchy.
|
||||
We cannot support this model if you choose to use it.
|
||||
|
||||
.. note::
|
||||
You can find showcases of the model's capabilities in the Supplementary Materials of the
|
||||
preprint `Benefits of a Hydrogen Network in Europe
|
||||
<https://arxiv.org/abs/2207.05816>`_, the Supplementary Materials of the `paper in Joule with a
|
||||
description of the industry sector
|
||||
<https://arxiv.org/abs/2109.09563>`_, or in `a 2021 presentation
|
||||
at EMP-E <https://nworbmot.org/energy/brown-empe.pdf>`_.
|
||||
|
||||
|
||||
This diagram gives an overview of the sectors and the links between
|
||||
them:
|
||||
|
||||
.. image:: ../graphics/multisector_figure.png
|
||||
|
||||
PyPSA-Eur-Sec was initially based on the model PyPSA-Eur-Sec-30 described
|
||||
in the paper `Synergies of sector coupling and transmission
|
||||
reinforcement in a cost-optimised, highly renewable European energy
|
||||
system <https://arxiv.org/abs/1801.05290>`_ (2018) but it differs by
|
||||
being based on the higher resolution electricity transmission model
|
||||
`PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_ rather than a
|
||||
one-node-per-country model, and by including biomass, industry,
|
||||
industrial feedstocks, aviation, shipping, better carbon management,
|
||||
carbon capture and usage/sequestration, and gas networks.
|
||||
|
||||
|
||||
PyPSA-Eur-Sec includes PyPSA-Eur as a
|
||||
`snakemake <https://snakemake.readthedocs.io/en/stable/index.html>`_
|
||||
`subworkflow <https://snakemake.readthedocs.io/en/stable/snakefiles/modularization.html#snakefiles-sub-workflows>`_. PyPSA-Eur-Sec
|
||||
uses PyPSA-Eur to build the clustered transmission model along with
|
||||
wind, solar PV and hydroelectricity potentials and time series. Then
|
||||
PyPSA-Eur-Sec adds other conventional generators, storage units and
|
||||
the additional sectors.
|
||||
|
||||
Currently the scripts to solve and process the resulting PyPSA models
|
||||
are also included in PyPSA-Eur-Sec, although they could in future be
|
||||
better integrated with the corresponding scripts in PyPSA-Eur. A
|
||||
stumbling block to sharing solve_network.py between PyPSA-Eur and
|
||||
PyPSA-Eur-Sec is the different extra_functionality required to build
|
||||
storage and CHP constraints.
|
||||
|
||||
|
||||
PyPSA-Eur-Sec is designed to be imported into the open toolbox `PyPSA
|
||||
<https://www.pypsa.org>`_ for which `documentation <https://pypsa.org/doc>`_ is
|
||||
available as well.
|
||||
|
||||
This project is currently maintained by the `Department of Digital
|
||||
Transformation in Energy Systems <https://tub-ensys.github.io>`_ at the
|
||||
`Technical University of Berlin <https://www.tu.berlin>`_. Previous versions
|
||||
were developed by the `Energy System Modelling group
|
||||
<https://www.iai.kit.edu/english/2338.php>`_ at the `Institute for Automation
|
||||
and Applied Informatics <https://www.iai.kit.edu/english/index.php>`_ at the
|
||||
`Karlsruhe Institute of Technology <http://www.kit.edu/english/index.php>`_
|
||||
which was funded by the `Helmholtz Association <https://www.helmholtz.de/en/>`_,
|
||||
and by the `Renewable Energy Group
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
<https://fias.uni-frankfurt.de/physics/schramm/renewable-energy-system-and-network-analysis/>`_
|
||||
at `FIAS <https://fias.uni-frankfurt.de/>`_ to carry out simulations for the
|
||||
`CoNDyNet project <http://condynet.de/>`_, financed by the `German Federal
|
||||
@ -58,23 +153,40 @@ Ministry for Education and Research (BMBF) <https://www.bmbf.de/en/index.html>`_
|
||||
as part of the `Stromnetze Research Initiative
|
||||
<http://forschung-stromnetze.info/projekte/grundlagen-und-konzepte-fuer-effiziente-dezentrale-stromnetze/>`_.
|
||||
|
||||
<<<<<<< HEAD
|
||||
A version of the model that adds building heating, transport and industry sectors to the model,
|
||||
as well as gas networks, is currently being developed in the `PyPSA-Eur-Sec repository <https://github.com/pypsa/pypsa-eur-sec>`_.
|
||||
=======
|
||||
Workflow Outline
|
||||
================
|
||||
|
||||
.. image:: ../graphics/workflow.png
|
||||
|
||||
.. note::
|
||||
The graph above was generated using
|
||||
``snakemake --rulegraph -F | sed -n "/digraph/,/}/p" | dot -Tpng -o workflow.png``
|
||||
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
Documentation
|
||||
=============
|
||||
|
||||
**Getting Started**
|
||||
|
||||
<<<<<<< HEAD
|
||||
* :doc:`introduction`
|
||||
* :doc:`installation`
|
||||
* :doc:`tutorial`
|
||||
=======
|
||||
* :doc:`installation`
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:maxdepth: 1
|
||||
:caption: Getting Started
|
||||
|
||||
<<<<<<< HEAD
|
||||
introduction
|
||||
installation
|
||||
tutorial
|
||||
@ -84,10 +196,20 @@ Documentation
|
||||
* :doc:`wildcards`
|
||||
* :doc:`configuration`
|
||||
* :doc:`costs`
|
||||
=======
|
||||
installation
|
||||
|
||||
**Implementation details**
|
||||
|
||||
* :doc:`spatial_resolution`
|
||||
* :doc:`supply_demand`
|
||||
* :doc:`technology_assumptions`
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:maxdepth: 1
|
||||
<<<<<<< HEAD
|
||||
:caption: Configuration
|
||||
|
||||
wildcards
|
||||
@ -100,22 +222,46 @@ Documentation
|
||||
* :doc:`simplification`
|
||||
* :doc:`solving`
|
||||
* :doc:`plotting`
|
||||
=======
|
||||
:caption: Implementation details
|
||||
|
||||
spatial_resolution
|
||||
supply_demand
|
||||
technology_assumptions
|
||||
|
||||
**Foresight options**
|
||||
|
||||
* :doc:`overnight`
|
||||
* :doc:`myopic`
|
||||
* :doc:`perfect`
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:maxdepth: 1
|
||||
<<<<<<< HEAD
|
||||
:caption: Rules Overview
|
||||
|
||||
preparation
|
||||
simplification
|
||||
solving
|
||||
plotting
|
||||
=======
|
||||
:caption: Foresight options
|
||||
|
||||
overnight
|
||||
myopic
|
||||
perfect
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
**References**
|
||||
|
||||
* :doc:`release_notes`
|
||||
* :doc:`limitations`
|
||||
<<<<<<< HEAD
|
||||
* :doc:`contributing`
|
||||
=======
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
@ -124,6 +270,7 @@ Documentation
|
||||
|
||||
release_notes
|
||||
limitations
|
||||
<<<<<<< HEAD
|
||||
contributing
|
||||
|
||||
Warnings
|
||||
@ -197,10 +344,14 @@ The included ``.nc`` files are PyPSA network files which can be imported with Py
|
||||
|
||||
filename = "elec_s_1024_ec.nc" # example
|
||||
n = pypsa.Network(filename)
|
||||
=======
|
||||
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
Licence
|
||||
=======
|
||||
|
||||
<<<<<<< HEAD
|
||||
PyPSA-Eur work is released under multiple licenses:
|
||||
|
||||
* All original source code is licensed as free software under `MIT <LICENSES/MIT.txt>`_.
|
||||
@ -221,3 +372,9 @@ More details are included in
|
||||
* *BY: Attribute Source*
|
||||
* *NC: Non-Commercial Use Only*
|
||||
* *SA: Share Alike*
|
||||
=======
|
||||
The code in PyPSA-Eur-Sec is released as free software under the
|
||||
`MIT license <https://opensource.org/licenses/MIT>`_, see
|
||||
`LICENSE <https://github.com/PyPSA/pypsa-eur-sec/blob/master/LICENSE.txt>`_.
|
||||
However, different licenses and terms of use may apply to the various input data.
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
@ -1,8 +1,11 @@
|
||||
<<<<<<< HEAD
|
||||
..
|
||||
SPDX-FileCopyrightText: 2019-2023 The PyPSA-Eur Authors
|
||||
|
||||
SPDX-License-Identifier: CC-BY-4.0
|
||||
|
||||
=======
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
.. _installation:
|
||||
|
||||
##########################################
|
||||
@ -12,6 +15,7 @@ Installation
|
||||
The subsequently described installation steps are demonstrated as shell commands, where the path before the ``%`` sign denotes the
|
||||
directory in which the commands following the ``%`` should be entered.
|
||||
|
||||
<<<<<<< HEAD
|
||||
Clone the Repository
|
||||
====================
|
||||
|
||||
@ -38,6 +42,47 @@ For instructions for your operating system follow the ``conda`` `installation gu
|
||||
|
||||
The python package requirements are curated in the `envs/environment.yaml <https://github.com/PyPSA/pypsa-eur/blob/master/envs/environment.yaml>`_ file.
|
||||
The environment can be installed and activated using
|
||||
=======
|
||||
Install PyPSA-Eur and its data
|
||||
==============================
|
||||
|
||||
First install `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_ and all
|
||||
its dependencies. Clone the repository:
|
||||
|
||||
|
||||
.. code:: bash
|
||||
|
||||
projects % git clone https://github.com/PyPSA/pypsa-eur.git
|
||||
|
||||
then download and unpack all the PyPSA-Eur data files by running the following snakemake rule:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
projects/pypsa-eur % snakemake -j 1 retrieve_databundle
|
||||
|
||||
|
||||
|
||||
Clone PyPSA-Eur-Sec repository
|
||||
==============================
|
||||
|
||||
Create a parallel directory for `PyPSA-Eur-Sec <https://github.com/PyPSA/pypsa-eur-sec>`_ with:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
projects % git clone https://github.com/PyPSA/pypsa-eur-sec.git
|
||||
|
||||
Environment/package requirements
|
||||
================================
|
||||
|
||||
|
||||
|
||||
The requirements are the same as `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_. For
|
||||
``solve_network.py`` in addition you need ``gurobipy``. If you have
|
||||
xarray version >= 0.15.1, you will need the latest master branch of
|
||||
atlite version 0.0.2.
|
||||
|
||||
You can create an environment using the environment.yaml file in pypsa-eur/envs:
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
.. code:: bash
|
||||
|
||||
@ -45,6 +90,7 @@ The environment can be installed and activated using
|
||||
|
||||
.../pypsa-eur % conda activate pypsa-eur
|
||||
|
||||
<<<<<<< HEAD
|
||||
Note that activation is local to the currently open shell!
|
||||
After opening a new terminal window, one needs to reissue the second command!
|
||||
|
||||
@ -127,3 +173,65 @@ Before first use, create a ``config.yaml`` by copying the example.
|
||||
|
||||
Users are advised to regularly check their own ``config.yaml`` against changes in the ``config.default.yaml``
|
||||
when pulling a new version from the remote repository.
|
||||
=======
|
||||
See details in `PyPSA-Eur Installation <https://pypsa-eur.readthedocs.io/en/latest/installation.html>`_
|
||||
|
||||
Data requirements
|
||||
=================
|
||||
|
||||
Small data files are included directly in the git repository, while
|
||||
larger ones are archived in a data bundle on zenodo (`10.5281/zenodo.5824485 <https://doi.org/10.5281/zenodo.5824485>`_).
|
||||
The data bundle's size is around 640 MB.
|
||||
|
||||
To download and extract the data bundle on the command line:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
projects/pypsa-eur-sec/data % wget "https://zenodo.org/record/5824485/files/pypsa-eur-sec-data-bundle.tar.gz"
|
||||
projects/pypsa-eur-sec/data % tar -xvzf pypsa-eur-sec-data-bundle.tar.gz
|
||||
|
||||
|
||||
The data licences and sources are given in the following table.
|
||||
|
||||
|
||||
.. csv-table::
|
||||
:header-rows: 1
|
||||
:file: data.csv
|
||||
|
||||
|
||||
|
||||
Set up the default configuration
|
||||
================================
|
||||
|
||||
First make your own copy of the ``config.yaml`` based on
|
||||
``config.default.yaml``. For example:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
projects/pypsa-eur-sec % cp config.default.yaml config.yaml
|
||||
|
||||
|
||||
Getting started
|
||||
===============
|
||||
|
||||
|
||||
In ``config.yaml`` you can control the settings for the scenarios you
|
||||
want to run, such as the number of nodes, the CO2 limit, the
|
||||
installable potentials for solar and wind, which technologies are
|
||||
activated, etc.
|
||||
|
||||
To run the full optimization with your settings:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
projects/pypsa-eur-sec % snakemake -j1
|
||||
|
||||
Warning: you may need a computer cluster for this (with e.g. 10-100 GB of RAM
|
||||
and several processors).
|
||||
|
||||
To only prepare the networks, you can run the scripts up to the point before optimization:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
projects/pypsa-eur-sec % snakemake -j1 prepare_sector_networks
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
@ -1,21 +1,37 @@
|
||||
<<<<<<< HEAD
|
||||
..
|
||||
SPDX-FileCopyrightText: 2019-2023 The PyPSA-Eur Authors
|
||||
|
||||
SPDX-License-Identifier: CC-BY-4.0
|
||||
|
||||
=======
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
##########################################
|
||||
Limitations
|
||||
##########################################
|
||||
|
||||
<<<<<<< HEAD
|
||||
|
||||
While the benefit of an openly available, functional and partially validated
|
||||
model of the European transmission system is high, many approximations have
|
||||
=======
|
||||
While the benefit of an openly available, functional and partially validated
|
||||
model of the European energy system is high, many approximations have
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
been made due to missing data.
|
||||
The limitations of the dataset are listed below,
|
||||
both as a warning to the user and as an encouragement to assist in
|
||||
improving the approximations.
|
||||
|
||||
<<<<<<< HEAD
|
||||
- **Network topology:**
|
||||
=======
|
||||
This list of limitations is incomplete and will be added to over time.
|
||||
|
||||
See also the `GitHub repository issues <https://github.com/PyPSA/pypsa-eur-sec/issues>`_.
|
||||
|
||||
- **Electricity transmission network topology:**
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
The grid data is based on a map of the ENTSO-E area that is known
|
||||
to contain small distortions to improve readability. Since the exact impedances
|
||||
of the lines are unknown, approximations based on line lengths and standard
|
||||
@ -23,20 +39,44 @@ improving the approximations.
|
||||
particular lines. There is no openly available data on busbar configurations, switch
|
||||
locations, transformers or reactive power compensation assets.
|
||||
|
||||
<<<<<<< HEAD
|
||||
- **Distribution networks:**
|
||||
=======
|
||||
- **Assignment of electricity demand to transmission nodes:**
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
Using Voronoi cells to aggregate load and generator data to transmission
|
||||
network substations ignores the topology of the underlying distribution network,
|
||||
meaning that assets may be connected to the wrong substation.
|
||||
|
||||
<<<<<<< HEAD
|
||||
- **Power Demand:**
|
||||
Assumptions
|
||||
have been made about the distribution of load in each country proportional to
|
||||
=======
|
||||
- **Incomplete information on existing assets:** Approximations have
|
||||
been made for missing data, including: existing distribution grid
|
||||
capacities and costs, existing space and water heating supply,
|
||||
existing industry facilities, existing transport vehicle fleets.
|
||||
|
||||
- **Exogenous pathways for transformation of transport and industry:**
|
||||
To avoid penny-switching the transformation of transport and
|
||||
industry away from fossil fuels is determined exogenously.
|
||||
|
||||
- **Industry materials production constant and inelastic:**
|
||||
For industry, the production of different materials per country is
|
||||
assumed to remain constant and no industry demand elasticity is included in the modelled.
|
||||
|
||||
- **Energy demand distribution within countries:**
|
||||
Assumptions
|
||||
have been made about the distribution of demand in each country proportional to
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
population and GDP that may not reflect local circumstances.
|
||||
Openly available
|
||||
data on load time series may not correspond to the true vertical load and is
|
||||
not spatially disaggregated; assuming, as we have done, that the load time series
|
||||
shape is the same at each node within each country ignores local differences.
|
||||
|
||||
<<<<<<< HEAD
|
||||
- **Currently installed renewable capacities:**
|
||||
Information on existing wind, solar and small hydro, geothermal, marine and
|
||||
biomass power plants are excluded from the dataset because of a lack of data
|
||||
@ -44,6 +84,8 @@ improving the approximations.
|
||||
plants in each country can be generated that are proportional to the capacity
|
||||
factor at each location.
|
||||
|
||||
=======
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
- **Hydro-electric power plants:**
|
||||
The database of hydro-electric power plants does not include plant-specific
|
||||
energy storage information, so that blanket values based on country storage
|
||||
@ -56,3 +98,9 @@ improving the approximations.
|
||||
Belarus, Ukraine, Turkey and Morocco have not been taken into account;
|
||||
islands which are not connected to the main European system, such as Malta,
|
||||
Crete and Cyprus, are also excluded from the model.
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
|
||||
- **Demand sufficiency:** Further measures of demand reduction may be
|
||||
possible beyond the assumptions made here.
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
139
doc/myopic.rst
Normal file
@ -0,0 +1,139 @@
|
||||
.. _myopic:
|
||||
|
||||
##########################################
|
||||
Myopic transition path
|
||||
##########################################
|
||||
|
||||
The myopic code can be used to investigate progressive changes in a network, for instance, those taking place throughout a transition path. The capacities installed in a certain time step are maintained in the network until their operational lifetime expires.
|
||||
|
||||
The myopic approach was initially developed and used in the paper `Early decarbonisation of the European Energy system pays off (2020) <https://www.nature.com/articles/s41467-020-20015-4>`__ and later further extended in `Speed of technological transformations required in Europe to achieve different climate goals (2022) <https://doi.org/10.1016/j.joule.2022.04.016>`__. The current implementation complies with the PyPSA-Eur-Sec standard working flow and is compatible with using the higher resolution electricity transmission model `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`__ rather than a one-node-per-country model.
|
||||
|
||||
The current code applies the myopic approach to generators, storage technologies and links in the power sector. It furthermore applies it to the space and water heating sector (e.g., the share of district heating and reduced space heat demand), industry processes (e.g., steel, direct reduced iron, and aluminum production via primary route), the share of fuel cell and battery electric vehicles in land transport, and the hydrogen share in shipping (see :doc:`supply_demand` for further information).
|
||||
|
||||
The following subjects within the land transport and biomass currently do not evolve with the myopic approach:
|
||||
|
||||
- The percentage of electric vehicles that allow demand-side management and vehicle-to-grid services.
|
||||
|
||||
- The annual biomass potential (default year and scenario for which potential is taken is 2030, defined `here <https://github.com/PyPSA/pypsa-eur-sec/blob/413254e241fb37f55b41caba7264644805ad8e97/config.default.yaml#L109>`_)
|
||||
|
||||
Configuration
|
||||
=================
|
||||
|
||||
PyPSA-Eur-Sec has several configuration options which are collected in a config.yaml file located in the root directory. For myopic optimization, users should copy the provided default configuration ``config.default.yaml`` and make their own modifications and assumptions in the user-specific configuration file (``config.yaml``).
|
||||
|
||||
The following options included in the config.yaml file are relevant for the myopic code.
|
||||
|
||||
To activate the myopic option select ``foresight: 'myopic'`` in ``config.yaml``.
|
||||
|
||||
The {planning_horizons} wildcard indicates the year in which the network is optimized. For a myopic optimization, this is equivalent to the investment year. To set the investment years which are sequentially simulated for the myopic investment planning, select for example:
|
||||
|
||||
planning_horizons:
|
||||
|
||||
\- 2020
|
||||
|
||||
\- 2030
|
||||
|
||||
\- 2040
|
||||
|
||||
\- 2050
|
||||
|
||||
in ``config.yaml``.
|
||||
|
||||
|
||||
**existing capacities**
|
||||
|
||||
Grouping years indicates the bins limits for grouping the existing capacities of different technologies. Note that separate bins are defined for the power and heating plants due to different data sources.
|
||||
|
||||
``grouping_years_power: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020, 2025, 2030]``
|
||||
|
||||
``grouping_years_heat: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019]``
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
**threshold capacity**
|
||||
|
||||
If for a technology, node, and grouping bin, the capacity is lower than threshold_capacity, it is ignored.
|
||||
|
||||
``threshold_capacity: 10``
|
||||
|
||||
|
||||
|
||||
|
||||
**conventional carriers**
|
||||
|
||||
Conventional carriers indicate carriers used in the existing conventional technologies.
|
||||
|
||||
conventional_carriers:
|
||||
|
||||
\- lignite
|
||||
|
||||
\- coal
|
||||
|
||||
\- oil
|
||||
|
||||
\- uranium
|
||||
|
||||
|
||||
|
||||
|
||||
Options
|
||||
=============
|
||||
The total carbon budget for the entire transition path can be indicated in the `sector_opts <https://github.com/PyPSA/pypsa-eur-sec/blob/f13902510010b734c510c38c4cae99356f683058/config.default.yaml#L25>`_ in ``config.yaml``. The carbon budget can be split among the ``planning_horizons`` following an exponential or beta decay.
|
||||
E.g. ``'cb40ex0'`` splits a carbon budget equal to 40 Gt :math:`_{CO_2}` following an exponential decay whose initial linear growth rate r is zero.
|
||||
They can also follow some user-specified path, if defined `here <https://github.com/PyPSA/pypsa-eur-sec/blob/413254e241fb37f55b41caba7264644805ad8e97/config.default.yaml#L56>`_.
|
||||
The paper `Speed of technological transformations required in Europe to achieve different climate goals (2022) <https://doi.org/10.1016/j.joule.2022.04.016>`__ defines CO_2 budgets corresponding to global temperature increases (1.5C – 2C) as response to the emissions. Here, global carbon budgets are converted to European budgets assuming equal-per capita distribution which translates into a 6.43% share for Europe. The carbon budgets are in this paper distributed throughout the transition paths assuming an exponential decay. Emissions e(t) in every year t are limited by
|
||||
|
||||
.. math::
|
||||
e(t) = e_0 (1+ (r+m)t) e^{-mt}
|
||||
|
||||
where r is the initial linear growth rate, which here is assumed to be r=0, and the decay parameter m is determined by imposing the integral of the path to be equal to the budget for Europe. Following this approach, the CO_2 budget is defined. Following the same approach as in this paper, add the following to the ``scenario.sector_opts``
|
||||
E.g. ``-cb25.7ex0`` (1.5C increase)
|
||||
Or ``cb73.9ex0`` (2C increase).
|
||||
See details in Supplemental Note S1 `Speed of technological transformations required in Europe to achieve different climate goals (2022) <https://doi.org/10.1016/j.joule.2022.04.016>`__.
|
||||
|
||||
|
||||
General myopic code structure
|
||||
===============================
|
||||
|
||||
The myopic code solves the network for the time steps included in ``planning_horizons`` in a recursive loop, so that:
|
||||
|
||||
1. The existing capacities (those installed before the base year are added as fixed capacities with p_nom=value, p_nom_extendable=False). E.g. for baseyear=2020, capacities installed before 2020 are added. In addition, the network comprises additional generator, storage, and link capacities with p_nom_extendable=True. The non-solved network is saved in ``results/run_name/networks/prenetworks-brownfield``.
|
||||
The base year is the first element in ``planning_horizons``. Step 1 is implemented with the rule add_baseyear for the base year and with the rule add_brownfield for the remaining planning_horizons.
|
||||
|
||||
2. The 2020 network is optimized. The solved network is saved in ``results/run_name/networks/postnetworks``
|
||||
|
||||
3. For the next planning horizon, e.g. 2030, the capacities from a previous time step are added if they are still in operation (i.e., if they fulfil planning horizon <= commissioned year + lifetime). In addition, the network comprises additional generator, storage, and link capacities with p_nom_extendable=True. The non-solved network is saved in ``results/run_name/networks/prenetworks-brownfield``.
|
||||
|
||||
Steps 2 and 3 are solved recursively for all the planning_horizons included in ``config.yaml``.
|
||||
|
||||
Rule overview
|
||||
===============================
|
||||
|
||||
- rule add_existing baseyear
|
||||
|
||||
The rule add_existing_baseyear loads the network in ‘results/run_name/networks/prenetworks’ and performs the following operations:
|
||||
|
||||
1. Add the conventional, wind and solar power generators that were installed before the base year.
|
||||
|
||||
2. Add the heating capacities that were installed before the base year.
|
||||
|
||||
The existing conventional generators are retrieved from the `powerplants.csv file <https://pypsa-eur.readthedocs.io/en/latest/preparation/build_powerplants.html?highlight=powerplants>`__ generated by pypsa-eur which, in turn, is based on the `powerplantmatching <https://github.com/FRESNA/powerplantmatching>`__ database.
|
||||
|
||||
Existing wind and solar capacities are retrieved from `IRENA annual statistics <https://www.irena.org/Statistics/Download-Data>`__ and distributed among the nodes in a country proportional to capacity factor. (This will be updated to include capacity distributions closer to reality.)
|
||||
|
||||
Existing heating capacities are retrieved from the report `Mapping and analyses of the current and future (2020 - 2030) heating/cooling fuel deployment (fossil/renewables)
|
||||
<https://ec.europa.eu/energy/studies/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment_en?redir=1>`__.
|
||||
|
||||
The heating capacities are assumed to have a lifetime indicated by the parameter lifetime in the configuration file, e.g 25 years. They are assumed to be decommissioned linearly starting on the base year, e.g., from 2020 to 2045.
|
||||
|
||||
Then, the resulting network is saved in ``results/run_name/networks/prenetworks-brownfield``.
|
||||
|
||||
- rule add_brownfield
|
||||
|
||||
The rule add_brownfield loads the network in ``results/run_name/networks/prenetworks`` and performs the following operation:
|
||||
|
||||
1. Read the capacities optimized in the previous time step and add them to the network if they are still in operation (i.e., if they fulfill planning horizon < commissioned year + lifetime)
|
||||
|
||||
Then, the resulting network is saved in ``results/run_name/networks/prenetworks_brownfield``.
|
11
doc/overnight.rst
Normal file
@ -0,0 +1,11 @@
|
||||
.. _overnight:
|
||||
|
||||
##########################################
|
||||
Overnight (greenfield) scenarios
|
||||
##########################################
|
||||
|
||||
The default is to calculate a rebuilding of the energy system to meet demand, a so-called overnight or greenfield approach.
|
||||
|
||||
For this, use ``foresight : 'overnight'`` in ``config.yaml``, like the example in ``config.default.yaml``.
|
||||
|
||||
In this case, the ``planning_horizons : [2030]`` scenario parameter can be set to use the year from which cost and other technology assumptions are set (forecasts for 2030 in this case).
|
9
doc/perfect.rst
Normal file
@ -0,0 +1,9 @@
|
||||
.. _perfect:
|
||||
|
||||
##########################################
|
||||
Perfect foresight scenarios
|
||||
##########################################
|
||||
|
||||
Perfect foresight is currently under development but it is not yet implemented.
|
||||
|
||||
For this, use ``foresight : 'perfect'`` in ``config.yaml``.
|
@ -1,12 +1,16 @@
|
||||
<<<<<<< HEAD
|
||||
..
|
||||
SPDX-FileCopyrightText: 2019-2023 The PyPSA-Eur Authors
|
||||
|
||||
SPDX-License-Identifier: CC-BY-4.0
|
||||
|
||||
=======
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
##########################################
|
||||
Release Notes
|
||||
##########################################
|
||||
|
||||
<<<<<<< HEAD
|
||||
Upcoming Release
|
||||
================
|
||||
|
||||
@ -601,10 +605,578 @@ This is the first release of PyPSA-Eur, a model of the European power system at
|
||||
* Logfiles for all rules of the ``snakemake`` workflow are now written in the folder ``log/`` [`#102 <https://github.com/PyPSA/pypsa-eur/pull/102>`_].
|
||||
|
||||
* The new function ``_helpers.mock_snakemake`` creates a ``snakemake`` object which mimics the actual ``snakemake`` object produced by workflow by parsing the ``Snakefile`` and setting all paths for inputs, outputs, and logs. This allows running all scripts within a (I)python terminal (or just by calling ``python <script-name>``) and thereby facilitates developing and debugging scripts significantly [`#107 <https://github.com/PyPSA/pypsa-eur/pull/107>`_].
|
||||
=======
|
||||
Future release
|
||||
==============
|
||||
|
||||
.. note::
|
||||
This unreleased version currently may require the master branches of PyPSA, PyPSA-Eur, and the technology-data repository.
|
||||
|
||||
* new feature
|
||||
|
||||
|
||||
PyPSA-Eur-Sec 0.7.0 (16th February 2023)
|
||||
========================================
|
||||
|
||||
This release includes many new features. Highlights include new gas
|
||||
infrastructure data with retrofitting options for hydrogen transport, improved
|
||||
carbon management and infrastructure planning, regionalised potentials for
|
||||
hydrogen underground storage and carbon sequestration, new applications for
|
||||
biomass, and explicit modelling of methanol and ammonia as separate energy
|
||||
carriers.
|
||||
|
||||
This release is known to work with `PyPSA-Eur
|
||||
<https://github.com/PyPSA/pypsa-eur>`_ Version 0.7.0 and `Technology Data
|
||||
<https://github.com/PyPSA/technology-data>`_ Version 0.5.0.
|
||||
|
||||
**Gas Transmission Network**
|
||||
|
||||
* New rule ``retrieve_gas_infrastructure_data`` that downloads and extracts the
|
||||
SciGRID_gas `IGGIELGN <https://zenodo.org/record/4767098>`_ dataset from
|
||||
zenodo. It includes data on the transmission routes, pipe diameters,
|
||||
capacities, pressure, and whether the pipeline is bidirectional and carries
|
||||
H-Gas or L-Gas.
|
||||
|
||||
* New rule ``build_gas_network`` processes and cleans the pipeline data from
|
||||
SciGRID_gas. Missing or uncertain pipeline capacities can be inferred by
|
||||
diameter.
|
||||
|
||||
* New rule ``build_gas_input_locations`` compiles the LNG import capacities
|
||||
(from the Global Energy Monitor's `Europe Gas Tracker
|
||||
<https://globalenergymonitor.org/projects/europe-gas-tracker/>`_, pipeline
|
||||
entry capacities and local production capacities for each region of the model.
|
||||
These are the regions where fossil gas can eventually enter the model.
|
||||
|
||||
* New rule ``cluster_gas_network`` that clusters the gas transmission network
|
||||
data to the model resolution. Cross-regional pipeline capacities are
|
||||
aggregated (while pressure and diameter compatibility is ignored),
|
||||
intra-regional pipelines are dropped. Lengths are recalculated based on the
|
||||
regions' centroids.
|
||||
|
||||
* With the option ``sector: gas_network:``, the existing gas network is added
|
||||
with a lossless transport model. A length-weighted `k-edge augmentation
|
||||
algorithm
|
||||
<https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation>`_
|
||||
can be run to add new candidate gas pipelines such that all regions of the
|
||||
model can be connected to the gas network. The number of candidates can be
|
||||
controlled via the setting ``sector: gas_network_connectivity_upgrade:``. When
|
||||
the gas network is activated, all the gas demands are regionally disaggregated
|
||||
as well.
|
||||
|
||||
* New constraint allows endogenous retrofitting of gas pipelines to hydrogen
|
||||
pipelines. This option is activated via the setting ``sector: H2_retrofit:``.
|
||||
For every unit of gas pipeline capacity dismantled, ``sector:
|
||||
H2_retrofit_capacity_per_CH4`` units are made available as hydrogen pipeline
|
||||
capacity in the corresponding corridor. These repurposed hydrogen pipelines
|
||||
have lower costs than new hydrogen pipelines. Both new and repurposed
|
||||
pipelines can be built simultaneously. The retrofitting option ``sector:
|
||||
H2_retrofit:`` also works with a copperplated methane infrastructure, i.e.
|
||||
when ``sector: gas_network: false``.
|
||||
|
||||
* New hydrogen pipelines can now be built where there are already power or gas
|
||||
transmission routes. Previously, only the electricity transmission routes were
|
||||
considered.
|
||||
|
||||
**Carbon Management and Biomass**
|
||||
|
||||
* Add option to spatially resolve carrier representing stored carbon dioxide
|
||||
(``co2_spatial``). This allows for more detailed modelling of CCUTS, e.g.
|
||||
regarding the capturing of industrial process emissions, usage as feedstock
|
||||
for electrofuels, transport of carbon dioxide, and geological sequestration
|
||||
sites.
|
||||
|
||||
* Add option for regionally-resolved geological carbon dioxide sequestration
|
||||
potentials through new rule ``build_sequestration_potentials`` based on
|
||||
`CO2StoP <https://setis.ec.europa.eu/european-co2-storage-database_en>`_. This
|
||||
can be controlled in the section ``regional_co2_sequestration_potential`` of
|
||||
the ``config.yaml``. It includes options to select the level of conservatism,
|
||||
whether onshore potentials should be included, the respective upper and lower
|
||||
limits per region, and an annualisation parameter for the cumulative
|
||||
potential. The defaults are preliminary and will be validated the next
|
||||
release.
|
||||
|
||||
* Add option to sweep the global CO2 sequestration potentials with keyword
|
||||
``seq200`` in the ``{sector_opts}`` wildcard (for limit of 200 Mt CO2).
|
||||
|
||||
* Add option to include `Allam cycle gas power plants
|
||||
<https://en.wikipedia.org/wiki/Allam_power_cycle>`_ (``allam_cycle``).
|
||||
|
||||
* Add option for planning a new carbon dioxide network (``co2network``).
|
||||
|
||||
* Separate option to regionally resolve biomass (``biomass_spatial``) from
|
||||
option to allow biomass transport (``biomass_transport``).
|
||||
|
||||
* Add option for biomass boilers (wood pellets) for decentral heating.
|
||||
|
||||
* Add option for BioSNG (methane from biomass) with and without carbon capture.
|
||||
|
||||
* Add option for BtL (biomass to liquid fuel/oil) with and without carbon
|
||||
capture.
|
||||
|
||||
|
||||
**Other new features**
|
||||
|
||||
* Add regionalised hydrogen salt cavern storage potentials from `Technical
|
||||
Potential of Salt Caverns for Hydrogen Storage in Europe
|
||||
<https://doi.org/10.20944/preprints201910.0187.v1>`_. This data is compiled in
|
||||
a new rule ``build_salt_cavern_potentials``.
|
||||
|
||||
* Add option to resolve ammonia as separate energy carrier with Haber-Bosch
|
||||
synthesis, ammonia cracking, storage and industrial demand. The ammonia
|
||||
carrier can be nodally resolved or copperplated across Europe (see
|
||||
``ammonia``).
|
||||
|
||||
* Add methanol as energy carrier, methanolisation as process, and option for
|
||||
methanol demand in shipping sector.
|
||||
|
||||
* Shipping demand now defaults to methanol rather than liquefied hydrogen
|
||||
until 2050.
|
||||
|
||||
* Demand for liquid hydrogen in international shipping is now geographically
|
||||
distributed by port trade volumes in a new rule ``build_shipping_demand``
|
||||
using data from the `World Bank Data Catalogue
|
||||
<https://datacatalog.worldbank.org/search/dataset/0038118/Global---International-Ports>`_.
|
||||
Domestic shipping remains distributed by population.
|
||||
|
||||
* Add option to aggregate network temporally using representative snapshots or
|
||||
segments (with `tsam <https://github.com/FZJ-IEK3-VSA/tsam>`_).
|
||||
|
||||
* Add option for minimum part load for Fischer-Tropsch plants (default: 90%) and
|
||||
methanolisation plants (default: 50%).
|
||||
|
||||
* Add option to use waste heat of electrolysis in district heating networks
|
||||
(``use_electrolysis_waste_heat``).
|
||||
|
||||
* Add option for coal CHPs with carbon capture (see ``coal_cc``).
|
||||
|
||||
* In overnight optimisation, it is now possible to specify a year for the
|
||||
technology cost projections separate from the planning horizon.
|
||||
|
||||
* New config options for changing energy demands in aviation
|
||||
(``aviation_demand_factor``) and HVC industry (``HVC_demand_factor``), as well
|
||||
as explicit ICE shares for land transport (``land_transport_ice_share``) and
|
||||
agriculture machinery (``agriculture_machinery_oil_share``).
|
||||
|
||||
* It is now possible to merge residential and services heat buses to reduce the
|
||||
problem size (see ``cluster_heat_nodes``).
|
||||
|
||||
* Added option to tweak (almost) any configuration parameter through the
|
||||
``{sector_opts}`` wildcard. The regional_co2_sequestration_potential is
|
||||
triggered by the prefix ``CF+`` after which it is possible to pipe to any
|
||||
setting that does not contain underscores (``_``). Example:
|
||||
``CF+sector+v2g+false`` disables vehicle-to-grid flexibility.
|
||||
|
||||
* Option ``retrieve_sector_databundle`` to automatically retrieve and extract
|
||||
data bundle.
|
||||
|
||||
* Removed the need to clone ``technology-data`` repository in a parallel
|
||||
directory. The new approach automatically retrieves the technology data from
|
||||
remote in the rule ``retrieve_cost_data``.
|
||||
|
||||
* Improved network plots including better legends, hydrogen retrofitting network
|
||||
display, and change to EqualEarth projection. A new color scheme for
|
||||
technologies was also introduced.
|
||||
|
||||
* Add two new rules ``build_transport_demand`` and
|
||||
``build_population_weighted_energy_totals`` using code previously contained in
|
||||
``prepare_sector_network``.
|
||||
|
||||
* Rules that convert weather data with ``atlite`` now largely run separately for
|
||||
categories residential, rural and total.
|
||||
|
||||
* Units are assigned to the buses. These only provide a better understanding.
|
||||
The specifications of the units are not taken into account in the
|
||||
optimisation, which means that no automatic conversion of units takes place.
|
||||
|
||||
* Configuration file and wildcards are now stored under ``n.meta`` in every
|
||||
PyPSA network.
|
||||
|
||||
* Updated `data bundle
|
||||
<https://zenodo.org/record/5824485/files/pypsa-eur-sec-data-bundle.tar.gz>`_
|
||||
that includes the hydrogan salt cavern storage potentials.
|
||||
|
||||
* Updated and extended documentation in
|
||||
<https://pypsa-eur-sec.readthedocs.io/en/latest/>
|
||||
|
||||
* Added new rule ``copy_conda_env`` that exports a list of packages with which
|
||||
the workflow was executed.
|
||||
|
||||
* Add basic continuous integration using Github Actions.
|
||||
|
||||
* Add basic ``rsync`` setup.
|
||||
|
||||
**Bugfixes**
|
||||
|
||||
* The CO2 sequestration limit implemented as GlobalConstraint (introduced in the
|
||||
previous version) caused a failure to read in the shadow prices of other
|
||||
global constraints.
|
||||
|
||||
* Correct capital cost of Fischer-Tropsch according to new units in
|
||||
``technology-data`` repository.
|
||||
|
||||
* Fix unit conversion error for thermal energy storage.
|
||||
|
||||
* For myopic pathway optimisation, set optimised capacities of power grid
|
||||
expansion of previous iteration as minimum capacity for next iteration.
|
||||
|
||||
* Further rather minor bugfixes for myopic optimisation code (see `#256
|
||||
<https://github.com/PyPSA/pypsa-eur-sec/pull/256>`_).
|
||||
|
||||
|
||||
Many thanks to all who contributed to this release!
|
||||
|
||||
|
||||
PyPSA-Eur-Sec 0.6.0 (4 October 2021)
|
||||
====================================
|
||||
|
||||
This release includes
|
||||
improvements regarding the basic chemical production,
|
||||
the addition of plastics recycling,
|
||||
the addition of the agriculture, forestry and fishing sector,
|
||||
more regionally resolved biomass potentials,
|
||||
CO2 pipeline transport and storage, and
|
||||
more options in setting exogenous transition paths,
|
||||
besides many performance improvements.
|
||||
|
||||
This release is known to work with `PyPSA-Eur
|
||||
<https://github.com/PyPSA/pypsa-eur>`_ Version 0.4.0, `Technology Data
|
||||
<https://github.com/PyPSA/technology-data>`_ Version 0.3.0 and
|
||||
`PyPSA <https://github.com/PyPSA/PyPSA>`_ Version 0.18.0.
|
||||
|
||||
Please note that the data bundle has also been updated.
|
||||
|
||||
|
||||
**General**
|
||||
|
||||
* With this release, we change the license from copyleft GPLv3 to the more
|
||||
liberal MIT license with the consent of all contributors.
|
||||
|
||||
|
||||
**New features and functionality**
|
||||
|
||||
* Distinguish costs for home battery storage and inverter from utility-scale
|
||||
battery costs.
|
||||
|
||||
* Separate basic chemicals into HVC (high-value chemicals), chlorine, methanol and ammonia
|
||||
[`#166 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/166>`_].
|
||||
|
||||
* Add option to specify reuse, primary production, and mechanical and chemical
|
||||
recycling fraction of platics
|
||||
[`#166 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/166>`_].
|
||||
|
||||
* Include energy demands and CO2 emissions for the agriculture, forestry and fishing sector.
|
||||
It is included by default through the option ``A`` in the ``sector_opts`` wildcard.
|
||||
Part of the emissions (1.A.4.c) was previously assigned to "industry non-elec" in the ``co2_totals.csv``.
|
||||
Hence, excluding the agriculture sector will now lead to a tighter CO2 limit.
|
||||
Energy demands are taken from the JRC IDEES database (missing countries filled with eurostat data)
|
||||
and are split into
|
||||
electricity (lighting, ventilation, specific electricity uses, pumping devices (electric)),
|
||||
heat (specific heat uses, low enthalpy heat)
|
||||
machinery oil (motor drives, farming machine drives, pumping devices (diesel)).
|
||||
Heat demand is assigned at "services rural heat" buses.
|
||||
Electricity demands are added to low-voltage buses.
|
||||
Time series for demands are constant and distributed inside countries by population
|
||||
[`#147 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/147>`_].
|
||||
|
||||
* Include today's district heating shares in myopic optimisation and add option
|
||||
to specify exogenous path for district heating share increase under ``sector:
|
||||
district_heating:`` [`#149 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/149>`_].
|
||||
|
||||
* Added option for hydrogen liquefaction costs for hydrogen demand in shipping.
|
||||
This introduces a new ``H2 liquid`` bus at each location. It is activated via
|
||||
``sector: shipping_hydrogen_liquefaction: true``.
|
||||
|
||||
* The share of shipping transformed into hydrogen fuel cell can be now defined
|
||||
for different years in the ``config.yaml`` file. The carbon emission from the
|
||||
remaining share is treated as a negative load on the atmospheric carbon dioxide
|
||||
bus, just like aviation and land transport emissions.
|
||||
|
||||
* The transformation of the Steel and Aluminium production can be now defined
|
||||
for different years in the ``config.yaml`` file.
|
||||
|
||||
* Include the option to alter the maximum energy capacity of a store via the
|
||||
``carrier+factor`` in the ``{sector_opts}`` wildcard. This can be useful for
|
||||
sensitivity analyses. Example: ``co2 stored+e2`` multiplies the ``e_nom_max`` by
|
||||
factor 2. In this example, ``e_nom_max`` represents the CO2 sequestration
|
||||
potential in Europe.
|
||||
|
||||
* Use `JRC ENSPRESO database <https://data.jrc.ec.europa.eu/dataset/74ed5a04-7d74-4807-9eab-b94774309d9f>`_ to
|
||||
spatially disaggregate biomass potentials to PyPSA-Eur regions based on
|
||||
overlaps with NUTS2 regions from ENSPRESO (proportional to area) (`#151
|
||||
<https://github.com/PyPSA/pypsa-eur-sec/pull/151>`_).
|
||||
|
||||
* Add option to regionally disaggregate biomass potential to individual nodes
|
||||
(previously given per country, then distributed by population density within)
|
||||
and allow the transport of solid biomass. The transport costs are determined
|
||||
based on the `JRC-EU-Times Bioenergy report
|
||||
<http://dx.doi.org/10.2790/01017>`_ in the new optional rule
|
||||
``build_biomass_transport_costs``. Biomass transport can be activated with the
|
||||
setting ``sector: biomass_transport: true``.
|
||||
|
||||
* Add option to regionally resolve CO2 storage and add CO2 pipeline transport
|
||||
because geological storage potential,
|
||||
CO2 utilisation sites and CO2 capture sites may be separated. The CO2 network
|
||||
is built from zero based on the topology of the electricity grid (greenfield).
|
||||
Pipelines are assumed to be bidirectional and lossless. Furthermore, neither
|
||||
retrofitting of natural gas pipelines (required pressures are too high, 80-160
|
||||
bar vs <80 bar) nor other modes of CO2 transport (by ship, road or rail) are
|
||||
considered. The regional representation of CO2 is activated with the config
|
||||
setting ``sector: co2_network: true`` but is deactivated by default. The
|
||||
global limit for CO2 sequestration now applies to the sum of all CO2 stores
|
||||
via an ``extra_functionality`` constraint.
|
||||
|
||||
* The myopic option can now be used together with different clustering for the
|
||||
generators and the network. The existing renewable capacities are split evenly
|
||||
among the regions in every country [`#144 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/144>`_].
|
||||
|
||||
* Add optional function to use ``geopy`` to locate entries of the Hotmaps
|
||||
database of industrial sites with missing location based on city and country,
|
||||
which reduces missing entries by half. It can be activated by setting
|
||||
``industry: hotmaps_locate_missing: true``, takes a few minutes longer, and
|
||||
should only be used if spatial resolution is coarser than city level.
|
||||
|
||||
|
||||
**Performance and Structure**
|
||||
|
||||
* Extended use of ``multiprocessing`` for much better performance
|
||||
(from up to 20 minutes to less than one minute).
|
||||
|
||||
* Handle most input files (or base directories) via ``snakemake.input``.
|
||||
|
||||
* Use of ``mock_snakemake`` from PyPSA-Eur.
|
||||
|
||||
* Update ``solve_network`` rule to match implementation in PyPSA-Eur by using
|
||||
``n.ilopf()`` and remove outdated code using ``pyomo``.
|
||||
Allows the new setting to skip iterated impedance updates with ``solving:
|
||||
options: skip_iterations: true``.
|
||||
|
||||
* The component attributes that are to be overridden are now stored in the folder
|
||||
``data/override_component_attrs`` analogous to ``pypsa/component_attrs``.
|
||||
This reduces verbosity and also allows circumventing the ``n.madd()`` hack
|
||||
for individual components with non-default attributes.
|
||||
This data is also tracked in the Snakefile.
|
||||
A function ``helper.override_component_attrs`` was added that loads this data
|
||||
and can pass the overridden component attributes into ``pypsa.Network()``.
|
||||
|
||||
* Add various parameters to ``config.default.yaml`` which were previously hardcoded inside the scripts
|
||||
(e.g. energy reference years, BEV settings, solar thermal collector models, geomap colours).
|
||||
|
||||
* Removed stale industry demand rules ``build_industrial_energy_demand_per_country``
|
||||
and ``build_industrial_demand``. These are superseded with more regionally resolved rules.
|
||||
|
||||
* Use simpler and shorter ``gdf.sjoin()`` function to allocate industrial sites
|
||||
from the Hotmaps database to onshore regions.
|
||||
This change also fixes a bug:
|
||||
The previous version allocated sites to the closest bus,
|
||||
but at country borders (where Voronoi cells are distorted by the borders),
|
||||
this had resulted in e.g. a Spanish site close to the French border
|
||||
being wrongly allocated to the French bus if the bus center was closer.
|
||||
|
||||
* Retrofitting rule is now only triggered if endogeneously optimised.
|
||||
|
||||
* Show progress in build rules with ``tqdm`` progress bars.
|
||||
|
||||
* Reduced verbosity of ``Snakefile`` through directory prefixes.
|
||||
|
||||
* Improve legibility of ``config.default.yaml`` and remove unused options.
|
||||
|
||||
* Use the country-specific time zone mappings from ``pytz`` rather than a manual mapping.
|
||||
|
||||
* A function ``add_carrier_buses()`` was added to the ``prepare_network`` rule to reduce code duplication.
|
||||
|
||||
* In the ``prepare_network`` rule the cost and potential adjustment was moved into an
|
||||
own function ``maybe_adjust_costs_and_potentials()``.
|
||||
|
||||
* Use ``matplotlibrc`` to set the default plotting style and backend.
|
||||
|
||||
* Added benchmark files for each rule.
|
||||
|
||||
* Consistent use of ``__main__`` block and further unspecific code cleaning.
|
||||
|
||||
* Updated data bundle and moved data bundle to zenodo.org (`10.5281/zenodo.5546517 <https://doi.org/10.5281/zenodo.5546517>`_).
|
||||
|
||||
|
||||
**Bugfixes and Compatibility**
|
||||
|
||||
* Compatibility with ``atlite>=0.2``. Older versions of ``atlite`` will no longer work.
|
||||
|
||||
* Corrected calculation of "gas for industry" carbon capture efficiency.
|
||||
|
||||
* Implemented changes to ``n.snapshot_weightings`` in PyPSA v0.18.0.
|
||||
|
||||
* Compatibility with ``xarray`` version 0.19.
|
||||
|
||||
* New dependencies: ``tqdm``, ``atlite>=0.2.4``, ``pytz`` and ``geopy`` (optional).
|
||||
These are included in the environment specifications of PyPSA-Eur v0.4.0.
|
||||
|
||||
Many thanks to all who contributed to this release!
|
||||
|
||||
|
||||
PyPSA-Eur-Sec 0.5.0 (21st May 2021)
|
||||
===================================
|
||||
|
||||
This release includes improvements to the cost database for building retrofits, carbon budget management and wildcard settings, as well as an important bugfix for the emissions from land transport.
|
||||
|
||||
This release is known to work with `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_ Version 0.3.0 and `Technology Data <https://github.com/PyPSA/technology-data>`_ Version 0.2.0.
|
||||
|
||||
Please note that the data bundle has also been updated.
|
||||
|
||||
New features and bugfixes:
|
||||
|
||||
* The cost database for retrofitting of the thermal envelope of buildings has been updated. Now, for calculating the space heat savings of a building, losses by thermal bridges and ventilation are included as well as heat gains (internal and by solar radiation). See the section :ref:`retro` for more details on the retrofitting module.
|
||||
* For the myopic investment option, a carbon budget and a type of decay (exponential or beta) can be selected in the ``config.yaml`` file to distribute the budget across the ``planning_horizons``. For example, ``cb40ex0`` in the ``{sector_opts}`` wildcard will distribute a carbon budget of 40 GtCO2 following an exponential decay with initial growth rate 0.
|
||||
* Added an option to alter the capital cost or maximum capacity of carriers by a factor via ``carrier+factor`` in the ``{sector_opts}`` wildcard. This can be useful for exploring uncertain cost parameters. Example: ``solar+c0.5`` reduces the ``capital_cost`` of solar to 50\% of original values. Similarly ``solar+p3`` multiplies the ``p_nom_max`` by 3.
|
||||
* Rename the bus for European liquid hydrocarbons from ``Fischer-Tropsch`` to ``EU oil``, since it can be supplied not just with the Fischer-Tropsch process, but also with fossil oil.
|
||||
* Bugfix: The new separation of land transport by carrier in Version 0.4.0 failed to account for the carbon dioxide emissions from internal combustion engines in land transport. This is now treated as a negative load on the atmospheric carbon dioxide bus, just like aviation emissions.
|
||||
* Bugfix: Fix reading in of ``pypsa-eur/resources/powerplants.csv`` to PyPSA-Eur Version 0.3.0 (use column attribute name ``DateIn`` instead of old ``YearDecommissioned``).
|
||||
* Bugfix: Make sure that ``Store`` components (battery and H2) are also removed from PyPSA-Eur, so they can be added later by PyPSA-Eur-Sec.
|
||||
|
||||
Thanks to Lisa Zeyen (KIT) for the retrofitting improvements and Marta Victoria (Aarhus University) for the carbon budget and wildcard management.
|
||||
|
||||
PyPSA-Eur-Sec 0.4.0 (11th December 2020)
|
||||
=========================================
|
||||
|
||||
This release includes a more accurate nodal disaggregation of industry demand within each country, fixes to CHP and CCS representations, as well as changes to some configuration settings.
|
||||
|
||||
It has been released to coincide with `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_ Version 0.3.0 and `Technology Data <https://github.com/PyPSA/technology-data>`_ Version 0.2.0, and is known to work with these releases.
|
||||
|
||||
New features:
|
||||
|
||||
* The `Hotmaps Industrial Database <https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database>`_ is used to disaggregate the industrial demand spatially to the nodes inside each country (previously it was distributed by population density).
|
||||
* Electricity demand from industry is now separated from the regular electricity demand and distributed according to the industry demand. Only the remaining regular electricity demand for households and services is distributed according to GDP and population.
|
||||
* A cost database for the retrofitting of the thermal envelope of residential and services buildings has been integrated, as well as endogenous optimisation of the level of retrofitting. This is described in the paper `Mitigating heat demand peaks in buildings in a highly renewable European energy system <https://arxiv.org/abs/2012.01831>`_. Retrofitting can be activated both exogenously and endogenously from the ``config.yaml``.
|
||||
* The biomass and gas combined heat and power (CHP) parameters ``c_v`` and ``c_b`` were read in assuming they were extraction plants rather than back pressure plants. The data is now corrected in `Technology Data <https://github.com/PyPSA/technology-data>`_ Version 0.2.0 to the correct DEA back pressure assumptions and they are now implemented as single links with a fixed ratio of electricity to heat output (even as extraction plants, they were always sitting on the backpressure line in simulations, so there was no point in modelling the full heat-electricity feasibility polygon). The old assumptions underestimated the heat output.
|
||||
* The Danish Energy Agency released `new assumptions for carbon capture <https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-industrial-process-heat-and>`_ in October 2020, which have now been incorporated in PyPSA-Eur-Sec, including direct air capture (DAC) and post-combustion capture on CHPs, cement kilns and other industrial facilities. The electricity and heat demand for DAC is modelled for each node (with heat coming from district heating), but currently the electricity and heat demand for industrial capture is not modelled very cleanly (for process heat, 10% of the energy is assumed to go to carbon capture) - a new issue will be opened on this.
|
||||
* Land transport is separated by energy carrier (fossil, hydrogen fuel cell electric vehicle, and electric vehicle), but still needs to be separated into heavy and light vehicles (the data is there, just not the code yet).
|
||||
* For assumptions that change with the investment year, there is a new time-dependent format in the ``config.yaml`` using a dictionary with keys for each year. Implemented examples include the CO2 budget, exogenous retrofitting share and land transport energy carrier; more parameters will be dynamised like this in future.
|
||||
* Some assumptions have been moved out of the code and into the ``config.yaml``, including the carbon sequestration potential and cost, the heat pump sink temperature, reductions in demand for high value chemicals, and some BEV DSM parameters and transport efficiencies.
|
||||
* Documentation on :doc:`supply_demand` options has been added.
|
||||
|
||||
Many thanks to Fraunhofer ISI for opening the hotmaps database and to Lisa Zeyen (KIT) for implementing the building retrofitting.
|
||||
|
||||
|
||||
PyPSA-Eur-Sec 0.3.0 (27th September 2020)
|
||||
=========================================
|
||||
|
||||
This releases focuses on improvements to industry demand and the generation of intermediate files for demand for basic materials. There are still inconsistencies with CCS and waste management that need to be improved.
|
||||
|
||||
It is known to work with PyPSA-Eur v0.1.0 (commit bb3477cd69), PyPSA v0.17.1 and technology-data v0.1.0. Please note that the data bundle has also been updated.
|
||||
|
||||
|
||||
New features:
|
||||
|
||||
* In previous version of PyPSA-Eur-Sec the energy demand for industry was calculated directly for each location. Now, instead, the production of each material (steel, cement, aluminium) at each location is calculated as an intermediate data file, before the energy demand is calculated from it. This allows us in future to have competing industrial processes for supplying the same material demand.
|
||||
* The script ``build_industrial_production_per_country_tomorrow.py`` determines the future industrial production of materials based on today's levels as well as assumed recycling and demand change measures.
|
||||
* The energy demand for each industry sector and each location in 2015 is also calculated, so that it can be later incorporated in the pathway optimization.
|
||||
* Ammonia production data is taken from the USGS and deducted from JRC-IDEES's "basic chemicals" so that it ammonia can be handled separately from the others (olefins, aromatics and chlorine).
|
||||
* Solid biomass is no longer allowed to be used for process heat in cement and basic chemicals, since the wastes and residues cannot be guaranteed to reach the high temperatures required. Instead, solid biomass is used in the paper and pulp as well as food, beverages and tobacco industries, where required temperatures are lower (see `DOI:10.1002/er.3436 <https://doi.org/10.1002/er.3436>`_ and `DOI:10.1007/s12053-017-9571-y <https://doi.org/10.1007/s12053-017-9571-y>`_).
|
||||
* National installable potentials for salt caverns are now applied.
|
||||
* When electricity distribution grids are activated, new industry electricity demand, resistive heaters and micro-CHPs are now connected to the lower voltage levels.
|
||||
* Gas distribution grid costs are included for gas boilers and micro-CHPs.
|
||||
* Installable potentials for rooftop PV are included with an assumption of 1 kWp per person.
|
||||
* Some intermediate files produced by scripts have been moved from the folder ``data`` to the folder ``resources``. Now ``data`` only includes input data, while ``resources`` only includes intermediate files necessary for building the network models. Please note that the data bundle has also been updated.
|
||||
* Biomass potentials for different years and scenarios from the JRC are generated in an intermediate file, so that a selection can be made more explicitly by specifying the biomass types from the ``config.yaml``.
|
||||
|
||||
|
||||
PyPSA-Eur-Sec 0.2.0 (21st August 2020)
|
||||
======================================
|
||||
|
||||
This release introduces pathway optimization over many years (e.g. 2020, 2030, 2040, 2050) with myopic foresight, as well as outsourcing the technology assumptions to the `technology-data <https://github.com/PyPSA/technology-data>`_ repository.
|
||||
|
||||
It is known to work with PyPSA-Eur v0.1.0 (commit bb3477cd69), PyPSA v0.17.1 and technology-data v0.1.0.
|
||||
|
||||
New features:
|
||||
|
||||
* Option for pathway optimization with myopic foresight, based on the paper `Early decarbonisation of the European Energy system pays off (2020) <https://arxiv.org/abs/2004.11009>`_. Investments are optimized sequentially for multiple years (e.g. 2020, 2030, 2040, 2050) taking account of existing assets built in previous years and their lifetimes. The script uses data on the existing assets for electricity and building heating technologies, but there are no assumptions yet for existing transport and industry (if you include these, the model will greenfield them). There are also some `outstanding issues <https://github.com/PyPSA/pypsa-eur-sec/issues/19#issuecomment-678194802>`_ on e.g. the distribution of existing wind, solar and heating technologies within each country. To use myopic foresight, set ``foresight : 'myopic'`` in the ``config.yaml`` instead of the default ``foresight : 'overnight'``. An example configuration can be found in ``config.myopic.yaml``. More details on the implementation can be found in :doc:`myopic`.
|
||||
|
||||
* Technology assumptions (costs, efficiencies, etc.) are no longer stored in the repository. Instead, you have to install the `technology-data <https://github.com/PyPSA/technology-data>`_ database in a parallel directory. These assumptions are largely based on the `Danish Energy Agency Technology Data <https://ens.dk/en/our-services/projections-and-models/technology-data>`_. More details on the installation can be found in :doc:`installation`.
|
||||
|
||||
* Logs and benchmarks are now stored with the other model outputs in ``results/run-name/``.
|
||||
|
||||
* All buses now have a ``location`` attribute, e.g. bus ``DE0 3 urban central heat`` has a ``location`` of ``DE0 3``.
|
||||
|
||||
* All assets have a ``lifetime`` attribute (integer in years). For the myopic foresight, a ``build_year`` attribute is also stored.
|
||||
|
||||
* Costs for solar and onshore and offshore wind are recalculated by PyPSA-Eur-Sec based on the investment year, including the AC or DC connection costs for offshore wind.
|
||||
|
||||
Many thanks to Marta Victoria for implementing the myopic foresight, and Marta Victoria, Kun Zhu and Lisa Zeyen for developing the technology assumptions database.
|
||||
|
||||
|
||||
PyPSA-Eur-Sec 0.1.0 (8th July 2020)
|
||||
===================================
|
||||
|
||||
This is the first proper release of PyPSA-Eur-Sec, a model of the European energy system at the transmission network level that covers the full ENTSO-E area.
|
||||
|
||||
It is known to work with PyPSA-Eur v0.1.0 (commit bb3477cd69) and PyPSA v0.17.0.
|
||||
|
||||
We are making this release since in version 0.2.0 we will introduce changes to allow myopic investment planning that will require minor changes for users of the overnight investment planning.
|
||||
|
||||
PyPSA-Eur-Sec builds on the electricity generation and transmission
|
||||
model `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_ to add demand
|
||||
and supply for the following sectors: transport, space and water
|
||||
heating, biomass, industry and industrial feedstocks. This completes
|
||||
the energy system and includes all greenhouse gas emitters except
|
||||
waste management, agriculture, forestry and land use.
|
||||
|
||||
PyPSA-Eur-Sec was initially based on the model PyPSA-Eur-Sec-30 (Version 0.0.1 below) described
|
||||
in the paper `Synergies of sector coupling and transmission
|
||||
reinforcement in a cost-optimised, highly renewable European energy
|
||||
system <https://arxiv.org/abs/1801.05290>`_ (2018) but it differs by
|
||||
being based on the higher resolution electricity transmission model
|
||||
`PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_ rather than a
|
||||
one-node-per-country model, and by including biomass, industry,
|
||||
industrial feedstocks, aviation, shipping, better carbon management,
|
||||
carbon capture and usage/sequestration, and gas networks.
|
||||
|
||||
|
||||
PyPSA-Eur-Sec includes PyPSA-Eur as a
|
||||
`snakemake <https://snakemake.readthedocs.io/en/stable/index.html>`_
|
||||
`subworkflow <https://snakemake.readthedocs.io/en/stable/snakefiles/modularization.html#snakefiles-sub-workflows>`_. PyPSA-Eur-Sec
|
||||
uses PyPSA-Eur to build the clustered transmission model along with
|
||||
wind, solar PV and hydroelectricity potentials and time series. Then
|
||||
PyPSA-Eur-Sec adds other conventional generators, storage units and
|
||||
the additional sectors.
|
||||
|
||||
|
||||
|
||||
|
||||
PyPSA-Eur-Sec 0.0.2 (4th September 2020)
|
||||
========================================
|
||||
|
||||
This version, also called PyPSA-Eur-Sec-30-Path, built on
|
||||
PyPSA-Eur-Sec 0.0.1 (also called PyPSA-Eur-Sec-30) to include myopic
|
||||
pathway optimisation for the paper `Early decarbonisation of the
|
||||
European energy system pays off <https://arxiv.org/abs/2004.11009>`_
|
||||
(2020). The myopic pathway optimisation was then merged into the main
|
||||
PyPSA-Eur-Sec codebase in Version 0.2.0 above.
|
||||
|
||||
This model has `its own github repository
|
||||
<https://github.com/martavp/pypsa-eur-sec-30-path>`_ and is `archived
|
||||
on Zenodo <https://zenodo.org/record/4014807>`_.
|
||||
|
||||
|
||||
|
||||
PyPSA-Eur-Sec 0.0.1 (12th January 2018)
|
||||
========================================
|
||||
|
||||
This is the first published version of PyPSA-Eur-Sec, also called
|
||||
PyPSA-Eur-Sec-30. It was first used in the research paper `Synergies of
|
||||
sector coupling and transmission reinforcement in a cost-optimised,
|
||||
highly renewable European energy system
|
||||
<https://arxiv.org/abs/1801.05290>`_ (2018). The model covers 30
|
||||
European countries with one node per country. It includes demand and
|
||||
supply for electricity, space and water heating in buildings, and land
|
||||
transport.
|
||||
|
||||
It is `archived on Zenodo <https://zenodo.org/record/1146666>`_.
|
||||
|
||||
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
Release Process
|
||||
===============
|
||||
|
||||
<<<<<<< HEAD
|
||||
* Checkout a new release branch ``git checkout -b release-v0.x.x``.
|
||||
|
||||
* Finalise release notes at ``doc/release_notes.rst``.
|
||||
@ -627,3 +1199,22 @@ Release Process
|
||||
* Upload pre-built networks to `zenodo data repository <https://doi.org/10.5281/zenodo.3601881>`_ with `CC BY 4.0 <https://creativecommons.org/licenses/by/4.0/>`_ license.
|
||||
|
||||
* Send announcement on the `PyPSA and PyPSA-Eur mailing list <https://groups.google.com/forum/#!forum/pypsa>`_.
|
||||
=======
|
||||
* Finalise release notes at ``doc/release_notes.rst``.
|
||||
|
||||
* Update version number in ``doc/conf.py`` and ``*config.*.yaml``.
|
||||
|
||||
* Make a ``git commit``.
|
||||
|
||||
* Tag a release by running ``git tag v0.x.x``, ``git push``, ``git push --tags``. Include release notes in the tag message.
|
||||
|
||||
* Make a `GitHub release <https://github.com/PyPSA/pypsa-eur-sec/releases>`_, which automatically triggers archiving by `zenodo <https://doi.org/10.5281/zenodo.3938042>`_.
|
||||
|
||||
* Send announcement on the `PyPSA mailing list <https://groups.google.com/forum/#!forum/pypsa>`_.
|
||||
|
||||
To make a new release of the data bundle, make an archive of the files in ``data`` which are not already included in the git repository:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
data % tar pczf pypsa-eur-sec-data-bundle.tar.gz eea/UNFCCC_v23.csv switzerland-sfoe biomass eurostat-energy_balances-* jrc-idees-2015 emobility WindWaveWEC_GLTB.xlsx myb1-2017-nitro.xls Industrial_Database.csv retro/tabula-calculator-calcsetbuilding.csv nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson h2_salt_caverns_GWh_per_sqkm.geojson
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
49
doc/spatial_resolution.rst
Normal file
@ -0,0 +1,49 @@
|
||||
.. _spatial_resolution:
|
||||
|
||||
##########################################
|
||||
Spatial resolution
|
||||
##########################################
|
||||
|
||||
The default nodal resolution of the model follows the electricity generation and transmission model `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_, which clusters down the electricity transmission substations in each European country based on the k-means algorithm (See `cluster_network <https://pypsa-eur.readthedocs.io/en/latest/simplification/cluster_network.html#rule-cluster-network>`_ for a complete explanation). This gives nodes which correspond to major load and generation centres (typically cities).
|
||||
|
||||
The total number of nodes for Europe is set in the ``config.yaml`` file under ``clusters``. The number of nodes can vary between 37, the number of independent countries / synchronous areas, and several hundred. With 200-300 nodes the model needs 100-150 GB RAM to solve with a commercial solver like Gurobi.
|
||||
|
||||
Exemplary unsolved network clustered to 512 nodes:
|
||||
|
||||
.. image:: ../graphics/elec_s_512.png
|
||||
|
||||
Exemplary unsolved network clustered to 37 nodes:
|
||||
|
||||
.. image:: ../graphics/elec_s_37.png
|
||||
|
||||
The total number of nodes for Europe is set in the config.yaml file under `clusters <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L20>`_. The number of nodes can vary between 37, the number of independent countries/synchronous areas, and several hundred. With 200-300 nodes, the model needs 100-150 GB RAM to solve with a commercial solver like Gurobi.
|
||||
Not all of the sectors are at the full nodal resolution, and some demand for some sectors is distributed to nodes using heuristics that need to be corrected. Some networks are copper-plated to reduce computational times.
|
||||
|
||||
Here are some examples of how spatial resolution is set for different sectors in PyPSA-Eur-Sec:
|
||||
|
||||
• Electricity network: Modeled as nodal.
|
||||
|
||||
• Electricity residential and commercial demand: Modeled as nodal, distributed in each country based on population and GDP.
|
||||
|
||||
• Electricity distribution network: Not included in the model, but a link per node can be used to represent energy transferred between distribution and transmission levels (explained more in detail below).
|
||||
|
||||
• Residential and commercial building heating demand: Modeled as nodal, distributed in each country based on population.
|
||||
|
||||
• Electricity demand in industry: Modeled as nodal, based on the location of industrial facilities from HotMaps database.
|
||||
|
||||
• Industry demand (heat, chemicals, etc.) : Modeled as nodal, distributed in each country based on locations of industry from HotMaps database.
|
||||
• Hydrogen network: Modeled as nodal (if activated in the `config <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L260>`_ file).
|
||||
|
||||
• Methane network: It can be modeled as a single node for Europe or it can be nodally resolved if activated in the `config <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L266>`_. One node can be considered reasonable since future demand is expected to be low and no bottlenecks are expected. Also, the nodally resolved methane grid is based on SciGRID_gas data.
|
||||
|
||||
• Solid biomass: It can be modeled as a single node for Europe or it can be nodally resolved if activated in the `config <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L270>`_. Nodal modeling includes modeling biomass potential per country (given per country, then distributed by population density within) and the transport of solid biomass between countries.
|
||||
|
||||
• CO2: It can be modeled as a single node for Europe or it can be nodally resolved with CO2 transport pipelines if activated in the `config <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L248>`_. It should mentioned that in single node mode a transport and storage cost is added for sequestered CO2, the cost of which can be adjusted in the `config <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L247>`_.
|
||||
|
||||
• Liquid hydrocarbons: Modeled as a single node for Europe, since transport costs for liquids are low and no bottlenecks are expected.
|
||||
|
||||
**Electricity distribution network**
|
||||
|
||||
Contrary to the transmission grid, the grid topology at the distribution level (at and below 110 kV) is not included due to the very high computational burden. However, a link per node can be used (if activated in the `Config <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L257>`_ file) to represent energy transferred between distribution and transmission levels at every node. In essence, the total energy capacity connecting the transmission grid and the low-voltage level is optimized. The cost assumptions for this link can be adjusted in Config file `options <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L258>`_ , and is currently assumed to be 500 Eur/kW.
|
||||
|
||||
Rooftop PV, heat pumps, resistive heater, home batteries chargers for passenger EVs, as well as individual heating technologies (heat pumps and resistive heaters) are connected to low-voltage level. All the remaining generation and storage technologies are connected to the transmission grid. In practice, this means that the distribution grid capacity is only extended if it is necessary to balance the mismatch between local generation and demand.
|
615
doc/supply_demand.rst
Normal file
@ -0,0 +1,615 @@
|
||||
|
||||
##########################################
|
||||
Supply and demand
|
||||
##########################################
|
||||
|
||||
An initial orientation to the supply and demand options in the model
|
||||
PyPSA-Eur-Sec can be found in the description of the model
|
||||
PyPSA-Eur-Sec-30 in the paper `Synergies of sector coupling and
|
||||
transmission reinforcement in a cost-optimised, highly renewable
|
||||
European energy system <https://arxiv.org/abs/1801.05290>`_ (2018).
|
||||
The latest version of PyPSA-Eur-Sec differs by including biomass,
|
||||
industry, industrial feedstocks, aviation, shipping, better carbon
|
||||
management, carbon capture and usage/sequestration, and gas networks.
|
||||
|
||||
The basic supply (left column) and demand (right column) options in the model are described in this figure:
|
||||
|
||||
.. image:: ../graphics/multisector_figure.png
|
||||
|
||||
.. _Electricity supply and demand:
|
||||
|
||||
Electricity supply and demand
|
||||
=============================
|
||||
|
||||
Electricity supply and demand follows the electricity generation and
|
||||
transmission model `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_,
|
||||
except that hydrogen storage is integrated into the hydrogen supply,
|
||||
demand and network, and PyPSA-Eur-Sec includes CHPs.
|
||||
|
||||
Unlike PyPSA-Eur, PyPSA-Eur-Sec does not distribution electricity demand for industry according to population and GDP, but uses the
|
||||
geographical data from the `Hotmaps Industrial Database
|
||||
<https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database>`_.
|
||||
|
||||
Also unlike PyPSA-Eur, PyPSA-Eur-Sec subtracts existing electrified heating from the existing electricity demand, so that power-to-heat can be optimised separately.
|
||||
|
||||
The remaining electricity demand for households and services is distributed inside each country proportional to GDP and population.
|
||||
|
||||
.. _Heat demand:
|
||||
|
||||
Heat demand
|
||||
===========
|
||||
|
||||
Building heating in residential and services sectors is resolved regionally, both for individual buildings and district heating systems, which include different supply options (see :ref:`heat-supply`.)
|
||||
Annual heat demands per country are retrieved from `JRC-IDEES <https://op.europa.eu/en/publication-detail/-/publication/989282db-ad65-11e7-837e-01aa75ed71a1/language-en>`_ and split into space and water heating. For space heating, the annual demands are converted to daily values based on the population-weighted Heating Degree Day (HDD) using the `atlite tool <https://github.com/PyPSA/atlite>`_, where space heat demand is proportional to the difference between the daily average ambient temperature (read from `ERA5 <https://doi.org/10.1002/qj.3803>`_) and a threshold temperature above which space heat demand is zero. A threshold temperature of 15 °C is assumed by default. The daily space heat demand is distributed to the hours of the day following heat demand profiles from `BDEW <https://github.com/oemof/demandlib>`_. These differ for weekdays and weekends/holidays and between residential and services demand.
|
||||
|
||||
*Space heating*
|
||||
|
||||
The space heating demand can be exogenously reduced by retrofitting measures that improve the buildings’ thermal envelopes.
|
||||
|
||||
.. literalinclude:: ../config.default.yaml
|
||||
:language: yaml
|
||||
:lines: 205
|
||||
|
||||
Co-optimsing of building renovation is also possible, if it is activated in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L222>`_.
|
||||
Renovation of the thermal envelope reduces the space heating demand and is optimised at each node for every heat bus. Renovation measures through additional insulation material and replacement of energy inefficient windows are considered.
|
||||
In a first step, costs per energy savings are estimated in `build_retro_cost.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_retro_cost.py>`_. They depend on the insulation condition of the building stock and costs for renovation of the building elements. In a second step, for those cost per energy savings two possible renovation strengths are determined: a moderate renovation with lower costs, a lower maximum possible space heat savings, and an ambitious renovation with associated higher costs and higher efficiency gains. They are added by step-wise linearisation in form of two additional generations in `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_.
|
||||
Further information are given in the publication :
|
||||
`Mitigating heat demand peaks in buildings in a highly renewable European energy system, (2021) <https://arxiv.org/abs/2012.01831>`_.
|
||||
|
||||
*Water heating*
|
||||
|
||||
Hot water demand is assumed to be constant throughout the year.
|
||||
|
||||
*Urban and rural heating*
|
||||
|
||||
For every country, heat demand is split between low and high population density areas. These country-level totals are then distributed to each region in proportion to their rural and urban populations respectively. Urban areas with dense heat demand can be supplied with large-scale district heating systems. The percentage of urban heat demand that can be supplied by district heating networks as well as lump-sum losses in district heating systems is exogenously determined in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L153>`_.
|
||||
|
||||
*Cooling demand*
|
||||
|
||||
Cooling is electrified and is included in the electricity demand. Cooling demand is assumed to remain at current levels. An example of regional distribution of the total heat demand for network 181 regions is depicted below.
|
||||
|
||||
.. image:: ../graphics/demand-map-heat.png
|
||||
|
||||
As below figure shows, the current total heat demand in Europe is similar to the total electricity demand but features much more pronounced seasonal variations. The current total building heating demand in Europe adds up to 3084 TWh/a of which 78% occurs in urban areas.
|
||||
|
||||
.. image:: ../graphics/Heat_and_el_demand_timeseries.png
|
||||
|
||||
In practice, in PyPSA-Eur-Sec, there are heat demand buses to which the corresponding heat demands are added.
|
||||
|
||||
|
||||
1) Urban central heat: large-scale district heating networks in urban areas with dense heat population. Residential and services demand in these areas are added as demands to this bus
|
||||
2) Residential urban decentral heat: heating for residential buildings in urban areas not using district heating
|
||||
3) Services urban decentral heat: heating for services buildings in urban areas not using district heating
|
||||
4) Residential rural heat: heating for residential buildings in rural areas with low population density.
|
||||
5) Services rural heat: heating for residential services buildings in rural areas with low population density. Heat demand from agriculture sector is also included here.
|
||||
|
||||
.. _heat-supply:
|
||||
|
||||
Heat supply
|
||||
=======================
|
||||
|
||||
Different supply options are available depending on whether demand is met centrally through district heating systems, or decentrally through appliances in individual buildings.
|
||||
|
||||
**Urban central heat**
|
||||
|
||||
For large-scale district heating systems the following options are available: combined heat and power (CHP) plants consuming gas or biomass from waste and residues with and without carbon capture (CC), large-scale air-sourced heat pumps, gas and oil boilers, resistive heaters, and fuel cell CHPs. Additionally, waste heat from the `Fischer-Tropsch <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L255>`_ and `Sabatier <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L240>`_ processes for the production of synthetic hydrocarbons can supply district heating systems. For more detailed explanation of these processes, see :ref:`Oil-based products supply` and :ref:`Methane supply`.
|
||||
|
||||
**Residential and Urban decentral heat**
|
||||
|
||||
Supply options in individual buildings include gas and oil boilers, air- and ground-sourced heat pumps, resistive heaters, and solar thermal collectors.
|
||||
Ground-source heat pumps are only allowed in rural areas because of space constraints. Thus, only air- source heat pumps are allowed in urban areas. This is a conservative assumption, since there are many possible sources of low-temperature heat that could be tapped in cities (e.g. waste water, ground water, or natural bodies of water). Costs, lifetimes and efficiencies for these technologies are retrieved from the `technology-data repository <https://github.com/PyPSA/technology-data>`_.
|
||||
|
||||
Below are more detailed explanations for each heating supply component, all of which are modelled as `links <https://pypsa.readthedocs.io/en/latest/components.html?highlight=distribution#link>`_ in PyPSA-Eur-Sec.
|
||||
|
||||
.. _Large-scale CHP:
|
||||
|
||||
**Large-scale CHP**
|
||||
|
||||
Large Combined Heat and Power plants are included in the model if it is specified in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L235>`_.
|
||||
|
||||
CHPs are based on back pressure plants operating with a fixed ratio of electricity to heat output. The efficiencies of each are given on the back pressure line, where the back pressure coefficient cb is the electricity output divided by the heat output. (For a more complete explanation of the operation of CHPs refer to the study by Dahl et al. : `Cost sensitivity of optimal sector-coupled district heating production systems <https://arxiv.org/pdf/1804.07557.pdf>`_.
|
||||
|
||||
PyPSA-Eur-Sec includes CHP plants fueled by methane and solid biomass from waste and residues. Hydrogen fuel cells also produce both electricity and heat.
|
||||
|
||||
The methane CHP is modeled on the Danish Energy Agency (DEA) “Gas turbine simple cycle (large)” while the solid biomass CHP is based on the DEA’s “09b Wood Pellets Medium”. For biomass CHP, cb = `0.46 <https://ens.dk/sites/ens.dk/files/Statistik/technology_data_catalogue_for_el_and_dh_-_0009.pdf#page=156>`_ , whereas for gas CHP, cb = `1 <https://ens.dk/sites/ens.dk/files/Statistik/technology_data_catalogue_for_el_and_dh_-_0009.pdf#page=64>`_.
|
||||
|
||||
NB: The old PyPSA-Eur-Sec-30 model assumed an extraction plant (like the DEA coal CHP) for gas which has flexible production of heat and electricity within the feasibility diagram of Figure 4 in the study by `Brown et al. <https://arxiv.org/abs/1801.05290>`_ We have switched to the DEA back pressure plants since these are more common for smaller plants for biomass, and because the extraction plants were on the back pressure line for 99.5% of the time anyway. The plants were all changed to back pressure in PyPSA-Eur-Sec v0.4.0.
|
||||
|
||||
**Micro-CHP**
|
||||
|
||||
PyPSA-Eur-Sec allows individual buildings to make use of `micro gas CHPs <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L236>`_ that are assumed to be installed at the distribution grid level.
|
||||
|
||||
**Heat pumps**
|
||||
|
||||
The coefficient of performance (COP) of air- and ground-sourced heat pumps depends on the ambient or soil temperature respectively. Hence, the COP is a time-varying parameter (refer to `Config <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L206>`_ file). Generally, the COP will be lower during winter when temperatures are low. Because the ambient temperature is more volatile than the soil temperature, the COP of ground-sourced heat pumps is less variable. Moreover, the COP depends on the difference between the source and sink temperatures:
|
||||
|
||||
.. math::
|
||||
\Delta T = T_{sink} − T_{source}
|
||||
|
||||
For the sink water temperature Tsink we assume 55 °C [`Config <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L207>`_ file]. For the time- and location-dependent source temperatures Tsource, we rely on the `ERA5 <https://doi.org/10.1002/qj.3803>`_ reanalysis weather data. The temperature differences are converted into COP time series using results from a regression analysis performed in the study by `Stafell et al. <https://pubs.rsc.org/en/content/articlelanding/2012/EE/c2ee22653g>`_. For air-sourced heat pumps (ASHP), we use the function:
|
||||
|
||||
.. math::
|
||||
COP (\Delta T) = 6.81 + 0.121\Delta T + 0.000630\Delta T^2
|
||||
|
||||
for ground-sourced heat pumps (GSHP), we use the function:
|
||||
|
||||
.. math::
|
||||
COP(\Delta T) = 8.77 + 0.150\Delta T + 0.000734\Delta T^2
|
||||
|
||||
**Resistive heaters**
|
||||
|
||||
Can be activated in Config from the `boilers <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L232>`_ option.
|
||||
Resistive heaters produce heat with a fixed conversion efficiency (refer to `Technology-data repository <https://github.com/PyPSA/technology-data>`_ ).
|
||||
|
||||
**Gas, oil, and biomass boilers**
|
||||
|
||||
Can be activated in Config from the `boilers <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L232>`_ , `oil boilers <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L233>`_ , and `biomass boiler <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L234>`_ option.
|
||||
Similar to resistive heaters, boilers have a fixed efficiency and produce heat using gas, oil or biomass.
|
||||
|
||||
**Solar thermal collectors**
|
||||
|
||||
Can be activated in the config file from the `solar_thermal <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L237>`_ option.
|
||||
Solar thermal profiles are built based on weather data and also have the `options <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L134>`_ for setting the sky model and the orientation of the panel in the config file, which are then used by the atlite tool to calculate the solar resource time series.
|
||||
|
||||
**Waste heat from Fuel Cells, Methanation and Fischer-Tropsch plants**
|
||||
|
||||
Waste heat from `fuel cells <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L256>`_ in addition to processes like `Fischer-Tropsch <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L255>`_, methanation, and Direct Air Capture (DAC) is dumped into district heating networks.
|
||||
|
||||
**Existing heating capacities and decommissioning**
|
||||
|
||||
For the myopic transition paths, capacities already existing for technologies supplying heat are retrieved from `“Mapping and analyses of the current and future (2020 - 2030)” <https://ec.europa.eu/energy/en/studies/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment>`_ . For the sake of simplicity, coal, oil and gas boiler capacities are assimilated to gas boilers. Besides that, existing capacities for heat resistors, air-sourced and ground-sourced heat pumps are included in the model. For heating capacities, 25% of existing capacities in 2015 are assumed to be decommissioned in every 5-year time step after 2020.
|
||||
|
||||
**Thermal Energy Storage**
|
||||
|
||||
Activated in Config from the `tes <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L228>`_ option.
|
||||
|
||||
Thermal energy can be stored in large water pits associated with district heating systems and individual thermal energy storage (TES), i.e., small water tanks. Water tanks are modelled as `stores <https://pypsa.readthedocs.io/en/latest/components.html?highlight=distribution#store, which are connected to heat demand buses through water charger/discharger links>`_.
|
||||
A thermal energy density of 46.8 kWh :math:`_{th}`/m3 is assumed, corresponding to a temperature difference of 40 K. The decay of thermal energy in the stores: 1- :math:`e^{-1/24τ}` is assumed to have a time constant of τ=180 days for central TES and τ=3 days for individual TES, both modifiable through `tes_tau <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L229>`_ in config file. Charging and discharging efficiencies are 90% due to pipe losses.
|
||||
|
||||
**Retrofitting of the thermal envelope of buildings**
|
||||
|
||||
Co-optimising building renovation is only enabled if in the `config <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L222>`_ file. To reduce the computational burden,
|
||||
default setting is set as false.
|
||||
|
||||
Renovation of the thermal envelope reduces the space heating demand and is
|
||||
optimised at each node for every heat bus. Renovation measures through additional
|
||||
insulation material and replacement of energy inefficient windows are considered.
|
||||
|
||||
In a first step, costs per energy savings are estimated in the `build_retro_cost.py <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/build_retro_cost.py>`_ script.
|
||||
They depend on the insulation condition of the building stock and costs for
|
||||
renovation of the building elements.
|
||||
In a second step, for those cost per energy savings two possible renovation
|
||||
strengths are determined: a moderate renovation with lower costs and lower
|
||||
maximum possible space heat savings, and an ambitious renovation with associated
|
||||
higher costs and higher efficiency gains. They are added by step-wise
|
||||
linearisation in form of two additional generations in
|
||||
the `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L1600>`_ script.
|
||||
|
||||
Settings in the config.yaml concerning the endogenously optimisation of building
|
||||
renovation include `cost factor <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L223>`_, `interest rate <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L224>`_, `annualised cost <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L225>`_, `tax weighting <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L226>`_, and `construction index <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L227>`_.
|
||||
|
||||
Further information are given in the study by Zeyen et al. : `Mitigating heat demand peaks in buildings in a highly renewable European energy system, (2021) <https://arxiv.org/abs/2012.01831>`_.
|
||||
|
||||
.. _Hydrogen demand:
|
||||
|
||||
Hydrogen demand
|
||||
=============================
|
||||
|
||||
Hydrogen is consumed in the industry sector (see :ref:`Industry demand`) to produce ammonia (see :ref:`Chemicals Industry`) and direct reduced iron (DRI) (see :ref:`Iron and Steel`). Hydrogen is also consumed to produce synthetic methane (see :ref:`Methane supply`) and liquid hydrocarbons (see :ref:`Oil-based products supply`) which have multiple uses in industry and other sectors.
|
||||
Hydrogen is also used for transport applications (see :ref:`Transportation`), where it is exogenously fixed. It is used in `heavy-duty land transport <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L181>`_ and as liquified hydrogen in the shipping sector (see :ref:`Shipping`). Furthermore, stationary fuel cells may re-electrify hydrogen (with waste heat as a byproduct) to balance renewable fluctuations (see :ref:`Electricity supply and demand`). The waste heat from the stationary fuel cells can be used in `district-heating systems <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L256>`_.
|
||||
|
||||
.. _Hydrogen supply:
|
||||
|
||||
Hydrogen supply
|
||||
=============================
|
||||
|
||||
Today, most of the :math:`H_2` consumed globally is produced from natural gas by steam methane reforming (SMR)
|
||||
|
||||
.. math::
|
||||
|
||||
CH_4 + H_2O \xrightarrow{} CO + 3H_2
|
||||
|
||||
combined with a water-gas shift reaction
|
||||
|
||||
.. math::
|
||||
|
||||
CO + H_2O \xrightarrow{} CO_2 + H_2
|
||||
|
||||
|
||||
SMR is included `here <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L245>`_.
|
||||
PyPSA-Eur-Sec allows this route of :math:`H_2` production with and without [carbon capture (CC)] (see :ref:`Carbon dioxide capture, usage and sequestration (CCU/S)`). These routes are often referred to as blue and grey hydrogen. Here, methane input can be both of fossil or synthetic origin.
|
||||
|
||||
Green hydrogen can be produced by electrolysis to split water into hydrogen and oxygen
|
||||
|
||||
.. math::
|
||||
|
||||
2H_2O \xrightarrow{} 2H_2 + O_2
|
||||
|
||||
|
||||
For the electrolysis, alkaline electrolysers are chosen since they have lower cost and higher cumulative installed capacity than polymer electrolyte membrane (PEM) electrolysers. The techno-economic assumptions are taken from the technology-data repository. Waste heat from electrolysis is not leveraged in the model.
|
||||
|
||||
**Transport**
|
||||
|
||||
Hydrogen is transported by pipelines. :math:`H_2` pipelines are endogenously generated, either via a greenfield :math:`H_2` network, or by `retrofitting natural gas pipelines <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L262>`_). Retrofitting is implemented in such a way that for every unit of decommissioned gas pipeline, a share (60% is used in the study by `Neumann et al. <https://arxiv.org/abs/2207.05816>`_) of its nominal capacity (exogenously determined in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L266>`_.) is available for hydrogen transport. When the gas network is not resolved, this input denotes the potential for gas pipelines repurposed into hydrogen pipelines.
|
||||
New pipelines can be built additionally on all routes where there currently is a gas or electricity network connection. These new pipelines will be built where no sufficient retrofitting options are available. The capacities of new and repurposed pipelines are a result of the optimisation.
|
||||
|
||||
**Storage**
|
||||
|
||||
Hydrogen can be stored in overground steel tanks or `underground salt caverns <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L250>`_. For the latter, energy storage capacities in every country are limited to the potential estimation for onshore salt caverns within `50 km <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L251>`_ of shore to avoid environmental issues associated with brine solution disposal. Underground storage potentials for hydrogen in European salt caverns is acquired from `Caglayan et al. <https://doi.org/10.1016/j.ijhydene.2019.12.161>`_
|
||||
|
||||
.. _Methane demand:
|
||||
|
||||
Methane demand
|
||||
====================================
|
||||
|
||||
Methane is used in individual and large-scale gas boilers, in CHP plants with and without carbon capture, in OCGT and CCGT power plants, and in some industry subsectors for the provision of high temperature heat (see :ref:`Industry demand`). Methane is not used in the transport sector because of engine slippage.
|
||||
|
||||
.. _Methane supply:
|
||||
|
||||
Methane supply
|
||||
===================================
|
||||
|
||||
In addition to methane from fossil origins, the model also considers biogenic and synthetic sources. `The gas network can either be modelled, or it can be assumed that gas transport is not limited <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L261>`_. If gas infrastructure is regionally resolved, fossil gas can enter the system only at existing and planned LNG terminals, pipeline entry-points, and intra- European gas extraction sites, which are retrieved from the SciGRID Gas IGGIELGN dataset and the GEM Wiki.
|
||||
Biogas can be upgraded to methane.
|
||||
Synthetic methane can be produced by processing hydrogen and captures :math:`CO_2` in the Sabatier reaction
|
||||
|
||||
.. math::
|
||||
CO_2 + 4H_2 \xrightarrow{} CH_4 + 2H_2O
|
||||
|
||||
|
||||
Direct power-to-methane conversion with efficient heat integration developed in the HELMETH project is also an option. The share of synthetic, biogenic and fossil methane is an optimisation result depending on the techno-economic assumptions.
|
||||
|
||||
*Methane transport*
|
||||
|
||||
The existing European gas transmission network is represented based on the SciGRID Gas IGGIELGN dataset. This dataset is based on compiled and merged data from the ENTSOG maps and other publicly available data sources. It includes data on the capacity, diameter, pressure, length, and directionality of pipelines. Missing capacity data is conservatively inferred from the pipe diameter following conversion factors derived from an EHB report. The gas network is clustered to the selected number of model regions. Gas pipelines can be endogenously expanded or repurposed for hydrogen transport. Gas flows are represented by a lossless transport model. Methane is assumed to be transmitted without cost or capacity constraints because future demand is predicted to be low compared to available transport capacities.
|
||||
|
||||
The following figure shows the unclustered European gas transmission network based on the SciGRID Gas IGGIELGN dataset. Pipelines are color-coded by estimated capacities. Markers indicate entry-points, sites of fossil resource extraction, and LNG terminals.
|
||||
|
||||
.. image:: ../graphics/gas_pipeline_figure.png
|
||||
|
||||
.. _Biomass supply:
|
||||
|
||||
Biomass Supply
|
||||
=====================
|
||||
Biomass supply potentials for each European country are taken from the `JRC ENSPRESO database <http://data.europa.eu/89h/74ed5a04-7d74-4807-9eab-b94774309d9f>`_ where data is available for various years (2010, 2020, 2030, 2040 and 2050) and scenarios (low, medium, high). No biomass import from outside Europe is assumed. More information on the data set can be found `here <https://publications.jrc.ec.europa.eu/repository/handle/JRC98626>`_.
|
||||
|
||||
.. _Biomass demand:
|
||||
|
||||
Biomass demand
|
||||
=====================
|
||||
|
||||
|
||||
Biomass supply potentials for every NUTS2 region are taken from the `JRC ENSPRESO database <http://data.europa.eu/89h/74ed5a04-7d74-4807-9eab-b94774309d9f>`_ where data is available for various years (2010, 2020, 2030, 2040 and 2050) and different availability scenarios (low, medium, high). No biomass import from outside Europe is assumed. More information on the data set can be found `here <https://publications.jrc.ec.europa.eu/repository/handle/JRC98626>`_. The data for NUTS2 regions is mapped to PyPSA-Eur-Sec model regions in proportion to the area overlap.
|
||||
|
||||
|
||||
The desired scenario can be selected in the PyPSA-Eur-Sec `configuration <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L108>`_. The script for building the biomass potentials from the JRC ENSPRESO data base is located `here <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/build_biomass_potentials.py#L43>`_. Consult the script to see the keywords that specify the scenario options.
|
||||
|
||||
|
||||
The `configuration <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L108>`_ also allows the user to define how the various types of biomass are used in the model by using the following categories: biogas, solid biomass, and not included. Feedstocks categorized as biogas, typically manure and sludge waste, are available to the model as biogas, which can be upgraded to biomethane. Feedstocks categorized as solid biomass, e.g. secondary forest residues or municipal waste, are available for combustion in combined-heat-and power (CHP) plants and for medium temperature heat (below 500 °C) applications in industry. It can also converted to gas or liquid fuels.
|
||||
|
||||
|
||||
Feedstocks labeled as not included are ignored by the model.
|
||||
|
||||
|
||||
A `typical use case for biomass <https://arxiv.org/abs/2109.09563>`_ would be the medium availability scenario for 2030 where only residues from agriculture and forestry as well as biodegradable municipal waste are considered as energy feedstocks. Fuel crops are avoided because they compete with scarce land for food production, while primary wood, as well as wood chips and pellets, are avoided because of concerns about sustainability. See the supporting materials of the `paper <https://www.sciencedirect.com/science/article/pii/S1364032117302034>`_ for more details.
|
||||
|
||||
|
||||
*Solid biomass conversion and use*
|
||||
|
||||
Solid biomass can be used directly to provide process heat up to 500˚C in the industry. It can also be burned in CHP plants and boilers associated with heating systems. These technologies are described elsewhere (see :ref:`Large-scale CHP` and :ref:`Industry demand`).
|
||||
|
||||
|
||||
Solid biomass can be converted to syngas if the option is enabled in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L274>`_. In this case the model will enable the technology BioSNG both with and without the option for carbon capture (see `Technology-data repository <https://github.com/PyPSA/technology-data>`_).
|
||||
|
||||
|
||||
Liquefaction of solid biomass `can be enabled <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L273>`_ allowing the model to convert it into liquid hydrocarbons that can replace conventional oil products. This technology also comes with and without carbon capture (see `Technology-data repository <https://github.com/PyPSA/technology-data>`_).
|
||||
|
||||
|
||||
*Transport of solid biomass*
|
||||
|
||||
The transport of solid biomass can either be assumed unlimited between countries or it can be associated with a country specific cost per MWh/km. In the config file these options are toggled `here <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L270>`_. If the option is off, use of solid biomass is transport. If it is turned on, a biomass transport network will be `created <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L1803>`_ between all nodes. This network resembles road transport of biomass and the cost of transportation is a variable cost which is proportional to distance and a country specific cost per MWh/km. The latter is `estimated <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/build_biomass_transport_costs.py>`_ from the country specific costs per ton/km used in the publication `“The JRC-EU-TIMES model. Bioenergy potentials for EU and neighbouring countries” <https://publications.jrc.ec.europa.eu/repository/handle/JRC98626>`_.
|
||||
|
||||
*Biogas transport and use*
|
||||
|
||||
Biogas will be aggregated into a common European resources if a gas network is not modelled explicitly, i.e., the `gas_network <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L261>`_ option is set to false. If, on the other hand, a gas network is included, the biogas potential will be associated with each node of origin.
|
||||
The model can only use biogas by first upgrading it to natural gas quality [see :ref:`Methane supply`] (bio methane) which is fed into the general gas network.
|
||||
|
||||
.. _Oil-based products demand:
|
||||
|
||||
|
||||
Oil-based products demand
|
||||
========================
|
||||
Naphtha is used as a feedstock in the chemicals industry (see :ref:`Chemicals Industry`). Furthermore, kerosene is used as transport fuel in the aviation sector (see :ref:`Aviation`). Non-electrified agriculture machinery also consumes gasoline.
|
||||
Land transport [(see :ref:`Land transport`) that is not electrified or converted into using :math:`H_2`-fuel cells also consumes oil-based products. While there is regional distribution of demand, the carrier is copperplated in the model, which means that transport costs and constraints are neglected.
|
||||
|
||||
.. _Oil-based products supply:
|
||||
|
||||
Oil-based products supply
|
||||
========================
|
||||
Oil-based products can be either of fossil origin or synthetically produced by combining :math:`H_2` (see :ref:`Hydrogen supply`) and captured :math:`CO_2` (see :ref:`Carbon dioxide capture, usage and sequestration (CCU/S)`) in Fischer-Tropsch plants
|
||||
|
||||
.. math::
|
||||
𝑛CO+(2𝑛+1)H_2 → C_{n}H_{2n + 2} +𝑛H_2O
|
||||
|
||||
|
||||
with costs as included from the `technology-data repository <https://github.com/PyPSA/technology-data/blob/master/latex_tables/tables_in_latex.pdf>`_. The waste heat from the Fischer-Tropsch process is supplied to `district heating networks <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L255>`_. The share of fossil and synthetic oil is an optimisation result depending on the techno-economic assumptions.
|
||||
|
||||
|
||||
*Oil-based transport*
|
||||
|
||||
Liquid hydrocarbons are assumed to be transported freely among the model region since future demand is predicted to be low, transport costs for liquids are low and no bottlenecks are expected.
|
||||
|
||||
.. _Industry demand:
|
||||
|
||||
Industry demand
|
||||
================
|
||||
|
||||
Industry demand is split into a dozen different sectors with specific energy demands, process
|
||||
emissions of carbon dioxide, as well as existing and prospective mitigation strategies.
|
||||
|
||||
The Subsection overview below provides a general description of the modelling approach for the industry sector. The following subsections describe the current energy demands, available mitigation strategies, and whether mitigation is exogenously fixed or co-optimised with the other components of the model for each industry subsector in more detail. See details for Iron and Steel (see :ref:`Iron and Steel`), Chemicals Industry and Ammonia (see :ref:`Chemicals Industry`), Non-metallic Mineral products , Non-ferrous Metals , and other Industry Subsectors.
|
||||
|
||||
.. _Overview:
|
||||
|
||||
**Overview**
|
||||
|
||||
Greenhouse gas emissions associated with industry can be classified into energy-related and process-related emissions. Today, fossil fuels are used for process heat energy in the chemicals industry, but also as a non-energy feedstock for chemicals like ammonia ( :math:`NH_3`), ethylene ( :math:`C_2H_4`) and methanol ( :math:`CH_3OH`). Energy-related emissions can be curbed by using low-emission energy sources. The only option to reduce process-related emissions is by using an alternative manufacturing process or by assuming a certain rate of recycling so that a lower amount of virgin material is needed.
|
||||
|
||||
The overarching modelling procedure can be described as follows. First, the energy demands and process emissions for every unit of material output are estimated based on data from the `JRC-IDEES database <https://data.europa.eu/doi/10.2760/182725>`_ and the fuel and process switching described in the subsequent sections. Second, the 2050 energy demands and process emissions are calculated using the per-unit-of-material ratios based on the industry transformations and the `country-level material production in 2015 <https://data.europa.eu/doi/10.2760/182725>`_, assuming constant material demand.
|
||||
|
||||
Missing or too coarsely aggregated data in the JRC-IDEES database is supplemented with additional datasets: `Eurostat energy balances <https://ec.europa.eu/eurostat/web/energy/data/energy-balances>`_, `United States <https://www.usgs.gov/media/files/%20nitrogen-2017-xlsx>`_, `Geological Survey <https://www.usgs.gov/media/files/%20nitrogen-2017-xlsx>`_ for ammonia production, `DECHEMA <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf>`_ for methanol and chlorine, and `national statistics from Switzerland <https://www.bfe.admin.ch/bfe/de/home/versorgung/statistik-und-geodaten/energiestatistiken.html>`_.
|
||||
|
||||
|
||||
Where there are fossil and electrified alternatives for the same process (e.g. in glass manufacture or drying), we assume that the process is completely electrified. Current electricity demands (lighting, air compressors, motor drives, fans, pumps) will remain electric. Processes that require temperatures below 500 °C are supplied with solid biomass, since we assume that residues and wastes are not suitable for high-temperature applications. We see solid biomass use primarily in the pulp and paper industry, where it is already widespread, and in food, beverages and tobacco, where it replaces natural gas. Industries which require high temperatures (above 500 °C), such as metals, chemicals and non-metallic minerals are either electrified where suitable processes already exist, or the heat is provided with synthetic methane.
|
||||
|
||||
Hydrogen for high-temperature process heat is not part of the model currently.
|
||||
|
||||
Where process heat is required, our approach depends on the necessary temperature. For example, due to the high share of high-temperature process heat demand (see `Naegler et al. <https://doi.org/10.1002/er.3436>`_ and `Rehfeldt el al. <https://link.springer.com/article/10.1007/s12053-017-9571-y>`_), we disregard geothermal and solar thermal energy as sources for process heat since they cannot attain high-temperature heat.
|
||||
|
||||
The following figure shows the final consumption of energy and non-energy feedstocks in industry today in comparison to the scenario in 2050 assumed in `Neumann et al <https://arxiv.org/abs/2207.05816>`_.
|
||||
|
||||
.. image:: ../graphics/fec_industry_today_tomorrow.png
|
||||
|
||||
|
||||
The following figure shows the process emissions in industry today (top bar) and in 2050 without
|
||||
carbon capture (bottom bar) assumed in `Neumann et al <https://arxiv.org/abs/2207.05816>`_.
|
||||
|
||||
|
||||
|
||||
|
||||
.. image:: ../graphics/process-emissions.png
|
||||
|
||||
|
||||
Inside each country the industrial demand is then distributed using the `Hotmaps Industrial Database <https://zenodo.org/record/4687147#.YvOaxhxBy5c>`_, which is illustrated in the figure below. This open database includes georeferenced industrial sites of energy-intensive industry sectors in EU28, including cement, basic chemicals, glass, iron and steel, non-ferrous metals, non-metallic minerals, paper, and refineries subsectors. The use of this spatial dataset enables the calculation of regional and process-specific energy demands. This approach assumes that there will be no significant migration of energy-intensive industries.
|
||||
|
||||
.. image:: ../graphics/hotmaps.png
|
||||
|
||||
|
||||
.. _Iron and Steel:
|
||||
|
||||
**Iron and Steel**
|
||||
|
||||
Two alternative routes are used today to manufacture steel in Europe. The primary route (integrated steelworks) represents 60% of steel production, while the secondary route (electric arc furnaces, EAF), represents the other 40% `(Lechtenböhmer et. al) <https://doi.org/10.1016/j.energy.2016.07.110>`_.
|
||||
|
||||
The primary route uses blast furnaces in which coke is used to reduce iron ore into molten iron, which is then converted into steel:
|
||||
|
||||
.. math::
|
||||
CO_2 + C \xrightarrow{} 2 CO
|
||||
|
||||
|
||||
.. math::
|
||||
3 Fe_2O_3 + CO \xrightarrow{} 2 Fe_3O_4 + CO
|
||||
|
||||
|
||||
.. math::
|
||||
Fe_3O_4 + CO \xrightarrow{} 3 FeO + CO_2
|
||||
|
||||
|
||||
.. math::
|
||||
FeO + CO \xrightarrow{} Fe + CO_2
|
||||
|
||||
|
||||
The primary route of steelmaking implies large process emissions of 0.22 t :math:`_{CO_2}` /t of steel, amounting to 7% of global greenhouse gas emissions `(Vogl et. al) <https://doi.org/10.1016/j.joule.2021.09.007>`_.
|
||||
|
||||
In the secondary route, electric arc furnaces are used to melt scrap metal. This limits the :math:`CO_2` emissions to the burning of graphite electrodes `(Friedrichsen et. al) <https://www.umweltbundesamt.de/en/publikationen/comparative-analysis-of-options-potential-for>`_, and reduces process emissions to 0.03 t :math:`_{CO_2}` /t of steel.
|
||||
|
||||
We assume that the primary route can be replaced by a third route in 2050, using direct reduced iron (DRI) and subsequent processing in an EAF.
|
||||
|
||||
.. math::
|
||||
3 Fe_2O_3 + H_2 \xrightarrow{} 2 Fe_3O_4 + H_2O
|
||||
|
||||
|
||||
.. math::
|
||||
Fe_3O_4 +H_2 \xrightarrow{} 3FeO+H_2O
|
||||
|
||||
|
||||
.. math::
|
||||
FeO + H_2 \xrightarrow{} Fe + H_2O
|
||||
|
||||
|
||||
This circumvents the process emissions associated with the use of coke. For hydrogen- based DRI, we assume energy requirements of 1.7 MWh :math:`_{H_2}` /t steel `(Vogl et. al) <https://doi.org/10.1016/j.jclepro.2018.08.279>`_ and 0.322 MWh :math:`_{el}`/t steel `(HYBRIT 2016) <https://dh5k8ug1gwbyz.cloudfront.net/uploads/2021/02/Hybrit-broschure-engelska.pdf>`_.
|
||||
|
||||
|
||||
The share of steel produced via the primary route is exogenously set in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L279>`_. The share of steel obtained via hydrogen-based DRI plus EAF is also set exogenously in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L287>`_. The remaining share is manufactured through the secondary route using scrap metal in EAF. Bioenergy as alternative to coke in blast furnaces is not considered in the model (`Mandova et.al <https://doi.org/10.1016/j.biombioe.2018.04.021>`_, `Suopajärvi et.al <https://doi.org/10.1016/j.apenergy.2018.01.060>`_).
|
||||
|
||||
For the remaining subprocesses in this sector, the following transformations are assumed. Methane is used as energy source for the smelting process. Activities associated with furnaces, refining and rolling, and product finishing are electrified assuming the current efficiency values for these cases. These transformations result in changes in process emissions as outlined in the process emissions figure presented in the industry overview section (see :ref:`Overview`).
|
||||
|
||||
.. _Chemicals Industry:
|
||||
|
||||
**Chemicals Industry**
|
||||
|
||||
The chemicals industry includes a wide range of diverse industries, including the production of basic organic compounds (olefins, alcohols, aromatics), basic inorganic compounds (ammonia, chlorine), polymers (plastics), and end-user products (cosmetics, pharmaceutics).
|
||||
|
||||
The chemicals industry consumes large amounts of fossil-fuel based feedstocks (see `Levi et. al <https://pubs.acs.org/doi/10.1021/acs.est.7b04573>`_), which can also be produced from renewables as outlined for hydrogen (see :ref:`Hydrogen supply`), for methane (see :ref:`Methane supply`), and for oil-based products (see :ref:`Oil-based products supply`). The ratio between synthetic and fossil-based fuels used in the industry is an endogenous result of the optimisation.
|
||||
|
||||
The basic chemicals consumption data from the `JRC IDEES <https://op.europa.eu/en/publication-detail/-/publication/989282db-ad65-11e7-837e-01aa75ed71a1/language-en>`_ database comprises high- value chemicals (ethylene, propylene and BTX), chlorine, methanol and ammonia. However, it is necessary to separate out these chemicals because their current and future production routes are different.
|
||||
|
||||
Statistics for the production of ammonia, which is commonly used as a fertilizer, are taken from the `USGS <https://www.usgs.gov/media/files/nitrogen-2017-xlsx>`_ for every country. Ammonia can be made from hydrogen and nitrogen using the Haber-Bosch process.
|
||||
|
||||
.. math::
|
||||
N_2 + 3H_2 \xrightarrow{} 2NH_3
|
||||
|
||||
|
||||
|
||||
The Haber-Bosch process is not explicitly represented in the model, such that demand for ammonia enters the model as a demand for hydrogen ( 6.5 MWh :math:`_{H_2}` / t :math:`_{NH_3}` ) and electricity ( 1.17 MWh :math:`_{el}` /t :math:`_{NH_3}` ) (see `Wang et. al <https://doi.org/10.1016/j.joule.2018.04.017>`_). Today, natural gas dominates in Europe as the source for the hydrogen used in the Haber-Bosch process, but the model can choose among the various hydrogen supply options described in the hydrogen section (see :ref:`Hydrogen supply`)
|
||||
|
||||
The total production and specific energy consumption of chlorine and methanol is taken from a `DECHEMA report <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf>`_. According to this source, the production of chlorine amounts to 9.58 MtCl/a, which is assumed to require electricity at 3.6 MWh :math:`_{el}`/t of chlorine and yield hydrogen at 0.937 MWh :math:`_{H_2}`/t of chlorine in the chloralkali process. The production of methanol adds up to 1.5 MtMeOH/a, requiring electricity at 0.167 MWh :math:`_{el}`/t of methanol and methane at 10.25 MWh :math:`_{CH_4}`/t of methanol.
|
||||
|
||||
|
||||
The production of ammonia, methanol, and chlorine production is deducted from the JRC IDEES basic chemicals, leaving the production totals of high-value chemicals. For this, we assume that the liquid hydrocarbon feedstock comes from synthetic or fossil- origin naphtha (14 MWh :math:`_{naphtha}`/t of HVC, similar to `Lechtenböhmer et al <https://doi.org/10.1016/j.energy.2016.07.110>`_), ignoring the methanol-to-olefin route. Furthermore, we assume the following transformations of the energy-consuming processes in the production of plastics: the final energy consumption in steam processing is converted to methane since requires temperature above 500 °C (4.1 MWh :math:`_{CH_4}` /t of HVC, see `Rehfeldt et al. <https://doi.org/10.1007/s12053-017-9571-y>`_); and the remaining processes are electrified using the current efficiency of microwave for high-enthalpy heat processing, electric furnaces, electric process cooling and electric generic processes (2.85 MWh :math:`_{el}`/t of HVC).
|
||||
|
||||
The process emissions from feedstock in the chemical industry are as high as 0.369 t :math:`_{CO_2}`/t of ethylene equivalent. We consider process emissions for all the material output, which is a conservative approach since it assumes that all plastic-embedded :math:`CO_2` will eventually be released into the atmosphere. However, plastic disposal in landfilling will avoid, or at least delay, associated :math:`CO_2` emissions.
|
||||
|
||||
Circular economy practices drastically reduce the amount of primary feedstock needed for the production of plastics in the model (see `Kullmann et al. <https://doi.org/10.1016/j.energy.2022.124660>`_, `Meys et al. (2021) <https://doi.org/10.1126/science.abg9853>`_, `Meys et al. (2020) <https://doi.org/10/gmxv6z>`_, `Gu et al. <https://doi.org/10/gf8n9w>`_) and consequently, also the energy demands and level of process emission. The percentage of plastics that are assumed to be mechanically recycled can be selected in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/776596ab9ac6a6cc93422ccfd0383abeffb0baa9/config.default.yaml#L315>`_, as well as
|
||||
the percentage that is chemically recycled, see `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/776596ab9ac6a6cc93422ccfd0383abeffb0baa9/config.default.yaml#L316>`_ The energy consumption for those recycling processes are respectively 0.547 MWh :math:`_{el}`/t of HVC (as indicated in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/776596ab9ac6a6cc93422ccfd0383abeffb0baa9/config.default.yaml#L318>`_) (`Meys et al. (2020) <https://doi.org/10/gmxv6z>`_), and 6.9 MWh :math:`_{el}`/t of HVC (as indicated in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/776596ab9ac6a6cc93422ccfd0383abeffb0baa9/config.default.yaml#L319>`_) based on pyrolysis and electric steam cracking (see `Materials Economics <https://materialeconomics.com/publications/industrial-transformation-2050>`_ report).
|
||||
|
||||
|
||||
**Non-metallic Mineral Products**
|
||||
|
||||
This subsector includes the manufacturing of cement, ceramics, and glass.
|
||||
|
||||
*Cement*
|
||||
|
||||
Cement is used in construction to make concrete. The production of cement involves high energy consumption and large process emissions. The calcination of limestone to chemically reactive calcium oxide, also known as lime, involves process emissions of 0.54 t :math:`_{CO_2}` /t cement (see `Akhtar et al. <https://doi.org/10.1109/CITCON.2013.6525276>`_.
|
||||
|
||||
|
||||
.. math::
|
||||
CaCO_3 \xrightarrow{} CaO + CO_2
|
||||
|
||||
|
||||
Additionally, :math:`CO_2` is emitted from the combustion of fossil fuels to provide process heat. Thereby, cement constitutes the biggest source of industry process emissions in Europe.
|
||||
|
||||
Cement process emissions can be captured assuming a capture rate of 90%. Whether emissions are captured is decided by the model taking into account the capital costs of carbon capture modules. The electricity and heat demand of process emission carbon capture is currently ignored. For net-zero emission scenarios, the remaining process emissions need to be compensated by negative emissions.
|
||||
|
||||
With the exception of electricity demand and biomass demand for low-temperature heat (0.06 MWh/t and 0.2 MWh/t), the final energy consumption of this subsector is assumed to be supplied by methane (0.52 MWh/t), which is capable of delivering the required high-temperature heat. This implies a switch from burning solid fuels to burning gas which will require adjustments of the `kilns <10.1109/CITCON.2013.6525276>`_. The share of fossil vs. synthetic methane consumed is a result of the optimisation
|
||||
|
||||
|
||||
*Ceramics*
|
||||
|
||||
The ceramics sector is assumed to be fully electrified based on the current efficiency of already electrified processes which include microwave drying and sintering of raw materials, electric kilns for primary production processes, electric furnaces for the `product finishing <https://data.europa.eu/doi/10.2760/182725>`_. In total, the final electricity consumption is 0.44 MWh/t of ceramic. The manufacturing of ceramics includes process emissions of 0.03 t :math:`_{CO_2}`/t of ceramic. For a detailed overview of the ceramics industry sector see `Furszyfer Del Rio et al <https://doi.org/10.1016/j.rser.2021.111885>`_.
|
||||
|
||||
*Glass*
|
||||
|
||||
The production of glass is assumed to be fully electrified based on the current efficiency of electric melting tanks and electric annealing which adds up to an electricity demand of 2.07 MWh :math:`_{el}`/t of `glass <https://doi.org/10/f9df2m>`_. The manufacturing of glass incurs process emissions of 0.1 t :math:`_{CO_2}`/t of glass. Potential efficiency improvements, which according to `Lechtenböhmer et al <https://doi.org/10/f9df2m>`_ could reduce energy demands to 0.85 MW :math:`_{el}`/t of glass, have not been considered. For a detailed overview of the glass industry sector see `Furszyfer Del Rio et al <https://doi.org/10.1016/j.rser.2021.111885>`_.
|
||||
|
||||
|
||||
**Non-ferrous Metals**
|
||||
|
||||
The non-ferrous metal subsector includes the manufacturing of base metals (aluminium, copper, lead, zinc), precious metals (gold, silver), and technology metals (molybdenum, cobalt, silicon).
|
||||
|
||||
The manufacturing of aluminium accounts for more than half of the final energy consumption of this subsector. Two alternative processing routes are used today to manufacture aluminium in Europe. The primary route represents 40% of the aluminium pro- duction, while the secondary route represents the remaining 60%.
|
||||
|
||||
The primary route involves two energy-intensive processes: the production of alumina from bauxite (aluminium ore) and the electrolysis to transform alumina into aluminium via the Hall-Héroult process
|
||||
|
||||
.. math::
|
||||
2Al_2O_3 +3C \xrightarrow{} 4Al+3CO_2
|
||||
|
||||
|
||||
The primary route requires high-enthalpy heat (2.3 MWh/t) to produce alumina which is supplied by methane and causes process emissions of 1.5 t :math:`_{CO_2}`/t aluminium. According to `Friedrichsen et al. <http://www.umweltbundesamt.de/en/publikationen/comparative-analysis-of-options-potential-for>`_, inert anodes might become commercially available by 2030 that would eliminate the process emissions, but they are not included in the model. Assuming all subprocesses are electrified, the primary route requires 15.4 MWh :math:`_{el}`/t of aluminium.
|
||||
|
||||
In the secondary route, scrap aluminium is remelted. The energy demand for this process is only 10% of the primary route and there are no associated process emissions. Assuming all subprocesses are electrified, the secondary route requires 1.7 MWh/t of aluminium. The share of aliminum manufactured by the primary and secondary route can be selected in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L297>`_]
|
||||
|
||||
For the other non-ferrous metals, we assume the electrification of the entire manufacturing process with an average electricity demand of 3.2 MWh :math:`_{el}`/t lead equivalent.
|
||||
|
||||
**Other Industry Subsectors**
|
||||
|
||||
The remaining industry subsectors include (a) pulp, paper, printing, (b) food, beverages, tobacco, (c) textiles and leather, (d) machinery equipment, (e) transport equipment, (f) wood and wood products, (g) others. Low- and mid-temperature process heat in these industries is assumed to be `supplied by biomass <https://doi.org/10.1016/j.rser.2021.110856>`_ while the remaining processes are electrified. None of the subsectors involve process emissions.
|
||||
|
||||
|
||||
Agriculture demand
|
||||
=========================
|
||||
|
||||
Energy demands for the agriculture, forestry and fishing sector per country are taken from the `JRC-IDEES database <http://data.europa.eu/89h/jrc-10110-10001>`_. Missing countries are filled with `Eurostat data <https://ec.europa.eu/eurostat/web/energy/data/energy-balances>`_. Agricultural energy demands are split into electricity (lighting, ventilation, specific electricity uses, electric pumping devices), heat (specific heat uses, low enthalpy heat), and machinery oil (motor drives, farming machine drives, diesel-fueled pumping devices). Heat demand is assigned at “services rural heat” buses. Time series for demands are assumed to be constant and distributed inside countries by population.
|
||||
|
||||
.. _Transportation:
|
||||
|
||||
Transportation
|
||||
=========================
|
||||
Annual energy demands for land transport, aviation and shipping for every country are retrieved from `JRC-IDEES data set <http://data.europa.eu/89h/jrc-10110-10001>`_. Below, the details of how each of these categories are treated is explained.
|
||||
|
||||
.. _Land transport:
|
||||
|
||||
**Land transport**
|
||||
|
||||
Both road and rail transport is combined as `land transport demand <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/build_transport_demand.py#L74>`_ although electrified rail transport is excluded because that demand is included in the current electricity demand.
|
||||
|
||||
The most important settings for land transport are the exogenously fixed fuel mix (an option enabling the endogeous optimization of transport electrification is planned but not yet implemented). In the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L181>`_, the share of battery electric vehicles (BEV) and hydrogen fuel cell vehicles (FCEV) can be set. The remaining percentage will be treated as internal combustion engines (ICE) that consume oil products.
|
||||
|
||||
*Battery Electric vehicles (BEV)*
|
||||
|
||||
For the electrified land transport, country-specific factors are computed by comparing the `current car final energy consumption per km in <https://www.sciencedirect.com/science/article/pii/S0360544216310295>`_ (average for Europe 0.7 kWh/km) to the 0.18 kWh/km value assumed for battery-to-wheels efficiency in EVs. The characteristic `weekly profile <https://www.bast.de/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/zaehl_node.html>`_ provided by the German Federal Highway Research Institute (BASt) is used to obtain hourly time series for European countries taking into account the corresponding local times. Furthermore, a temperature dependence is included in the time series to account for heating/cooling demand in transport. For temperatures `below <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L166>`_/`above <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L165>`_ certain threshold values, e.g. 15 °C/20 °C, `temperature coefficients <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L169>`_ of typically 0.98%/°C and 0.63%/°C are assumed, based on the `paper <https://www.sciencedirect.com/science/article/pii/S036054421831288X>`_.
|
||||
|
||||
For BEVs the user can define the `storage energy capacity <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L173>`_, `charging power capacity <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L176>`_, and `charging efficiency <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L174>`_.
|
||||
|
||||
For BEV, smart charging is an option. A `certain share <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L172>`_ of the BEV fleet can shift their charging time. The BEV state of charge is forced to be higher than a `set percentage <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L163>`_, e.g. 75%, every day at a `specified hour <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L164>`_, e.g., 7 am, to ensure that the batteries are sufficiently charged for peak usage in the morning and they not behave as seasonal storage. They also have the option to participate in vehicle-to-grid (V2G) services to facilitate system operation if that `is enabled <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L179>`_.
|
||||
|
||||
The battery cost of BEV is not included in the model since it is assumed that BEV owners buy them to primarily satisfy their mobility needs.
|
||||
|
||||
*Hydrogen fuel cell vehicles (FCEV)*
|
||||
|
||||
The share of all land transport that is specified to be be FCEV will be converted to a demand for hydrogen (see :ref:`Hydrogen supply`) using the `FCEV efficiency
|
||||
<https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L191>`_.
|
||||
|
||||
FCEVs are typically used to simulate demand for transport that is hard to electrify directly, e.g. heavy construction machinery. But it may also be used to investigate a more widespread adoption of the technology.
|
||||
|
||||
*Internal combustion engine vehicles (ICE)*
|
||||
|
||||
All land transport that is not specified to be either BEV or FCEV will be treated as conventional ICEs. The transport demand is converted to a demand for oil products (see :ref:`Oil-based products supply`) using the `ICE efficiency
|
||||
<https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L192>`_.
|
||||
|
||||
.. _Aviation:
|
||||
|
||||
**Aviation**
|
||||
|
||||
The `demand for aviation <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2193>`_ includes international and domestic use. It is modelled as an oil demand since aviation consumes kerosene. This can be produced synthetically or have fossil-origin (see :ref:`Oil-based products supply`).
|
||||
|
||||
.. _Shipping:
|
||||
|
||||
**Shipping**
|
||||
|
||||
Shipping energy demand is covered by a combination of oil and hydrogen. Other fuel options, like methanol or ammonia, are currently not included in PyPSA-Eur-Sec. The share of shipping that is assumed to be supplied by hydrogen can be selected in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L198>`_.
|
||||
|
||||
To estimate the `hydrogen demand <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2090>`_, the average fuel efficiency of the fleet is used in combination with the efficiency of the fuel cell defined in the technology-data repository. The average fuel efficiency is set in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L196>`_.
|
||||
|
||||
The consumed hydrogen comes from the general hydrogen bus where it can be produced by SMR, SMR+CC or electrolysers (see :ref:`Hydrogen supply`). The fraction that is not converted into hydrogen use oil products, i.e. is connected to the general oil bus.
|
||||
|
||||
The energy demand for liquefaction of the hydrogen used for shipping can be `included <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L197>`_. If this option is selected, liquifaction will happen at the `node where the shipping demand occurs <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2064>`_.
|
||||
|
||||
.. _Carbon dioxide capture, usage and sequestration (CCU/S):
|
||||
|
||||
Carbon dioxide capture, usage and sequestration (CCU/S)
|
||||
=========================================================
|
||||
|
||||
PyPSA-Eur-Sec includes carbon capture from air (i.e., direct air capture (DAC)), electricity generators, and industrial facilities. It furthermore includes carbon dioxide storage and transport, the usage of carbon dioxide in synthetic methane and oil products, as well as the sequestration of carbon dioxide underground.
|
||||
|
||||
**Carbon dioxide capture**
|
||||
|
||||
For the following point source emissions, carbon capture is applicable:
|
||||
|
||||
• Industry process emissions, e.g., from limestone in cement production
|
||||
|
||||
• Methane or biomass used for process heat in the industry
|
||||
|
||||
• Hydrogen production by SMR
|
||||
|
||||
• CHP plants using biomass or methane
|
||||
|
||||
• `Coal power plants <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L242>`_.
|
||||
|
||||
Point source emissions are captured assuming a capture rate, e.g. 90%, which can be specified in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L249>`_. The electricity and heat demand of process emission carbon capture
|
||||
is currently ignored.
|
||||
|
||||
DAC (if `included <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L243>`_) includes the adsorption phase where electricity and heat consumptionsare required to assist the adsorption process and regenerate the adsorbent. It also includes the drying and compression of :math:`CO_2` prior to storage which consumes electricity and rejects heat.
|
||||
|
||||
*Carbon dioxide usage*
|
||||
|
||||
Captured :math:`CO_2` can be used to produce synthetic methane and synthetic oil products (e.g.
|
||||
naphtha). If captured carbon is used, the :math:`CO_2` emissions of the synthetic fuels are net-neutral.
|
||||
|
||||
*Carbon dioxide sequestration*
|
||||
|
||||
Captured :math:`CO_2` can also be sequestered underground up to an annual sequestration limit of 200 Mt :math:`_{CO_2}`/a. This limit can be chosen in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L246>`_. As stored carbon dioxide is modelled as a single node for Europe, :math:`CO_2` transport constraints are neglected. Since :math:`CO_2` sequestration is an immature technology, the cost assumption is defined in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L247>`_.
|
||||
|
||||
*Carbon dioxide transport*
|
||||
|
||||
Carbon dioxide can be modelled as a single node for Europe (in this case, :math:`CO_2` transport constraints are neglected). A network for modelling the transport of :math:`CO_2` among the different nodes can also be created if selected in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L248>`_.
|
9
doc/technology_assumptions.rst
Normal file
@ -0,0 +1,9 @@
|
||||
.. _technology_assumptions:
|
||||
|
||||
##########################################
|
||||
Technology and cost assumptions
|
||||
##########################################
|
||||
|
||||
*Techno-Economic Assumptions*
|
||||
|
||||
For the technological assumptions (cost, efficiency, lifetime, etc.), we take estimates for the investment year specified in the `config <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L43>`_. Many of those come from a database published by the Danish Energy Agency (`DEA <https://ens.dk/en/our-services/projections-and-models/technology-data>`_). Assumptions are maintained at the `technology data repository <https://github.com/PyPSA/technology-data>`_.
|
BIN
graphics/Heat_and_el_demand_timeseries.png
Normal file
After Width: | Height: | Size: 98 KiB |
BIN
graphics/demand-map-heat.png
Normal file
After Width: | Height: | Size: 74 KiB |
BIN
graphics/elec_s_37.png
Normal file
After Width: | Height: | Size: 543 KiB |
BIN
graphics/elec_s_512.png
Normal file
After Width: | Height: | Size: 975 KiB |
BIN
graphics/fec_industry_today_tomorrow.png
Normal file
After Width: | Height: | Size: 533 KiB |
BIN
graphics/gas_pipeline_figure.png
Normal file
After Width: | Height: | Size: 269 KiB |
BIN
graphics/hotmaps.png
Normal file
After Width: | Height: | Size: 2.3 MiB |
BIN
graphics/multisector_figure.pdf
Normal file
BIN
graphics/multisector_figure.png
Normal file
After Width: | Height: | Size: 290 KiB |
2655
graphics/multisector_figure.svg
Normal file
After Width: | Height: | Size: 110 KiB |
BIN
graphics/process-emissions.png
Normal file
After Width: | Height: | Size: 523 KiB |
BIN
graphics/workflow.png
Normal file
After Width: | Height: | Size: 324 KiB |
@ -1 +1,3 @@
|
||||
backend : Agg
|
||||
font.family: sans-serif
|
||||
font.sans-serif: Ubuntu, DejaVu Sans
|
||||
image.cmap: viridis
|
||||
|
155
scripts/add_brownfield.py
Normal file
@ -0,0 +1,155 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import pandas as pd
|
||||
|
||||
idx = pd.IndexSlice
|
||||
|
||||
import numpy as np
|
||||
import pypsa
|
||||
import yaml
|
||||
from add_existing_baseyear import add_build_year_to_new_assets
|
||||
from helper import override_component_attrs, update_config_with_sector_opts
|
||||
|
||||
|
||||
def add_brownfield(n, n_p, year):
|
||||
logger.info(f"Preparing brownfield for the year {year}")
|
||||
|
||||
# electric transmission grid set optimised capacities of previous as minimum
|
||||
n.lines.s_nom_min = n_p.lines.s_nom_opt
|
||||
dc_i = n.links[n.links.carrier == "DC"].index
|
||||
n.links.loc[dc_i, "p_nom_min"] = n_p.links.loc[dc_i, "p_nom_opt"]
|
||||
|
||||
for c in n_p.iterate_components(["Link", "Generator", "Store"]):
|
||||
attr = "e" if c.name == "Store" else "p"
|
||||
|
||||
# first, remove generators, links and stores that track
|
||||
# CO2 or global EU values since these are already in n
|
||||
n_p.mremove(c.name, c.df.index[c.df.lifetime == np.inf])
|
||||
|
||||
# remove assets whose build_year + lifetime < year
|
||||
n_p.mremove(c.name, c.df.index[c.df.build_year + c.df.lifetime < year])
|
||||
|
||||
# remove assets if their optimized nominal capacity is lower than a threshold
|
||||
# since CHP heat Link is proportional to CHP electric Link, make sure threshold is compatible
|
||||
chp_heat = c.df.index[
|
||||
(
|
||||
c.df[attr + "_nom_extendable"]
|
||||
& c.df.index.str.contains("urban central")
|
||||
& c.df.index.str.contains("CHP")
|
||||
& c.df.index.str.contains("heat")
|
||||
)
|
||||
]
|
||||
|
||||
threshold = snakemake.config["existing_capacities"]["threshold_capacity"]
|
||||
|
||||
if not chp_heat.empty:
|
||||
threshold_chp_heat = (
|
||||
threshold
|
||||
* c.df.efficiency[chp_heat.str.replace("heat", "electric")].values
|
||||
* c.df.p_nom_ratio[chp_heat.str.replace("heat", "electric")].values
|
||||
/ c.df.efficiency[chp_heat].values
|
||||
)
|
||||
n_p.mremove(
|
||||
c.name,
|
||||
chp_heat[c.df.loc[chp_heat, attr + "_nom_opt"] < threshold_chp_heat],
|
||||
)
|
||||
|
||||
n_p.mremove(
|
||||
c.name,
|
||||
c.df.index[
|
||||
c.df[attr + "_nom_extendable"]
|
||||
& ~c.df.index.isin(chp_heat)
|
||||
& (c.df[attr + "_nom_opt"] < threshold)
|
||||
],
|
||||
)
|
||||
|
||||
# copy over assets but fix their capacity
|
||||
c.df[attr + "_nom"] = c.df[attr + "_nom_opt"]
|
||||
c.df[attr + "_nom_extendable"] = False
|
||||
|
||||
n.import_components_from_dataframe(c.df, c.name)
|
||||
|
||||
# copy time-dependent
|
||||
selection = n.component_attrs[c.name].type.str.contains(
|
||||
"series"
|
||||
) & n.component_attrs[c.name].status.str.contains("Input")
|
||||
for tattr in n.component_attrs[c.name].index[selection]:
|
||||
n.import_series_from_dataframe(c.pnl[tattr], c.name, tattr)
|
||||
|
||||
# deal with gas network
|
||||
pipe_carrier = ["gas pipeline"]
|
||||
if snakemake.config["sector"]["H2_retrofit"]:
|
||||
# drop capacities of previous year to avoid duplicating
|
||||
to_drop = n.links.carrier.isin(pipe_carrier) & (n.links.build_year != year)
|
||||
n.mremove("Link", n.links.loc[to_drop].index)
|
||||
|
||||
# subtract the already retrofitted from today's gas grid capacity
|
||||
h2_retrofitted_fixed_i = n.links[
|
||||
(n.links.carrier == "H2 pipeline retrofitted")
|
||||
& (n.links.build_year != year)
|
||||
].index
|
||||
gas_pipes_i = n.links[n.links.carrier.isin(pipe_carrier)].index
|
||||
CH4_per_H2 = 1 / snakemake.config["sector"]["H2_retrofit_capacity_per_CH4"]
|
||||
fr = "H2 pipeline retrofitted"
|
||||
to = "gas pipeline"
|
||||
# today's pipe capacity
|
||||
pipe_capacity = n.links.loc[gas_pipes_i, "p_nom"]
|
||||
# already retrofitted capacity from gas -> H2
|
||||
already_retrofitted = (
|
||||
n.links.loc[h2_retrofitted_fixed_i, "p_nom"]
|
||||
.rename(lambda x: x.split("-2")[0].replace(fr, to))
|
||||
.groupby(level=0)
|
||||
.sum()
|
||||
)
|
||||
remaining_capacity = (
|
||||
pipe_capacity
|
||||
- CH4_per_H2
|
||||
* already_retrofitted.reindex(index=pipe_capacity.index).fillna(0)
|
||||
)
|
||||
n.links.loc[gas_pipes_i, "p_nom"] = remaining_capacity
|
||||
else:
|
||||
new_pipes = n.links.carrier.isin(pipe_carrier) & (
|
||||
n.links.build_year == year
|
||||
)
|
||||
n.links.loc[new_pipes, "p_nom"] = 0.0
|
||||
n.links.loc[new_pipes, "p_nom_min"] = 0.0
|
||||
|
||||
|
||||
# %%
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"add_brownfield",
|
||||
simpl="",
|
||||
clusters="37",
|
||||
opts="",
|
||||
lv=1.0,
|
||||
sector_opts="168H-T-H-B-I-solar+p3-dist1",
|
||||
planning_horizons=2030,
|
||||
)
|
||||
|
||||
logging.basicConfig(level=snakemake.config["logging_level"])
|
||||
|
||||
update_config_with_sector_opts(snakemake.config, snakemake.wildcards.sector_opts)
|
||||
|
||||
logger.info(f"Preparing brownfield from the file {snakemake.input.network_p}")
|
||||
|
||||
year = int(snakemake.wildcards.planning_horizons)
|
||||
|
||||
overrides = override_component_attrs(snakemake.input.overrides)
|
||||
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
||||
|
||||
add_build_year_to_new_assets(n, year)
|
||||
|
||||
n_p = pypsa.Network(snakemake.input.network_p, override_component_attrs=overrides)
|
||||
|
||||
add_brownfield(n, n_p, year)
|
||||
|
||||
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
||||
n.export_to_netcdf(snakemake.output[0])
|
676
scripts/add_existing_baseyear.py
Normal file
@ -0,0 +1,676 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import pandas as pd
|
||||
|
||||
idx = pd.IndexSlice
|
||||
|
||||
from types import SimpleNamespace
|
||||
|
||||
import numpy as np
|
||||
import pypsa
|
||||
import xarray as xr
|
||||
import yaml
|
||||
from helper import override_component_attrs, update_config_with_sector_opts
|
||||
from prepare_sector_network import cluster_heat_buses, define_spatial, prepare_costs
|
||||
|
||||
spatial = SimpleNamespace()
|
||||
|
||||
|
||||
def add_build_year_to_new_assets(n, baseyear):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
n : pypsa.Network
|
||||
baseyear : int
|
||||
year in which optimized assets are built
|
||||
"""
|
||||
|
||||
# Give assets with lifetimes and no build year the build year baseyear
|
||||
for c in n.iterate_components(["Link", "Generator", "Store"]):
|
||||
assets = c.df.index[(c.df.lifetime != np.inf) & (c.df.build_year == 0)]
|
||||
c.df.loc[assets, "build_year"] = baseyear
|
||||
|
||||
# add -baseyear to name
|
||||
rename = pd.Series(c.df.index, c.df.index)
|
||||
rename[assets] += "-" + str(baseyear)
|
||||
c.df.rename(index=rename, inplace=True)
|
||||
|
||||
# rename time-dependent
|
||||
selection = n.component_attrs[c.name].type.str.contains(
|
||||
"series"
|
||||
) & n.component_attrs[c.name].status.str.contains("Input")
|
||||
for attr in n.component_attrs[c.name].index[selection]:
|
||||
c.pnl[attr].rename(columns=rename, inplace=True)
|
||||
|
||||
|
||||
def add_existing_renewables(df_agg):
|
||||
"""
|
||||
Append existing renewables to the df_agg pd.DataFrame with the conventional
|
||||
power plants.
|
||||
"""
|
||||
|
||||
cc = pd.read_csv(snakemake.input.country_codes, index_col=0)
|
||||
|
||||
carriers = {"solar": "solar", "onwind": "onwind", "offwind": "offwind-ac"}
|
||||
|
||||
for tech in ["solar", "onwind", "offwind"]:
|
||||
carrier = carriers[tech]
|
||||
|
||||
df = pd.read_csv(snakemake.input[f"existing_{tech}"], index_col=0).fillna(0.0)
|
||||
df.columns = df.columns.astype(int)
|
||||
|
||||
rename_countries = {
|
||||
"Czechia": "Czech Republic",
|
||||
"UK": "United Kingdom",
|
||||
"Bosnia Herzg": "Bosnia Herzegovina",
|
||||
"North Macedonia": "Macedonia",
|
||||
}
|
||||
|
||||
df.rename(index=rename_countries, inplace=True)
|
||||
|
||||
df.rename(index=cc["2 letter code (ISO-3166-2)"], inplace=True)
|
||||
|
||||
# calculate yearly differences
|
||||
df.insert(loc=0, value=0.0, column="1999")
|
||||
df = df.diff(axis=1).drop("1999", axis=1).clip(lower=0)
|
||||
|
||||
# distribute capacities among nodes according to capacity factor
|
||||
# weighting with nodal_fraction
|
||||
elec_buses = n.buses.index[n.buses.carrier == "AC"].union(
|
||||
n.buses.index[n.buses.carrier == "DC"]
|
||||
)
|
||||
nodal_fraction = pd.Series(0.0, elec_buses)
|
||||
|
||||
for country in n.buses.loc[elec_buses, "country"].unique():
|
||||
gens = n.generators.index[
|
||||
(n.generators.index.str[:2] == country)
|
||||
& (n.generators.carrier == carrier)
|
||||
]
|
||||
cfs = n.generators_t.p_max_pu[gens].mean()
|
||||
cfs_key = cfs / cfs.sum()
|
||||
nodal_fraction.loc[n.generators.loc[gens, "bus"]] = cfs_key.values
|
||||
|
||||
nodal_df = df.loc[n.buses.loc[elec_buses, "country"]]
|
||||
nodal_df.index = elec_buses
|
||||
nodal_df = nodal_df.multiply(nodal_fraction, axis=0)
|
||||
|
||||
for year in nodal_df.columns:
|
||||
for node in nodal_df.index:
|
||||
name = f"{node}-{tech}-{year}"
|
||||
capacity = nodal_df.loc[node, year]
|
||||
if capacity > 0.0:
|
||||
df_agg.at[name, "Fueltype"] = tech
|
||||
df_agg.at[name, "Capacity"] = capacity
|
||||
df_agg.at[name, "DateIn"] = year
|
||||
df_agg.at[name, "cluster_bus"] = node
|
||||
|
||||
|
||||
def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, baseyear):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
n : pypsa.Network
|
||||
grouping_years :
|
||||
intervals to group existing capacities
|
||||
costs :
|
||||
to read lifetime to estimate YearDecomissioning
|
||||
baseyear : int
|
||||
"""
|
||||
logger.debug(
|
||||
f"Adding power capacities installed before {baseyear} from powerplants.csv"
|
||||
)
|
||||
|
||||
df_agg = pd.read_csv(snakemake.input.powerplants, index_col=0)
|
||||
|
||||
rename_fuel = {
|
||||
"Hard Coal": "coal",
|
||||
"Lignite": "lignite",
|
||||
"Nuclear": "nuclear",
|
||||
"Oil": "oil",
|
||||
"OCGT": "OCGT",
|
||||
"CCGT": "CCGT",
|
||||
"Natural Gas": "gas",
|
||||
"Bioenergy": "urban central solid biomass CHP",
|
||||
}
|
||||
|
||||
fueltype_to_drop = [
|
||||
"Hydro",
|
||||
"Wind",
|
||||
"Solar",
|
||||
"Geothermal",
|
||||
"Waste",
|
||||
"Other",
|
||||
"CCGT, Thermal",
|
||||
]
|
||||
|
||||
technology_to_drop = ["Pv", "Storage Technologies"]
|
||||
|
||||
# drop unused fueltyps and technologies
|
||||
df_agg.drop(df_agg.index[df_agg.Fueltype.isin(fueltype_to_drop)], inplace=True)
|
||||
df_agg.drop(df_agg.index[df_agg.Technology.isin(technology_to_drop)], inplace=True)
|
||||
df_agg.Fueltype = df_agg.Fueltype.map(rename_fuel)
|
||||
|
||||
# Intermediate fix for DateIn & DateOut
|
||||
# Fill missing DateIn
|
||||
biomass_i = df_agg.loc[df_agg.Fueltype == "urban central solid biomass CHP"].index
|
||||
mean = df_agg.loc[biomass_i, "DateIn"].mean()
|
||||
df_agg.loc[biomass_i, "DateIn"] = df_agg.loc[biomass_i, "DateIn"].fillna(int(mean))
|
||||
# Fill missing DateOut
|
||||
dateout = df_agg.loc[biomass_i, "DateIn"] + snakemake.config["costs"]["lifetime"]
|
||||
df_agg.loc[biomass_i, "DateOut"] = df_agg.loc[biomass_i, "DateOut"].fillna(dateout)
|
||||
|
||||
# drop assets which are already phased out / decommissioned
|
||||
phased_out = df_agg[df_agg["DateOut"] < baseyear].index
|
||||
df_agg.drop(phased_out, inplace=True)
|
||||
|
||||
# calculate remaining lifetime before phase-out (+1 because assuming
|
||||
# phase out date at the end of the year)
|
||||
df_agg["lifetime"] = df_agg.DateOut - df_agg.DateIn + 1
|
||||
|
||||
# assign clustered bus
|
||||
busmap_s = pd.read_csv(snakemake.input.busmap_s, index_col=0).squeeze()
|
||||
busmap = pd.read_csv(snakemake.input.busmap, index_col=0).squeeze()
|
||||
|
||||
inv_busmap = {}
|
||||
for k, v in busmap.items():
|
||||
inv_busmap[v] = inv_busmap.get(v, []) + [k]
|
||||
|
||||
clustermaps = busmap_s.map(busmap)
|
||||
clustermaps.index = clustermaps.index.astype(int)
|
||||
|
||||
df_agg["cluster_bus"] = df_agg.bus.map(clustermaps)
|
||||
|
||||
# include renewables in df_agg
|
||||
add_existing_renewables(df_agg)
|
||||
|
||||
df_agg["grouping_year"] = np.take(
|
||||
grouping_years, np.digitize(df_agg.DateIn, grouping_years, right=True)
|
||||
)
|
||||
|
||||
df = df_agg.pivot_table(
|
||||
index=["grouping_year", "Fueltype"],
|
||||
columns="cluster_bus",
|
||||
values="Capacity",
|
||||
aggfunc="sum",
|
||||
)
|
||||
|
||||
lifetime = df_agg.pivot_table(
|
||||
index=["grouping_year", "Fueltype"],
|
||||
columns="cluster_bus",
|
||||
values="lifetime",
|
||||
aggfunc="mean", # currently taken mean for clustering lifetimes
|
||||
)
|
||||
|
||||
carrier = {
|
||||
"OCGT": "gas",
|
||||
"CCGT": "gas",
|
||||
"coal": "coal",
|
||||
"oil": "oil",
|
||||
"lignite": "lignite",
|
||||
"nuclear": "uranium",
|
||||
"urban central solid biomass CHP": "biomass",
|
||||
}
|
||||
|
||||
for grouping_year, generator in df.index:
|
||||
# capacity is the capacity in MW at each node for this
|
||||
capacity = df.loc[grouping_year, generator]
|
||||
capacity = capacity[~capacity.isna()]
|
||||
capacity = capacity[
|
||||
capacity > snakemake.config["existing_capacities"]["threshold_capacity"]
|
||||
]
|
||||
suffix = "-ac" if generator == "offwind" else ""
|
||||
name_suffix = f" {generator}{suffix}-{grouping_year}"
|
||||
asset_i = capacity.index + name_suffix
|
||||
if generator in ["solar", "onwind", "offwind"]:
|
||||
# to consider electricity grid connection costs or a split between
|
||||
# solar utility and rooftop as well, rather take cost assumptions
|
||||
# from existing network than from the cost database
|
||||
capital_cost = n.generators.loc[
|
||||
n.generators.carrier == generator + suffix, "capital_cost"
|
||||
].mean()
|
||||
marginal_cost = n.generators.loc[
|
||||
n.generators.carrier == generator + suffix, "marginal_cost"
|
||||
].mean()
|
||||
# check if assets are already in network (e.g. for 2020)
|
||||
already_build = n.generators.index.intersection(asset_i)
|
||||
new_build = asset_i.difference(n.generators.index)
|
||||
|
||||
# this is for the year 2020
|
||||
if not already_build.empty:
|
||||
n.generators.loc[already_build, "p_nom_min"] = capacity.loc[
|
||||
already_build.str.replace(name_suffix, "")
|
||||
].values
|
||||
new_capacity = capacity.loc[new_build.str.replace(name_suffix, "")]
|
||||
|
||||
if "m" in snakemake.wildcards.clusters:
|
||||
for ind in new_capacity.index:
|
||||
# existing capacities are split evenly among regions in every country
|
||||
inv_ind = [i for i in inv_busmap[ind]]
|
||||
|
||||
# for offshore the splitting only includes coastal regions
|
||||
inv_ind = [
|
||||
i for i in inv_ind if (i + name_suffix) in n.generators.index
|
||||
]
|
||||
|
||||
p_max_pu = n.generators_t.p_max_pu[
|
||||
[i + name_suffix for i in inv_ind]
|
||||
]
|
||||
p_max_pu.columns = [i + name_suffix for i in inv_ind]
|
||||
|
||||
n.madd(
|
||||
"Generator",
|
||||
[i + name_suffix for i in inv_ind],
|
||||
bus=ind,
|
||||
carrier=generator,
|
||||
p_nom=new_capacity[ind]
|
||||
/ len(inv_ind), # split among regions in a country
|
||||
marginal_cost=marginal_cost,
|
||||
capital_cost=capital_cost,
|
||||
efficiency=costs.at[generator, "efficiency"],
|
||||
p_max_pu=p_max_pu,
|
||||
build_year=grouping_year,
|
||||
lifetime=costs.at[generator, "lifetime"],
|
||||
)
|
||||
|
||||
else:
|
||||
p_max_pu = n.generators_t.p_max_pu[
|
||||
capacity.index + f" {generator}{suffix}-{baseyear}"
|
||||
]
|
||||
|
||||
if not new_build.empty:
|
||||
n.madd(
|
||||
"Generator",
|
||||
new_capacity.index,
|
||||
suffix=" " + name_suffix,
|
||||
bus=new_capacity.index,
|
||||
carrier=generator,
|
||||
p_nom=new_capacity,
|
||||
marginal_cost=marginal_cost,
|
||||
capital_cost=capital_cost,
|
||||
efficiency=costs.at[generator, "efficiency"],
|
||||
p_max_pu=p_max_pu.rename(columns=n.generators.bus),
|
||||
build_year=grouping_year,
|
||||
lifetime=costs.at[generator, "lifetime"],
|
||||
)
|
||||
|
||||
else:
|
||||
bus0 = vars(spatial)[carrier[generator]].nodes
|
||||
if "EU" not in vars(spatial)[carrier[generator]].locations:
|
||||
bus0 = bus0.intersection(capacity.index + " gas")
|
||||
|
||||
already_build = n.links.index.intersection(asset_i)
|
||||
new_build = asset_i.difference(n.links.index)
|
||||
lifetime_assets = lifetime.loc[grouping_year, generator].dropna()
|
||||
|
||||
# this is for the year 2020
|
||||
if not already_build.empty:
|
||||
n.links.loc[already_build, "p_nom_min"] = capacity.loc[
|
||||
already_build.str.replace(name_suffix, "")
|
||||
].values
|
||||
|
||||
if not new_build.empty:
|
||||
new_capacity = capacity.loc[new_build.str.replace(name_suffix, "")]
|
||||
|
||||
if generator != "urban central solid biomass CHP":
|
||||
n.madd(
|
||||
"Link",
|
||||
new_capacity.index,
|
||||
suffix=name_suffix,
|
||||
bus0=bus0,
|
||||
bus1=new_capacity.index,
|
||||
bus2="co2 atmosphere",
|
||||
carrier=generator,
|
||||
marginal_cost=costs.at[generator, "efficiency"]
|
||||
* costs.at[generator, "VOM"], # NB: VOM is per MWel
|
||||
capital_cost=costs.at[generator, "efficiency"]
|
||||
* costs.at[generator, "fixed"], # NB: fixed cost is per MWel
|
||||
p_nom=new_capacity / costs.at[generator, "efficiency"],
|
||||
efficiency=costs.at[generator, "efficiency"],
|
||||
efficiency2=costs.at[carrier[generator], "CO2 intensity"],
|
||||
build_year=grouping_year,
|
||||
lifetime=lifetime_assets.loc[new_capacity.index],
|
||||
)
|
||||
else:
|
||||
key = "central solid biomass CHP"
|
||||
n.madd(
|
||||
"Link",
|
||||
new_capacity.index,
|
||||
suffix=name_suffix,
|
||||
bus0=spatial.biomass.df.loc[new_capacity.index]["nodes"].values,
|
||||
bus1=new_capacity.index,
|
||||
bus2=new_capacity.index + " urban central heat",
|
||||
carrier=generator,
|
||||
p_nom=new_capacity / costs.at[key, "efficiency"],
|
||||
capital_cost=costs.at[key, "fixed"]
|
||||
* costs.at[key, "efficiency"],
|
||||
marginal_cost=costs.at[key, "VOM"],
|
||||
efficiency=costs.at[key, "efficiency"],
|
||||
build_year=grouping_year,
|
||||
efficiency2=costs.at[key, "efficiency-heat"],
|
||||
lifetime=lifetime_assets.loc[new_capacity.index],
|
||||
)
|
||||
# check if existing capacities are larger than technical potential
|
||||
existing_large = n.generators[
|
||||
n.generators["p_nom_min"] > n.generators["p_nom_max"]
|
||||
].index
|
||||
if len(existing_large):
|
||||
logger.warning(
|
||||
f"Existing capacities larger than technical potential for {existing_large},\
|
||||
adjust technical potential to existing capacities"
|
||||
)
|
||||
n.generators.loc[existing_large, "p_nom_max"] = n.generators.loc[
|
||||
existing_large, "p_nom_min"
|
||||
]
|
||||
|
||||
|
||||
def add_heating_capacities_installed_before_baseyear(
|
||||
n,
|
||||
baseyear,
|
||||
grouping_years,
|
||||
ashp_cop,
|
||||
gshp_cop,
|
||||
time_dep_hp_cop,
|
||||
costs,
|
||||
default_lifetime,
|
||||
):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
n : pypsa.Network
|
||||
baseyear : last year covered in the existing capacities database
|
||||
grouping_years : intervals to group existing capacities
|
||||
linear decommissioning of heating capacities from 2020 to 2045 is
|
||||
currently assumed heating capacities split between residential and
|
||||
services proportional to heating load in both 50% capacities
|
||||
in rural busess 50% in urban buses
|
||||
"""
|
||||
logger.debug(f"Adding heating capacities installed before {baseyear}")
|
||||
|
||||
# Add existing heating capacities, data comes from the study
|
||||
# "Mapping and analyses of the current and future (2020 - 2030)
|
||||
# heating/cooling fuel deployment (fossil/renewables) "
|
||||
# https://ec.europa.eu/energy/studies/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment_en?redir=1
|
||||
# file: "WP2_DataAnnex_1_BuildingTechs_ForPublication_201603.xls" -> "existing_heating_raw.csv".
|
||||
# TODO start from original file
|
||||
|
||||
# retrieve existing heating capacities
|
||||
techs = [
|
||||
"gas boiler",
|
||||
"oil boiler",
|
||||
"resistive heater",
|
||||
"air heat pump",
|
||||
"ground heat pump",
|
||||
]
|
||||
df = pd.read_csv(snakemake.input.existing_heating, index_col=0, header=0)
|
||||
|
||||
# data for Albania, Montenegro and Macedonia not included in database
|
||||
df.loc["Albania"] = np.nan
|
||||
df.loc["Montenegro"] = np.nan
|
||||
df.loc["Macedonia"] = np.nan
|
||||
|
||||
df.fillna(0.0, inplace=True)
|
||||
|
||||
# convert GW to MW
|
||||
df *= 1e3
|
||||
|
||||
cc = pd.read_csv(snakemake.input.country_codes, index_col=0)
|
||||
|
||||
df.rename(index=cc["2 letter code (ISO-3166-2)"], inplace=True)
|
||||
|
||||
# coal and oil boilers are assimilated to oil boilers
|
||||
df["oil boiler"] = df["oil boiler"] + df["coal boiler"]
|
||||
df.drop(["coal boiler"], axis=1, inplace=True)
|
||||
|
||||
# distribute technologies to nodes by population
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
|
||||
nodal_df = df.loc[pop_layout.ct]
|
||||
nodal_df.index = pop_layout.index
|
||||
nodal_df = nodal_df.multiply(pop_layout.fraction, axis=0)
|
||||
|
||||
# split existing capacities between residential and services
|
||||
# proportional to energy demand
|
||||
ratio_residential = pd.Series(
|
||||
[
|
||||
(
|
||||
n.loads_t.p_set.sum()["{} residential rural heat".format(node)]
|
||||
/ (
|
||||
n.loads_t.p_set.sum()["{} residential rural heat".format(node)]
|
||||
+ n.loads_t.p_set.sum()["{} services rural heat".format(node)]
|
||||
)
|
||||
)
|
||||
for node in nodal_df.index
|
||||
],
|
||||
index=nodal_df.index,
|
||||
)
|
||||
|
||||
for tech in techs:
|
||||
nodal_df["residential " + tech] = nodal_df[tech] * ratio_residential
|
||||
nodal_df["services " + tech] = nodal_df[tech] * (1 - ratio_residential)
|
||||
|
||||
names = [
|
||||
"residential rural",
|
||||
"services rural",
|
||||
"residential urban decentral",
|
||||
"services urban decentral",
|
||||
"urban central",
|
||||
]
|
||||
|
||||
nodes = {}
|
||||
p_nom = {}
|
||||
for name in names:
|
||||
name_type = "central" if name == "urban central" else "decentral"
|
||||
nodes[name] = pd.Index(
|
||||
[
|
||||
n.buses.at[index, "location"]
|
||||
for index in n.buses.index[
|
||||
n.buses.index.str.contains(name)
|
||||
& n.buses.index.str.contains("heat")
|
||||
]
|
||||
]
|
||||
)
|
||||
heat_pump_type = "air" if "urban" in name else "ground"
|
||||
heat_type = "residential" if "residential" in name else "services"
|
||||
|
||||
if name == "urban central":
|
||||
p_nom[name] = nodal_df["air heat pump"][nodes[name]]
|
||||
else:
|
||||
p_nom[name] = nodal_df[f"{heat_type} {heat_pump_type} heat pump"][
|
||||
nodes[name]
|
||||
]
|
||||
|
||||
# Add heat pumps
|
||||
costs_name = f"decentral {heat_pump_type}-sourced heat pump"
|
||||
|
||||
cop = {"air": ashp_cop, "ground": gshp_cop}
|
||||
|
||||
if time_dep_hp_cop:
|
||||
efficiency = cop[heat_pump_type][nodes[name]]
|
||||
else:
|
||||
efficiency = costs.at[costs_name, "efficiency"]
|
||||
|
||||
for i, grouping_year in enumerate(grouping_years):
|
||||
if int(grouping_year) + default_lifetime <= int(baseyear):
|
||||
continue
|
||||
|
||||
# installation is assumed to be linear for the past 25 years (default lifetime)
|
||||
ratio = (int(grouping_year) - int(grouping_years[i - 1])) / default_lifetime
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name],
|
||||
suffix=f" {name} {heat_pump_type} heat pump-{grouping_year}",
|
||||
bus0=nodes[name],
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
carrier=f"{name} {heat_pump_type} heat pump",
|
||||
efficiency=efficiency,
|
||||
capital_cost=costs.at[costs_name, "efficiency"]
|
||||
* costs.at[costs_name, "fixed"],
|
||||
p_nom=p_nom[name] * ratio / costs.at[costs_name, "efficiency"],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[costs_name, "lifetime"],
|
||||
)
|
||||
|
||||
# add resistive heater, gas boilers and oil boilers
|
||||
# (50% capacities to rural buses, 50% to urban buses)
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name],
|
||||
suffix=f" {name} resistive heater-{grouping_year}",
|
||||
bus0=nodes[name],
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
carrier=name + " resistive heater",
|
||||
efficiency=costs.at[name_type + " resistive heater", "efficiency"],
|
||||
capital_cost=costs.at[name_type + " resistive heater", "efficiency"]
|
||||
* costs.at[name_type + " resistive heater", "fixed"],
|
||||
p_nom=0.5
|
||||
* nodal_df[f"{heat_type} resistive heater"][nodes[name]]
|
||||
* ratio
|
||||
/ costs.at[name_type + " resistive heater", "efficiency"],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[costs_name, "lifetime"],
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name],
|
||||
suffix=f" {name} gas boiler-{grouping_year}",
|
||||
bus0=spatial.gas.nodes,
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=name + " gas boiler",
|
||||
efficiency=costs.at[name_type + " gas boiler", "efficiency"],
|
||||
efficiency2=costs.at["gas", "CO2 intensity"],
|
||||
capital_cost=costs.at[name_type + " gas boiler", "efficiency"]
|
||||
* costs.at[name_type + " gas boiler", "fixed"],
|
||||
p_nom=0.5
|
||||
* nodal_df[f"{heat_type} gas boiler"][nodes[name]]
|
||||
* ratio
|
||||
/ costs.at[name_type + " gas boiler", "efficiency"],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[name_type + " gas boiler", "lifetime"],
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name],
|
||||
suffix=f" {name} oil boiler-{grouping_year}",
|
||||
bus0=spatial.oil.nodes,
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=name + " oil boiler",
|
||||
efficiency=costs.at["decentral oil boiler", "efficiency"],
|
||||
efficiency2=costs.at["oil", "CO2 intensity"],
|
||||
capital_cost=costs.at["decentral oil boiler", "efficiency"]
|
||||
* costs.at["decentral oil boiler", "fixed"],
|
||||
p_nom=0.5
|
||||
* nodal_df[f"{heat_type} oil boiler"][nodes[name]]
|
||||
* ratio
|
||||
/ costs.at["decentral oil boiler", "efficiency"],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[name_type + " gas boiler", "lifetime"],
|
||||
)
|
||||
|
||||
# delete links with p_nom=nan corresponding to extra nodes in country
|
||||
n.mremove(
|
||||
"Link",
|
||||
[
|
||||
index
|
||||
for index in n.links.index.to_list()
|
||||
if str(grouping_year) in index and np.isnan(n.links.p_nom[index])
|
||||
],
|
||||
)
|
||||
|
||||
# delete links with capacities below threshold
|
||||
threshold = snakemake.config["existing_capacities"]["threshold_capacity"]
|
||||
n.mremove(
|
||||
"Link",
|
||||
[
|
||||
index
|
||||
for index in n.links.index.to_list()
|
||||
if str(grouping_year) in index and n.links.p_nom[index] < threshold
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
# %%
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"add_existing_baseyear",
|
||||
simpl="",
|
||||
clusters="45",
|
||||
lv=1.0,
|
||||
opts="",
|
||||
sector_opts="8760H-T-H-B-I-A-solar+p3-dist1",
|
||||
planning_horizons=2020,
|
||||
)
|
||||
|
||||
logging.basicConfig(level=snakemake.config["logging_level"])
|
||||
|
||||
update_config_with_sector_opts(snakemake.config, snakemake.wildcards.sector_opts)
|
||||
|
||||
options = snakemake.config["sector"]
|
||||
opts = snakemake.wildcards.sector_opts.split("-")
|
||||
|
||||
baseyear = snakemake.config["scenario"]["planning_horizons"][0]
|
||||
|
||||
overrides = override_component_attrs(snakemake.input.overrides)
|
||||
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
||||
# define spatial resolution of carriers
|
||||
spatial = define_spatial(n.buses[n.buses.carrier == "AC"].index, options)
|
||||
add_build_year_to_new_assets(n, baseyear)
|
||||
|
||||
Nyears = n.snapshot_weightings.generators.sum() / 8760.0
|
||||
costs = prepare_costs(
|
||||
snakemake.input.costs,
|
||||
snakemake.config["costs"]["USD2013_to_EUR2013"],
|
||||
snakemake.config["costs"]["discountrate"],
|
||||
Nyears,
|
||||
snakemake.config["costs"]["lifetime"],
|
||||
)
|
||||
|
||||
grouping_years_power = snakemake.config["existing_capacities"][
|
||||
"grouping_years_power"
|
||||
]
|
||||
grouping_years_heat = snakemake.config["existing_capacities"]["grouping_years_heat"]
|
||||
add_power_capacities_installed_before_baseyear(
|
||||
n, grouping_years_power, costs, baseyear
|
||||
)
|
||||
|
||||
if "H" in opts:
|
||||
time_dep_hp_cop = options["time_dep_hp_cop"]
|
||||
ashp_cop = (
|
||||
xr.open_dataarray(snakemake.input.cop_air_total)
|
||||
.to_pandas()
|
||||
.reindex(index=n.snapshots)
|
||||
)
|
||||
gshp_cop = (
|
||||
xr.open_dataarray(snakemake.input.cop_soil_total)
|
||||
.to_pandas()
|
||||
.reindex(index=n.snapshots)
|
||||
)
|
||||
default_lifetime = snakemake.config["costs"]["lifetime"]
|
||||
add_heating_capacities_installed_before_baseyear(
|
||||
n,
|
||||
baseyear,
|
||||
grouping_years_heat,
|
||||
ashp_cop,
|
||||
gshp_cop,
|
||||
time_dep_hp_cop,
|
||||
costs,
|
||||
default_lifetime,
|
||||
)
|
||||
|
||||
if options.get("cluster_heat_buses", False):
|
||||
cluster_heat_buses(n)
|
||||
|
||||
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
||||
|
||||
n.export_to_netcdf(snakemake.output[0])
|
59
scripts/build_ammonia_production.py
Normal file
@ -0,0 +1,59 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build ammonia production.
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
|
||||
country_to_alpha2 = {
|
||||
"Austriae": "AT",
|
||||
"Bulgaria": "BG",
|
||||
"Belgiume": "BE",
|
||||
"Croatia": "HR",
|
||||
"Czechia": "CZ",
|
||||
"Estonia": "EE",
|
||||
"Finland": "FI",
|
||||
"France": "FR",
|
||||
"Germany": "DE",
|
||||
"Greece": "GR",
|
||||
"Hungarye": "HU",
|
||||
"Italye": "IT",
|
||||
"Lithuania": "LT",
|
||||
"Netherlands": "NL",
|
||||
"Norwaye": "NO",
|
||||
"Poland": "PL",
|
||||
"Romania": "RO",
|
||||
"Serbia": "RS",
|
||||
"Slovakia": "SK",
|
||||
"Spain": "ES",
|
||||
"Switzerland": "CH",
|
||||
"United Kingdom": "GB",
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("build_ammonia_production")
|
||||
|
||||
ammonia = pd.read_excel(
|
||||
snakemake.input.usgs,
|
||||
sheet_name="T12",
|
||||
skiprows=5,
|
||||
header=0,
|
||||
index_col=0,
|
||||
skipfooter=19,
|
||||
)
|
||||
|
||||
ammonia.rename(country_to_alpha2, inplace=True)
|
||||
|
||||
years = [str(i) for i in range(2013, 2018)]
|
||||
countries = country_to_alpha2.values()
|
||||
ammonia = ammonia.loc[countries, years].astype(float)
|
||||
|
||||
# convert from ktonN to ktonNH3
|
||||
ammonia *= 17 / 14
|
||||
|
||||
ammonia.index.name = "ktonNH3/a"
|
||||
|
||||
ammonia.to_csv(snakemake.output.ammonia_production)
|
233
scripts/build_biomass_potentials.py
Normal file
@ -0,0 +1,233 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def build_nuts_population_data(year=2013):
|
||||
pop = pd.read_csv(
|
||||
snakemake.input.nuts3_population,
|
||||
sep=r"\,| \t|\t",
|
||||
engine="python",
|
||||
na_values=[":"],
|
||||
index_col=1,
|
||||
)[str(year)]
|
||||
|
||||
# only countries
|
||||
pop.drop("EU28", inplace=True)
|
||||
|
||||
# mapping from Cantons to NUTS3
|
||||
cantons = pd.read_csv(snakemake.input.swiss_cantons)
|
||||
cantons = cantons.set_index(cantons.HASC.str[3:]).NUTS
|
||||
cantons = cantons.str.pad(5, side="right", fillchar="0")
|
||||
|
||||
# get population by NUTS3
|
||||
swiss = pd.read_excel(
|
||||
snakemake.input.swiss_population, skiprows=3, index_col=0
|
||||
).loc["Residents in 1000"]
|
||||
swiss = swiss.rename(cantons).filter(like="CH")
|
||||
|
||||
# aggregate also to higher order NUTS levels
|
||||
swiss = [swiss.groupby(swiss.index.str[:i]).sum() for i in range(2, 6)]
|
||||
|
||||
# merge Europe + Switzerland
|
||||
pop = pd.concat([pop, pd.concat(swiss)]).to_frame("total")
|
||||
|
||||
# add missing manually
|
||||
pop["AL"] = 2893
|
||||
pop["BA"] = 3871
|
||||
pop["RS"] = 7210
|
||||
|
||||
pop["ct"] = pop.index.str[:2]
|
||||
|
||||
return pop
|
||||
|
||||
|
||||
def enspreso_biomass_potentials(year=2020, scenario="ENS_Low"):
|
||||
"""
|
||||
Loads the JRC ENSPRESO biomass potentials.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
year : int
|
||||
The year for which potentials are to be taken.
|
||||
Can be {2010, 2020, 2030, 2040, 2050}.
|
||||
scenario : str
|
||||
The scenario. Can be {"ENS_Low", "ENS_Med", "ENS_High"}.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pd.DataFrame
|
||||
Biomass potentials for given year and scenario
|
||||
in TWh/a by commodity and NUTS2 region.
|
||||
"""
|
||||
|
||||
glossary = pd.read_excel(
|
||||
str(snakemake.input.enspreso_biomass),
|
||||
sheet_name="Glossary",
|
||||
usecols="B:D",
|
||||
skiprows=1,
|
||||
index_col=0,
|
||||
)
|
||||
|
||||
df = pd.read_excel(
|
||||
str(snakemake.input.enspreso_biomass),
|
||||
sheet_name="ENER - NUTS2 BioCom E",
|
||||
usecols="A:H",
|
||||
)
|
||||
|
||||
df["group"] = df["E-Comm"].map(glossary.group)
|
||||
df["commodity"] = df["E-Comm"].map(glossary.description)
|
||||
|
||||
to_rename = {
|
||||
"NUTS2 Potential available by Bio Commodity": "potential",
|
||||
"NUST2": "NUTS2",
|
||||
}
|
||||
df.rename(columns=to_rename, inplace=True)
|
||||
|
||||
# fill up with NUTS0 if NUTS2 is not given
|
||||
df.NUTS2 = df.apply(lambda x: x.NUTS0 if x.NUTS2 == "-" else x.NUTS2, axis=1)
|
||||
|
||||
# convert PJ to TWh
|
||||
df.potential /= 3.6
|
||||
df.Unit = "TWh/a"
|
||||
|
||||
dff = df.query("Year == @year and Scenario == @scenario")
|
||||
|
||||
bio = dff.groupby(["NUTS2", "commodity"]).potential.sum().unstack()
|
||||
|
||||
# currently Serbia and Kosovo not split, so aggregate
|
||||
bio.loc["RS"] += bio.loc["XK"]
|
||||
bio.drop("XK", inplace=True)
|
||||
|
||||
return bio
|
||||
|
||||
|
||||
def disaggregate_nuts0(bio):
|
||||
"""
|
||||
Some commodities are only given on NUTS0 level. These are disaggregated
|
||||
here using the NUTS2 population as distribution key.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
bio : pd.DataFrame
|
||||
from enspreso_biomass_potentials()
|
||||
|
||||
Returns
|
||||
-------
|
||||
pd.DataFrame
|
||||
"""
|
||||
|
||||
pop = build_nuts_population_data()
|
||||
|
||||
# get population in nuts2
|
||||
pop_nuts2 = pop.loc[pop.index.str.len() == 4]
|
||||
by_country = pop_nuts2.total.groupby(pop_nuts2.ct).sum()
|
||||
pop_nuts2["fraction"] = pop_nuts2.total / pop_nuts2.ct.map(by_country)
|
||||
|
||||
# distribute nuts0 data to nuts2 by population
|
||||
bio_nodal = bio.loc[pop_nuts2.ct]
|
||||
bio_nodal.index = pop_nuts2.index
|
||||
bio_nodal = bio_nodal.mul(pop_nuts2.fraction, axis=0)
|
||||
|
||||
# update inplace
|
||||
bio.update(bio_nodal)
|
||||
|
||||
return bio
|
||||
|
||||
|
||||
def build_nuts2_shapes():
|
||||
"""
|
||||
- load NUTS2 geometries
|
||||
- add RS, AL, BA country shapes (not covered in NUTS 2013)
|
||||
- consistently name ME, MK
|
||||
"""
|
||||
|
||||
nuts2 = gpd.GeoDataFrame(
|
||||
gpd.read_file(snakemake.input.nuts2).set_index("id").geometry
|
||||
)
|
||||
|
||||
countries = gpd.read_file(snakemake.input.country_shapes).set_index("name")
|
||||
missing_iso2 = countries.index.intersection(["AL", "RS", "BA"])
|
||||
missing = countries.loc[missing_iso2]
|
||||
|
||||
nuts2.rename(index={"ME00": "ME", "MK00": "MK"}, inplace=True)
|
||||
|
||||
return pd.concat([nuts2, missing])
|
||||
|
||||
|
||||
def area(gdf):
|
||||
"""
|
||||
Returns area of GeoDataFrame geometries in square kilometers.
|
||||
"""
|
||||
return gdf.to_crs(epsg=3035).area.div(1e6)
|
||||
|
||||
|
||||
def convert_nuts2_to_regions(bio_nuts2, regions):
|
||||
"""
|
||||
Converts biomass potentials given in NUTS2 to PyPSA-Eur regions based on
|
||||
the overlay of both GeoDataFrames in proportion to the area.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
bio_nuts2 : gpd.GeoDataFrame
|
||||
JRC ENSPRESO biomass potentials indexed by NUTS2 shapes.
|
||||
regions : gpd.GeoDataFrame
|
||||
PyPSA-Eur clustered onshore regions
|
||||
|
||||
Returns
|
||||
-------
|
||||
gpd.GeoDataFrame
|
||||
"""
|
||||
|
||||
# calculate area of nuts2 regions
|
||||
bio_nuts2["area_nuts2"] = area(bio_nuts2)
|
||||
|
||||
overlay = gpd.overlay(regions, bio_nuts2, keep_geom_type=True)
|
||||
|
||||
# calculate share of nuts2 area inside region
|
||||
overlay["share"] = area(overlay) / overlay["area_nuts2"]
|
||||
|
||||
# multiply all nuts2-level values with share of nuts2 inside region
|
||||
adjust_cols = overlay.columns.difference(
|
||||
{"name", "area_nuts2", "geometry", "share"}
|
||||
)
|
||||
overlay[adjust_cols] = overlay[adjust_cols].multiply(overlay["share"], axis=0)
|
||||
|
||||
bio_regions = overlay.groupby("name").sum()
|
||||
|
||||
bio_regions.drop(["area_nuts2", "share"], axis=1, inplace=True)
|
||||
|
||||
return bio_regions
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("build_biomass_potentials", simpl="", clusters="5")
|
||||
|
||||
config = snakemake.config["biomass"]
|
||||
year = config["year"]
|
||||
scenario = config["scenario"]
|
||||
|
||||
enspreso = enspreso_biomass_potentials(year, scenario)
|
||||
|
||||
enspreso = disaggregate_nuts0(enspreso)
|
||||
|
||||
nuts2 = build_nuts2_shapes()
|
||||
|
||||
df_nuts2 = gpd.GeoDataFrame(nuts2.geometry).join(enspreso)
|
||||
|
||||
regions = gpd.read_file(snakemake.input.regions_onshore)
|
||||
|
||||
df = convert_nuts2_to_regions(df_nuts2, regions)
|
||||
|
||||
df.to_csv(snakemake.output.biomass_potentials_all)
|
||||
|
||||
grouper = {v: k for k, vv in config["classes"].items() for v in vv}
|
||||
df = df.groupby(grouper, axis=1).sum()
|
||||
|
||||
df *= 1e6 # TWh/a to MWh/a
|
||||
df.index.name = "MWh/a"
|
||||
|
||||
df.to_csv(snakemake.output.biomass_potentials)
|
80
scripts/build_biomass_transport_costs.py
Normal file
@ -0,0 +1,80 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Reads biomass transport costs for different countries of the JRC report.
|
||||
|
||||
"The JRC-EU-TIMES model.
|
||||
Bioenergy potentials
|
||||
for EU and neighbouring countries."
|
||||
(2015)
|
||||
|
||||
converts them from units 'EUR per km/ton' -> 'EUR/ (km MWh)'
|
||||
|
||||
assuming as an approximation energy content of wood pellets
|
||||
|
||||
@author: bw0928
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import tabula as tbl
|
||||
|
||||
ENERGY_CONTENT = 4.8 # unit MWh/t (wood pellets)
|
||||
|
||||
|
||||
def get_countries():
|
||||
pandas_options = dict(skiprows=range(6), header=None, index_col=0)
|
||||
|
||||
return tbl.read_pdf(
|
||||
str(snakemake.input.transport_cost_data),
|
||||
pages="145",
|
||||
multiple_tables=False,
|
||||
pandas_options=pandas_options,
|
||||
)[0].index
|
||||
|
||||
|
||||
def get_cost_per_tkm(page, countries):
|
||||
pandas_options = dict(
|
||||
skiprows=range(6),
|
||||
header=0,
|
||||
sep=" |,",
|
||||
engine="python",
|
||||
index_col=False,
|
||||
)
|
||||
|
||||
sc = tbl.read_pdf(
|
||||
str(snakemake.input.transport_cost_data),
|
||||
pages=page,
|
||||
multiple_tables=False,
|
||||
pandas_options=pandas_options,
|
||||
)[0]
|
||||
sc.index = countries
|
||||
sc.columns = sc.columns.str.replace("€", "EUR")
|
||||
|
||||
return sc
|
||||
|
||||
|
||||
def build_biomass_transport_costs():
|
||||
countries = get_countries()
|
||||
|
||||
sc1 = get_cost_per_tkm(146, countries)
|
||||
sc2 = get_cost_per_tkm(147, countries)
|
||||
|
||||
# take mean of both supply chains
|
||||
to_concat = [sc1["EUR/km/ton"], sc2["EUR/km/ton"]]
|
||||
transport_costs = pd.concat(to_concat, axis=1).mean(axis=1)
|
||||
|
||||
# convert tonnes to MWh
|
||||
transport_costs /= ENERGY_CONTENT
|
||||
transport_costs.name = "EUR/km/MWh"
|
||||
|
||||
# rename country names
|
||||
to_rename = {"UK": "GB", "XK": "KO", "EL": "GR"}
|
||||
transport_costs.rename(to_rename, inplace=True)
|
||||
|
||||
# add missing Norway with data from Sweden
|
||||
transport_costs["NO"] = transport_costs["SE"]
|
||||
|
||||
transport_costs.to_csv(snakemake.output[0])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
build_biomass_transport_costs()
|
43
scripts/build_clustered_population_layouts.py
Normal file
@ -0,0 +1,43 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build clustered population layouts.
|
||||
"""
|
||||
|
||||
import atlite
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_clustered_population_layouts",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
cutout = atlite.Cutout(snakemake.config["atlite"]["cutout"])
|
||||
|
||||
clustered_regions = (
|
||||
gpd.read_file(snakemake.input.regions_onshore)
|
||||
.set_index("name")
|
||||
.buffer(0)
|
||||
.squeeze()
|
||||
)
|
||||
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
||||
pop = {}
|
||||
for item in ["total", "urban", "rural"]:
|
||||
pop_layout = xr.open_dataarray(snakemake.input[f"pop_layout_{item}"])
|
||||
pop[item] = I.dot(pop_layout.stack(spatial=("y", "x")))
|
||||
|
||||
pop = pd.DataFrame(pop, index=clustered_regions.index)
|
||||
|
||||
pop["ct"] = pop.index.str[:2]
|
||||
country_population = pop.total.groupby(pop.ct).sum()
|
||||
pop["fraction"] = pop.total / pop.ct.map(country_population)
|
||||
|
||||
pop.to_csv(snakemake.output.clustered_pop_layout)
|
42
scripts/build_cop_profiles.py
Normal file
@ -0,0 +1,42 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build COP time series for air- or ground-sourced heat pumps.
|
||||
"""
|
||||
|
||||
import xarray as xr
|
||||
|
||||
|
||||
def coefficient_of_performance(delta_T, source="air"):
|
||||
"""
|
||||
COP is function of temp difference source to sink.
|
||||
|
||||
The quadratic regression is based on Staffell et al. (2012)
|
||||
https://doi.org/10.1039/C2EE22653G.
|
||||
"""
|
||||
if source == "air":
|
||||
return 6.81 - 0.121 * delta_T + 0.000630 * delta_T**2
|
||||
elif source == "soil":
|
||||
return 8.77 - 0.150 * delta_T + 0.000734 * delta_T**2
|
||||
else:
|
||||
raise NotImplementedError("'source' must be one of ['air', 'soil']")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_cop_profiles",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
for area in ["total", "urban", "rural"]:
|
||||
for source in ["air", "soil"]:
|
||||
source_T = xr.open_dataarray(snakemake.input[f"temp_{source}_{area}"])
|
||||
|
||||
delta_T = snakemake.config["sector"]["heat_pump_sink_T"] - source_T
|
||||
|
||||
cop = coefficient_of_performance(delta_T, source)
|
||||
|
||||
cop.to_netcdf(snakemake.output[f"cop_{source}_{area}"])
|
785
scripts/build_energy_totals.py
Normal file
@ -0,0 +1,785 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import multiprocessing as mp
|
||||
from functools import partial
|
||||
|
||||
import geopandas as gpd
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from helper import mute_print
|
||||
from tqdm import tqdm
|
||||
|
||||
idx = pd.IndexSlice
|
||||
|
||||
|
||||
def cartesian(s1, s2):
|
||||
"""
|
||||
Cartesian product of two pd.Series.
|
||||
"""
|
||||
return pd.DataFrame(np.outer(s1, s2), index=s1.index, columns=s2.index)
|
||||
|
||||
|
||||
def reverse(dictionary):
|
||||
"""
|
||||
Reverses a keys and values of a dictionary.
|
||||
"""
|
||||
return {v: k for k, v in dictionary.items()}
|
||||
|
||||
|
||||
# translations for Eurostat
|
||||
eurostat_country_to_alpha2 = {
|
||||
"EU28": "EU",
|
||||
"EA19": "EA",
|
||||
"Belgium": "BE",
|
||||
"Bulgaria": "BG",
|
||||
"Czech Republic": "CZ",
|
||||
"Denmark": "DK",
|
||||
"Germany": "DE",
|
||||
"Estonia": "EE",
|
||||
"Ireland": "IE",
|
||||
"Greece": "GR",
|
||||
"Spain": "ES",
|
||||
"France": "FR",
|
||||
"Croatia": "HR",
|
||||
"Italy": "IT",
|
||||
"Cyprus": "CY",
|
||||
"Latvia": "LV",
|
||||
"Lithuania": "LT",
|
||||
"Luxembourg": "LU",
|
||||
"Hungary": "HU",
|
||||
"Malta": "MA",
|
||||
"Netherlands": "NL",
|
||||
"Austria": "AT",
|
||||
"Poland": "PL",
|
||||
"Portugal": "PT",
|
||||
"Romania": "RO",
|
||||
"Slovenia": "SI",
|
||||
"Slovakia": "SK",
|
||||
"Finland": "FI",
|
||||
"Sweden": "SE",
|
||||
"United Kingdom": "GB",
|
||||
"Iceland": "IS",
|
||||
"Norway": "NO",
|
||||
"Montenegro": "ME",
|
||||
"FYR of Macedonia": "MK",
|
||||
"Albania": "AL",
|
||||
"Serbia": "RS",
|
||||
"Turkey": "TU",
|
||||
"Bosnia and Herzegovina": "BA",
|
||||
"Kosovo\n(UNSCR 1244/99)": "KO", # 2017 version
|
||||
# 2016 version
|
||||
"Kosovo\n(under United Nations Security Council Resolution 1244/99)": "KO",
|
||||
"Moldova": "MO",
|
||||
"Ukraine": "UK",
|
||||
"Switzerland": "CH",
|
||||
}
|
||||
|
||||
non_EU = ["NO", "CH", "ME", "MK", "RS", "BA", "AL"]
|
||||
|
||||
idees_rename = {"GR": "EL", "GB": "UK"}
|
||||
|
||||
eu28 = [
|
||||
"FR",
|
||||
"DE",
|
||||
"GB",
|
||||
"IT",
|
||||
"ES",
|
||||
"PL",
|
||||
"SE",
|
||||
"NL",
|
||||
"BE",
|
||||
"FI",
|
||||
"CZ",
|
||||
"DK",
|
||||
"PT",
|
||||
"RO",
|
||||
"AT",
|
||||
"BG",
|
||||
"EE",
|
||||
"GR",
|
||||
"LV",
|
||||
"HU",
|
||||
"IE",
|
||||
"SK",
|
||||
"LT",
|
||||
"HR",
|
||||
"LU",
|
||||
"SI",
|
||||
] + ["CY", "MT"]
|
||||
|
||||
eu28_eea = eu28.copy()
|
||||
eu28_eea.remove("GB")
|
||||
eu28_eea.append("UK")
|
||||
|
||||
|
||||
to_ipcc = {
|
||||
"electricity": "1.A.1.a - Public Electricity and Heat Production",
|
||||
"residential non-elec": "1.A.4.b - Residential",
|
||||
"services non-elec": "1.A.4.a - Commercial/Institutional",
|
||||
"rail non-elec": "1.A.3.c - Railways",
|
||||
"road non-elec": "1.A.3.b - Road Transportation",
|
||||
"domestic navigation": "1.A.3.d - Domestic Navigation",
|
||||
"international navigation": "1.D.1.b - International Navigation",
|
||||
"domestic aviation": "1.A.3.a - Domestic Aviation",
|
||||
"international aviation": "1.D.1.a - International Aviation",
|
||||
"total energy": "1 - Energy",
|
||||
"industrial processes": "2 - Industrial Processes and Product Use",
|
||||
"agriculture": "3 - Agriculture",
|
||||
"agriculture, forestry and fishing": "1.A.4.c - Agriculture/Forestry/Fishing",
|
||||
"LULUCF": "4 - Land Use, Land-Use Change and Forestry",
|
||||
"waste management": "5 - Waste management",
|
||||
"other": "6 - Other Sector",
|
||||
"indirect": "ind_CO2 - Indirect CO2",
|
||||
"total wL": "Total (with LULUCF)",
|
||||
"total woL": "Total (without LULUCF)",
|
||||
}
|
||||
|
||||
|
||||
def build_eurostat(input_eurostat, countries, report_year, year):
|
||||
"""
|
||||
Return multi-index for all countries' energy data in TWh/a.
|
||||
"""
|
||||
|
||||
filenames = {
|
||||
2016: f"/{year}-Energy-Balances-June2016edition.xlsx",
|
||||
2017: f"/{year}-ENERGY-BALANCES-June2017edition.xlsx",
|
||||
}
|
||||
|
||||
with mute_print():
|
||||
dfs = pd.read_excel(
|
||||
input_eurostat + filenames[report_year],
|
||||
sheet_name=None,
|
||||
skiprows=1,
|
||||
index_col=list(range(4)),
|
||||
)
|
||||
|
||||
# sorted_index necessary for slicing
|
||||
lookup = eurostat_country_to_alpha2
|
||||
labelled_dfs = {
|
||||
lookup[df.columns[0]]: df
|
||||
for df in dfs.values()
|
||||
if lookup[df.columns[0]] in countries
|
||||
}
|
||||
df = pd.concat(labelled_dfs, sort=True).sort_index()
|
||||
|
||||
# drop non-numeric and country columns
|
||||
non_numeric_cols = df.columns[df.dtypes != float]
|
||||
country_cols = df.columns.intersection(lookup.keys())
|
||||
to_drop = non_numeric_cols.union(country_cols)
|
||||
df.drop(to_drop, axis=1, inplace=True)
|
||||
|
||||
# convert ktoe/a to TWh/a
|
||||
df *= 11.63 / 1e3
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def build_swiss(year):
|
||||
"""
|
||||
Return a pd.Series of Swiss energy data in TWh/a.
|
||||
"""
|
||||
|
||||
fn = snakemake.input.swiss
|
||||
|
||||
df = pd.read_csv(fn, index_col=[0, 1]).loc["CH", str(year)]
|
||||
|
||||
# convert PJ/a to TWh/a
|
||||
df /= 3.6
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def idees_per_country(ct, year):
|
||||
base_dir = snakemake.input.idees
|
||||
|
||||
ct_totals = {}
|
||||
|
||||
ct_idees = idees_rename.get(ct, ct)
|
||||
fn_residential = f"{base_dir}/JRC-IDEES-2015_Residential_{ct_idees}.xlsx"
|
||||
fn_tertiary = f"{base_dir}/JRC-IDEES-2015_Tertiary_{ct_idees}.xlsx"
|
||||
fn_transport = f"{base_dir}/JRC-IDEES-2015_Transport_{ct_idees}.xlsx"
|
||||
|
||||
# residential
|
||||
|
||||
df = pd.read_excel(fn_residential, "RES_hh_fec", index_col=0)[year]
|
||||
|
||||
ct_totals["total residential space"] = df["Space heating"]
|
||||
|
||||
rows = ["Advanced electric heating", "Conventional electric heating"]
|
||||
ct_totals["electricity residential space"] = df[rows].sum()
|
||||
|
||||
ct_totals["total residential water"] = df.at["Water heating"]
|
||||
|
||||
assert df.index[23] == "Electricity"
|
||||
ct_totals["electricity residential water"] = df[23]
|
||||
|
||||
ct_totals["total residential cooking"] = df["Cooking"]
|
||||
|
||||
assert df.index[30] == "Electricity"
|
||||
ct_totals["electricity residential cooking"] = df[30]
|
||||
|
||||
df = pd.read_excel(fn_residential, "RES_summary", index_col=0)[year]
|
||||
|
||||
row = "Energy consumption by fuel - Eurostat structure (ktoe)"
|
||||
ct_totals["total residential"] = df[row]
|
||||
|
||||
assert df.index[47] == "Electricity"
|
||||
ct_totals["electricity residential"] = df[47]
|
||||
|
||||
assert df.index[46] == "Derived heat"
|
||||
ct_totals["derived heat residential"] = df[46]
|
||||
|
||||
assert df.index[50] == "Thermal uses"
|
||||
ct_totals["thermal uses residential"] = df[50]
|
||||
|
||||
# services
|
||||
|
||||
df = pd.read_excel(fn_tertiary, "SER_hh_fec", index_col=0)[year]
|
||||
|
||||
ct_totals["total services space"] = df["Space heating"]
|
||||
|
||||
rows = ["Advanced electric heating", "Conventional electric heating"]
|
||||
ct_totals["electricity services space"] = df[rows].sum()
|
||||
|
||||
ct_totals["total services water"] = df["Hot water"]
|
||||
|
||||
assert df.index[24] == "Electricity"
|
||||
ct_totals["electricity services water"] = df[24]
|
||||
|
||||
ct_totals["total services cooking"] = df["Catering"]
|
||||
|
||||
assert df.index[31] == "Electricity"
|
||||
ct_totals["electricity services cooking"] = df[31]
|
||||
|
||||
df = pd.read_excel(fn_tertiary, "SER_summary", index_col=0)[year]
|
||||
|
||||
row = "Energy consumption by fuel - Eurostat structure (ktoe)"
|
||||
ct_totals["total services"] = df[row]
|
||||
|
||||
assert df.index[50] == "Electricity"
|
||||
ct_totals["electricity services"] = df[50]
|
||||
|
||||
assert df.index[49] == "Derived heat"
|
||||
ct_totals["derived heat services"] = df[49]
|
||||
|
||||
assert df.index[53] == "Thermal uses"
|
||||
ct_totals["thermal uses services"] = df[53]
|
||||
|
||||
# agriculture, forestry and fishing
|
||||
|
||||
start = "Detailed split of energy consumption (ktoe)"
|
||||
end = "Market shares of energy uses (%)"
|
||||
|
||||
df = pd.read_excel(fn_tertiary, "AGR_fec", index_col=0).loc[start:end, year]
|
||||
|
||||
rows = [
|
||||
"Lighting",
|
||||
"Ventilation",
|
||||
"Specific electricity uses",
|
||||
"Pumping devices (electric)",
|
||||
]
|
||||
ct_totals["total agriculture electricity"] = df[rows].sum()
|
||||
|
||||
rows = ["Specific heat uses", "Low enthalpy heat"]
|
||||
ct_totals["total agriculture heat"] = df[rows].sum()
|
||||
|
||||
rows = [
|
||||
"Motor drives",
|
||||
"Farming machine drives (diesel oil incl. biofuels)",
|
||||
"Pumping devices (diesel oil incl. biofuels)",
|
||||
]
|
||||
ct_totals["total agriculture machinery"] = df[rows].sum()
|
||||
|
||||
row = "Agriculture, forestry and fishing"
|
||||
ct_totals["total agriculture"] = df[row]
|
||||
|
||||
# transport
|
||||
|
||||
df = pd.read_excel(fn_transport, "TrRoad_ene", index_col=0)[year]
|
||||
|
||||
ct_totals["total road"] = df["by fuel (EUROSTAT DATA)"]
|
||||
|
||||
ct_totals["electricity road"] = df["Electricity"]
|
||||
|
||||
ct_totals["total two-wheel"] = df["Powered 2-wheelers (Gasoline)"]
|
||||
|
||||
assert df.index[19] == "Passenger cars"
|
||||
ct_totals["total passenger cars"] = df[19]
|
||||
|
||||
assert df.index[30] == "Battery electric vehicles"
|
||||
ct_totals["electricity passenger cars"] = df[30]
|
||||
|
||||
assert df.index[31] == "Motor coaches, buses and trolley buses"
|
||||
ct_totals["total other road passenger"] = df[31]
|
||||
|
||||
assert df.index[39] == "Battery electric vehicles"
|
||||
ct_totals["electricity other road passenger"] = df[39]
|
||||
|
||||
assert df.index[41] == "Light duty vehicles"
|
||||
ct_totals["total light duty road freight"] = df[41]
|
||||
|
||||
assert df.index[49] == "Battery electric vehicles"
|
||||
ct_totals["electricity light duty road freight"] = df[49]
|
||||
|
||||
row = "Heavy duty vehicles (Diesel oil incl. biofuels)"
|
||||
ct_totals["total heavy duty road freight"] = df[row]
|
||||
|
||||
assert df.index[61] == "Passenger cars"
|
||||
ct_totals["passenger car efficiency"] = df[61]
|
||||
|
||||
df = pd.read_excel(fn_transport, "TrRail_ene", index_col=0)[year]
|
||||
|
||||
ct_totals["total rail"] = df["by fuel (EUROSTAT DATA)"]
|
||||
|
||||
ct_totals["electricity rail"] = df["Electricity"]
|
||||
|
||||
assert df.index[15] == "Passenger transport"
|
||||
ct_totals["total rail passenger"] = df[15]
|
||||
|
||||
assert df.index[16] == "Metro and tram, urban light rail"
|
||||
assert df.index[19] == "Electric"
|
||||
assert df.index[20] == "High speed passenger trains"
|
||||
ct_totals["electricity rail passenger"] = df[[16, 19, 20]].sum()
|
||||
|
||||
assert df.index[21] == "Freight transport"
|
||||
ct_totals["total rail freight"] = df[21]
|
||||
|
||||
assert df.index[23] == "Electric"
|
||||
ct_totals["electricity rail freight"] = df[23]
|
||||
|
||||
df = pd.read_excel(fn_transport, "TrAvia_ene", index_col=0)[year]
|
||||
|
||||
assert df.index[6] == "Passenger transport"
|
||||
ct_totals["total aviation passenger"] = df[6]
|
||||
|
||||
assert df.index[10] == "Freight transport"
|
||||
ct_totals["total aviation freight"] = df[10]
|
||||
|
||||
assert df.index[7] == "Domestic"
|
||||
ct_totals["total domestic aviation passenger"] = df[7]
|
||||
|
||||
assert df.index[8] == "International - Intra-EU"
|
||||
assert df.index[9] == "International - Extra-EU"
|
||||
ct_totals["total international aviation passenger"] = df[[8, 9]].sum()
|
||||
|
||||
assert df.index[11] == "Domestic and International - Intra-EU"
|
||||
ct_totals["total domestic aviation freight"] = df[11]
|
||||
|
||||
assert df.index[12] == "International - Extra-EU"
|
||||
ct_totals["total international aviation freight"] = df[12]
|
||||
|
||||
ct_totals["total domestic aviation"] = (
|
||||
ct_totals["total domestic aviation freight"]
|
||||
+ ct_totals["total domestic aviation passenger"]
|
||||
)
|
||||
|
||||
ct_totals["total international aviation"] = (
|
||||
ct_totals["total international aviation freight"]
|
||||
+ ct_totals["total international aviation passenger"]
|
||||
)
|
||||
|
||||
df = pd.read_excel(fn_transport, "TrNavi_ene", index_col=0)[year]
|
||||
|
||||
# coastal and inland
|
||||
ct_totals["total domestic navigation"] = df["by fuel (EUROSTAT DATA)"]
|
||||
|
||||
df = pd.read_excel(fn_transport, "TrRoad_act", index_col=0)[year]
|
||||
|
||||
assert df.index[85] == "Passenger cars"
|
||||
ct_totals["passenger cars"] = df[85]
|
||||
|
||||
return pd.Series(ct_totals, name=ct)
|
||||
|
||||
|
||||
def build_idees(countries, year):
|
||||
nprocesses = snakemake.threads
|
||||
|
||||
func = partial(idees_per_country, year=year)
|
||||
tqdm_kwargs = dict(
|
||||
ascii=False,
|
||||
unit=" country",
|
||||
total=len(countries),
|
||||
desc="Build from IDEES database",
|
||||
)
|
||||
with mute_print():
|
||||
with mp.Pool(processes=nprocesses) as pool:
|
||||
totals_list = list(tqdm(pool.imap(func, countries), **tqdm_kwargs))
|
||||
|
||||
totals = pd.concat(totals_list, axis=1)
|
||||
|
||||
# convert ktoe to TWh
|
||||
exclude = totals.index.str.fullmatch("passenger cars")
|
||||
totals.loc[~exclude] *= 11.63 / 1e3
|
||||
|
||||
# convert TWh/100km to kWh/km
|
||||
totals.loc["passenger car efficiency"] *= 10
|
||||
|
||||
# district heating share
|
||||
district_heat = totals.loc[
|
||||
["derived heat residential", "derived heat services"]
|
||||
].sum()
|
||||
total_heat = totals.loc[["thermal uses residential", "thermal uses services"]].sum()
|
||||
totals.loc["district heat share"] = district_heat.div(total_heat)
|
||||
|
||||
return totals.T
|
||||
|
||||
|
||||
def build_energy_totals(countries, eurostat, swiss, idees):
|
||||
eurostat_fuels = {"electricity": "Electricity", "total": "Total all products"}
|
||||
|
||||
to_drop = ["passenger cars", "passenger car efficiency"]
|
||||
df = idees.reindex(countries).drop(to_drop, axis=1)
|
||||
|
||||
eurostat_countries = eurostat.index.levels[0]
|
||||
in_eurostat = df.index.intersection(eurostat_countries)
|
||||
|
||||
# add international navigation
|
||||
|
||||
slicer = idx[in_eurostat, :, "Bunkers", :]
|
||||
fill_values = eurostat.loc[slicer, "Total all products"].groupby(level=0).sum()
|
||||
df.loc[in_eurostat, "total international navigation"] = fill_values
|
||||
|
||||
# add swiss energy data
|
||||
|
||||
df.loc["CH"] = swiss
|
||||
|
||||
# get values for missing countries based on Eurostat EnergyBalances
|
||||
# divide cooking/space/water according to averages in EU28
|
||||
|
||||
missing = df.index[df["total residential"].isna()]
|
||||
to_fill = missing.intersection(eurostat_countries)
|
||||
uses = ["space", "cooking", "water"]
|
||||
|
||||
for sector in ["residential", "services", "road", "rail"]:
|
||||
eurostat_sector = sector.capitalize()
|
||||
|
||||
# fuel use
|
||||
|
||||
for fuel in ["electricity", "total"]:
|
||||
slicer = idx[to_fill, :, :, eurostat_sector]
|
||||
fill_values = (
|
||||
eurostat.loc[slicer, eurostat_fuels[fuel]].groupby(level=0).sum()
|
||||
)
|
||||
df.loc[to_fill, f"{fuel} {sector}"] = fill_values
|
||||
|
||||
for sector in ["residential", "services"]:
|
||||
# electric use
|
||||
|
||||
for use in uses:
|
||||
fuel_use = df[f"electricity {sector} {use}"]
|
||||
fuel = df[f"electricity {sector}"]
|
||||
avg = fuel_use.div(fuel).mean()
|
||||
logger.debug(
|
||||
f"{sector}: average fraction of electricity for {use} is {avg:.3f}"
|
||||
)
|
||||
df.loc[to_fill, f"electricity {sector} {use}"] = (
|
||||
avg * df.loc[to_fill, f"electricity {sector}"]
|
||||
)
|
||||
|
||||
# non-electric use
|
||||
|
||||
for use in uses:
|
||||
nonelectric_use = (
|
||||
df[f"total {sector} {use}"] - df[f"electricity {sector} {use}"]
|
||||
)
|
||||
nonelectric = df[f"total {sector}"] - df[f"electricity {sector}"]
|
||||
avg = nonelectric_use.div(nonelectric).mean()
|
||||
logger.debug(
|
||||
f"{sector}: average fraction of non-electric for {use} is {avg:.3f}"
|
||||
)
|
||||
electric_use = df.loc[to_fill, f"electricity {sector} {use}"]
|
||||
nonelectric = (
|
||||
df.loc[to_fill, f"total {sector}"]
|
||||
- df.loc[to_fill, f"electricity {sector}"]
|
||||
)
|
||||
df.loc[to_fill, f"total {sector} {use}"] = electric_use + avg * nonelectric
|
||||
|
||||
# Fix Norway space and water heating fractions
|
||||
# http://www.ssb.no/en/energi-og-industri/statistikker/husenergi/hvert-3-aar/2014-07-14
|
||||
# The main heating source for about 73 per cent of the households is based on electricity
|
||||
# => 26% is non-electric
|
||||
elec_fraction = 0.73
|
||||
|
||||
no_norway = df.drop("NO")
|
||||
|
||||
for sector in ["residential", "services"]:
|
||||
# assume non-electric is heating
|
||||
nonelectric = (
|
||||
df.loc["NO", f"total {sector}"] - df.loc["NO", f"electricity {sector}"]
|
||||
)
|
||||
total_heating = nonelectric / (1 - elec_fraction)
|
||||
|
||||
for use in uses:
|
||||
nonelectric_use = (
|
||||
no_norway[f"total {sector} {use}"]
|
||||
- no_norway[f"electricity {sector} {use}"]
|
||||
)
|
||||
nonelectric = (
|
||||
no_norway[f"total {sector}"] - no_norway[f"electricity {sector}"]
|
||||
)
|
||||
fraction = nonelectric_use.div(nonelectric).mean()
|
||||
df.loc["NO", f"total {sector} {use}"] = total_heating * fraction
|
||||
df.loc["NO", f"electricity {sector} {use}"] = (
|
||||
total_heating * fraction * elec_fraction
|
||||
)
|
||||
|
||||
# Missing aviation
|
||||
|
||||
slicer = idx[to_fill, :, :, "Domestic aviation"]
|
||||
fill_values = eurostat.loc[slicer, "Total all products"].groupby(level=0).sum()
|
||||
df.loc[to_fill, "total domestic aviation"] = fill_values
|
||||
|
||||
slicer = idx[to_fill, :, :, "International aviation"]
|
||||
fill_values = eurostat.loc[slicer, "Total all products"].groupby(level=0).sum()
|
||||
df.loc[to_fill, "total international aviation"] = fill_values
|
||||
|
||||
# missing domestic navigation
|
||||
|
||||
slicer = idx[to_fill, :, :, "Domestic Navigation"]
|
||||
fill_values = eurostat.loc[slicer, "Total all products"].groupby(level=0).sum()
|
||||
df.loc[to_fill, "total domestic navigation"] = fill_values
|
||||
|
||||
# split road traffic for non-IDEES
|
||||
missing = df.index[df["total passenger cars"].isna()]
|
||||
for fuel in ["total", "electricity"]:
|
||||
selection = [
|
||||
f"{fuel} passenger cars",
|
||||
f"{fuel} other road passenger",
|
||||
f"{fuel} light duty road freight",
|
||||
]
|
||||
if fuel == "total":
|
||||
selection.extend([f"{fuel} two-wheel", f"{fuel} heavy duty road freight"])
|
||||
road = df[selection].sum()
|
||||
road_fraction = road / road.sum()
|
||||
fill_values = cartesian(df.loc[missing, f"{fuel} road"], road_fraction)
|
||||
df.loc[missing, road_fraction.index] = fill_values
|
||||
|
||||
# split rail traffic for non-IDEES
|
||||
missing = df.index[df["total rail passenger"].isna()]
|
||||
for fuel in ["total", "electricity"]:
|
||||
selection = [f"{fuel} rail passenger", f"{fuel} rail freight"]
|
||||
rail = df[selection].sum()
|
||||
rail_fraction = rail / rail.sum()
|
||||
fill_values = cartesian(df.loc[missing, f"{fuel} rail"], rail_fraction)
|
||||
df.loc[missing, rail_fraction.index] = fill_values
|
||||
|
||||
# split aviation traffic for non-IDEES
|
||||
missing = df.index[df["total domestic aviation passenger"].isna()]
|
||||
for destination in ["domestic", "international"]:
|
||||
selection = [
|
||||
f"total {destination} aviation passenger",
|
||||
f"total {destination} aviation freight",
|
||||
]
|
||||
aviation = df[selection].sum()
|
||||
aviation_fraction = aviation / aviation.sum()
|
||||
fill_values = cartesian(
|
||||
df.loc[missing, f"total {destination} aviation"], aviation_fraction
|
||||
)
|
||||
df.loc[missing, aviation_fraction.index] = fill_values
|
||||
|
||||
for purpose in ["passenger", "freight"]:
|
||||
attrs = [
|
||||
f"total domestic aviation {purpose}",
|
||||
f"total international aviation {purpose}",
|
||||
]
|
||||
df.loc[missing, f"total aviation {purpose}"] = df.loc[missing, attrs].sum(
|
||||
axis=1
|
||||
)
|
||||
|
||||
if "BA" in df.index:
|
||||
# fill missing data for BA (services and road energy data)
|
||||
# proportional to RS with ratio of total residential demand
|
||||
missing = df.loc["BA"] == 0.0
|
||||
ratio = df.at["BA", "total residential"] / df.at["RS", "total residential"]
|
||||
df.loc["BA", missing] = ratio * df.loc["RS", missing]
|
||||
|
||||
# Missing district heating share
|
||||
dh_share = pd.read_csv(
|
||||
snakemake.input.district_heat_share, index_col=0, usecols=[0, 1]
|
||||
)
|
||||
# make conservative assumption and take minimum from both data sets
|
||||
df["district heat share"] = pd.concat(
|
||||
[df["district heat share"], dh_share.reindex(index=df.index) / 100], axis=1
|
||||
).min(axis=1)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def build_eea_co2(input_co2, year=1990, emissions_scope="CO2"):
|
||||
# https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
|
||||
# downloaded 201228 (modified by EEA last on 201221)
|
||||
df = pd.read_csv(input_co2, encoding="latin-1", low_memory=False)
|
||||
|
||||
df.replace(dict(Year="1985-1987"), 1986, inplace=True)
|
||||
df.Year = df.Year.astype(int)
|
||||
index_col = ["Country_code", "Pollutant_name", "Year", "Sector_name"]
|
||||
df = df.set_index(index_col).sort_index()
|
||||
|
||||
emissions_scope = emissions_scope
|
||||
|
||||
cts = ["CH", "EUA", "NO"] + eu28_eea
|
||||
|
||||
slicer = idx[cts, emissions_scope, year, to_ipcc.values()]
|
||||
emissions = (
|
||||
df.loc[slicer, "emissions"]
|
||||
.unstack("Sector_name")
|
||||
.rename(columns=reverse(to_ipcc))
|
||||
.droplevel([1, 2])
|
||||
)
|
||||
|
||||
emissions.rename(index={"EUA": "EU28", "UK": "GB"}, inplace=True)
|
||||
|
||||
to_subtract = [
|
||||
"electricity",
|
||||
"services non-elec",
|
||||
"residential non-elec",
|
||||
"road non-elec",
|
||||
"rail non-elec",
|
||||
"domestic aviation",
|
||||
"international aviation",
|
||||
"domestic navigation",
|
||||
"international navigation",
|
||||
"agriculture, forestry and fishing",
|
||||
]
|
||||
emissions["industrial non-elec"] = emissions["total energy"] - emissions[
|
||||
to_subtract
|
||||
].sum(axis=1)
|
||||
|
||||
emissions["agriculture"] += emissions["agriculture, forestry and fishing"]
|
||||
|
||||
to_drop = [
|
||||
"total energy",
|
||||
"total wL",
|
||||
"total woL",
|
||||
"agriculture, forestry and fishing",
|
||||
]
|
||||
emissions.drop(columns=to_drop, inplace=True)
|
||||
|
||||
# convert from Gg to Mt
|
||||
return emissions / 1e3
|
||||
|
||||
|
||||
def build_eurostat_co2(input_eurostat, countries, report_year, year=1990):
|
||||
eurostat = build_eurostat(input_eurostat, countries, report_year, year)
|
||||
|
||||
specific_emissions = pd.Series(index=eurostat.columns, dtype=float)
|
||||
|
||||
# emissions in tCO2_equiv per MWh_th
|
||||
specific_emissions["Solid fuels"] = 0.36 # Approximates coal
|
||||
specific_emissions["Oil (total)"] = 0.285 # Average of distillate and residue
|
||||
specific_emissions["Gas"] = 0.2 # For natural gas
|
||||
|
||||
# oil values from https://www.eia.gov/tools/faqs/faq.cfm?id=74&t=11
|
||||
# Distillate oil (No. 2) 0.276
|
||||
# Residual oil (No. 6) 0.298
|
||||
# https://www.eia.gov/electricity/annual/html/epa_a_03.html
|
||||
|
||||
return eurostat.multiply(specific_emissions).sum(axis=1)
|
||||
|
||||
|
||||
def build_co2_totals(countries, eea_co2, eurostat_co2):
|
||||
co2 = eea_co2.reindex(countries)
|
||||
|
||||
for ct in countries.intersection(["BA", "RS", "AL", "ME", "MK"]):
|
||||
mappings = {
|
||||
"electricity": (
|
||||
ct,
|
||||
"+",
|
||||
"Conventional Thermal Power Stations",
|
||||
"of which From Coal",
|
||||
),
|
||||
"residential non-elec": (ct, "+", "+", "Residential"),
|
||||
"services non-elec": (ct, "+", "+", "Services"),
|
||||
"road non-elec": (ct, "+", "+", "Road"),
|
||||
"rail non-elec": (ct, "+", "+", "Rail"),
|
||||
"domestic navigation": (ct, "+", "+", "Domestic Navigation"),
|
||||
"international navigation": (ct, "-", "Bunkers"),
|
||||
"domestic aviation": (ct, "+", "+", "Domestic aviation"),
|
||||
"international aviation": (ct, "+", "+", "International aviation"),
|
||||
# does not include industrial process emissions or fuel processing/refining
|
||||
"industrial non-elec": (ct, "+", "Industry"),
|
||||
# does not include non-energy emissions
|
||||
"agriculture": (eurostat_co2.index.get_level_values(0) == ct)
|
||||
& eurostat_co2.index.isin(["Agriculture / Forestry", "Fishing"], level=3),
|
||||
}
|
||||
|
||||
for i, mi in mappings.items():
|
||||
co2.at[ct, i] = eurostat_co2.loc[mi].sum()
|
||||
|
||||
return co2
|
||||
|
||||
|
||||
def build_transport_data(countries, population, idees):
|
||||
transport_data = pd.DataFrame(index=countries)
|
||||
|
||||
# collect number of cars
|
||||
|
||||
transport_data["number cars"] = idees["passenger cars"]
|
||||
|
||||
# CH from http://ec.europa.eu/eurostat/statistics-explained/index.php/Passenger_cars_in_the_EU#Luxembourg_has_the_highest_number_of_passenger_cars_per_inhabitant
|
||||
transport_data.at["CH", "number cars"] = 4.136e6
|
||||
|
||||
missing = transport_data.index[transport_data["number cars"].isna()]
|
||||
logger.info(
|
||||
f"Missing data on cars from:\n{list(missing)}\nFilling gaps with averaged data."
|
||||
)
|
||||
|
||||
cars_pp = transport_data["number cars"] / population
|
||||
transport_data.loc[missing, "number cars"] = cars_pp.mean() * population
|
||||
|
||||
# collect average fuel efficiency in kWh/km
|
||||
|
||||
transport_data["average fuel efficiency"] = idees["passenger car efficiency"]
|
||||
|
||||
missing = transport_data.index[transport_data["average fuel efficiency"].isna()]
|
||||
logger.info(
|
||||
f"Missing data on fuel efficiency from:\n{list(missing)}\nFilling gapswith averaged data."
|
||||
)
|
||||
|
||||
fill_values = transport_data["average fuel efficiency"].mean()
|
||||
transport_data.loc[missing, "average fuel efficiency"] = fill_values
|
||||
|
||||
return transport_data
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("build_energy_totals")
|
||||
|
||||
logging.basicConfig(level=snakemake.config["logging_level"])
|
||||
|
||||
config = snakemake.config["energy"]
|
||||
|
||||
nuts3 = gpd.read_file(snakemake.input.nuts3_shapes).set_index("index")
|
||||
population = nuts3["pop"].groupby(nuts3.country).sum()
|
||||
|
||||
countries = population.index
|
||||
idees_countries = countries.intersection(eu28)
|
||||
|
||||
data_year = config["energy_totals_year"]
|
||||
report_year = snakemake.config["energy"]["eurostat_report_year"]
|
||||
input_eurostat = snakemake.input.eurostat
|
||||
eurostat = build_eurostat(input_eurostat, countries, report_year, data_year)
|
||||
swiss = build_swiss(data_year)
|
||||
idees = build_idees(idees_countries, data_year)
|
||||
|
||||
energy = build_energy_totals(countries, eurostat, swiss, idees)
|
||||
energy.to_csv(snakemake.output.energy_name)
|
||||
|
||||
base_year_emissions = config["base_emissions_year"]
|
||||
emissions_scope = snakemake.config["energy"]["emissions"]
|
||||
eea_co2 = build_eea_co2(snakemake.input.co2, base_year_emissions, emissions_scope)
|
||||
eurostat_co2 = build_eurostat_co2(
|
||||
input_eurostat, countries, report_year, base_year_emissions
|
||||
)
|
||||
|
||||
co2 = build_co2_totals(countries, eea_co2, eurostat_co2)
|
||||
co2.to_csv(snakemake.output.co2_name)
|
||||
|
||||
transport = build_transport_data(countries, population, idees)
|
||||
transport.to_csv(snakemake.output.transport_name)
|
122
scripts/build_gas_input_locations.py
Normal file
@ -0,0 +1,122 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build import locations for fossil gas from entry-points, LNG terminals and
|
||||
production sites.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
from cluster_gas_network import load_bus_regions
|
||||
from shapely import wkt
|
||||
|
||||
|
||||
def read_scigrid_gas(fn):
|
||||
df = gpd.read_file(fn)
|
||||
df = pd.concat([df, df.param.apply(pd.Series)], axis=1)
|
||||
df.drop(["param", "uncertainty", "method"], axis=1, inplace=True)
|
||||
return df
|
||||
|
||||
|
||||
def build_gem_lng_data(lng_fn):
|
||||
df = pd.read_excel(lng_fn[0], sheet_name="LNG terminals - data")
|
||||
df = df.set_index("ComboID")
|
||||
|
||||
remove_status = ["Cancelled"]
|
||||
remove_country = ["Cyprus", "Turkey"]
|
||||
remove_terminal = ["Puerto de la Luz LNG Terminal", "Gran Canaria LNG Terminal"]
|
||||
|
||||
df = df.query(
|
||||
"Status != 'Cancelled' \
|
||||
& Country != @remove_country \
|
||||
& TerminalName != @remove_terminal \
|
||||
& CapacityInMtpa != '--'"
|
||||
)
|
||||
|
||||
geometry = gpd.points_from_xy(df["Longitude"], df["Latitude"])
|
||||
return gpd.GeoDataFrame(df, geometry=geometry, crs="EPSG:4326")
|
||||
|
||||
|
||||
def build_gas_input_locations(lng_fn, entry_fn, prod_fn, countries):
|
||||
# LNG terminals
|
||||
lng = build_gem_lng_data(lng_fn)
|
||||
|
||||
# Entry points from outside the model scope
|
||||
entry = read_scigrid_gas(entry_fn)
|
||||
entry["from_country"] = entry.from_country.str.rstrip()
|
||||
entry = entry.loc[
|
||||
~(entry.from_country.isin(countries) & entry.to_country.isin(countries))
|
||||
& ~entry.name.str.contains("Tegelen") # only take non-EU entries
|
||||
| (entry.from_country == "NO") # malformed datapoint # entries from NO to GB
|
||||
]
|
||||
|
||||
# production sites inside the model scope
|
||||
prod = read_scigrid_gas(prod_fn)
|
||||
prod = prod.loc[
|
||||
(prod.geometry.y > 35) & (prod.geometry.x < 30) & (prod.country_code != "DE")
|
||||
]
|
||||
|
||||
mcm_per_day_to_mw = 437.5 # MCM/day to MWh/h
|
||||
mtpa_to_mw = 1649.224 # mtpa to MWh/h
|
||||
lng["p_nom"] = lng["CapacityInMtpa"] * mtpa_to_mw
|
||||
entry["p_nom"] = entry["max_cap_from_to_M_m3_per_d"] * mcm_per_day_to_mw
|
||||
prod["p_nom"] = prod["max_supply_M_m3_per_d"] * mcm_per_day_to_mw
|
||||
|
||||
lng["type"] = "lng"
|
||||
entry["type"] = "pipeline"
|
||||
prod["type"] = "production"
|
||||
|
||||
sel = ["geometry", "p_nom", "type"]
|
||||
|
||||
return pd.concat([prod[sel], entry[sel], lng[sel]], ignore_index=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_gas_input_locations",
|
||||
simpl="",
|
||||
clusters="37",
|
||||
)
|
||||
|
||||
logging.basicConfig(level=snakemake.config["logging_level"])
|
||||
|
||||
regions = load_bus_regions(
|
||||
snakemake.input.regions_onshore, snakemake.input.regions_offshore
|
||||
)
|
||||
|
||||
# add a buffer to eastern countries because some
|
||||
# entry points are still in Russian or Ukrainian territory.
|
||||
buffer = 9000 # meters
|
||||
eastern_countries = ["FI", "EE", "LT", "LV", "PL", "SK", "HU", "RO"]
|
||||
add_buffer_b = regions.index.str[:2].isin(eastern_countries)
|
||||
regions.loc[add_buffer_b] = (
|
||||
regions[add_buffer_b].to_crs(3035).buffer(buffer).to_crs(4326)
|
||||
)
|
||||
|
||||
countries = regions.index.str[:2].unique().str.replace("GB", "UK")
|
||||
|
||||
gas_input_locations = build_gas_input_locations(
|
||||
snakemake.input.lng,
|
||||
snakemake.input.entry,
|
||||
snakemake.input.production,
|
||||
countries,
|
||||
)
|
||||
|
||||
gas_input_nodes = gpd.sjoin(gas_input_locations, regions, how="left")
|
||||
|
||||
gas_input_nodes.rename(columns={"index_right": "bus"}, inplace=True)
|
||||
|
||||
gas_input_nodes.to_file(snakemake.output.gas_input_nodes, driver="GeoJSON")
|
||||
|
||||
gas_input_nodes_s = (
|
||||
gas_input_nodes.groupby(["bus", "type"])["p_nom"].sum().unstack()
|
||||
)
|
||||
gas_input_nodes_s.columns.name = "p_nom"
|
||||
|
||||
gas_input_nodes_s.to_csv(snakemake.output.gas_input_nodes_simplified)
|
153
scripts/build_gas_network.py
Normal file
@ -0,0 +1,153 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Preprocess gas network based on data from bthe SciGRID Gas project
|
||||
(https://www.gas.scigrid.de/).
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
from pypsa.geo import haversine_pts
|
||||
from shapely.geometry import Point
|
||||
|
||||
|
||||
def diameter_to_capacity(pipe_diameter_mm):
|
||||
"""
|
||||
Calculate pipe capacity in MW based on diameter in mm.
|
||||
|
||||
20 inch (500 mm) 50 bar -> 1.5 GW CH4 pipe capacity (LHV)
|
||||
24 inch (600 mm) 50 bar -> 5 GW CH4 pipe capacity (LHV)
|
||||
36 inch (900 mm) 50 bar -> 11.25 GW CH4 pipe capacity (LHV)
|
||||
48 inch (1200 mm) 80 bar -> 21.7 GW CH4 pipe capacity (LHV)
|
||||
|
||||
Based on p.15 of https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf
|
||||
"""
|
||||
|
||||
# slopes definitions
|
||||
m0 = (1500 - 0) / (500 - 0)
|
||||
m1 = (5000 - 1500) / (600 - 500)
|
||||
m2 = (11250 - 5000) / (900 - 600)
|
||||
m3 = (21700 - 11250) / (1200 - 900)
|
||||
|
||||
# intercept
|
||||
a0 = 0
|
||||
a1 = -16000
|
||||
a2 = -7500
|
||||
a3 = -20100
|
||||
|
||||
if pipe_diameter_mm < 500:
|
||||
return a0 + m0 * pipe_diameter_mm
|
||||
elif pipe_diameter_mm < 600:
|
||||
return a1 + m1 * pipe_diameter_mm
|
||||
elif pipe_diameter_mm < 900:
|
||||
return a2 + m2 * pipe_diameter_mm
|
||||
else:
|
||||
return a3 + m3 * pipe_diameter_mm
|
||||
|
||||
|
||||
def load_dataset(fn):
|
||||
df = gpd.read_file(fn)
|
||||
param = df.param.apply(pd.Series)
|
||||
method = df.method.apply(pd.Series)[["diameter_mm", "max_cap_M_m3_per_d"]]
|
||||
method.columns = method.columns + "_method"
|
||||
df = pd.concat([df, param, method], axis=1)
|
||||
to_drop = ["param", "uncertainty", "method", "tags"]
|
||||
to_drop = df.columns.intersection(to_drop)
|
||||
df.drop(to_drop, axis=1, inplace=True)
|
||||
return df
|
||||
|
||||
|
||||
def prepare_dataset(
|
||||
df,
|
||||
length_factor=1.5,
|
||||
correction_threshold_length=4,
|
||||
correction_threshold_p_nom=8,
|
||||
bidirectional_below=10,
|
||||
):
|
||||
# extract start and end from LineString
|
||||
df["point0"] = df.geometry.apply(lambda x: Point(x.coords[0]))
|
||||
df["point1"] = df.geometry.apply(lambda x: Point(x.coords[-1]))
|
||||
|
||||
conversion_factor = 437.5 # MCM/day to MWh/h
|
||||
df["p_nom"] = df.max_cap_M_m3_per_d * conversion_factor
|
||||
|
||||
# for inferred diameters, assume 500 mm rather than 900 mm (more conservative)
|
||||
df.loc[df.diameter_mm_method != "raw", "diameter_mm"] = 500.0
|
||||
|
||||
keep = [
|
||||
"name",
|
||||
"diameter_mm",
|
||||
"is_H_gas",
|
||||
"is_bothDirection",
|
||||
"length_km",
|
||||
"p_nom",
|
||||
"max_pressure_bar",
|
||||
"start_year",
|
||||
"point0",
|
||||
"point1",
|
||||
"geometry",
|
||||
]
|
||||
to_rename = {
|
||||
"is_bothDirection": "bidirectional",
|
||||
"is_H_gas": "H_gas",
|
||||
"start_year": "build_year",
|
||||
"length_km": "length",
|
||||
}
|
||||
df = df[keep].rename(columns=to_rename)
|
||||
|
||||
df.bidirectional = df.bidirectional.astype(bool)
|
||||
df.H_gas = df.H_gas.astype(bool)
|
||||
|
||||
# short lines below 10 km are assumed to be bidirectional
|
||||
short_lines = df["length"] < bidirectional_below
|
||||
df.loc[short_lines, "bidirectional"] = True
|
||||
|
||||
# correct all capacities that deviate correction_threshold factor
|
||||
# to diameter-based capacities, unless they are NordStream pipelines
|
||||
# also all capacities below 0.5 GW are now diameter-based capacities
|
||||
df["p_nom_diameter"] = df.diameter_mm.apply(diameter_to_capacity)
|
||||
ratio = df.p_nom / df.p_nom_diameter
|
||||
not_nordstream = df.max_pressure_bar < 220
|
||||
df.p_nom.update(
|
||||
df.p_nom_diameter.where(
|
||||
(df.p_nom <= 500)
|
||||
| ((ratio > correction_threshold_p_nom) & not_nordstream)
|
||||
| ((ratio < 1 / correction_threshold_p_nom) & not_nordstream)
|
||||
)
|
||||
)
|
||||
|
||||
# lines which have way too discrepant line lengths
|
||||
# get assigned haversine length * length factor
|
||||
df["length_haversine"] = df.apply(
|
||||
lambda p: length_factor
|
||||
* haversine_pts([p.point0.x, p.point0.y], [p.point1.x, p.point1.y]),
|
||||
axis=1,
|
||||
)
|
||||
ratio = df.eval("length / length_haversine")
|
||||
df["length"].update(
|
||||
df.length_haversine.where(
|
||||
(df["length"] < 20)
|
||||
| (ratio > correction_threshold_length)
|
||||
| (ratio < 1 / correction_threshold_length)
|
||||
)
|
||||
)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("build_gas_network")
|
||||
|
||||
logging.basicConfig(level=snakemake.config["logging_level"])
|
||||
|
||||
gas_network = load_dataset(snakemake.input.gas_network)
|
||||
|
||||
gas_network = prepare_dataset(gas_network)
|
||||
|
||||
gas_network.to_csv(snakemake.output.cleaned_gas_network)
|
52
scripts/build_heat_demand.py
Normal file
@ -0,0 +1,52 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build heat demand time series.
|
||||
"""
|
||||
|
||||
import atlite
|
||||
import geopandas as gpd
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
from dask.distributed import Client, LocalCluster
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_heat_demands",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
nprocesses = int(snakemake.threads)
|
||||
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
|
||||
client = Client(cluster, asynchronous=True)
|
||||
|
||||
time = pd.date_range(freq="h", **snakemake.config["snapshots"])
|
||||
cutout_config = snakemake.config["atlite"]["cutout"]
|
||||
cutout = atlite.Cutout(cutout_config).sel(time=time)
|
||||
|
||||
clustered_regions = (
|
||||
gpd.read_file(snakemake.input.regions_onshore)
|
||||
.set_index("name")
|
||||
.buffer(0)
|
||||
.squeeze()
|
||||
)
|
||||
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
||||
pop_layout = xr.open_dataarray(snakemake.input.pop_layout)
|
||||
|
||||
stacked_pop = pop_layout.stack(spatial=("y", "x"))
|
||||
M = I.T.dot(np.diag(I.dot(stacked_pop)))
|
||||
|
||||
heat_demand = cutout.heat_demand(
|
||||
matrix=M.T,
|
||||
index=clustered_regions.index,
|
||||
dask_kwargs=dict(scheduler=client),
|
||||
show_progress=False,
|
||||
)
|
||||
|
||||
heat_demand.to_netcdf(snakemake.output.heat_demand)
|
153
scripts/build_industrial_distribution_key.py
Normal file
@ -0,0 +1,153 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build industrial distribution keys from hotmaps database.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import uuid
|
||||
from itertools import product
|
||||
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
from packaging.version import Version, parse
|
||||
|
||||
|
||||
def locate_missing_industrial_sites(df):
|
||||
"""
|
||||
Locate industrial sites without valid locations based on city and
|
||||
countries.
|
||||
|
||||
Should only be used if the model's spatial resolution is coarser
|
||||
than individual cities.
|
||||
"""
|
||||
|
||||
try:
|
||||
from geopy.extra.rate_limiter import RateLimiter
|
||||
from geopy.geocoders import Nominatim
|
||||
except:
|
||||
raise ModuleNotFoundError(
|
||||
"Optional dependency 'geopy' not found."
|
||||
"Install via 'conda install -c conda-forge geopy'"
|
||||
"or set 'industry: hotmaps_locate_missing: false'."
|
||||
)
|
||||
|
||||
locator = Nominatim(user_agent=str(uuid.uuid4()))
|
||||
geocode = RateLimiter(locator.geocode, min_delay_seconds=2)
|
||||
|
||||
def locate_missing(s):
|
||||
if pd.isna(s.City) or s.City == "CONFIDENTIAL":
|
||||
return None
|
||||
|
||||
loc = geocode([s.City, s.Country], geometry="wkt")
|
||||
if loc is not None:
|
||||
logger.debug(f"Found:\t{loc}\nFor:\t{s['City']}, {s['Country']}\n")
|
||||
return f"POINT({loc.longitude} {loc.latitude})"
|
||||
else:
|
||||
return None
|
||||
|
||||
missing = df.index[df.geom.isna()]
|
||||
df.loc[missing, "coordinates"] = df.loc[missing].apply(locate_missing, axis=1)
|
||||
|
||||
# report stats
|
||||
num_still_missing = df.coordinates.isna().sum()
|
||||
num_found = len(missing) - num_still_missing
|
||||
share_missing = len(missing) / len(df) * 100
|
||||
share_still_missing = num_still_missing / len(df) * 100
|
||||
logger.warning(
|
||||
f"Found {num_found} missing locations. \nShare of missing locations reduced from {share_missing:.2f}% to {share_still_missing:.2f}%."
|
||||
)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def prepare_hotmaps_database(regions):
|
||||
"""
|
||||
Load hotmaps database of industrial sites and map onto bus regions.
|
||||
"""
|
||||
|
||||
df = pd.read_csv(snakemake.input.hotmaps_industrial_database, sep=";", index_col=0)
|
||||
|
||||
df[["srid", "coordinates"]] = df.geom.str.split(";", expand=True)
|
||||
|
||||
if snakemake.config["industry"].get("hotmaps_locate_missing", False):
|
||||
df = locate_missing_industrial_sites(df)
|
||||
|
||||
# remove those sites without valid locations
|
||||
df.drop(df.index[df.coordinates.isna()], inplace=True)
|
||||
|
||||
df["coordinates"] = gpd.GeoSeries.from_wkt(df["coordinates"])
|
||||
|
||||
gdf = gpd.GeoDataFrame(df, geometry="coordinates", crs="EPSG:4326")
|
||||
|
||||
kws = (
|
||||
dict(op="within")
|
||||
if parse(gpd.__version__) < Version("0.10")
|
||||
else dict(predicate="within")
|
||||
)
|
||||
gdf = gpd.sjoin(gdf, regions, how="inner", **kws)
|
||||
|
||||
gdf.rename(columns={"index_right": "bus"}, inplace=True)
|
||||
gdf["country"] = gdf.bus.str[:2]
|
||||
|
||||
return gdf
|
||||
|
||||
|
||||
def build_nodal_distribution_key(hotmaps, regions):
|
||||
"""
|
||||
Build nodal distribution keys for each sector.
|
||||
"""
|
||||
|
||||
sectors = hotmaps.Subsector.unique()
|
||||
countries = regions.index.str[:2].unique()
|
||||
|
||||
keys = pd.DataFrame(index=regions.index, columns=sectors, dtype=float)
|
||||
|
||||
pop = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
pop["country"] = pop.index.str[:2]
|
||||
ct_total = pop.total.groupby(pop["country"]).sum()
|
||||
keys["population"] = pop.total / pop.country.map(ct_total)
|
||||
|
||||
for sector, country in product(sectors, countries):
|
||||
regions_ct = regions.index[regions.index.str.contains(country)]
|
||||
|
||||
facilities = hotmaps.query("country == @country and Subsector == @sector")
|
||||
|
||||
if not facilities.empty:
|
||||
emissions = facilities["Emissions_ETS_2014"]
|
||||
if emissions.sum() == 0:
|
||||
key = pd.Series(1 / len(facilities), facilities.index)
|
||||
else:
|
||||
# BEWARE: this is a strong assumption
|
||||
emissions = emissions.fillna(emissions.mean())
|
||||
key = emissions / emissions.sum()
|
||||
key = key.groupby(facilities.bus).sum().reindex(regions_ct, fill_value=0.0)
|
||||
else:
|
||||
key = keys.loc[regions_ct, "population"]
|
||||
|
||||
keys.loc[regions_ct, sector] = key
|
||||
|
||||
return keys
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_industrial_distribution_key",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
logging.basicConfig(level=snakemake.config["logging_level"])
|
||||
|
||||
regions = gpd.read_file(snakemake.input.regions_onshore).set_index("name")
|
||||
|
||||
hotmaps = prepare_hotmaps_database(regions)
|
||||
|
||||
keys = build_nodal_distribution_key(hotmaps, regions)
|
||||
|
||||
keys.to_csv(snakemake.output.industrial_distribution_key)
|
216
scripts/build_industrial_energy_demand_per_country_today.py
Normal file
@ -0,0 +1,216 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build industrial energy demand per country.
|
||||
"""
|
||||
|
||||
import multiprocessing as mp
|
||||
|
||||
import pandas as pd
|
||||
from tqdm import tqdm
|
||||
|
||||
ktoe_to_twh = 0.011630
|
||||
|
||||
# name in JRC-IDEES Energy Balances
|
||||
sector_sheets = {
|
||||
"Integrated steelworks": "cisb",
|
||||
"Electric arc": "cise",
|
||||
"Alumina production": "cnfa",
|
||||
"Aluminium - primary production": "cnfp",
|
||||
"Aluminium - secondary production": "cnfs",
|
||||
"Other non-ferrous metals": "cnfo",
|
||||
"Basic chemicals": "cbch",
|
||||
"Other chemicals": "coch",
|
||||
"Pharmaceutical products etc.": "cpha",
|
||||
"Basic chemicals feedstock": "cpch",
|
||||
"Cement": "ccem",
|
||||
"Ceramics & other NMM": "ccer",
|
||||
"Glass production": "cgla",
|
||||
"Pulp production": "cpul",
|
||||
"Paper production": "cpap",
|
||||
"Printing and media reproduction": "cprp",
|
||||
"Food, beverages and tobacco": "cfbt",
|
||||
"Transport Equipment": "ctre",
|
||||
"Machinery Equipment": "cmae",
|
||||
"Textiles and leather": "ctel",
|
||||
"Wood and wood products": "cwwp",
|
||||
"Mining and quarrying": "cmiq",
|
||||
"Construction": "ccon",
|
||||
"Non-specified": "cnsi",
|
||||
}
|
||||
|
||||
|
||||
fuels = {
|
||||
"All Products": "all",
|
||||
"Solid Fuels": "solid",
|
||||
"Total petroleum products (without biofuels)": "liquid",
|
||||
"Gases": "gas",
|
||||
"Nuclear heat": "heat",
|
||||
"Derived heat": "heat",
|
||||
"Biomass and Renewable wastes": "biomass",
|
||||
"Wastes (non-renewable)": "waste",
|
||||
"Electricity": "electricity",
|
||||
}
|
||||
|
||||
eu28 = [
|
||||
"FR",
|
||||
"DE",
|
||||
"GB",
|
||||
"IT",
|
||||
"ES",
|
||||
"PL",
|
||||
"SE",
|
||||
"NL",
|
||||
"BE",
|
||||
"FI",
|
||||
"DK",
|
||||
"PT",
|
||||
"RO",
|
||||
"AT",
|
||||
"BG",
|
||||
"EE",
|
||||
"GR",
|
||||
"LV",
|
||||
"CZ",
|
||||
"HU",
|
||||
"IE",
|
||||
"SK",
|
||||
"LT",
|
||||
"HR",
|
||||
"LU",
|
||||
"SI",
|
||||
"CY",
|
||||
"MT",
|
||||
]
|
||||
|
||||
jrc_names = {"GR": "EL", "GB": "UK"}
|
||||
|
||||
|
||||
def industrial_energy_demand_per_country(country):
|
||||
jrc_dir = snakemake.input.jrc
|
||||
jrc_country = jrc_names.get(country, country)
|
||||
fn = f"{jrc_dir}/JRC-IDEES-2015_EnergyBalance_{jrc_country}.xlsx"
|
||||
|
||||
sheets = list(sector_sheets.values())
|
||||
df_dict = pd.read_excel(fn, sheet_name=sheets, index_col=0)
|
||||
|
||||
def get_subsector_data(sheet):
|
||||
df = df_dict[sheet][year].groupby(fuels).sum()
|
||||
|
||||
df["ammonia"] = 0.0
|
||||
|
||||
df["other"] = df["all"] - df.loc[df.index != "all"].sum()
|
||||
|
||||
return df
|
||||
|
||||
df = pd.concat(
|
||||
{sub: get_subsector_data(sheet) for sub, sheet in sector_sheets.items()}, axis=1
|
||||
)
|
||||
|
||||
sel = ["Mining and quarrying", "Construction", "Non-specified"]
|
||||
df["Other Industrial Sectors"] = df[sel].sum(axis=1)
|
||||
df["Basic chemicals"] += df["Basic chemicals feedstock"]
|
||||
|
||||
df.drop(columns=sel + ["Basic chemicals feedstock"], index="all", inplace=True)
|
||||
|
||||
df *= ktoe_to_twh
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def add_ammonia_energy_demand(demand):
|
||||
# MtNH3/a
|
||||
fn = snakemake.input.ammonia_production
|
||||
ammonia = pd.read_csv(fn, index_col=0)[str(year)] / 1e3
|
||||
|
||||
def get_ammonia_by_fuel(x):
|
||||
fuels = {
|
||||
"gas": config["MWh_CH4_per_tNH3_SMR"],
|
||||
"electricity": config["MWh_elec_per_tNH3_SMR"],
|
||||
}
|
||||
|
||||
return pd.Series({k: x * v for k, v in fuels.items()})
|
||||
|
||||
ammonia_by_fuel = ammonia.apply(get_ammonia_by_fuel).T
|
||||
ammonia_by_fuel = ammonia_by_fuel.unstack().reindex(
|
||||
index=demand.index, fill_value=0.0
|
||||
)
|
||||
|
||||
ammonia = pd.DataFrame({"ammonia": ammonia * config["MWh_NH3_per_tNH3"]}).T
|
||||
|
||||
demand["Ammonia"] = ammonia.unstack().reindex(index=demand.index, fill_value=0.0)
|
||||
|
||||
demand["Basic chemicals (without ammonia)"] = (
|
||||
demand["Basic chemicals"] - ammonia_by_fuel
|
||||
)
|
||||
|
||||
demand["Basic chemicals (without ammonia)"].clip(lower=0, inplace=True)
|
||||
|
||||
demand.drop(columns="Basic chemicals", inplace=True)
|
||||
|
||||
return demand
|
||||
|
||||
|
||||
def add_non_eu28_industrial_energy_demand(demand):
|
||||
# output in MtMaterial/a
|
||||
fn = snakemake.input.industrial_production_per_country
|
||||
production = pd.read_csv(fn, index_col=0) / 1e3
|
||||
|
||||
# recombine HVC, Chlorine and Methanol to Basic chemicals (without ammonia)
|
||||
chemicals = ["HVC", "Chlorine", "Methanol"]
|
||||
production["Basic chemicals (without ammonia)"] = production[chemicals].sum(axis=1)
|
||||
production.drop(columns=chemicals, inplace=True)
|
||||
|
||||
eu28_production = production.loc[eu28].sum()
|
||||
eu28_energy = demand.groupby(level=1).sum()
|
||||
eu28_averages = eu28_energy / eu28_production
|
||||
|
||||
non_eu28 = production.index.symmetric_difference(eu28)
|
||||
|
||||
demand_non_eu28 = pd.concat(
|
||||
{k: v * eu28_averages for k, v in production.loc[non_eu28].iterrows()}
|
||||
)
|
||||
|
||||
return pd.concat([demand, demand_non_eu28])
|
||||
|
||||
|
||||
def industrial_energy_demand(countries):
|
||||
nprocesses = snakemake.threads
|
||||
func = industrial_energy_demand_per_country
|
||||
tqdm_kwargs = dict(
|
||||
ascii=False,
|
||||
unit=" country",
|
||||
total=len(countries),
|
||||
desc="Build industrial energy demand",
|
||||
)
|
||||
with mp.Pool(processes=nprocesses) as pool:
|
||||
demand_l = list(tqdm(pool.imap(func, countries), **tqdm_kwargs))
|
||||
|
||||
demand = pd.concat(demand_l, keys=countries)
|
||||
|
||||
return demand
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("build_industrial_energy_demand_per_country_today")
|
||||
|
||||
config = snakemake.config["industry"]
|
||||
year = config.get("reference_year", 2015)
|
||||
|
||||
demand = industrial_energy_demand(eu28)
|
||||
|
||||
demand = add_ammonia_energy_demand(demand)
|
||||
|
||||
demand = add_non_eu28_industrial_energy_demand(demand)
|
||||
|
||||
# for format compatibility
|
||||
demand = demand.stack(dropna=False).unstack(level=[0, 2])
|
||||
|
||||
# style and annotation
|
||||
demand.index.name = "TWh/a"
|
||||
demand.sort_index(axis=1, inplace=True)
|
||||
|
||||
fn = snakemake.output.industrial_energy_demand_per_country_today
|
||||
demand.to_csv(fn)
|
49
scripts/build_industrial_energy_demand_per_node.py
Normal file
@ -0,0 +1,49 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build industrial energy demand per node.
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_industrial_energy_demand_per_node",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
planning_horizons=2030,
|
||||
)
|
||||
|
||||
# import EU ratios df as csv
|
||||
fn = snakemake.input.industry_sector_ratios
|
||||
industry_sector_ratios = pd.read_csv(fn, index_col=0)
|
||||
|
||||
# material demand per node and industry (kton/a)
|
||||
fn = snakemake.input.industrial_production_per_node
|
||||
nodal_production = pd.read_csv(fn, index_col=0)
|
||||
|
||||
# energy demand today to get current electricity
|
||||
fn = snakemake.input.industrial_energy_demand_per_node_today
|
||||
nodal_today = pd.read_csv(fn, index_col=0)
|
||||
|
||||
# final energy consumption per node and industry (TWh/a)
|
||||
nodal_df = nodal_production.dot(industry_sector_ratios.T)
|
||||
|
||||
# convert GWh to TWh and ktCO2 to MtCO2
|
||||
nodal_df *= 0.001
|
||||
|
||||
rename_sectors = {
|
||||
"elec": "electricity",
|
||||
"biomass": "solid biomass",
|
||||
"heat": "low-temperature heat",
|
||||
}
|
||||
nodal_df.rename(columns=rename_sectors, inplace=True)
|
||||
|
||||
nodal_df["current electricity"] = nodal_today["electricity"]
|
||||
|
||||
nodal_df.index.name = "TWh/a (MtCO2/a)"
|
||||
|
||||
fn = snakemake.output.industrial_energy_demand_per_node
|
||||
nodal_df.to_csv(fn, float_format="%.2f")
|
76
scripts/build_industrial_energy_demand_per_node_today.py
Normal file
@ -0,0 +1,76 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build industrial energy demand per node.
|
||||
"""
|
||||
|
||||
from itertools import product
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
# map JRC/our sectors to hotmaps sector, where mapping exist
|
||||
sector_mapping = {
|
||||
"Electric arc": "Iron and steel",
|
||||
"Integrated steelworks": "Iron and steel",
|
||||
"DRI + Electric arc": "Iron and steel",
|
||||
"Ammonia": "Chemical industry",
|
||||
"Basic chemicals (without ammonia)": "Chemical industry",
|
||||
"Other chemicals": "Chemical industry",
|
||||
"Pharmaceutical products etc.": "Chemical industry",
|
||||
"Cement": "Cement",
|
||||
"Ceramics & other NMM": "Non-metallic mineral products",
|
||||
"Glass production": "Glass",
|
||||
"Pulp production": "Paper and printing",
|
||||
"Paper production": "Paper and printing",
|
||||
"Printing and media reproduction": "Paper and printing",
|
||||
"Alumina production": "Non-ferrous metals",
|
||||
"Aluminium - primary production": "Non-ferrous metals",
|
||||
"Aluminium - secondary production": "Non-ferrous metals",
|
||||
"Other non-ferrous metals": "Non-ferrous metals",
|
||||
}
|
||||
|
||||
|
||||
def build_nodal_industrial_energy_demand():
|
||||
fn = snakemake.input.industrial_energy_demand_per_country_today
|
||||
industrial_demand = pd.read_csv(fn, header=[0, 1], index_col=0)
|
||||
|
||||
fn = snakemake.input.industrial_distribution_key
|
||||
keys = pd.read_csv(fn, index_col=0)
|
||||
keys["country"] = keys.index.str[:2]
|
||||
|
||||
nodal_demand = pd.DataFrame(
|
||||
0.0, dtype=float, index=keys.index, columns=industrial_demand.index
|
||||
)
|
||||
|
||||
countries = keys.country.unique()
|
||||
sectors = industrial_demand.columns.levels[1]
|
||||
|
||||
for country, sector in product(countries, sectors):
|
||||
buses = keys.index[keys.country == country]
|
||||
mapping = sector_mapping.get(sector, "population")
|
||||
|
||||
key = keys.loc[buses, mapping]
|
||||
demand = industrial_demand[country, sector]
|
||||
|
||||
outer = pd.DataFrame(
|
||||
np.outer(key, demand), index=key.index, columns=demand.index
|
||||
)
|
||||
|
||||
nodal_demand.loc[buses] += outer
|
||||
|
||||
nodal_demand.index.name = "TWh/a"
|
||||
|
||||
nodal_demand.to_csv(snakemake.output.industrial_energy_demand_per_node_today)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_industrial_energy_demand_per_node_today",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
build_nodal_industrial_energy_demand()
|
313
scripts/build_industrial_production_per_country.py
Normal file
@ -0,0 +1,313 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build industrial production per country.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import multiprocessing as mp
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from helper import mute_print
|
||||
from tqdm import tqdm
|
||||
|
||||
tj_to_ktoe = 0.0238845
|
||||
ktoe_to_twh = 0.01163
|
||||
|
||||
sub_sheet_name_dict = {
|
||||
"Iron and steel": "ISI",
|
||||
"Chemicals Industry": "CHI",
|
||||
"Non-metallic mineral products": "NMM",
|
||||
"Pulp, paper and printing": "PPA",
|
||||
"Food, beverages and tobacco": "FBT",
|
||||
"Non Ferrous Metals": "NFM",
|
||||
"Transport Equipment": "TRE",
|
||||
"Machinery Equipment": "MAE",
|
||||
"Textiles and leather": "TEL",
|
||||
"Wood and wood products": "WWP",
|
||||
"Other Industrial Sectors": "OIS",
|
||||
}
|
||||
|
||||
non_EU = ["NO", "CH", "ME", "MK", "RS", "BA", "AL"]
|
||||
|
||||
jrc_names = {"GR": "EL", "GB": "UK"}
|
||||
|
||||
eu28 = [
|
||||
"FR",
|
||||
"DE",
|
||||
"GB",
|
||||
"IT",
|
||||
"ES",
|
||||
"PL",
|
||||
"SE",
|
||||
"NL",
|
||||
"BE",
|
||||
"FI",
|
||||
"DK",
|
||||
"PT",
|
||||
"RO",
|
||||
"AT",
|
||||
"BG",
|
||||
"EE",
|
||||
"GR",
|
||||
"LV",
|
||||
"CZ",
|
||||
"HU",
|
||||
"IE",
|
||||
"SK",
|
||||
"LT",
|
||||
"HR",
|
||||
"LU",
|
||||
"SI",
|
||||
"CY",
|
||||
"MT",
|
||||
]
|
||||
|
||||
sect2sub = {
|
||||
"Iron and steel": ["Electric arc", "Integrated steelworks"],
|
||||
"Chemicals Industry": [
|
||||
"Basic chemicals",
|
||||
"Other chemicals",
|
||||
"Pharmaceutical products etc.",
|
||||
],
|
||||
"Non-metallic mineral products": [
|
||||
"Cement",
|
||||
"Ceramics & other NMM",
|
||||
"Glass production",
|
||||
],
|
||||
"Pulp, paper and printing": [
|
||||
"Pulp production",
|
||||
"Paper production",
|
||||
"Printing and media reproduction",
|
||||
],
|
||||
"Food, beverages and tobacco": ["Food, beverages and tobacco"],
|
||||
"Non Ferrous Metals": [
|
||||
"Alumina production",
|
||||
"Aluminium - primary production",
|
||||
"Aluminium - secondary production",
|
||||
"Other non-ferrous metals",
|
||||
],
|
||||
"Transport Equipment": ["Transport Equipment"],
|
||||
"Machinery Equipment": ["Machinery Equipment"],
|
||||
"Textiles and leather": ["Textiles and leather"],
|
||||
"Wood and wood products": ["Wood and wood products"],
|
||||
"Other Industrial Sectors": ["Other Industrial Sectors"],
|
||||
}
|
||||
|
||||
sub2sect = {v: k for k, vv in sect2sub.items() for v in vv}
|
||||
|
||||
fields = {
|
||||
"Electric arc": "Electric arc",
|
||||
"Integrated steelworks": "Integrated steelworks",
|
||||
"Basic chemicals": "Basic chemicals (kt ethylene eq.)",
|
||||
"Other chemicals": "Other chemicals (kt ethylene eq.)",
|
||||
"Pharmaceutical products etc.": "Pharmaceutical products etc. (kt ethylene eq.)",
|
||||
"Cement": "Cement (kt)",
|
||||
"Ceramics & other NMM": "Ceramics & other NMM (kt bricks eq.)",
|
||||
"Glass production": "Glass production (kt)",
|
||||
"Pulp production": "Pulp production (kt)",
|
||||
"Paper production": "Paper production (kt)",
|
||||
"Printing and media reproduction": "Printing and media reproduction (kt paper eq.)",
|
||||
"Food, beverages and tobacco": "Physical output (index)",
|
||||
"Alumina production": "Alumina production (kt)",
|
||||
"Aluminium - primary production": "Aluminium - primary production",
|
||||
"Aluminium - secondary production": "Aluminium - secondary production",
|
||||
"Other non-ferrous metals": "Other non-ferrous metals (kt lead eq.)",
|
||||
"Transport Equipment": "Physical output (index)",
|
||||
"Machinery Equipment": "Physical output (index)",
|
||||
"Textiles and leather": "Physical output (index)",
|
||||
"Wood and wood products": "Physical output (index)",
|
||||
"Other Industrial Sectors": "Physical output (index)",
|
||||
}
|
||||
|
||||
eb_names = {
|
||||
"NO": "Norway",
|
||||
"AL": "Albania",
|
||||
"BA": "Bosnia and Herzegovina",
|
||||
"MK": "FYR of Macedonia",
|
||||
"GE": "Georgia",
|
||||
"IS": "Iceland",
|
||||
"KO": "Kosovo",
|
||||
"MD": "Moldova",
|
||||
"ME": "Montenegro",
|
||||
"RS": "Serbia",
|
||||
"UA": "Ukraine",
|
||||
"TR": "Turkey",
|
||||
}
|
||||
|
||||
eb_sectors = {
|
||||
"Iron & steel industry": "Iron and steel",
|
||||
"Chemical and Petrochemical industry": "Chemicals Industry",
|
||||
"Non-ferrous metal industry": "Non-metallic mineral products",
|
||||
"Paper, Pulp and Print": "Pulp, paper and printing",
|
||||
"Food and Tabacco": "Food, beverages and tobacco",
|
||||
"Non-metallic Minerals (Glass, pottery & building mat. Industry)": "Non Ferrous Metals",
|
||||
"Transport Equipment": "Transport Equipment",
|
||||
"Machinery": "Machinery Equipment",
|
||||
"Textile and Leather": "Textiles and leather",
|
||||
"Wood and Wood Products": "Wood and wood products",
|
||||
"Non-specified (Industry)": "Other Industrial Sectors",
|
||||
}
|
||||
|
||||
# TODO: this should go in a csv in `data`
|
||||
# Annual energy consumption in Switzerland by sector in 2015 (in TJ)
|
||||
# From: Energieverbrauch in der Industrie und im Dienstleistungssektor, Der Bundesrat
|
||||
# http://www.bfe.admin.ch/themen/00526/00541/00543/index.html?lang=de&dossier_id=00775
|
||||
e_switzerland = pd.Series(
|
||||
{
|
||||
"Iron and steel": 7889.0,
|
||||
"Chemicals Industry": 26871.0,
|
||||
"Non-metallic mineral products": 15513.0 + 3820.0,
|
||||
"Pulp, paper and printing": 12004.0,
|
||||
"Food, beverages and tobacco": 17728.0,
|
||||
"Non Ferrous Metals": 3037.0,
|
||||
"Transport Equipment": 14993.0,
|
||||
"Machinery Equipment": 4724.0,
|
||||
"Textiles and leather": 1742.0,
|
||||
"Wood and wood products": 0.0,
|
||||
"Other Industrial Sectors": 10825.0,
|
||||
"current electricity": 53760.0,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def find_physical_output(df):
|
||||
start = np.where(df.index.str.contains("Physical output", na=""))[0][0]
|
||||
empty_row = np.where(df.index.isnull())[0]
|
||||
end = empty_row[np.argmax(empty_row > start)]
|
||||
return slice(start, end)
|
||||
|
||||
|
||||
def get_energy_ratio(country):
|
||||
if country == "CH":
|
||||
e_country = e_switzerland * tj_to_ktoe
|
||||
else:
|
||||
# estimate physical output, energy consumption in the sector and country
|
||||
fn = f"{eurostat_dir}/{eb_names[country]}.XLSX"
|
||||
with mute_print():
|
||||
df = pd.read_excel(
|
||||
fn, sheet_name="2016", index_col=2, header=0, skiprows=1
|
||||
).squeeze("columns")
|
||||
e_country = df.loc[eb_sectors.keys(), "Total all products"].rename(eb_sectors)
|
||||
|
||||
fn = f"{jrc_dir}/JRC-IDEES-2015_Industry_EU28.xlsx"
|
||||
|
||||
with mute_print():
|
||||
df = pd.read_excel(fn, sheet_name="Ind_Summary", index_col=0, header=0).squeeze(
|
||||
"columns"
|
||||
)
|
||||
|
||||
assert df.index[48] == "by sector"
|
||||
year_i = df.columns.get_loc(year)
|
||||
e_eu28 = df.iloc[49:76, year_i]
|
||||
e_eu28.index = e_eu28.index.str.lstrip()
|
||||
|
||||
e_ratio = e_country / e_eu28
|
||||
|
||||
return pd.Series({k: e_ratio[v] for k, v in sub2sect.items()})
|
||||
|
||||
|
||||
def industry_production_per_country(country):
|
||||
def get_sector_data(sector, country):
|
||||
jrc_country = jrc_names.get(country, country)
|
||||
fn = f"{jrc_dir}/JRC-IDEES-2015_Industry_{jrc_country}.xlsx"
|
||||
sheet = sub_sheet_name_dict[sector]
|
||||
with mute_print():
|
||||
df = pd.read_excel(fn, sheet_name=sheet, index_col=0, header=0).squeeze(
|
||||
"columns"
|
||||
)
|
||||
|
||||
year_i = df.columns.get_loc(year)
|
||||
df = df.iloc[find_physical_output(df), year_i]
|
||||
|
||||
df = df.loc[map(fields.get, sect2sub[sector])]
|
||||
df.index = sect2sub[sector]
|
||||
|
||||
return df
|
||||
|
||||
ct = "EU28" if country in non_EU else country
|
||||
demand = pd.concat([get_sector_data(s, ct) for s in sect2sub.keys()])
|
||||
|
||||
if country in non_EU:
|
||||
demand *= get_energy_ratio(country)
|
||||
|
||||
demand.name = country
|
||||
|
||||
return demand
|
||||
|
||||
|
||||
def industry_production(countries):
|
||||
nprocesses = snakemake.threads
|
||||
func = industry_production_per_country
|
||||
tqdm_kwargs = dict(
|
||||
ascii=False,
|
||||
unit=" country",
|
||||
total=len(countries),
|
||||
desc="Build industry production",
|
||||
)
|
||||
with mp.Pool(processes=nprocesses) as pool:
|
||||
demand_l = list(tqdm(pool.imap(func, countries), **tqdm_kwargs))
|
||||
|
||||
demand = pd.concat(demand_l, axis=1).T
|
||||
|
||||
demand.index.name = "kton/a"
|
||||
|
||||
return demand
|
||||
|
||||
|
||||
def separate_basic_chemicals(demand):
|
||||
"""
|
||||
Separate basic chemicals into ammonia, chlorine, methanol and HVC.
|
||||
"""
|
||||
|
||||
ammonia = pd.read_csv(snakemake.input.ammonia_production, index_col=0)
|
||||
|
||||
there = ammonia.index.intersection(demand.index)
|
||||
missing = demand.index.symmetric_difference(there)
|
||||
|
||||
logger.info(f"Following countries have no ammonia demand: {missing.tolist()}")
|
||||
|
||||
demand["Ammonia"] = 0.0
|
||||
|
||||
demand.loc[there, "Ammonia"] = ammonia.loc[there, str(year)]
|
||||
|
||||
demand["Basic chemicals"] -= demand["Ammonia"]
|
||||
|
||||
# EE, HR and LT got negative demand through subtraction - poor data
|
||||
demand["Basic chemicals"].clip(lower=0.0, inplace=True)
|
||||
|
||||
# assume HVC, methanol, chlorine production proportional to non-ammonia basic chemicals
|
||||
distribution_key = demand["Basic chemicals"] / demand["Basic chemicals"].sum()
|
||||
demand["HVC"] = config["HVC_production_today"] * 1e3 * distribution_key
|
||||
demand["Chlorine"] = config["chlorine_production_today"] * 1e3 * distribution_key
|
||||
demand["Methanol"] = config["methanol_production_today"] * 1e3 * distribution_key
|
||||
|
||||
demand.drop(columns=["Basic chemicals"], inplace=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("build_industrial_production_per_country")
|
||||
|
||||
logging.basicConfig(level=snakemake.config["logging_level"])
|
||||
|
||||
countries = non_EU + eu28
|
||||
|
||||
year = snakemake.config["industry"]["reference_year"]
|
||||
|
||||
config = snakemake.config["industry"]
|
||||
|
||||
jrc_dir = snakemake.input.jrc
|
||||
eurostat_dir = snakemake.input.eurostat
|
||||
|
||||
demand = industry_production(countries)
|
||||
|
||||
separate_basic_chemicals(demand)
|
||||
|
||||
fn = snakemake.output.industrial_production_per_country
|
||||
demand.to_csv(fn, float_format="%.2f")
|
71
scripts/build_industrial_production_per_country_tomorrow.py
Normal file
@ -0,0 +1,71 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build future industrial production per country.
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
from prepare_sector_network import get
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("build_industrial_production_per_country_tomorrow")
|
||||
|
||||
config = snakemake.config["industry"]
|
||||
|
||||
investment_year = int(snakemake.wildcards.planning_horizons)
|
||||
|
||||
fn = snakemake.input.industrial_production_per_country
|
||||
production = pd.read_csv(fn, index_col=0)
|
||||
|
||||
keys = ["Integrated steelworks", "Electric arc"]
|
||||
total_steel = production[keys].sum(axis=1)
|
||||
|
||||
st_primary_fraction = get(config["St_primary_fraction"], investment_year)
|
||||
dri_fraction = get(config["DRI_fraction"], investment_year)
|
||||
int_steel = production["Integrated steelworks"].sum()
|
||||
fraction_persistent_primary = st_primary_fraction * total_steel.sum() / int_steel
|
||||
|
||||
dri = (
|
||||
dri_fraction * fraction_persistent_primary * production["Integrated steelworks"]
|
||||
)
|
||||
production.insert(2, "DRI + Electric arc", dri)
|
||||
|
||||
not_dri = 1 - dri_fraction
|
||||
production["Integrated steelworks"] = (
|
||||
not_dri * fraction_persistent_primary * production["Integrated steelworks"]
|
||||
)
|
||||
production["Electric arc"] = (
|
||||
total_steel
|
||||
- production["DRI + Electric arc"]
|
||||
- production["Integrated steelworks"]
|
||||
)
|
||||
|
||||
keys = ["Aluminium - primary production", "Aluminium - secondary production"]
|
||||
total_aluminium = production[keys].sum(axis=1)
|
||||
|
||||
key_pri = "Aluminium - primary production"
|
||||
key_sec = "Aluminium - secondary production"
|
||||
|
||||
al_primary_fraction = get(config["Al_primary_fraction"], investment_year)
|
||||
fraction_persistent_primary = (
|
||||
al_primary_fraction * total_aluminium.sum() / production[key_pri].sum()
|
||||
)
|
||||
|
||||
production[key_pri] = fraction_persistent_primary * production[key_pri]
|
||||
production[key_sec] = total_aluminium - production[key_pri]
|
||||
|
||||
production["HVC (mechanical recycling)"] = (
|
||||
get(config["HVC_mechanical_recycling_fraction"], investment_year)
|
||||
* production["HVC"]
|
||||
)
|
||||
production["HVC (chemical recycling)"] = (
|
||||
get(config["HVC_chemical_recycling_fraction"], investment_year)
|
||||
* production["HVC"]
|
||||
)
|
||||
|
||||
production["HVC"] *= get(config["HVC_primary_fraction"], investment_year)
|
||||
|
||||
fn = snakemake.output.industrial_production_per_country_tomorrow
|
||||
production.to_csv(fn, float_format="%.2f")
|
73
scripts/build_industrial_production_per_node.py
Normal file
@ -0,0 +1,73 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build industrial production per node.
|
||||
"""
|
||||
|
||||
from itertools import product
|
||||
|
||||
import pandas as pd
|
||||
|
||||
# map JRC/our sectors to hotmaps sector, where mapping exist
|
||||
sector_mapping = {
|
||||
"Electric arc": "Iron and steel",
|
||||
"Integrated steelworks": "Iron and steel",
|
||||
"DRI + Electric arc": "Iron and steel",
|
||||
"Ammonia": "Chemical industry",
|
||||
"HVC": "Chemical industry",
|
||||
"HVC (mechanical recycling)": "Chemical industry",
|
||||
"HVC (chemical recycling)": "Chemical industry",
|
||||
"Methanol": "Chemical industry",
|
||||
"Chlorine": "Chemical industry",
|
||||
"Other chemicals": "Chemical industry",
|
||||
"Pharmaceutical products etc.": "Chemical industry",
|
||||
"Cement": "Cement",
|
||||
"Ceramics & other NMM": "Non-metallic mineral products",
|
||||
"Glass production": "Glass",
|
||||
"Pulp production": "Paper and printing",
|
||||
"Paper production": "Paper and printing",
|
||||
"Printing and media reproduction": "Paper and printing",
|
||||
"Alumina production": "Non-ferrous metals",
|
||||
"Aluminium - primary production": "Non-ferrous metals",
|
||||
"Aluminium - secondary production": "Non-ferrous metals",
|
||||
"Other non-ferrous metals": "Non-ferrous metals",
|
||||
}
|
||||
|
||||
|
||||
def build_nodal_industrial_production():
|
||||
fn = snakemake.input.industrial_production_per_country_tomorrow
|
||||
industrial_production = pd.read_csv(fn, index_col=0)
|
||||
|
||||
fn = snakemake.input.industrial_distribution_key
|
||||
keys = pd.read_csv(fn, index_col=0)
|
||||
keys["country"] = keys.index.str[:2]
|
||||
|
||||
nodal_production = pd.DataFrame(
|
||||
index=keys.index, columns=industrial_production.columns, dtype=float
|
||||
)
|
||||
|
||||
countries = keys.country.unique()
|
||||
sectors = industrial_production.columns
|
||||
|
||||
for country, sector in product(countries, sectors):
|
||||
buses = keys.index[keys.country == country]
|
||||
mapping = sector_mapping.get(sector, "population")
|
||||
|
||||
key = keys.loc[buses, mapping]
|
||||
nodal_production.loc[buses, sector] = (
|
||||
industrial_production.at[country, sector] * key
|
||||
)
|
||||
|
||||
nodal_production.to_csv(snakemake.output.industrial_production_per_node)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_industrial_production_per_node",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
build_nodal_industrial_production()
|
1488
scripts/build_industry_sector_ratios.py
Normal file
110
scripts/build_population_layouts.py
Normal file
@ -0,0 +1,110 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build mapping between grid cells and population (total, urban, rural)
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import multiprocessing as mp
|
||||
|
||||
import atlite
|
||||
import geopandas as gpd
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("build_population_layouts")
|
||||
|
||||
logging.basicConfig(level=snakemake.config["logging_level"])
|
||||
|
||||
cutout = atlite.Cutout(snakemake.config["atlite"]["cutout"])
|
||||
|
||||
grid_cells = cutout.grid.geometry
|
||||
|
||||
# nuts3 has columns country, gdp, pop, geometry
|
||||
# population is given in dimensions of 1e3=k
|
||||
nuts3 = gpd.read_file(snakemake.input.nuts3_shapes).set_index("index")
|
||||
|
||||
# Indicator matrix NUTS3 -> grid cells
|
||||
I = atlite.cutout.compute_indicatormatrix(nuts3.geometry, grid_cells)
|
||||
|
||||
# Indicator matrix grid_cells -> NUTS3; inprinciple Iinv*I is identity
|
||||
# but imprecisions mean not perfect
|
||||
Iinv = cutout.indicatormatrix(nuts3.geometry)
|
||||
|
||||
countries = np.sort(nuts3.country.unique())
|
||||
|
||||
urban_fraction = (
|
||||
pd.read_csv(
|
||||
snakemake.input.urban_percent, header=None, index_col=0, names=["fraction"]
|
||||
).squeeze()
|
||||
/ 100.0
|
||||
)
|
||||
|
||||
# fill missing Balkans values
|
||||
missing = ["AL", "ME", "MK"]
|
||||
reference = ["RS", "BA"]
|
||||
average = urban_fraction[reference].mean()
|
||||
fill_values = pd.Series({ct: average for ct in missing})
|
||||
urban_fraction = pd.concat([urban_fraction, fill_values])
|
||||
|
||||
# population in each grid cell
|
||||
pop_cells = pd.Series(I.dot(nuts3["pop"]))
|
||||
|
||||
# in km^2
|
||||
cell_areas = grid_cells.to_crs(3035).area / 1e6
|
||||
|
||||
# pop per km^2
|
||||
density_cells = pop_cells / cell_areas
|
||||
|
||||
# rural or urban population in grid cell
|
||||
pop_rural = pd.Series(0.0, density_cells.index)
|
||||
pop_urban = pd.Series(0.0, density_cells.index)
|
||||
|
||||
for ct in countries:
|
||||
logger.debug(
|
||||
f"The urbanization rate for {ct} is {round(urban_fraction[ct]*100)}%"
|
||||
)
|
||||
|
||||
indicator_nuts3_ct = nuts3.country.apply(lambda x: 1.0 if x == ct else 0.0)
|
||||
|
||||
indicator_cells_ct = pd.Series(Iinv.T.dot(indicator_nuts3_ct))
|
||||
|
||||
density_cells_ct = indicator_cells_ct * density_cells
|
||||
|
||||
pop_cells_ct = indicator_cells_ct * pop_cells
|
||||
|
||||
# correct for imprecision of Iinv*I
|
||||
pop_ct = nuts3.loc[nuts3.country == ct, "pop"].sum()
|
||||
pop_cells_ct *= pop_ct / pop_cells_ct.sum()
|
||||
|
||||
# The first low density grid cells to reach rural fraction are rural
|
||||
asc_density_i = density_cells_ct.sort_values().index
|
||||
asc_density_cumsum = pop_cells_ct[asc_density_i].cumsum() / pop_cells_ct.sum()
|
||||
rural_fraction_ct = 1 - urban_fraction[ct]
|
||||
pop_ct_rural_b = asc_density_cumsum < rural_fraction_ct
|
||||
pop_ct_urban_b = ~pop_ct_rural_b
|
||||
|
||||
pop_ct_rural_b[indicator_cells_ct == 0.0] = False
|
||||
pop_ct_urban_b[indicator_cells_ct == 0.0] = False
|
||||
|
||||
pop_rural += pop_cells_ct.where(pop_ct_rural_b, 0.0)
|
||||
pop_urban += pop_cells_ct.where(pop_ct_urban_b, 0.0)
|
||||
|
||||
pop_cells = {"total": pop_cells}
|
||||
pop_cells["rural"] = pop_rural
|
||||
pop_cells["urban"] = pop_urban
|
||||
|
||||
for key, pop in pop_cells.items():
|
||||
ycoords = ("y", cutout.coords["y"].data)
|
||||
xcoords = ("x", cutout.coords["x"].data)
|
||||
values = pop.values.reshape(cutout.shape)
|
||||
layout = xr.DataArray(values, [ycoords, xcoords])
|
||||
|
||||
layout.to_netcdf(snakemake.output[f"pop_layout_{key}"])
|
26
scripts/build_population_weighted_energy_totals.py
Normal file
@ -0,0 +1,26 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build population-weighted energy totals.
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_population_weighted_energy_totals",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
|
||||
energy_totals = pd.read_csv(snakemake.input.energy_totals, index_col=0)
|
||||
|
||||
nodal_energy_totals = energy_totals.loc[pop_layout.ct].fillna(0.0)
|
||||
nodal_energy_totals.index = pop_layout.index
|
||||
nodal_energy_totals = nodal_energy_totals.multiply(pop_layout.fraction, axis=0)
|
||||
|
||||
nodal_energy_totals.to_csv(snakemake.output[0])
|
1091
scripts/build_retro_cost.py
Normal file
91
scripts/build_salt_cavern_potentials.py
Normal file
@ -0,0 +1,91 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build salt cavern potentials for hydrogen storage.
|
||||
|
||||
Technical Potential of Salt Caverns for Hydrogen Storage in Europe
|
||||
CC-BY 4.0
|
||||
https://doi.org/10.20944/preprints201910.0187.v1
|
||||
https://doi.org/10.1016/j.ijhydene.2019.12.161
|
||||
|
||||
Figure 6. Distribution of potential salt cavern sites across Europe with their corresponding
|
||||
energy densities (cavern storage potential divided by the volume).
|
||||
|
||||
Figure 7. Total cavern storage potential in European countries
|
||||
classified as onshore, offshore and within 50 km of shore.
|
||||
|
||||
The regional distribution is taken from the map (Figure 6) and scaled to the
|
||||
capacities from the bar chart split by nearshore (<50km from sea),
|
||||
onshore (>50km from sea), offshore (Figure 7).
|
||||
"""
|
||||
|
||||
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def concat_gdf(gdf_list, crs="EPSG:4326"):
|
||||
"""
|
||||
Concatenate multiple geopandas dataframes with common coordinate reference
|
||||
system (crs).
|
||||
"""
|
||||
return gpd.GeoDataFrame(pd.concat(gdf_list), crs=crs)
|
||||
|
||||
|
||||
def load_bus_regions(onshore_path, offshore_path):
|
||||
"""
|
||||
Load pypsa-eur on- and offshore regions and concat.
|
||||
"""
|
||||
|
||||
bus_regions_offshore = gpd.read_file(offshore_path)
|
||||
bus_regions_onshore = gpd.read_file(onshore_path)
|
||||
bus_regions = concat_gdf([bus_regions_offshore, bus_regions_onshore])
|
||||
bus_regions = bus_regions.dissolve(by="name", aggfunc="sum")
|
||||
|
||||
return bus_regions
|
||||
|
||||
|
||||
def area(gdf):
|
||||
"""
|
||||
Returns area of GeoDataFrame geometries in square kilometers.
|
||||
"""
|
||||
return gdf.to_crs(epsg=3035).area.div(1e6)
|
||||
|
||||
|
||||
def salt_cavern_potential_by_region(caverns, regions):
|
||||
# calculate area of caverns shapes
|
||||
caverns["area_caverns"] = area(caverns)
|
||||
|
||||
overlay = gpd.overlay(regions.reset_index(), caverns, keep_geom_type=True)
|
||||
|
||||
# calculate share of cavern area inside region
|
||||
overlay["share"] = area(overlay) / overlay["area_caverns"]
|
||||
|
||||
overlay["e_nom"] = overlay.eval(
|
||||
"capacity_per_area * share * area_caverns / 1000"
|
||||
) # TWh
|
||||
|
||||
caverns_regions = (
|
||||
overlay.groupby(["name", "storage_type"]).e_nom.sum().unstack("storage_type")
|
||||
)
|
||||
|
||||
return caverns_regions
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_salt_cavern_potentials", simpl="", clusters="37"
|
||||
)
|
||||
|
||||
fn_onshore = snakemake.input.regions_onshore
|
||||
fn_offshore = snakemake.input.regions_offshore
|
||||
|
||||
regions = load_bus_regions(fn_onshore, fn_offshore)
|
||||
|
||||
caverns = gpd.read_file(snakemake.input.salt_caverns) # GWh/sqkm
|
||||
|
||||
caverns_regions = salt_cavern_potential_by_region(caverns, regions)
|
||||
|
||||
caverns_regions.to_csv(snakemake.output.h2_cavern_potential)
|
50
scripts/build_sequestration_potentials.py
Normal file
@ -0,0 +1,50 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def area(gdf):
|
||||
"""
|
||||
Returns area of GeoDataFrame geometries in square kilometers.
|
||||
"""
|
||||
return gdf.to_crs(epsg=3035).area.div(1e6)
|
||||
|
||||
|
||||
def allocate_sequestration_potential(
|
||||
gdf, regions, attr="conservative estimate Mt", threshold=3
|
||||
):
|
||||
gdf = gdf.loc[gdf[attr] > threshold, [attr, "geometry"]]
|
||||
gdf["area_sqkm"] = area(gdf)
|
||||
overlay = gpd.overlay(regions, gdf, keep_geom_type=True)
|
||||
overlay["share"] = area(overlay) / overlay["area_sqkm"]
|
||||
adjust_cols = overlay.columns.difference({"name", "area_sqkm", "geometry", "share"})
|
||||
overlay[adjust_cols] = overlay[adjust_cols].multiply(overlay["share"], axis=0)
|
||||
gdf_regions = overlay.groupby("name").sum()
|
||||
gdf_regions.drop(["area_sqkm", "share"], axis=1, inplace=True)
|
||||
return gdf_regions.squeeze()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_sequestration_potentials", simpl="", clusters="181"
|
||||
)
|
||||
|
||||
cf = snakemake.config["sector"]["regional_co2_sequestration_potential"]
|
||||
|
||||
gdf = gpd.read_file(snakemake.input.sequestration_potential[0])
|
||||
|
||||
regions = gpd.read_file(snakemake.input.regions_offshore)
|
||||
if cf["include_onshore"]:
|
||||
onregions = gpd.read_file(snakemake.input.regions_onshore)
|
||||
regions = pd.concat([regions, onregions]).dissolve(by="name").reset_index()
|
||||
|
||||
s = allocate_sequestration_potential(
|
||||
gdf, regions, attr=cf["attribute"], threshold=cf["min_size"]
|
||||
)
|
||||
|
||||
s = s.where(s > cf["min_size"]).dropna()
|
||||
|
||||
s.to_csv(snakemake.output.sequestration_potential)
|
58
scripts/build_shipping_demand.py
Normal file
@ -0,0 +1,58 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build regional demand for international navigation based on outflow volume of
|
||||
ports.
|
||||
"""
|
||||
|
||||
import json
|
||||
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_shipping_demand_per_node",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
scope = gpd.read_file(snakemake.input.scope).geometry[0]
|
||||
regions = gpd.read_file(snakemake.input.regions).set_index("name")
|
||||
demand = pd.read_csv(snakemake.input.demand, index_col=0)[
|
||||
"total international navigation"
|
||||
]
|
||||
|
||||
# read port data into GeoDataFrame
|
||||
with open(snakemake.input.ports, "r", encoding="latin_1") as f:
|
||||
ports = json.load(f)
|
||||
ports = pd.json_normalize(ports, "features", sep="_")
|
||||
coordinates = ports.geometry_coordinates
|
||||
geometry = gpd.points_from_xy(coordinates.str[0], coordinates.str[1])
|
||||
ports = gpd.GeoDataFrame(ports, geometry=geometry, crs=4326)
|
||||
|
||||
# filter global port data by European ports
|
||||
european_ports = ports[ports.within(scope)]
|
||||
|
||||
# assign ports to nearest region
|
||||
p = european_ports.to_crs(3857)
|
||||
r = regions.to_crs(3857)
|
||||
outflows = (
|
||||
p.sjoin_nearest(r).groupby("index_right").properties_outflows.sum().div(1e3)
|
||||
)
|
||||
|
||||
# calculate fraction of each country's port outflows
|
||||
countries = outflows.index.str[:2]
|
||||
outflows_per_country = outflows.groupby(countries).sum()
|
||||
fraction = outflows / countries.map(outflows_per_country)
|
||||
|
||||
# distribute per-country demands to nodes based on these fractions
|
||||
nodal_demand = demand.loc[countries].fillna(0.0)
|
||||
nodal_demand.index = fraction.index
|
||||
nodal_demand = nodal_demand.multiply(fraction, axis=0)
|
||||
nodal_demand = nodal_demand.reindex(regions.index, fill_value=0)
|
||||
|
||||
# export nodal international navigation demands
|
||||
nodal_demand.to_csv(snakemake.output[0])
|
59
scripts/build_solar_thermal_profiles.py
Normal file
@ -0,0 +1,59 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build solar thermal collector time series.
|
||||
"""
|
||||
|
||||
import atlite
|
||||
import geopandas as gpd
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
from dask.distributed import Client, LocalCluster
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_solar_thermal_profiles",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
nprocesses = int(snakemake.threads)
|
||||
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
|
||||
client = Client(cluster, asynchronous=True)
|
||||
|
||||
config = snakemake.config["solar_thermal"]
|
||||
|
||||
time = pd.date_range(freq="h", **snakemake.config["snapshots"])
|
||||
cutout_config = snakemake.config["atlite"]["cutout"]
|
||||
cutout = atlite.Cutout(cutout_config).sel(time=time)
|
||||
|
||||
clustered_regions = (
|
||||
gpd.read_file(snakemake.input.regions_onshore)
|
||||
.set_index("name")
|
||||
.buffer(0)
|
||||
.squeeze()
|
||||
)
|
||||
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
||||
pop_layout = xr.open_dataarray(snakemake.input.pop_layout)
|
||||
|
||||
stacked_pop = pop_layout.stack(spatial=("y", "x"))
|
||||
M = I.T.dot(np.diag(I.dot(stacked_pop)))
|
||||
|
||||
nonzero_sum = M.sum(axis=0, keepdims=True)
|
||||
nonzero_sum[nonzero_sum == 0.0] = 1.0
|
||||
M_tilde = M / nonzero_sum
|
||||
|
||||
solar_thermal = cutout.solar_thermal(
|
||||
**config,
|
||||
matrix=M_tilde.T,
|
||||
index=clustered_regions.index,
|
||||
dask_kwargs=dict(scheduler=client),
|
||||
show_progress=False
|
||||
)
|
||||
|
||||
solar_thermal.to_netcdf(snakemake.output.solar_thermal)
|
65
scripts/build_temperature_profiles.py
Normal file
@ -0,0 +1,65 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build temperature profiles.
|
||||
"""
|
||||
|
||||
import atlite
|
||||
import geopandas as gpd
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
from dask.distributed import Client, LocalCluster
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_temperature_profiles",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
nprocesses = int(snakemake.threads)
|
||||
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
|
||||
client = Client(cluster, asynchronous=True)
|
||||
|
||||
time = pd.date_range(freq="h", **snakemake.config["snapshots"])
|
||||
cutout_config = snakemake.config["atlite"]["cutout"]
|
||||
cutout = atlite.Cutout(cutout_config).sel(time=time)
|
||||
|
||||
clustered_regions = (
|
||||
gpd.read_file(snakemake.input.regions_onshore)
|
||||
.set_index("name")
|
||||
.buffer(0)
|
||||
.squeeze()
|
||||
)
|
||||
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
||||
pop_layout = xr.open_dataarray(snakemake.input.pop_layout)
|
||||
|
||||
stacked_pop = pop_layout.stack(spatial=("y", "x"))
|
||||
M = I.T.dot(np.diag(I.dot(stacked_pop)))
|
||||
|
||||
nonzero_sum = M.sum(axis=0, keepdims=True)
|
||||
nonzero_sum[nonzero_sum == 0.0] = 1.0
|
||||
M_tilde = M / nonzero_sum
|
||||
|
||||
temp_air = cutout.temperature(
|
||||
matrix=M_tilde.T,
|
||||
index=clustered_regions.index,
|
||||
dask_kwargs=dict(scheduler=client),
|
||||
show_progress=False,
|
||||
)
|
||||
|
||||
temp_air.to_netcdf(snakemake.output.temp_air)
|
||||
|
||||
temp_soil = cutout.soil_temperature(
|
||||
matrix=M_tilde.T,
|
||||
index=clustered_regions.index,
|
||||
dask_kwargs=dict(scheduler=client),
|
||||
show_progress=False,
|
||||
)
|
||||
|
||||
temp_soil.to_netcdf(snakemake.output.temp_soil)
|
200
scripts/build_transport_demand.py
Normal file
@ -0,0 +1,200 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Build transport demand.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
from helper import generate_periodic_profiles
|
||||
|
||||
|
||||
def build_nodal_transport_data(fn, pop_layout):
|
||||
transport_data = pd.read_csv(fn, index_col=0)
|
||||
|
||||
nodal_transport_data = transport_data.loc[pop_layout.ct].fillna(0.0)
|
||||
nodal_transport_data.index = pop_layout.index
|
||||
nodal_transport_data["number cars"] = (
|
||||
pop_layout["fraction"] * nodal_transport_data["number cars"]
|
||||
)
|
||||
nodal_transport_data.loc[
|
||||
nodal_transport_data["average fuel efficiency"] == 0.0,
|
||||
"average fuel efficiency",
|
||||
] = transport_data["average fuel efficiency"].mean()
|
||||
|
||||
return nodal_transport_data
|
||||
|
||||
|
||||
def build_transport_demand(traffic_fn, airtemp_fn, nodes, nodal_transport_data):
|
||||
## Get overall demand curve for all vehicles
|
||||
|
||||
traffic = pd.read_csv(traffic_fn, skiprows=2, usecols=["count"]).squeeze("columns")
|
||||
|
||||
transport_shape = generate_periodic_profiles(
|
||||
dt_index=snapshots,
|
||||
nodes=nodes,
|
||||
weekly_profile=traffic.values,
|
||||
)
|
||||
transport_shape = transport_shape / transport_shape.sum()
|
||||
|
||||
# electric motors are more efficient, so alter transport demand
|
||||
|
||||
plug_to_wheels_eta = options["bev_plug_to_wheel_efficiency"]
|
||||
battery_to_wheels_eta = plug_to_wheels_eta * options["bev_charge_efficiency"]
|
||||
|
||||
efficiency_gain = (
|
||||
nodal_transport_data["average fuel efficiency"] / battery_to_wheels_eta
|
||||
)
|
||||
|
||||
# get heating demand for correction to demand time series
|
||||
temperature = xr.open_dataarray(airtemp_fn).to_pandas()
|
||||
|
||||
# correction factors for vehicle heating
|
||||
dd_ICE = transport_degree_factor(
|
||||
temperature,
|
||||
options["transport_heating_deadband_lower"],
|
||||
options["transport_heating_deadband_upper"],
|
||||
options["ICE_lower_degree_factor"],
|
||||
options["ICE_upper_degree_factor"],
|
||||
)
|
||||
|
||||
dd_EV = transport_degree_factor(
|
||||
temperature,
|
||||
options["transport_heating_deadband_lower"],
|
||||
options["transport_heating_deadband_upper"],
|
||||
options["EV_lower_degree_factor"],
|
||||
options["EV_upper_degree_factor"],
|
||||
)
|
||||
|
||||
# divide out the heating/cooling demand from ICE totals
|
||||
# and multiply back in the heating/cooling demand for EVs
|
||||
ice_correction = (transport_shape * (1 + dd_ICE)).sum() / transport_shape.sum()
|
||||
|
||||
energy_totals_transport = (
|
||||
pop_weighted_energy_totals["total road"]
|
||||
+ pop_weighted_energy_totals["total rail"]
|
||||
- pop_weighted_energy_totals["electricity rail"]
|
||||
)
|
||||
|
||||
transport = (
|
||||
(transport_shape.multiply(energy_totals_transport) * 1e6 * Nyears)
|
||||
.divide(efficiency_gain * ice_correction)
|
||||
.multiply(1 + dd_EV)
|
||||
)
|
||||
|
||||
return transport
|
||||
|
||||
|
||||
def transport_degree_factor(
|
||||
temperature,
|
||||
deadband_lower=15,
|
||||
deadband_upper=20,
|
||||
lower_degree_factor=0.5,
|
||||
upper_degree_factor=1.6,
|
||||
):
|
||||
"""
|
||||
Work out how much energy demand in vehicles increases due to heating and
|
||||
cooling.
|
||||
|
||||
There is a deadband where there is no increase. Degree factors are %
|
||||
increase in demand compared to no heating/cooling fuel consumption.
|
||||
Returns per unit increase in demand for each place and time
|
||||
"""
|
||||
|
||||
dd = temperature.copy()
|
||||
|
||||
dd[(temperature > deadband_lower) & (temperature < deadband_upper)] = 0.0
|
||||
|
||||
dT_lower = deadband_lower - temperature[temperature < deadband_lower]
|
||||
dd[temperature < deadband_lower] = lower_degree_factor / 100 * dT_lower
|
||||
|
||||
dT_upper = temperature[temperature > deadband_upper] - deadband_upper
|
||||
dd[temperature > deadband_upper] = upper_degree_factor / 100 * dT_upper
|
||||
|
||||
return dd
|
||||
|
||||
|
||||
def bev_availability_profile(fn, snapshots, nodes, options):
|
||||
"""
|
||||
Derive plugged-in availability for passenger electric vehicles.
|
||||
"""
|
||||
|
||||
traffic = pd.read_csv(fn, skiprows=2, usecols=["count"]).squeeze("columns")
|
||||
|
||||
avail_max = options["bev_avail_max"]
|
||||
avail_mean = options["bev_avail_mean"]
|
||||
|
||||
avail = avail_max - (avail_max - avail_mean) * (traffic - traffic.min()) / (
|
||||
traffic.mean() - traffic.min()
|
||||
)
|
||||
|
||||
avail_profile = generate_periodic_profiles(
|
||||
dt_index=snapshots,
|
||||
nodes=nodes,
|
||||
weekly_profile=avail.values,
|
||||
)
|
||||
|
||||
return avail_profile
|
||||
|
||||
|
||||
def bev_dsm_profile(snapshots, nodes, options):
|
||||
dsm_week = np.zeros((24 * 7,))
|
||||
|
||||
dsm_week[(np.arange(0, 7, 1) * 24 + options["bev_dsm_restriction_time"])] = options[
|
||||
"bev_dsm_restriction_value"
|
||||
]
|
||||
|
||||
dsm_profile = generate_periodic_profiles(
|
||||
dt_index=snapshots,
|
||||
nodes=nodes,
|
||||
weekly_profile=dsm_week,
|
||||
)
|
||||
|
||||
return dsm_profile
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_transport_demand",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
|
||||
nodes = pop_layout.index
|
||||
|
||||
pop_weighted_energy_totals = pd.read_csv(
|
||||
snakemake.input.pop_weighted_energy_totals, index_col=0
|
||||
)
|
||||
|
||||
options = snakemake.config["sector"]
|
||||
|
||||
snapshots = pd.date_range(freq="h", **snakemake.config["snapshots"], tz="UTC")
|
||||
|
||||
Nyears = 1
|
||||
|
||||
nodal_transport_data = build_nodal_transport_data(
|
||||
snakemake.input.transport_data, pop_layout
|
||||
)
|
||||
|
||||
transport_demand = build_transport_demand(
|
||||
snakemake.input.traffic_data_KFZ,
|
||||
snakemake.input.temp_air_total,
|
||||
nodes,
|
||||
nodal_transport_data,
|
||||
)
|
||||
|
||||
avail_profile = bev_availability_profile(
|
||||
snakemake.input.traffic_data_Pkw, snapshots, nodes, options
|
||||
)
|
||||
|
||||
dsm_profile = bev_dsm_profile(snapshots, nodes, options)
|
||||
|
||||
nodal_transport_data.to_csv(snakemake.output.transport_data)
|
||||
transport_demand.to_csv(snakemake.output.transport_demand)
|
||||
avail_profile.to_csv(snakemake.output.avail_profile)
|
||||
dsm_profile.to_csv(snakemake.output.dsm_profile)
|
127
scripts/cluster_gas_network.py
Executable file
@ -0,0 +1,127 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Cluster gas network.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
from packaging.version import Version, parse
|
||||
from pypsa.geo import haversine_pts
|
||||
from shapely import wkt
|
||||
|
||||
|
||||
def concat_gdf(gdf_list, crs="EPSG:4326"):
|
||||
"""
|
||||
Concatenate multiple geopandas dataframes with common coordinate reference
|
||||
system (crs).
|
||||
"""
|
||||
return gpd.GeoDataFrame(pd.concat(gdf_list), crs=crs)
|
||||
|
||||
|
||||
def load_bus_regions(onshore_path, offshore_path):
|
||||
"""
|
||||
Load pypsa-eur on- and offshore regions and concat.
|
||||
"""
|
||||
|
||||
bus_regions_offshore = gpd.read_file(offshore_path)
|
||||
bus_regions_onshore = gpd.read_file(onshore_path)
|
||||
bus_regions = concat_gdf([bus_regions_offshore, bus_regions_onshore])
|
||||
bus_regions = bus_regions.dissolve(by="name", aggfunc="sum")
|
||||
|
||||
return bus_regions
|
||||
|
||||
|
||||
def build_clustered_gas_network(df, bus_regions, length_factor=1.25):
|
||||
for i in [0, 1]:
|
||||
gdf = gpd.GeoDataFrame(geometry=df[f"point{i}"], crs="EPSG:4326")
|
||||
|
||||
kws = (
|
||||
dict(op="within")
|
||||
if parse(gpd.__version__) < Version("0.10")
|
||||
else dict(predicate="within")
|
||||
)
|
||||
bus_mapping = gpd.sjoin(gdf, bus_regions, how="left", **kws).index_right
|
||||
bus_mapping = bus_mapping.groupby(bus_mapping.index).first()
|
||||
|
||||
df[f"bus{i}"] = bus_mapping
|
||||
|
||||
df[f"point{i}"] = df[f"bus{i}"].map(
|
||||
bus_regions.to_crs(3035).centroid.to_crs(4326)
|
||||
)
|
||||
|
||||
# drop pipes where not both buses are inside regions
|
||||
df = df.loc[~df.bus0.isna() & ~df.bus1.isna()]
|
||||
|
||||
# drop pipes within the same region
|
||||
df = df.loc[df.bus1 != df.bus0]
|
||||
|
||||
# recalculate lengths as center to center * length factor
|
||||
df["length"] = df.apply(
|
||||
lambda p: length_factor
|
||||
* haversine_pts([p.point0.x, p.point0.y], [p.point1.x, p.point1.y]),
|
||||
axis=1,
|
||||
)
|
||||
|
||||
# tidy and create new numbered index
|
||||
df.drop(["point0", "point1"], axis=1, inplace=True)
|
||||
df.reset_index(drop=True, inplace=True)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def reindex_pipes(df):
|
||||
def make_index(x):
|
||||
connector = " <-> " if x.bidirectional else " -> "
|
||||
return "gas pipeline " + x.bus0 + connector + x.bus1
|
||||
|
||||
df.index = df.apply(make_index, axis=1)
|
||||
|
||||
df["p_min_pu"] = df.bidirectional.apply(lambda bi: -1 if bi else 0)
|
||||
df.drop("bidirectional", axis=1, inplace=True)
|
||||
|
||||
df.sort_index(axis=1, inplace=True)
|
||||
|
||||
|
||||
def aggregate_parallel_pipes(df):
|
||||
strategies = {
|
||||
"bus0": "first",
|
||||
"bus1": "first",
|
||||
"p_nom": "sum",
|
||||
"p_nom_diameter": "sum",
|
||||
"max_pressure_bar": "mean",
|
||||
"build_year": "mean",
|
||||
"diameter_mm": "mean",
|
||||
"length": "mean",
|
||||
"name": " ".join,
|
||||
"p_min_pu": "min",
|
||||
}
|
||||
return df.groupby(df.index).agg(strategies)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("cluster_gas_network", simpl="", clusters="37")
|
||||
|
||||
logging.basicConfig(level=snakemake.config["logging_level"])
|
||||
|
||||
fn = snakemake.input.cleaned_gas_network
|
||||
df = pd.read_csv(fn, index_col=0)
|
||||
for col in ["point0", "point1"]:
|
||||
df[col] = df[col].apply(wkt.loads)
|
||||
|
||||
bus_regions = load_bus_regions(
|
||||
snakemake.input.regions_onshore, snakemake.input.regions_offshore
|
||||
)
|
||||
|
||||
gas_network = build_clustered_gas_network(df, bus_regions)
|
||||
|
||||
reindex_pipes(gas_network)
|
||||
gas_network = aggregate_parallel_pipes(gas_network)
|
||||
|
||||
gas_network.to_csv(snakemake.output.clustered_gas_network)
|
35
scripts/copy_config.py
Normal file
@ -0,0 +1,35 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from shutil import copy
|
||||
|
||||
import yaml
|
||||
|
||||
files = {
|
||||
"config.yaml": "config.yaml",
|
||||
"Snakefile": "Snakefile",
|
||||
"scripts/solve_network.py": "solve_network.py",
|
||||
"scripts/prepare_sector_network.py": "prepare_sector_network.py",
|
||||
"../pypsa-eur/config.yaml": "config.pypsaeur.yaml",
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("copy_config")
|
||||
|
||||
basepath = (
|
||||
snakemake.config["summary_dir"] + "/" + snakemake.config["run"] + "/configs/"
|
||||
)
|
||||
|
||||
for f, name in files.items():
|
||||
copy(f, basepath + name)
|
||||
|
||||
with open(basepath + "config.snakemake.yaml", "w") as yaml_file:
|
||||
yaml.dump(
|
||||
snakemake.config,
|
||||
yaml_file,
|
||||
default_flow_style=False,
|
||||
allow_unicode=True,
|
||||
sort_keys=False,
|
||||
)
|
169
scripts/helper.py
Normal file
@ -0,0 +1,169 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import contextlib
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
import pytz
|
||||
import yaml
|
||||
from pypsa.components import component_attrs, components
|
||||
from pypsa.descriptors import Dict
|
||||
from snakemake.utils import update_config
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# Define a context manager to temporarily mute print statements
|
||||
@contextlib.contextmanager
|
||||
def mute_print():
|
||||
with open(os.devnull, "w") as devnull:
|
||||
with contextlib.redirect_stdout(devnull):
|
||||
yield
|
||||
|
||||
|
||||
def override_component_attrs(directory):
|
||||
"""Tell PyPSA that links can have multiple outputs by
|
||||
overriding the component_attrs. This can be done for
|
||||
as many buses as you need with format busi for i = 2,3,4,5,....
|
||||
See https://pypsa.org/doc/components.html#link-with-multiple-outputs-or-inputs
|
||||
|
||||
Parameters
|
||||
----------
|
||||
directory : string
|
||||
Folder where component attributes to override are stored
|
||||
analogous to ``pypsa/component_attrs``, e.g. `links.csv`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dictionary of overridden component attributes.
|
||||
"""
|
||||
|
||||
attrs = Dict({k: v.copy() for k, v in component_attrs.items()})
|
||||
|
||||
for component, list_name in components.list_name.items():
|
||||
fn = f"{directory}/{list_name}.csv"
|
||||
if os.path.isfile(fn):
|
||||
overrides = pd.read_csv(fn, index_col=0, na_values="n/a")
|
||||
attrs[component] = overrides.combine_first(attrs[component])
|
||||
|
||||
return attrs
|
||||
|
||||
|
||||
# from pypsa-eur/_helpers.py
|
||||
def mock_snakemake(rulename, **wildcards):
|
||||
"""
|
||||
This function is expected to be executed from the 'scripts'-directory of '
|
||||
the snakemake project. It returns a snakemake.script.Snakemake object,
|
||||
based on the Snakefile.
|
||||
|
||||
If a rule has wildcards, you have to specify them in **wildcards.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rulename: str
|
||||
name of the rule for which the snakemake object should be generated
|
||||
**wildcards:
|
||||
keyword arguments fixing the wildcards. Only necessary if wildcards are
|
||||
needed.
|
||||
"""
|
||||
import os
|
||||
|
||||
import snakemake as sm
|
||||
from packaging.version import Version, parse
|
||||
from pypsa.descriptors import Dict
|
||||
from snakemake.script import Snakemake
|
||||
|
||||
script_dir = Path(__file__).parent.resolve()
|
||||
assert (
|
||||
Path.cwd().resolve() == script_dir
|
||||
), f"mock_snakemake has to be run from the repository scripts directory {script_dir}"
|
||||
os.chdir(script_dir.parent)
|
||||
for p in sm.SNAKEFILE_CHOICES:
|
||||
if os.path.exists(p):
|
||||
snakefile = p
|
||||
break
|
||||
kwargs = dict(rerun_triggers=[]) if parse(sm.__version__) > Version("7.7.0") else {}
|
||||
workflow = sm.Workflow(snakefile, overwrite_configfiles=[], **kwargs)
|
||||
workflow.include(snakefile)
|
||||
workflow.global_resources = {}
|
||||
rule = workflow.get_rule(rulename)
|
||||
dag = sm.dag.DAG(workflow, rules=[rule])
|
||||
wc = Dict(wildcards)
|
||||
job = sm.jobs.Job(rule, dag, wc)
|
||||
|
||||
def make_accessable(*ios):
|
||||
for io in ios:
|
||||
for i in range(len(io)):
|
||||
io[i] = os.path.abspath(io[i])
|
||||
|
||||
make_accessable(job.input, job.output, job.log)
|
||||
snakemake = Snakemake(
|
||||
job.input,
|
||||
job.output,
|
||||
job.params,
|
||||
job.wildcards,
|
||||
job.threads,
|
||||
job.resources,
|
||||
job.log,
|
||||
job.dag.workflow.config,
|
||||
job.rule.name,
|
||||
None,
|
||||
)
|
||||
# create log and output dir if not existent
|
||||
for path in list(snakemake.log) + list(snakemake.output):
|
||||
Path(path).parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
os.chdir(script_dir)
|
||||
return snakemake
|
||||
|
||||
|
||||
# from pypsa-eur/_helpers.py
|
||||
def progress_retrieve(url, file):
|
||||
import urllib
|
||||
|
||||
from progressbar import ProgressBar
|
||||
|
||||
pbar = ProgressBar(0, 100)
|
||||
|
||||
def dlProgress(count, blockSize, totalSize):
|
||||
pbar.update(int(count * blockSize * 100 / totalSize))
|
||||
|
||||
urllib.request.urlretrieve(url, file, reporthook=dlProgress)
|
||||
|
||||
|
||||
def generate_periodic_profiles(dt_index, nodes, weekly_profile, localize=None):
|
||||
"""
|
||||
Give a 24*7 long list of weekly hourly profiles, generate this for each
|
||||
country for the period dt_index, taking account of time zones and summer
|
||||
time.
|
||||
"""
|
||||
|
||||
weekly_profile = pd.Series(weekly_profile, range(24 * 7))
|
||||
|
||||
week_df = pd.DataFrame(index=dt_index, columns=nodes)
|
||||
|
||||
for node in nodes:
|
||||
timezone = pytz.timezone(pytz.country_timezones[node[:2]][0])
|
||||
tz_dt_index = dt_index.tz_convert(timezone)
|
||||
week_df[node] = [24 * dt.weekday() + dt.hour for dt in tz_dt_index]
|
||||
week_df[node] = week_df[node].map(weekly_profile)
|
||||
|
||||
week_df = week_df.tz_localize(localize)
|
||||
|
||||
return week_df
|
||||
|
||||
|
||||
def parse(l):
|
||||
if len(l) == 1:
|
||||
return yaml.safe_load(l[0])
|
||||
else:
|
||||
return {l.pop(0): parse(l)}
|
||||
|
||||
|
||||
def update_config_with_sector_opts(config, sector_opts):
|
||||
for o in sector_opts.split("-"):
|
||||
if o.startswith("CF+"):
|
||||
l = o.split("+")[1:]
|
||||
update_config(config, parse(l))
|
@ -1,4 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
<<<<<<< HEAD
|
||||
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
@ -117,6 +118,118 @@ def calculate_costs(n, label, costs):
|
||||
costs = _add_indexed_rows(costs, raw_index)
|
||||
|
||||
costs.loc[idx[raw_index], label] = capital_costs_grouped.values
|
||||
=======
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
import yaml
|
||||
from helper import override_component_attrs
|
||||
from prepare_sector_network import prepare_costs
|
||||
|
||||
idx = pd.IndexSlice
|
||||
|
||||
opt_name = {"Store": "e", "Line": "s", "Transformer": "s"}
|
||||
|
||||
|
||||
def assign_carriers(n):
|
||||
if "carrier" not in n.lines:
|
||||
n.lines["carrier"] = "AC"
|
||||
|
||||
|
||||
def assign_locations(n):
|
||||
for c in n.iterate_components(n.one_port_components | n.branch_components):
|
||||
ifind = pd.Series(c.df.index.str.find(" ", start=4), c.df.index)
|
||||
for i in ifind.unique():
|
||||
names = ifind.index[ifind == i]
|
||||
if i == -1:
|
||||
c.df.loc[names, "location"] = ""
|
||||
else:
|
||||
c.df.loc[names, "location"] = names.str[:i]
|
||||
|
||||
|
||||
def calculate_nodal_cfs(n, label, nodal_cfs):
|
||||
# Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff
|
||||
for c in n.iterate_components(
|
||||
(n.branch_components ^ {"Line", "Transformer"})
|
||||
| n.controllable_one_port_components ^ {"Load", "StorageUnit"}
|
||||
):
|
||||
capacities_c = c.df.groupby(["location", "carrier"])[
|
||||
opt_name.get(c.name, "p") + "_nom_opt"
|
||||
].sum()
|
||||
|
||||
if c.name == "Link":
|
||||
p = c.pnl.p0.abs().mean()
|
||||
elif c.name == "Generator":
|
||||
p = c.pnl.p.abs().mean()
|
||||
elif c.name == "Store":
|
||||
p = c.pnl.e.abs().mean()
|
||||
else:
|
||||
sys.exit()
|
||||
|
||||
c.df["p"] = p
|
||||
p_c = c.df.groupby(["location", "carrier"])["p"].sum()
|
||||
|
||||
cf_c = p_c / capacities_c
|
||||
|
||||
index = pd.MultiIndex.from_tuples(
|
||||
[(c.list_name,) + t for t in cf_c.index.to_list()]
|
||||
)
|
||||
nodal_cfs = nodal_cfs.reindex(index.union(nodal_cfs.index))
|
||||
nodal_cfs.loc[index, label] = cf_c.values
|
||||
|
||||
return nodal_cfs
|
||||
|
||||
|
||||
def calculate_cfs(n, label, cfs):
|
||||
for c in n.iterate_components(
|
||||
n.branch_components
|
||||
| n.controllable_one_port_components ^ {"Load", "StorageUnit"}
|
||||
):
|
||||
capacities_c = (
|
||||
c.df[opt_name.get(c.name, "p") + "_nom_opt"].groupby(c.df.carrier).sum()
|
||||
)
|
||||
|
||||
if c.name in ["Link", "Line", "Transformer"]:
|
||||
p = c.pnl.p0.abs().mean()
|
||||
elif c.name == "Store":
|
||||
p = c.pnl.e.abs().mean()
|
||||
else:
|
||||
p = c.pnl.p.abs().mean()
|
||||
|
||||
p_c = p.groupby(c.df.carrier).sum()
|
||||
|
||||
cf_c = p_c / capacities_c
|
||||
|
||||
cf_c = pd.concat([cf_c], keys=[c.list_name])
|
||||
|
||||
cfs = cfs.reindex(cf_c.index.union(cfs.index))
|
||||
|
||||
cfs.loc[cf_c.index, label] = cf_c
|
||||
|
||||
return cfs
|
||||
|
||||
|
||||
def calculate_nodal_costs(n, label, nodal_costs):
|
||||
# Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff
|
||||
for c in n.iterate_components(
|
||||
n.branch_components | n.controllable_one_port_components ^ {"Load"}
|
||||
):
|
||||
c.df["capital_costs"] = (
|
||||
c.df.capital_cost * c.df[opt_name.get(c.name, "p") + "_nom_opt"]
|
||||
)
|
||||
capital_costs = c.df.groupby(["location", "carrier"])["capital_costs"].sum()
|
||||
index = pd.MultiIndex.from_tuples(
|
||||
[(c.list_name, "capital") + t for t in capital_costs.index.to_list()]
|
||||
)
|
||||
nodal_costs = nodal_costs.reindex(index.union(nodal_costs.index))
|
||||
nodal_costs.loc[index, label] = capital_costs.values
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
if c.name == "Link":
|
||||
p = c.pnl.p0.multiply(n.snapshot_weightings.generators, axis=0).sum()
|
||||
@ -129,10 +242,64 @@ def calculate_costs(n, label, costs):
|
||||
else:
|
||||
p = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0).sum()
|
||||
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
# correct sequestration cost
|
||||
if c.name == "Store":
|
||||
items = c.df.index[
|
||||
(c.df.carrier == "co2 stored") & (c.df.marginal_cost <= -100.0)
|
||||
]
|
||||
c.df.loc[items, "marginal_cost"] = -20.0
|
||||
|
||||
c.df["marginal_costs"] = p * c.df.marginal_cost
|
||||
marginal_costs = c.df.groupby(["location", "carrier"])["marginal_costs"].sum()
|
||||
index = pd.MultiIndex.from_tuples(
|
||||
[(c.list_name, "marginal") + t for t in marginal_costs.index.to_list()]
|
||||
)
|
||||
nodal_costs = nodal_costs.reindex(index.union(nodal_costs.index))
|
||||
nodal_costs.loc[index, label] = marginal_costs.values
|
||||
|
||||
return nodal_costs
|
||||
|
||||
|
||||
def calculate_costs(n, label, costs):
|
||||
for c in n.iterate_components(
|
||||
n.branch_components | n.controllable_one_port_components ^ {"Load"}
|
||||
):
|
||||
capital_costs = c.df.capital_cost * c.df[opt_name.get(c.name, "p") + "_nom_opt"]
|
||||
capital_costs_grouped = capital_costs.groupby(c.df.carrier).sum()
|
||||
|
||||
capital_costs_grouped = pd.concat([capital_costs_grouped], keys=["capital"])
|
||||
capital_costs_grouped = pd.concat([capital_costs_grouped], keys=[c.list_name])
|
||||
|
||||
costs = costs.reindex(capital_costs_grouped.index.union(costs.index))
|
||||
|
||||
costs.loc[capital_costs_grouped.index, label] = capital_costs_grouped
|
||||
|
||||
if c.name == "Link":
|
||||
p = c.pnl.p0.multiply(n.snapshot_weightings.generators, axis=0).sum()
|
||||
elif c.name == "Line":
|
||||
continue
|
||||
elif c.name == "StorageUnit":
|
||||
p_all = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0)
|
||||
p_all[p_all < 0.0] = 0.0
|
||||
p = p_all.sum()
|
||||
else:
|
||||
p = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0).sum()
|
||||
|
||||
# correct sequestration cost
|
||||
if c.name == "Store":
|
||||
items = c.df.index[
|
||||
(c.df.carrier == "co2 stored") & (c.df.marginal_cost <= -100.0)
|
||||
]
|
||||
c.df.loc[items, "marginal_cost"] = -20.0
|
||||
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
marginal_costs = p * c.df.marginal_cost
|
||||
|
||||
marginal_costs_grouped = marginal_costs.groupby(c.df.carrier).sum()
|
||||
|
||||
<<<<<<< HEAD
|
||||
costs = costs.reindex(
|
||||
costs.index.union(
|
||||
pd.MultiIndex.from_product(
|
||||
@ -144,10 +311,95 @@ def calculate_costs(n, label, costs):
|
||||
costs.loc[
|
||||
idx[c.list_name, "marginal", list(marginal_costs_grouped.index)], label
|
||||
] = marginal_costs_grouped.values
|
||||
=======
|
||||
marginal_costs_grouped = pd.concat([marginal_costs_grouped], keys=["marginal"])
|
||||
marginal_costs_grouped = pd.concat([marginal_costs_grouped], keys=[c.list_name])
|
||||
|
||||
costs = costs.reindex(marginal_costs_grouped.index.union(costs.index))
|
||||
|
||||
costs.loc[marginal_costs_grouped.index, label] = marginal_costs_grouped
|
||||
|
||||
# add back in all hydro
|
||||
# costs.loc[("storage_units", "capital", "hydro"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="hydro", "p_nom"].sum()
|
||||
# costs.loc[("storage_units", "capital", "PHS"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="PHS", "p_nom"].sum()
|
||||
# costs.loc[("generators", "capital", "ror"),label] = (0.02)*3e6*n.generators.loc[n.generators.group=="ror", "p_nom"].sum()
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
return costs
|
||||
|
||||
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
def calculate_cumulative_cost():
|
||||
planning_horizons = snakemake.config["scenario"]["planning_horizons"]
|
||||
|
||||
cumulative_cost = pd.DataFrame(
|
||||
index=df["costs"].sum().index,
|
||||
columns=pd.Series(data=np.arange(0, 0.1, 0.01), name="social discount rate"),
|
||||
)
|
||||
|
||||
# discount cost and express them in money value of planning_horizons[0]
|
||||
for r in cumulative_cost.columns:
|
||||
cumulative_cost[r] = [
|
||||
df["costs"].sum()[index] / ((1 + r) ** (index[-1] - planning_horizons[0]))
|
||||
for index in cumulative_cost.index
|
||||
]
|
||||
|
||||
# integrate cost throughout the transition path
|
||||
for r in cumulative_cost.columns:
|
||||
for cluster in cumulative_cost.index.get_level_values(level=0).unique():
|
||||
for lv in cumulative_cost.index.get_level_values(level=1).unique():
|
||||
for sector_opts in cumulative_cost.index.get_level_values(
|
||||
level=2
|
||||
).unique():
|
||||
cumulative_cost.loc[
|
||||
(cluster, lv, sector_opts, "cumulative cost"), r
|
||||
] = np.trapz(
|
||||
cumulative_cost.loc[
|
||||
idx[cluster, lv, sector_opts, planning_horizons], r
|
||||
].values,
|
||||
x=planning_horizons,
|
||||
)
|
||||
|
||||
return cumulative_cost
|
||||
|
||||
|
||||
def calculate_nodal_capacities(n, label, nodal_capacities):
|
||||
# Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff
|
||||
for c in n.iterate_components(
|
||||
n.branch_components | n.controllable_one_port_components ^ {"Load"}
|
||||
):
|
||||
nodal_capacities_c = c.df.groupby(["location", "carrier"])[
|
||||
opt_name.get(c.name, "p") + "_nom_opt"
|
||||
].sum()
|
||||
index = pd.MultiIndex.from_tuples(
|
||||
[(c.list_name,) + t for t in nodal_capacities_c.index.to_list()]
|
||||
)
|
||||
nodal_capacities = nodal_capacities.reindex(index.union(nodal_capacities.index))
|
||||
nodal_capacities.loc[index, label] = nodal_capacities_c.values
|
||||
|
||||
return nodal_capacities
|
||||
|
||||
|
||||
def calculate_capacities(n, label, capacities):
|
||||
for c in n.iterate_components(
|
||||
n.branch_components | n.controllable_one_port_components ^ {"Load"}
|
||||
):
|
||||
capacities_grouped = (
|
||||
c.df[opt_name.get(c.name, "p") + "_nom_opt"].groupby(c.df.carrier).sum()
|
||||
)
|
||||
capacities_grouped = pd.concat([capacities_grouped], keys=[c.list_name])
|
||||
|
||||
capacities = capacities.reindex(
|
||||
capacities_grouped.index.union(capacities.index)
|
||||
)
|
||||
|
||||
capacities.loc[capacities_grouped.index, label] = capacities_grouped
|
||||
|
||||
return capacities
|
||||
|
||||
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
def calculate_curtailment(n, label, curtailment):
|
||||
avail = (
|
||||
n.generators_t.p_max_pu.multiply(n.generators.p_nom_opt)
|
||||
@ -164,7 +416,11 @@ def calculate_curtailment(n, label, curtailment):
|
||||
|
||||
def calculate_energy(n, label, energy):
|
||||
for c in n.iterate_components(n.one_port_components | n.branch_components):
|
||||
<<<<<<< HEAD
|
||||
if c.name in {"Generator", "Load", "ShuntImpedance"}:
|
||||
=======
|
||||
if c.name in n.one_port_components:
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
c_energies = (
|
||||
c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0)
|
||||
.sum()
|
||||
@ -172,6 +428,7 @@ def calculate_energy(n, label, energy):
|
||||
.groupby(c.df.carrier)
|
||||
.sum()
|
||||
)
|
||||
<<<<<<< HEAD
|
||||
elif c.name in {"StorageUnit", "Store"}:
|
||||
c_energies = (
|
||||
c.pnl.p.multiply(n.snapshot_weightings.stores, axis=0)
|
||||
@ -191,10 +448,33 @@ def calculate_energy(n, label, energy):
|
||||
)
|
||||
|
||||
energy = include_in_summary(energy, [c.list_name], label, c_energies)
|
||||
=======
|
||||
else:
|
||||
c_energies = pd.Series(0.0, c.df.carrier.unique())
|
||||
for port in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
|
||||
totals = (
|
||||
c.pnl["p" + port]
|
||||
.multiply(n.snapshot_weightings.generators, axis=0)
|
||||
.sum()
|
||||
)
|
||||
# remove values where bus is missing (bug in nomopyomo)
|
||||
no_bus = c.df.index[c.df["bus" + port] == ""]
|
||||
totals.loc[no_bus] = n.component_attrs[c.name].loc[
|
||||
"p" + port, "default"
|
||||
]
|
||||
c_energies -= totals.groupby(c.df.carrier).sum()
|
||||
|
||||
c_energies = pd.concat([c_energies], keys=[c.list_name])
|
||||
|
||||
energy = energy.reindex(c_energies.index.union(energy.index))
|
||||
|
||||
energy.loc[c_energies.index, label] = c_energies
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
return energy
|
||||
|
||||
|
||||
<<<<<<< HEAD
|
||||
def include_in_summary(summary, multiindexprefix, label, item):
|
||||
# Index tuple(s) indicating the newly to-be-added row(s)
|
||||
raw_index = tuple([multiindexprefix, list(item.index)])
|
||||
@ -247,6 +527,24 @@ def calculate_supply(n, label, supply):
|
||||
items = c.df.index[c.df.bus.map(bus_map)]
|
||||
|
||||
if len(items) == 0 or c.pnl.p.empty:
|
||||
=======
|
||||
def calculate_supply(n, label, supply):
|
||||
"""
|
||||
Calculate the max dispatch of each component at the buses aggregated by
|
||||
carrier.
|
||||
"""
|
||||
|
||||
bus_carriers = n.buses.carrier.unique()
|
||||
|
||||
for i in bus_carriers:
|
||||
bus_map = n.buses.carrier == i
|
||||
bus_map.at[""] = False
|
||||
|
||||
for c in n.iterate_components(n.one_port_components):
|
||||
items = c.df.index[c.df.bus.map(bus_map).fillna(False)]
|
||||
|
||||
if len(items) == 0:
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
continue
|
||||
|
||||
s = (
|
||||
@ -256,6 +554,7 @@ def calculate_supply(n, label, supply):
|
||||
.groupby(c.df.loc[items, "carrier"])
|
||||
.sum()
|
||||
)
|
||||
<<<<<<< HEAD
|
||||
|
||||
# Index tuple(s) indicating the newly to-be-added row(s)
|
||||
raw_index = tuple([[i], [c.list_name], list(s.index)])
|
||||
@ -268,12 +567,26 @@ def calculate_supply(n, label, supply):
|
||||
items = c.df.index[c.df["bus" + end].map(bus_map)]
|
||||
|
||||
if len(items) == 0 or c.pnl["p" + end].empty:
|
||||
=======
|
||||
s = pd.concat([s], keys=[c.list_name])
|
||||
s = pd.concat([s], keys=[i])
|
||||
|
||||
supply = supply.reindex(s.index.union(supply.index))
|
||||
supply.loc[s.index, label] = s
|
||||
|
||||
for c in n.iterate_components(n.branch_components):
|
||||
for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
|
||||
items = c.df.index[c.df["bus" + end].map(bus_map).fillna(False)]
|
||||
|
||||
if len(items) == 0:
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
continue
|
||||
|
||||
# lots of sign compensation for direction and to do maximums
|
||||
s = (-1) ** (1 - int(end)) * (
|
||||
(-1) ** int(end) * c.pnl["p" + end][items]
|
||||
).max().groupby(c.df.loc[items, "carrier"]).sum()
|
||||
<<<<<<< HEAD
|
||||
|
||||
supply = supply.reindex(
|
||||
supply.index.union(
|
||||
@ -281,12 +594,21 @@ def calculate_supply(n, label, supply):
|
||||
)
|
||||
)
|
||||
supply.loc[idx[i, c.list_name, list(s.index)], label] = s.values
|
||||
=======
|
||||
s.index = s.index + end
|
||||
s = pd.concat([s], keys=[c.list_name])
|
||||
s = pd.concat([s], keys=[i])
|
||||
|
||||
supply = supply.reindex(s.index.union(supply.index))
|
||||
supply.loc[s.index, label] = s
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
return supply
|
||||
|
||||
|
||||
def calculate_supply_energy(n, label, supply_energy):
|
||||
"""
|
||||
<<<<<<< HEAD
|
||||
calculate the total dispatch of each component at the buses where the loads
|
||||
are attached.
|
||||
"""
|
||||
@ -303,15 +625,36 @@ def calculate_supply_energy(n, label, supply_energy):
|
||||
items = c.df.index[c.df.bus.map(bus_map)]
|
||||
|
||||
if len(items) == 0 or c.pnl.p.empty:
|
||||
=======
|
||||
Calculate the total energy supply/consuption of each component at the buses
|
||||
aggregated by carrier.
|
||||
"""
|
||||
|
||||
bus_carriers = n.buses.carrier.unique()
|
||||
|
||||
for i in bus_carriers:
|
||||
bus_map = n.buses.carrier == i
|
||||
bus_map.at[""] = False
|
||||
|
||||
for c in n.iterate_components(n.one_port_components):
|
||||
items = c.df.index[c.df.bus.map(bus_map).fillna(False)]
|
||||
|
||||
if len(items) == 0:
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
continue
|
||||
|
||||
s = (
|
||||
c.pnl.p[items]
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
.multiply(n.snapshot_weightings.generators, axis=0)
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
.sum()
|
||||
.multiply(c.df.loc[items, "sign"])
|
||||
.groupby(c.df.loc[items, "carrier"])
|
||||
.sum()
|
||||
)
|
||||
<<<<<<< HEAD
|
||||
|
||||
# Index tuple(s) indicating the newly to-be-added row(s)
|
||||
raw_index = tuple([[i], [c.list_name], list(s.index)])
|
||||
@ -336,11 +679,39 @@ def calculate_supply_energy(n, label, supply_energy):
|
||||
)
|
||||
)
|
||||
supply_energy.loc[idx[i, c.list_name, list(s.index)], label] = s.values
|
||||
=======
|
||||
s = pd.concat([s], keys=[c.list_name])
|
||||
s = pd.concat([s], keys=[i])
|
||||
|
||||
supply_energy = supply_energy.reindex(s.index.union(supply_energy.index))
|
||||
supply_energy.loc[s.index, label] = s
|
||||
|
||||
for c in n.iterate_components(n.branch_components):
|
||||
for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
|
||||
items = c.df.index[c.df["bus" + str(end)].map(bus_map).fillna(False)]
|
||||
|
||||
if len(items) == 0:
|
||||
continue
|
||||
|
||||
s = (-1) * c.pnl["p" + end][items].multiply(
|
||||
n.snapshot_weightings.generators, axis=0
|
||||
).sum().groupby(c.df.loc[items, "carrier"]).sum()
|
||||
s.index = s.index + end
|
||||
s = pd.concat([s], keys=[c.list_name])
|
||||
s = pd.concat([s], keys=[i])
|
||||
|
||||
supply_energy = supply_energy.reindex(
|
||||
s.index.union(supply_energy.index)
|
||||
)
|
||||
|
||||
supply_energy.loc[s.index, label] = s
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
return supply_energy
|
||||
|
||||
|
||||
def calculate_metrics(n, label, metrics):
|
||||
<<<<<<< HEAD
|
||||
metrics = metrics.reindex(
|
||||
metrics.index.union(
|
||||
pd.Index(
|
||||
@ -355,6 +726,18 @@ def calculate_metrics(n, label, metrics):
|
||||
)
|
||||
)
|
||||
)
|
||||
=======
|
||||
metrics_list = [
|
||||
"line_volume",
|
||||
"line_volume_limit",
|
||||
"line_volume_AC",
|
||||
"line_volume_DC",
|
||||
"line_volume_shadow",
|
||||
"co2_shadow",
|
||||
]
|
||||
|
||||
metrics = metrics.reindex(pd.Index(metrics_list).union(metrics.index))
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
metrics.at["line_volume_DC", label] = (n.links.length * n.links.p_nom_opt)[
|
||||
n.links.carrier == "DC"
|
||||
@ -366,8 +749,11 @@ def calculate_metrics(n, label, metrics):
|
||||
|
||||
if hasattr(n, "line_volume_limit"):
|
||||
metrics.at["line_volume_limit", label] = n.line_volume_limit
|
||||
<<<<<<< HEAD
|
||||
|
||||
if hasattr(n, "line_volume_limit_dual"):
|
||||
=======
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
metrics.at["line_volume_shadow", label] = n.line_volume_limit_dual
|
||||
|
||||
if "CO2Limit" in n.global_constraints.index:
|
||||
@ -377,6 +763,7 @@ def calculate_metrics(n, label, metrics):
|
||||
|
||||
|
||||
def calculate_prices(n, label, prices):
|
||||
<<<<<<< HEAD
|
||||
bus_type = pd.Series(n.buses.index.str[3:], n.buses.index).replace(
|
||||
"", "electricity"
|
||||
)
|
||||
@ -385,12 +772,22 @@ def calculate_prices(n, label, prices):
|
||||
|
||||
logger.warning("Prices are time-averaged, not load-weighted")
|
||||
prices[label] = n.buses_t.marginal_price.mean().groupby(bus_type).mean()
|
||||
=======
|
||||
prices = prices.reindex(prices.index.union(n.buses.carrier.unique()))
|
||||
|
||||
# WARNING: this is time-averaged, see weighted_prices for load-weighted average
|
||||
prices[label] = n.buses_t.marginal_price.mean().groupby(n.buses.carrier).mean()
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
return prices
|
||||
|
||||
|
||||
def calculate_weighted_prices(n, label, weighted_prices):
|
||||
<<<<<<< HEAD
|
||||
logger.warning("Weighted prices don't include storage units as loads")
|
||||
=======
|
||||
# Warning: doesn't include storage units as loads
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
weighted_prices = weighted_prices.reindex(
|
||||
pd.Index(
|
||||
@ -450,6 +847,7 @@ def calculate_weighted_prices(n, label, weighted_prices):
|
||||
continue
|
||||
|
||||
load += (
|
||||
<<<<<<< HEAD
|
||||
n.links_t.p0[names]
|
||||
.groupby(n.links.loc[names, "bus0"], axis=1)
|
||||
.sum(axis=1)
|
||||
@ -464,17 +862,34 @@ def calculate_weighted_prices(n, label, weighted_prices):
|
||||
)
|
||||
stores[stores > 0.0] = 0.0
|
||||
load += -stores
|
||||
=======
|
||||
n.links_t.p0[names].groupby(n.links.loc[names, "bus0"], axis=1).sum()
|
||||
)
|
||||
|
||||
# Add H2 Store when charging
|
||||
# if carrier == "H2":
|
||||
# stores = n.stores_t.p[buses+ " Store"].groupby(n.stores.loc[buses+ " Store", "bus"],axis=1).sum(axis=1)
|
||||
# stores[stores > 0.] = 0.
|
||||
# load += -stores
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
weighted_prices.loc[carrier, label] = (
|
||||
load * n.buses_t.marginal_price[buses]
|
||||
).sum().sum() / load.sum().sum()
|
||||
|
||||
<<<<<<< HEAD
|
||||
if carrier[:5] == "space":
|
||||
print(load * n.buses_t.marginal_price[buses])
|
||||
=======
|
||||
# still have no idea what this is for, only for debug reasons.
|
||||
if carrier[:5] == "space":
|
||||
logger.debug(load * n.buses_t.marginal_price[buses])
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
return weighted_prices
|
||||
|
||||
|
||||
<<<<<<< HEAD
|
||||
outputs = [
|
||||
"costs",
|
||||
"curtailment",
|
||||
@ -529,10 +944,144 @@ def to_csv(dfs, dir):
|
||||
os.makedirs(dir, exist_ok=True)
|
||||
for key, df in dfs.items():
|
||||
df.to_csv(os.path.join(dir, f"{key}.csv"))
|
||||
=======
|
||||
def calculate_market_values(n, label, market_values):
|
||||
# Warning: doesn't include storage units
|
||||
|
||||
carrier = "AC"
|
||||
|
||||
buses = n.buses.index[n.buses.carrier == carrier]
|
||||
|
||||
## First do market value of generators ##
|
||||
|
||||
generators = n.generators.index[n.buses.loc[n.generators.bus, "carrier"] == carrier]
|
||||
|
||||
techs = n.generators.loc[generators, "carrier"].value_counts().index
|
||||
|
||||
market_values = market_values.reindex(market_values.index.union(techs))
|
||||
|
||||
for tech in techs:
|
||||
gens = generators[n.generators.loc[generators, "carrier"] == tech]
|
||||
|
||||
dispatch = (
|
||||
n.generators_t.p[gens]
|
||||
.groupby(n.generators.loc[gens, "bus"], axis=1)
|
||||
.sum()
|
||||
.reindex(columns=buses, fill_value=0.0)
|
||||
)
|
||||
|
||||
revenue = dispatch * n.buses_t.marginal_price[buses]
|
||||
|
||||
market_values.at[tech, label] = revenue.sum().sum() / dispatch.sum().sum()
|
||||
|
||||
## Now do market value of links ##
|
||||
|
||||
for i in ["0", "1"]:
|
||||
all_links = n.links.index[n.buses.loc[n.links["bus" + i], "carrier"] == carrier]
|
||||
|
||||
techs = n.links.loc[all_links, "carrier"].value_counts().index
|
||||
|
||||
market_values = market_values.reindex(market_values.index.union(techs))
|
||||
|
||||
for tech in techs:
|
||||
links = all_links[n.links.loc[all_links, "carrier"] == tech]
|
||||
|
||||
dispatch = (
|
||||
n.links_t["p" + i][links]
|
||||
.groupby(n.links.loc[links, "bus" + i], axis=1)
|
||||
.sum()
|
||||
.reindex(columns=buses, fill_value=0.0)
|
||||
)
|
||||
|
||||
revenue = dispatch * n.buses_t.marginal_price[buses]
|
||||
|
||||
market_values.at[tech, label] = revenue.sum().sum() / dispatch.sum().sum()
|
||||
|
||||
return market_values
|
||||
|
||||
|
||||
def calculate_price_statistics(n, label, price_statistics):
|
||||
price_statistics = price_statistics.reindex(
|
||||
price_statistics.index.union(
|
||||
pd.Index(["zero_hours", "mean", "standard_deviation"])
|
||||
)
|
||||
)
|
||||
|
||||
buses = n.buses.index[n.buses.carrier == "AC"]
|
||||
|
||||
threshold = 0.1 # higher than phoney marginal_cost of wind/solar
|
||||
|
||||
df = pd.DataFrame(data=0.0, columns=buses, index=n.snapshots)
|
||||
|
||||
df[n.buses_t.marginal_price[buses] < threshold] = 1.0
|
||||
|
||||
price_statistics.at["zero_hours", label] = df.sum().sum() / (
|
||||
df.shape[0] * df.shape[1]
|
||||
)
|
||||
|
||||
price_statistics.at["mean", label] = (
|
||||
n.buses_t.marginal_price[buses].unstack().mean()
|
||||
)
|
||||
|
||||
price_statistics.at["standard_deviation", label] = (
|
||||
n.buses_t.marginal_price[buses].unstack().std()
|
||||
)
|
||||
|
||||
return price_statistics
|
||||
|
||||
|
||||
def make_summaries(networks_dict):
|
||||
outputs = [
|
||||
"nodal_costs",
|
||||
"nodal_capacities",
|
||||
"nodal_cfs",
|
||||
"cfs",
|
||||
"costs",
|
||||
"capacities",
|
||||
"curtailment",
|
||||
"energy",
|
||||
"supply",
|
||||
"supply_energy",
|
||||
"prices",
|
||||
"weighted_prices",
|
||||
"price_statistics",
|
||||
"market_values",
|
||||
"metrics",
|
||||
]
|
||||
|
||||
columns = pd.MultiIndex.from_tuples(
|
||||
networks_dict.keys(), names=["cluster", "lv", "opt", "planning_horizon"]
|
||||
)
|
||||
|
||||
df = {}
|
||||
|
||||
for output in outputs:
|
||||
df[output] = pd.DataFrame(columns=columns, dtype=float)
|
||||
|
||||
for label, filename in networks_dict.items():
|
||||
logger.info(f"Make summary for scenario {label}, using {filename}")
|
||||
|
||||
overrides = override_component_attrs(snakemake.input.overrides)
|
||||
n = pypsa.Network(filename, override_component_attrs=overrides)
|
||||
|
||||
assign_carriers(n)
|
||||
assign_locations(n)
|
||||
|
||||
for output in outputs:
|
||||
df[output] = globals()["calculate_" + output](n, label, df[output])
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def to_csv(df):
|
||||
for key in df:
|
||||
df[key].to_csv(snakemake.output[key])
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
<<<<<<< HEAD
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
@ -581,3 +1130,49 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
to_csv(dfs, snakemake.output[0])
|
||||
=======
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("make_summary")
|
||||
|
||||
logging.basicConfig(level=snakemake.config["logging_level"])
|
||||
|
||||
networks_dict = {
|
||||
(cluster, lv, opt + sector_opt, planning_horizon): snakemake.config[
|
||||
"results_dir"
|
||||
]
|
||||
+ snakemake.config["run"]
|
||||
+ f"/postnetworks/elec_s{simpl}_{cluster}_lv{lv}_{opt}_{sector_opt}_{planning_horizon}.nc"
|
||||
for simpl in snakemake.config["scenario"]["simpl"]
|
||||
for cluster in snakemake.config["scenario"]["clusters"]
|
||||
for opt in snakemake.config["scenario"]["opts"]
|
||||
for sector_opt in snakemake.config["scenario"]["sector_opts"]
|
||||
for lv in snakemake.config["scenario"]["lv"]
|
||||
for planning_horizon in snakemake.config["scenario"]["planning_horizons"]
|
||||
}
|
||||
|
||||
Nyears = 1
|
||||
|
||||
costs_db = prepare_costs(
|
||||
snakemake.input.costs,
|
||||
snakemake.config["costs"]["USD2013_to_EUR2013"],
|
||||
snakemake.config["costs"]["discountrate"],
|
||||
Nyears,
|
||||
snakemake.config["costs"]["lifetime"],
|
||||
)
|
||||
|
||||
df = make_summaries(networks_dict)
|
||||
|
||||
df["metrics"].loc["total costs"] = df["costs"].sum()
|
||||
|
||||
to_csv(df)
|
||||
|
||||
if snakemake.config["foresight"] == "myopic":
|
||||
cumulative_cost = calculate_cumulative_cost()
|
||||
cumulative_cost.to_csv(
|
||||
snakemake.config["summary_dir"]
|
||||
+ "/"
|
||||
+ snakemake.config["run"]
|
||||
+ "/csvs/cumulative_cost.csv"
|
||||
)
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
@ -1,4 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
<<<<<<< HEAD
|
||||
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
@ -181,10 +182,743 @@ def plot_map(n, opts, ax=None, attribute="p_nom"):
|
||||
)
|
||||
)
|
||||
labels.append("{} GW".format(s))
|
||||
=======
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import cartopy.crs as ccrs
|
||||
import geopandas as gpd
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
from helper import override_component_attrs
|
||||
from make_summary import assign_carriers
|
||||
from plot_summary import preferred_order, rename_techs
|
||||
from pypsa.plot import add_legend_circles, add_legend_lines, add_legend_patches
|
||||
|
||||
plt.style.use(["ggplot", "matplotlibrc"])
|
||||
|
||||
|
||||
def rename_techs_tyndp(tech):
|
||||
tech = rename_techs(tech)
|
||||
if "heat pump" in tech or "resistive heater" in tech:
|
||||
return "power-to-heat"
|
||||
elif tech in ["H2 Electrolysis", "methanation", "helmeth", "H2 liquefaction"]:
|
||||
return "power-to-gas"
|
||||
elif tech == "H2":
|
||||
return "H2 storage"
|
||||
elif tech in ["NH3", "Haber-Bosch", "ammonia cracker", "ammonia store"]:
|
||||
return "ammonia"
|
||||
elif tech in ["OCGT", "CHP", "gas boiler", "H2 Fuel Cell"]:
|
||||
return "gas-to-power/heat"
|
||||
# elif "solar" in tech:
|
||||
# return "solar"
|
||||
elif tech in ["Fischer-Tropsch", "methanolisation"]:
|
||||
return "power-to-liquid"
|
||||
elif "offshore wind" in tech:
|
||||
return "offshore wind"
|
||||
elif "CC" in tech or "sequestration" in tech:
|
||||
return "CCS"
|
||||
else:
|
||||
return tech
|
||||
|
||||
|
||||
def assign_location(n):
|
||||
for c in n.iterate_components(n.one_port_components | n.branch_components):
|
||||
ifind = pd.Series(c.df.index.str.find(" ", start=4), c.df.index)
|
||||
for i in ifind.value_counts().index:
|
||||
# these have already been assigned defaults
|
||||
if i == -1:
|
||||
continue
|
||||
names = ifind.index[ifind == i]
|
||||
c.df.loc[names, "location"] = names.str[:i]
|
||||
|
||||
|
||||
def plot_map(
|
||||
network,
|
||||
components=["links", "stores", "storage_units", "generators"],
|
||||
bus_size_factor=1.7e10,
|
||||
transmission=False,
|
||||
with_legend=True,
|
||||
):
|
||||
tech_colors = snakemake.config["plotting"]["tech_colors"]
|
||||
|
||||
n = network.copy()
|
||||
assign_location(n)
|
||||
# Drop non-electric buses so they don't clutter the plot
|
||||
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
||||
|
||||
costs = pd.DataFrame(index=n.buses.index)
|
||||
|
||||
for comp in components:
|
||||
df_c = getattr(n, comp)
|
||||
|
||||
if df_c.empty:
|
||||
continue
|
||||
|
||||
df_c["nice_group"] = df_c.carrier.map(rename_techs_tyndp)
|
||||
|
||||
attr = "e_nom_opt" if comp == "stores" else "p_nom_opt"
|
||||
|
||||
costs_c = (
|
||||
(df_c.capital_cost * df_c[attr])
|
||||
.groupby([df_c.location, df_c.nice_group])
|
||||
.sum()
|
||||
.unstack()
|
||||
.fillna(0.0)
|
||||
)
|
||||
costs = pd.concat([costs, costs_c], axis=1)
|
||||
|
||||
logger.debug(f"{comp}, {costs}")
|
||||
|
||||
costs = costs.groupby(costs.columns, axis=1).sum()
|
||||
|
||||
costs.drop(list(costs.columns[(costs == 0.0).all()]), axis=1, inplace=True)
|
||||
|
||||
new_columns = preferred_order.intersection(costs.columns).append(
|
||||
costs.columns.difference(preferred_order)
|
||||
)
|
||||
costs = costs[new_columns]
|
||||
|
||||
for item in new_columns:
|
||||
if item not in tech_colors:
|
||||
logger.warning(f"{item} not in config/plotting/tech_colors")
|
||||
|
||||
costs = costs.stack() # .sort_index()
|
||||
|
||||
# hack because impossible to drop buses...
|
||||
eu_location = snakemake.config["plotting"].get(
|
||||
"eu_node_location", dict(x=-5.5, y=46)
|
||||
)
|
||||
n.buses.loc["EU gas", "x"] = eu_location["x"]
|
||||
n.buses.loc["EU gas", "y"] = eu_location["y"]
|
||||
|
||||
n.links.drop(
|
||||
n.links.index[(n.links.carrier != "DC") & (n.links.carrier != "B2B")],
|
||||
inplace=True,
|
||||
)
|
||||
|
||||
# drop non-bus
|
||||
to_drop = costs.index.levels[0].symmetric_difference(n.buses.index)
|
||||
if len(to_drop) != 0:
|
||||
logger.info(f"Dropping non-buses {to_drop.tolist()}")
|
||||
costs.drop(to_drop, level=0, inplace=True, axis=0, errors="ignore")
|
||||
|
||||
# make sure they are removed from index
|
||||
costs.index = pd.MultiIndex.from_tuples(costs.index.values)
|
||||
|
||||
threshold = 100e6 # 100 mEUR/a
|
||||
carriers = costs.groupby(level=1).sum()
|
||||
carriers = carriers.where(carriers > threshold).dropna()
|
||||
carriers = list(carriers.index)
|
||||
|
||||
# PDF has minimum width, so set these to zero
|
||||
line_lower_threshold = 500.0
|
||||
line_upper_threshold = 1e4
|
||||
linewidth_factor = 4e3
|
||||
ac_color = "rosybrown"
|
||||
dc_color = "darkseagreen"
|
||||
|
||||
if snakemake.wildcards["lv"] == "1.0":
|
||||
# should be zero
|
||||
line_widths = n.lines.s_nom_opt - n.lines.s_nom
|
||||
link_widths = n.links.p_nom_opt - n.links.p_nom
|
||||
title = "added grid"
|
||||
|
||||
if transmission:
|
||||
line_widths = n.lines.s_nom_opt
|
||||
link_widths = n.links.p_nom_opt
|
||||
linewidth_factor = 2e3
|
||||
line_lower_threshold = 0.0
|
||||
title = "current grid"
|
||||
else:
|
||||
line_widths = n.lines.s_nom_opt - n.lines.s_nom_min
|
||||
link_widths = n.links.p_nom_opt - n.links.p_nom_min
|
||||
title = "added grid"
|
||||
|
||||
if transmission:
|
||||
line_widths = n.lines.s_nom_opt
|
||||
link_widths = n.links.p_nom_opt
|
||||
title = "total grid"
|
||||
|
||||
line_widths = line_widths.clip(line_lower_threshold, line_upper_threshold)
|
||||
link_widths = link_widths.clip(line_lower_threshold, line_upper_threshold)
|
||||
|
||||
line_widths = line_widths.replace(line_lower_threshold, 0)
|
||||
link_widths = link_widths.replace(line_lower_threshold, 0)
|
||||
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.EqualEarth()})
|
||||
fig.set_size_inches(7, 6)
|
||||
|
||||
n.plot(
|
||||
bus_sizes=costs / bus_size_factor,
|
||||
bus_colors=tech_colors,
|
||||
line_colors=ac_color,
|
||||
link_colors=dc_color,
|
||||
line_widths=line_widths / linewidth_factor,
|
||||
link_widths=link_widths / linewidth_factor,
|
||||
ax=ax,
|
||||
**map_opts,
|
||||
)
|
||||
|
||||
sizes = [20, 10, 5]
|
||||
labels = [f"{s} bEUR/a" for s in sizes]
|
||||
sizes = [s / bus_size_factor * 1e9 for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.01, 1.06),
|
||||
labelspacing=0.8,
|
||||
frameon=False,
|
||||
handletextpad=0,
|
||||
title="system cost",
|
||||
)
|
||||
|
||||
add_legend_circles(
|
||||
ax,
|
||||
sizes,
|
||||
labels,
|
||||
srid=n.srid,
|
||||
patch_kw=dict(facecolor="lightgrey"),
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
sizes = [10, 5]
|
||||
labels = [f"{s} GW" for s in sizes]
|
||||
scale = 1e3 / linewidth_factor
|
||||
sizes = [s * scale for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.27, 1.06),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
handletextpad=1,
|
||||
title=title,
|
||||
)
|
||||
|
||||
add_legend_lines(
|
||||
ax, sizes, labels, patch_kw=dict(color="lightgrey"), legend_kw=legend_kw
|
||||
)
|
||||
|
||||
legend_kw = dict(
|
||||
bbox_to_anchor=(1.52, 1.04),
|
||||
frameon=False,
|
||||
)
|
||||
|
||||
if with_legend:
|
||||
colors = [tech_colors[c] for c in carriers] + [ac_color, dc_color]
|
||||
labels = carriers + ["HVAC line", "HVDC link"]
|
||||
|
||||
add_legend_patches(
|
||||
ax,
|
||||
colors,
|
||||
labels,
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
fig.savefig(snakemake.output.map, transparent=True, bbox_inches="tight")
|
||||
|
||||
|
||||
def group_pipes(df, drop_direction=False):
|
||||
"""
|
||||
Group pipes which connect same buses and return overall capacity.
|
||||
"""
|
||||
if drop_direction:
|
||||
positive_order = df.bus0 < df.bus1
|
||||
df_p = df[positive_order]
|
||||
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
|
||||
df_n = df[~positive_order].rename(columns=swap_buses)
|
||||
df = pd.concat([df_p, df_n])
|
||||
|
||||
# there are pipes for each investment period rename to AC buses name for plotting
|
||||
df.index = df.apply(
|
||||
lambda x: f"H2 pipeline {x.bus0.replace(' H2', '')} -> {x.bus1.replace(' H2', '')}",
|
||||
axis=1,
|
||||
)
|
||||
# group pipe lines connecting the same buses and rename them for plotting
|
||||
pipe_capacity = df.groupby(level=0).agg(
|
||||
{"p_nom_opt": sum, "bus0": "first", "bus1": "first"}
|
||||
)
|
||||
|
||||
return pipe_capacity
|
||||
|
||||
|
||||
def plot_h2_map(network, regions):
|
||||
n = network.copy()
|
||||
if "H2 pipeline" not in n.links.carrier.unique():
|
||||
return
|
||||
|
||||
assign_location(n)
|
||||
|
||||
h2_storage = n.stores.query("carrier == 'H2'")
|
||||
regions["H2"] = h2_storage.rename(
|
||||
index=h2_storage.bus.map(n.buses.location)
|
||||
).e_nom_opt.div(
|
||||
1e6
|
||||
) # TWh
|
||||
regions["H2"] = regions["H2"].where(regions["H2"] > 0.1)
|
||||
|
||||
bus_size_factor = 1e5
|
||||
linewidth_factor = 7e3
|
||||
# MW below which not drawn
|
||||
line_lower_threshold = 750
|
||||
|
||||
# Drop non-electric buses so they don't clutter the plot
|
||||
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
||||
|
||||
carriers = ["H2 Electrolysis", "H2 Fuel Cell"]
|
||||
|
||||
elec = n.links[n.links.carrier.isin(carriers)].index
|
||||
|
||||
bus_sizes = (
|
||||
n.links.loc[elec, "p_nom_opt"].groupby([n.links["bus0"], n.links.carrier]).sum()
|
||||
/ bus_size_factor
|
||||
)
|
||||
|
||||
# make a fake MultiIndex so that area is correct for legend
|
||||
bus_sizes.rename(index=lambda x: x.replace(" H2", ""), level=0, inplace=True)
|
||||
# drop all links which are not H2 pipelines
|
||||
n.links.drop(
|
||||
n.links.index[~n.links.carrier.str.contains("H2 pipeline")], inplace=True
|
||||
)
|
||||
|
||||
h2_new = n.links[n.links.carrier == "H2 pipeline"]
|
||||
h2_retro = n.links[n.links.carrier == "H2 pipeline retrofitted"]
|
||||
|
||||
if snakemake.config["foresight"] == "myopic":
|
||||
# sum capacitiy for pipelines from different investment periods
|
||||
h2_new = group_pipes(h2_new)
|
||||
|
||||
if not h2_retro.empty:
|
||||
h2_retro = (
|
||||
group_pipes(h2_retro, drop_direction=True)
|
||||
.reindex(h2_new.index)
|
||||
.fillna(0)
|
||||
)
|
||||
|
||||
if not h2_retro.empty:
|
||||
positive_order = h2_retro.bus0 < h2_retro.bus1
|
||||
h2_retro_p = h2_retro[positive_order]
|
||||
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
|
||||
h2_retro_n = h2_retro[~positive_order].rename(columns=swap_buses)
|
||||
h2_retro = pd.concat([h2_retro_p, h2_retro_n])
|
||||
|
||||
h2_retro["index_orig"] = h2_retro.index
|
||||
h2_retro.index = h2_retro.apply(
|
||||
lambda x: f"H2 pipeline {x.bus0.replace(' H2', '')} -> {x.bus1.replace(' H2', '')}",
|
||||
axis=1,
|
||||
)
|
||||
|
||||
retro_w_new_i = h2_retro.index.intersection(h2_new.index)
|
||||
h2_retro_w_new = h2_retro.loc[retro_w_new_i]
|
||||
|
||||
retro_wo_new_i = h2_retro.index.difference(h2_new.index)
|
||||
h2_retro_wo_new = h2_retro.loc[retro_wo_new_i]
|
||||
h2_retro_wo_new.index = h2_retro_wo_new.index_orig
|
||||
|
||||
to_concat = [h2_new, h2_retro_w_new, h2_retro_wo_new]
|
||||
h2_total = pd.concat(to_concat).p_nom_opt.groupby(level=0).sum()
|
||||
|
||||
else:
|
||||
h2_total = h2_new.p_nom_opt
|
||||
|
||||
link_widths_total = h2_total / linewidth_factor
|
||||
|
||||
n.links.rename(index=lambda x: x.split("-2")[0], inplace=True)
|
||||
n.links = n.links.groupby(level=0).first()
|
||||
link_widths_total = link_widths_total.reindex(n.links.index).fillna(0.0)
|
||||
link_widths_total[n.links.p_nom_opt < line_lower_threshold] = 0.0
|
||||
|
||||
retro = n.links.p_nom_opt.where(
|
||||
n.links.carrier == "H2 pipeline retrofitted", other=0.0
|
||||
)
|
||||
link_widths_retro = retro / linewidth_factor
|
||||
link_widths_retro[n.links.p_nom_opt < line_lower_threshold] = 0.0
|
||||
|
||||
n.links.bus0 = n.links.bus0.str.replace(" H2", "")
|
||||
n.links.bus1 = n.links.bus1.str.replace(" H2", "")
|
||||
|
||||
proj = ccrs.EqualEarth()
|
||||
regions = regions.to_crs(proj.proj4_init)
|
||||
|
||||
fig, ax = plt.subplots(figsize=(7, 6), subplot_kw={"projection": proj})
|
||||
|
||||
color_h2_pipe = "#b3f3f4"
|
||||
color_retrofit = "#499a9c"
|
||||
|
||||
bus_colors = {"H2 Electrolysis": "#ff29d9", "H2 Fuel Cell": "#805394"}
|
||||
|
||||
n.plot(
|
||||
geomap=True,
|
||||
bus_sizes=bus_sizes,
|
||||
bus_colors=bus_colors,
|
||||
link_colors=color_h2_pipe,
|
||||
link_widths=link_widths_total,
|
||||
branch_components=["Link"],
|
||||
ax=ax,
|
||||
**map_opts,
|
||||
)
|
||||
|
||||
n.plot(
|
||||
geomap=True,
|
||||
bus_sizes=0,
|
||||
link_colors=color_retrofit,
|
||||
link_widths=link_widths_retro,
|
||||
branch_components=["Link"],
|
||||
ax=ax,
|
||||
color_geomap=False,
|
||||
boundaries=map_opts["boundaries"],
|
||||
)
|
||||
|
||||
regions.plot(
|
||||
ax=ax,
|
||||
column="H2",
|
||||
cmap="Blues",
|
||||
linewidths=0,
|
||||
legend=True,
|
||||
vmax=6,
|
||||
vmin=0,
|
||||
legend_kwds={
|
||||
"label": "Hydrogen Storage [TWh]",
|
||||
"shrink": 0.7,
|
||||
"extend": "max",
|
||||
},
|
||||
)
|
||||
|
||||
sizes = [50, 10]
|
||||
labels = [f"{s} GW" for s in sizes]
|
||||
sizes = [s / bus_size_factor * 1e3 for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0, 1),
|
||||
labelspacing=0.8,
|
||||
handletextpad=0,
|
||||
frameon=False,
|
||||
)
|
||||
|
||||
add_legend_circles(
|
||||
ax,
|
||||
sizes,
|
||||
labels,
|
||||
srid=n.srid,
|
||||
patch_kw=dict(facecolor="lightgrey"),
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
sizes = [30, 10]
|
||||
labels = [f"{s} GW" for s in sizes]
|
||||
scale = 1e3 / linewidth_factor
|
||||
sizes = [s * scale for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.23, 1),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
handletextpad=1,
|
||||
)
|
||||
|
||||
add_legend_lines(
|
||||
ax,
|
||||
sizes,
|
||||
labels,
|
||||
patch_kw=dict(color="lightgrey"),
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
colors = [bus_colors[c] for c in carriers] + [color_h2_pipe, color_retrofit]
|
||||
labels = carriers + ["H2 pipeline (total)", "H2 pipeline (repurposed)"]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0, 1.13),
|
||||
ncol=2,
|
||||
frameon=False,
|
||||
)
|
||||
|
||||
add_legend_patches(ax, colors, labels, legend_kw=legend_kw)
|
||||
|
||||
ax.set_facecolor("white")
|
||||
|
||||
fig.savefig(
|
||||
snakemake.output.map.replace("-costs-all", "-h2_network"), bbox_inches="tight"
|
||||
)
|
||||
|
||||
|
||||
def plot_ch4_map(network):
|
||||
n = network.copy()
|
||||
|
||||
if "gas pipeline" not in n.links.carrier.unique():
|
||||
return
|
||||
|
||||
assign_location(n)
|
||||
|
||||
bus_size_factor = 8e7
|
||||
linewidth_factor = 1e4
|
||||
# MW below which not drawn
|
||||
line_lower_threshold = 1e3
|
||||
|
||||
# Drop non-electric buses so they don't clutter the plot
|
||||
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
||||
|
||||
fossil_gas_i = n.generators[n.generators.carrier == "gas"].index
|
||||
fossil_gas = (
|
||||
n.generators_t.p.loc[:, fossil_gas_i]
|
||||
.mul(n.snapshot_weightings.generators, axis=0)
|
||||
.sum()
|
||||
.groupby(n.generators.loc[fossil_gas_i, "bus"])
|
||||
.sum()
|
||||
/ bus_size_factor
|
||||
)
|
||||
fossil_gas.rename(index=lambda x: x.replace(" gas", ""), inplace=True)
|
||||
fossil_gas = fossil_gas.reindex(n.buses.index).fillna(0)
|
||||
# make a fake MultiIndex so that area is correct for legend
|
||||
fossil_gas.index = pd.MultiIndex.from_product([fossil_gas.index, ["fossil gas"]])
|
||||
|
||||
methanation_i = n.links[n.links.carrier.isin(["helmeth", "Sabatier"])].index
|
||||
methanation = (
|
||||
abs(
|
||||
n.links_t.p1.loc[:, methanation_i].mul(
|
||||
n.snapshot_weightings.generators, axis=0
|
||||
)
|
||||
)
|
||||
.sum()
|
||||
.groupby(n.links.loc[methanation_i, "bus1"])
|
||||
.sum()
|
||||
/ bus_size_factor
|
||||
)
|
||||
methanation = (
|
||||
methanation.groupby(methanation.index)
|
||||
.sum()
|
||||
.rename(index=lambda x: x.replace(" gas", ""))
|
||||
)
|
||||
# make a fake MultiIndex so that area is correct for legend
|
||||
methanation.index = pd.MultiIndex.from_product([methanation.index, ["methanation"]])
|
||||
|
||||
biogas_i = n.stores[n.stores.carrier == "biogas"].index
|
||||
biogas = (
|
||||
n.stores_t.p.loc[:, biogas_i]
|
||||
.mul(n.snapshot_weightings.generators, axis=0)
|
||||
.sum()
|
||||
.groupby(n.stores.loc[biogas_i, "bus"])
|
||||
.sum()
|
||||
/ bus_size_factor
|
||||
)
|
||||
biogas = (
|
||||
biogas.groupby(biogas.index)
|
||||
.sum()
|
||||
.rename(index=lambda x: x.replace(" biogas", ""))
|
||||
)
|
||||
# make a fake MultiIndex so that area is correct for legend
|
||||
biogas.index = pd.MultiIndex.from_product([biogas.index, ["biogas"]])
|
||||
|
||||
bus_sizes = pd.concat([fossil_gas, methanation, biogas])
|
||||
bus_sizes.sort_index(inplace=True)
|
||||
|
||||
to_remove = n.links.index[~n.links.carrier.str.contains("gas pipeline")]
|
||||
n.links.drop(to_remove, inplace=True)
|
||||
|
||||
link_widths_rem = n.links.p_nom_opt / linewidth_factor
|
||||
link_widths_rem[n.links.p_nom_opt < line_lower_threshold] = 0.0
|
||||
|
||||
link_widths_orig = n.links.p_nom / linewidth_factor
|
||||
link_widths_orig[n.links.p_nom < line_lower_threshold] = 0.0
|
||||
|
||||
max_usage = n.links_t.p0.abs().max(axis=0)
|
||||
link_widths_used = max_usage / linewidth_factor
|
||||
link_widths_used[max_usage < line_lower_threshold] = 0.0
|
||||
|
||||
tech_colors = snakemake.config["plotting"]["tech_colors"]
|
||||
|
||||
pipe_colors = {
|
||||
"gas pipeline": "#f08080",
|
||||
"gas pipeline new": "#c46868",
|
||||
"gas pipeline (in 2020)": "lightgrey",
|
||||
"gas pipeline (available)": "#e8d1d1",
|
||||
}
|
||||
|
||||
link_color_used = n.links.carrier.map(pipe_colors)
|
||||
|
||||
n.links.bus0 = n.links.bus0.str.replace(" gas", "")
|
||||
n.links.bus1 = n.links.bus1.str.replace(" gas", "")
|
||||
|
||||
bus_colors = {
|
||||
"fossil gas": tech_colors["fossil gas"],
|
||||
"methanation": tech_colors["methanation"],
|
||||
"biogas": "seagreen",
|
||||
}
|
||||
|
||||
fig, ax = plt.subplots(figsize=(7, 6), subplot_kw={"projection": ccrs.EqualEarth()})
|
||||
|
||||
n.plot(
|
||||
bus_sizes=bus_sizes,
|
||||
bus_colors=bus_colors,
|
||||
link_colors=pipe_colors["gas pipeline (in 2020)"],
|
||||
link_widths=link_widths_orig,
|
||||
branch_components=["Link"],
|
||||
ax=ax,
|
||||
**map_opts,
|
||||
)
|
||||
|
||||
n.plot(
|
||||
ax=ax,
|
||||
bus_sizes=0.0,
|
||||
link_colors=pipe_colors["gas pipeline (available)"],
|
||||
link_widths=link_widths_rem,
|
||||
branch_components=["Link"],
|
||||
color_geomap=False,
|
||||
boundaries=map_opts["boundaries"],
|
||||
)
|
||||
|
||||
n.plot(
|
||||
ax=ax,
|
||||
bus_sizes=0.0,
|
||||
link_colors=link_color_used,
|
||||
link_widths=link_widths_used,
|
||||
branch_components=["Link"],
|
||||
color_geomap=False,
|
||||
boundaries=map_opts["boundaries"],
|
||||
)
|
||||
|
||||
sizes = [100, 10]
|
||||
labels = [f"{s} TWh" for s in sizes]
|
||||
sizes = [s / bus_size_factor * 1e6 for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0, 1.03),
|
||||
labelspacing=0.8,
|
||||
frameon=False,
|
||||
handletextpad=1,
|
||||
title="gas sources",
|
||||
)
|
||||
|
||||
add_legend_circles(
|
||||
ax,
|
||||
sizes,
|
||||
labels,
|
||||
srid=n.srid,
|
||||
patch_kw=dict(facecolor="lightgrey"),
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
sizes = [50, 10]
|
||||
labels = [f"{s} GW" for s in sizes]
|
||||
scale = 1e3 / linewidth_factor
|
||||
sizes = [s * scale for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.25, 1.03),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
handletextpad=1,
|
||||
title="gas pipeline",
|
||||
)
|
||||
|
||||
add_legend_lines(
|
||||
ax,
|
||||
sizes,
|
||||
labels,
|
||||
patch_kw=dict(color="lightgrey"),
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
colors = list(pipe_colors.values()) + list(bus_colors.values())
|
||||
labels = list(pipe_colors.keys()) + list(bus_colors.keys())
|
||||
|
||||
# legend on the side
|
||||
# legend_kw = dict(
|
||||
# bbox_to_anchor=(1.47, 1.04),
|
||||
# frameon=False,
|
||||
# )
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0, 1.24),
|
||||
ncol=2,
|
||||
frameon=False,
|
||||
)
|
||||
|
||||
add_legend_patches(
|
||||
ax,
|
||||
colors,
|
||||
labels,
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
fig.savefig(
|
||||
snakemake.output.map.replace("-costs-all", "-ch4_network"), bbox_inches="tight"
|
||||
)
|
||||
|
||||
|
||||
def plot_map_without(network):
|
||||
n = network.copy()
|
||||
assign_location(n)
|
||||
|
||||
# Drop non-electric buses so they don't clutter the plot
|
||||
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
||||
|
||||
fig, ax = plt.subplots(figsize=(7, 6), subplot_kw={"projection": ccrs.EqualEarth()})
|
||||
|
||||
# PDF has minimum width, so set these to zero
|
||||
line_lower_threshold = 200.0
|
||||
line_upper_threshold = 1e4
|
||||
linewidth_factor = 3e3
|
||||
ac_color = "rosybrown"
|
||||
dc_color = "darkseagreen"
|
||||
|
||||
# hack because impossible to drop buses...
|
||||
if "EU gas" in n.buses.index:
|
||||
eu_location = snakemake.config["plotting"].get(
|
||||
"eu_node_location", dict(x=-5.5, y=46)
|
||||
)
|
||||
n.buses.loc["EU gas", "x"] = eu_location["x"]
|
||||
n.buses.loc["EU gas", "y"] = eu_location["y"]
|
||||
|
||||
to_drop = n.links.index[(n.links.carrier != "DC") & (n.links.carrier != "B2B")]
|
||||
n.links.drop(to_drop, inplace=True)
|
||||
|
||||
if snakemake.wildcards["lv"] == "1.0":
|
||||
line_widths = n.lines.s_nom
|
||||
link_widths = n.links.p_nom
|
||||
else:
|
||||
line_widths = n.lines.s_nom_min
|
||||
link_widths = n.links.p_nom_min
|
||||
|
||||
line_widths = line_widths.clip(line_lower_threshold, line_upper_threshold)
|
||||
link_widths = link_widths.clip(line_lower_threshold, line_upper_threshold)
|
||||
|
||||
line_widths = line_widths.replace(line_lower_threshold, 0)
|
||||
link_widths = link_widths.replace(line_lower_threshold, 0)
|
||||
|
||||
n.plot(
|
||||
bus_colors="k",
|
||||
line_colors=ac_color,
|
||||
link_colors=dc_color,
|
||||
line_widths=line_widths / linewidth_factor,
|
||||
link_widths=link_widths / linewidth_factor,
|
||||
ax=ax,
|
||||
**map_opts,
|
||||
)
|
||||
|
||||
handles = []
|
||||
labels = []
|
||||
|
||||
for s in (10, 5):
|
||||
handles.append(
|
||||
plt.Line2D([0], [0], color=ac_color, linewidth=s * 1e3 / linewidth_factor)
|
||||
)
|
||||
labels.append(f"{s} GW")
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
l1_1 = ax.legend(
|
||||
handles,
|
||||
labels,
|
||||
loc="upper left",
|
||||
<<<<<<< HEAD
|
||||
bbox_to_anchor=(0.24, 1.01),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
@ -352,15 +1086,192 @@ def plot_total_cost_bar(n, opts, ax=None):
|
||||
ax.set_xlim([0, 1])
|
||||
ax.set_xticklabels([])
|
||||
ax.grid(True, axis="y", color="k", linestyle="dotted")
|
||||
=======
|
||||
bbox_to_anchor=(0.05, 1.01),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
handletextpad=1.5,
|
||||
title="Today's transmission",
|
||||
)
|
||||
ax.add_artist(l1_1)
|
||||
|
||||
fig.savefig(snakemake.output.today, transparent=True, bbox_inches="tight")
|
||||
|
||||
|
||||
def plot_series(network, carrier="AC", name="test"):
|
||||
n = network.copy()
|
||||
assign_location(n)
|
||||
assign_carriers(n)
|
||||
|
||||
buses = n.buses.index[n.buses.carrier.str.contains(carrier)]
|
||||
|
||||
supply = pd.DataFrame(index=n.snapshots)
|
||||
for c in n.iterate_components(n.branch_components):
|
||||
n_port = 4 if c.name == "Link" else 2
|
||||
for i in range(n_port):
|
||||
supply = pd.concat(
|
||||
(
|
||||
supply,
|
||||
(-1)
|
||||
* c.pnl["p" + str(i)]
|
||||
.loc[:, c.df.index[c.df["bus" + str(i)].isin(buses)]]
|
||||
.groupby(c.df.carrier, axis=1)
|
||||
.sum(),
|
||||
),
|
||||
axis=1,
|
||||
)
|
||||
|
||||
for c in n.iterate_components(n.one_port_components):
|
||||
comps = c.df.index[c.df.bus.isin(buses)]
|
||||
supply = pd.concat(
|
||||
(
|
||||
supply,
|
||||
((c.pnl["p"].loc[:, comps]).multiply(c.df.loc[comps, "sign"]))
|
||||
.groupby(c.df.carrier, axis=1)
|
||||
.sum(),
|
||||
),
|
||||
axis=1,
|
||||
)
|
||||
|
||||
supply = supply.groupby(rename_techs_tyndp, axis=1).sum()
|
||||
|
||||
both = supply.columns[(supply < 0.0).any() & (supply > 0.0).any()]
|
||||
|
||||
positive_supply = supply[both]
|
||||
negative_supply = supply[both]
|
||||
|
||||
positive_supply[positive_supply < 0.0] = 0.0
|
||||
negative_supply[negative_supply > 0.0] = 0.0
|
||||
|
||||
supply[both] = positive_supply
|
||||
|
||||
suffix = " charging"
|
||||
|
||||
negative_supply.columns = negative_supply.columns + suffix
|
||||
|
||||
supply = pd.concat((supply, negative_supply), axis=1)
|
||||
|
||||
# 14-21.2 for flaute
|
||||
# 19-26.1 for flaute
|
||||
|
||||
start = "2013-02-19"
|
||||
stop = "2013-02-26"
|
||||
|
||||
threshold = 10e3
|
||||
|
||||
to_drop = supply.columns[(abs(supply) < threshold).all()]
|
||||
|
||||
if len(to_drop) != 0:
|
||||
logger.info(f"Dropping {to_drop.tolist()} from supply")
|
||||
supply.drop(columns=to_drop, inplace=True)
|
||||
|
||||
supply.index.name = None
|
||||
|
||||
supply = supply / 1e3
|
||||
|
||||
supply.rename(
|
||||
columns={"electricity": "electric demand", "heat": "heat demand"}, inplace=True
|
||||
)
|
||||
supply.columns = supply.columns.str.replace("residential ", "")
|
||||
supply.columns = supply.columns.str.replace("services ", "")
|
||||
supply.columns = supply.columns.str.replace("urban decentral ", "decentral ")
|
||||
|
||||
preferred_order = pd.Index(
|
||||
[
|
||||
"electric demand",
|
||||
"transmission lines",
|
||||
"hydroelectricity",
|
||||
"hydro reservoir",
|
||||
"run of river",
|
||||
"pumped hydro storage",
|
||||
"CHP",
|
||||
"onshore wind",
|
||||
"offshore wind",
|
||||
"solar PV",
|
||||
"solar thermal",
|
||||
"building retrofitting",
|
||||
"ground heat pump",
|
||||
"air heat pump",
|
||||
"resistive heater",
|
||||
"OCGT",
|
||||
"gas boiler",
|
||||
"gas",
|
||||
"natural gas",
|
||||
"methanation",
|
||||
"hydrogen storage",
|
||||
"battery storage",
|
||||
"hot water storage",
|
||||
]
|
||||
)
|
||||
|
||||
new_columns = preferred_order.intersection(supply.columns).append(
|
||||
supply.columns.difference(preferred_order)
|
||||
)
|
||||
|
||||
supply = supply.groupby(supply.columns, axis=1).sum()
|
||||
fig, ax = plt.subplots()
|
||||
fig.set_size_inches((8, 5))
|
||||
|
||||
(
|
||||
supply.loc[start:stop, new_columns].plot(
|
||||
ax=ax,
|
||||
kind="area",
|
||||
stacked=True,
|
||||
linewidth=0.0,
|
||||
color=[
|
||||
snakemake.config["plotting"]["tech_colors"][i.replace(suffix, "")]
|
||||
for i in new_columns
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
|
||||
handles.reverse()
|
||||
labels.reverse()
|
||||
|
||||
new_handles = []
|
||||
new_labels = []
|
||||
|
||||
for i, item in enumerate(labels):
|
||||
if "charging" not in item:
|
||||
new_handles.append(handles[i])
|
||||
new_labels.append(labels[i])
|
||||
|
||||
ax.legend(new_handles, new_labels, ncol=3, loc="upper left", frameon=False)
|
||||
ax.set_xlim([start, stop])
|
||||
ax.set_ylim([-1300, 1900])
|
||||
ax.grid(True)
|
||||
ax.set_ylabel("Power [GW]")
|
||||
fig.tight_layout()
|
||||
|
||||
fig.savefig(
|
||||
"{}{}/maps/series-{}-{}-{}-{}-{}.pdf".format(
|
||||
snakemake.config["results_dir"],
|
||||
snakemake.config["run"],
|
||||
snakemake.wildcards["lv"],
|
||||
carrier,
|
||||
start,
|
||||
stop,
|
||||
name,
|
||||
),
|
||||
transparent=True,
|
||||
)
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
<<<<<<< HEAD
|
||||
from _helpers import mock_snakemake
|
||||
=======
|
||||
from helper import mock_snakemake
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"plot_network",
|
||||
simpl="",
|
||||
<<<<<<< HEAD
|
||||
clusters="5",
|
||||
ll="copt",
|
||||
opts="Co2L-24H",
|
||||
@ -407,3 +1318,34 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
fig.savefig(snakemake.output.ext, transparent=True, bbox_inches="tight")
|
||||
=======
|
||||
clusters="181",
|
||||
lv="opt",
|
||||
opts="",
|
||||
sector_opts="Co2L0-730H-T-H-B-I-A-solar+p3-linemaxext10",
|
||||
planning_horizons="2050",
|
||||
)
|
||||
|
||||
logging.basicConfig(level=snakemake.config["logging_level"])
|
||||
|
||||
overrides = override_component_attrs(snakemake.input.overrides)
|
||||
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
||||
|
||||
regions = gpd.read_file(snakemake.input.regions).set_index("name")
|
||||
|
||||
map_opts = snakemake.config["plotting"]["map"]
|
||||
|
||||
plot_map(
|
||||
n,
|
||||
components=["generators", "links", "stores", "storage_units"],
|
||||
bus_size_factor=2e10,
|
||||
transmission=False,
|
||||
)
|
||||
|
||||
plot_h2_map(n, regions)
|
||||
plot_ch4_map(n)
|
||||
plot_map_without(n)
|
||||
|
||||
# plot_series(n, carrier="AC", name=suffix)
|
||||
# plot_series(n, carrier="heat", name=suffix)
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
@ -1,4 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
<<<<<<< HEAD
|
||||
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
@ -49,6 +50,87 @@ def rename_techs(label):
|
||||
elif "battery" in label:
|
||||
label = "battery storage"
|
||||
|
||||
=======
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import matplotlib.gridspec as gridspec
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
plt.style.use("ggplot")
|
||||
|
||||
from prepare_sector_network import co2_emissions_year
|
||||
|
||||
|
||||
# consolidate and rename
|
||||
def rename_techs(label):
|
||||
prefix_to_remove = [
|
||||
"residential ",
|
||||
"services ",
|
||||
"urban ",
|
||||
"rural ",
|
||||
"central ",
|
||||
"decentral ",
|
||||
]
|
||||
|
||||
rename_if_contains = [
|
||||
"CHP",
|
||||
"gas boiler",
|
||||
"biogas",
|
||||
"solar thermal",
|
||||
"air heat pump",
|
||||
"ground heat pump",
|
||||
"resistive heater",
|
||||
"Fischer-Tropsch",
|
||||
]
|
||||
|
||||
rename_if_contains_dict = {
|
||||
"water tanks": "hot water storage",
|
||||
"retrofitting": "building retrofitting",
|
||||
# "H2 Electrolysis": "hydrogen storage",
|
||||
# "H2 Fuel Cell": "hydrogen storage",
|
||||
# "H2 pipeline": "hydrogen storage",
|
||||
"battery": "battery storage",
|
||||
# "CC": "CC"
|
||||
}
|
||||
|
||||
rename = {
|
||||
"solar": "solar PV",
|
||||
"Sabatier": "methanation",
|
||||
"offwind": "offshore wind",
|
||||
"offwind-ac": "offshore wind (AC)",
|
||||
"offwind-dc": "offshore wind (DC)",
|
||||
"onwind": "onshore wind",
|
||||
"ror": "hydroelectricity",
|
||||
"hydro": "hydroelectricity",
|
||||
"PHS": "hydroelectricity",
|
||||
"NH3": "ammonia",
|
||||
"co2 Store": "DAC",
|
||||
"co2 stored": "CO2 sequestration",
|
||||
"AC": "transmission lines",
|
||||
"DC": "transmission lines",
|
||||
"B2B": "transmission lines",
|
||||
}
|
||||
|
||||
for ptr in prefix_to_remove:
|
||||
if label[: len(ptr)] == ptr:
|
||||
label = label[len(ptr) :]
|
||||
|
||||
for rif in rename_if_contains:
|
||||
if rif in label:
|
||||
label = rif
|
||||
|
||||
for old, new in rename_if_contains_dict.items():
|
||||
if old in label:
|
||||
label = new
|
||||
|
||||
for old, new in rename.items():
|
||||
if old == label:
|
||||
label = new
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
return label
|
||||
|
||||
|
||||
@ -59,6 +141,7 @@ preferred_order = pd.Index(
|
||||
"hydro reservoir",
|
||||
"run of river",
|
||||
"pumped hydro storage",
|
||||
<<<<<<< HEAD
|
||||
"onshore wind",
|
||||
"offshore wind ac",
|
||||
"offshore wind dc",
|
||||
@ -67,13 +150,53 @@ preferred_order = pd.Index(
|
||||
"OCGT",
|
||||
"hydrogen storage",
|
||||
"battery storage",
|
||||
=======
|
||||
"solid biomass",
|
||||
"biogas",
|
||||
"onshore wind",
|
||||
"offshore wind",
|
||||
"offshore wind (AC)",
|
||||
"offshore wind (DC)",
|
||||
"solar PV",
|
||||
"solar thermal",
|
||||
"solar rooftop",
|
||||
"solar",
|
||||
"building retrofitting",
|
||||
"ground heat pump",
|
||||
"air heat pump",
|
||||
"heat pump",
|
||||
"resistive heater",
|
||||
"power-to-heat",
|
||||
"gas-to-power/heat",
|
||||
"CHP",
|
||||
"OCGT",
|
||||
"gas boiler",
|
||||
"gas",
|
||||
"natural gas",
|
||||
"helmeth",
|
||||
"methanation",
|
||||
"ammonia",
|
||||
"hydrogen storage",
|
||||
"power-to-gas",
|
||||
"power-to-liquid",
|
||||
"battery storage",
|
||||
"hot water storage",
|
||||
"CO2 sequestration",
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
<<<<<<< HEAD
|
||||
def plot_costs(infn, config, fn=None):
|
||||
## For now ignore the simpl header
|
||||
cost_df = pd.read_csv(infn, index_col=list(range(3)), header=[1, 2, 3])
|
||||
=======
|
||||
def plot_costs():
|
||||
cost_df = pd.read_csv(
|
||||
snakemake.input.costs, index_col=list(range(3)), header=list(range(n_header))
|
||||
)
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
df = cost_df.groupby(cost_df.index.get_level_values(2)).sum()
|
||||
|
||||
@ -82,6 +205,7 @@ def plot_costs(infn, config, fn=None):
|
||||
|
||||
df = df.groupby(df.index.map(rename_techs)).sum()
|
||||
|
||||
<<<<<<< HEAD
|
||||
to_drop = df.index[df.max(axis=1) < config["plotting"]["costs_threshold"]]
|
||||
|
||||
print("dropping")
|
||||
@ -93,19 +217,41 @@ def plot_costs(infn, config, fn=None):
|
||||
print(df.sum())
|
||||
|
||||
new_index = (preferred_order.intersection(df.index)).append(
|
||||
=======
|
||||
to_drop = df.index[df.max(axis=1) < snakemake.config["plotting"]["costs_threshold"]]
|
||||
|
||||
logger.info(
|
||||
f"Dropping technology with costs below {snakemake.config['plotting']['costs_threshold']} EUR billion per year"
|
||||
)
|
||||
logger.debug(df.loc[to_drop])
|
||||
|
||||
df = df.drop(to_drop)
|
||||
|
||||
logger.info(f"Total system cost of {round(df.sum()[0])} EUR billion per year")
|
||||
|
||||
new_index = preferred_order.intersection(df.index).append(
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
df.index.difference(preferred_order)
|
||||
)
|
||||
|
||||
new_columns = df.sum().sort_values().index
|
||||
|
||||
<<<<<<< HEAD
|
||||
fig, ax = plt.subplots()
|
||||
fig.set_size_inches((12, 8))
|
||||
=======
|
||||
fig, ax = plt.subplots(figsize=(12, 8))
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
df.loc[new_index, new_columns].T.plot(
|
||||
kind="bar",
|
||||
ax=ax,
|
||||
stacked=True,
|
||||
<<<<<<< HEAD
|
||||
color=[config["plotting"]["tech_colors"][i] for i in new_index],
|
||||
=======
|
||||
color=[snakemake.config["plotting"]["tech_colors"][i] for i in new_index],
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
)
|
||||
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
@ -113,12 +259,17 @@ def plot_costs(infn, config, fn=None):
|
||||
handles.reverse()
|
||||
labels.reverse()
|
||||
|
||||
<<<<<<< HEAD
|
||||
ax.set_ylim([0, config["plotting"]["costs_max"]])
|
||||
=======
|
||||
ax.set_ylim([0, snakemake.config["plotting"]["costs_max"]])
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
ax.set_ylabel("System Cost [EUR billion per year]")
|
||||
|
||||
ax.set_xlabel("")
|
||||
|
||||
<<<<<<< HEAD
|
||||
ax.grid(axis="y")
|
||||
|
||||
ax.legend(handles, labels, ncol=4, loc="upper left")
|
||||
@ -131,6 +282,21 @@ def plot_costs(infn, config, fn=None):
|
||||
|
||||
def plot_energy(infn, config, fn=None):
|
||||
energy_df = pd.read_csv(infn, index_col=list(range(2)), header=[1, 2, 3])
|
||||
=======
|
||||
ax.grid(axis="x")
|
||||
|
||||
ax.legend(
|
||||
handles, labels, ncol=1, loc="upper left", bbox_to_anchor=[1, 1], frameon=False
|
||||
)
|
||||
|
||||
fig.savefig(snakemake.output.costs, bbox_inches="tight")
|
||||
|
||||
|
||||
def plot_energy():
|
||||
energy_df = pd.read_csv(
|
||||
snakemake.input.energy, index_col=list(range(2)), header=list(range(n_header))
|
||||
)
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
df = energy_df.groupby(energy_df.index.get_level_values(1)).sum()
|
||||
|
||||
@ -139,6 +305,7 @@ def plot_energy(infn, config, fn=None):
|
||||
|
||||
df = df.groupby(df.index.map(rename_techs)).sum()
|
||||
|
||||
<<<<<<< HEAD
|
||||
to_drop = df.index[df.abs().max(axis=1) < config["plotting"]["energy_threshold"]]
|
||||
|
||||
print("dropping")
|
||||
@ -150,19 +317,45 @@ def plot_energy(infn, config, fn=None):
|
||||
print(df.sum())
|
||||
|
||||
new_index = (preferred_order.intersection(df.index)).append(
|
||||
=======
|
||||
to_drop = df.index[
|
||||
df.abs().max(axis=1) < snakemake.config["plotting"]["energy_threshold"]
|
||||
]
|
||||
|
||||
logger.info(
|
||||
f"Dropping all technology with energy consumption or production below {snakemake.config['plotting']['energy_threshold']} TWh/a"
|
||||
)
|
||||
logger.debug(df.loc[to_drop])
|
||||
|
||||
df = df.drop(to_drop)
|
||||
|
||||
logger.info(f"Total energy of {round(df.sum()[0])} TWh/a")
|
||||
|
||||
new_index = preferred_order.intersection(df.index).append(
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
df.index.difference(preferred_order)
|
||||
)
|
||||
|
||||
new_columns = df.columns.sort_values()
|
||||
|
||||
<<<<<<< HEAD
|
||||
fig, ax = plt.subplots()
|
||||
fig.set_size_inches((12, 8))
|
||||
=======
|
||||
fig, ax = plt.subplots(figsize=(12, 8))
|
||||
|
||||
logger.debug(df.loc[new_index, new_columns])
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
df.loc[new_index, new_columns].T.plot(
|
||||
kind="bar",
|
||||
ax=ax,
|
||||
stacked=True,
|
||||
<<<<<<< HEAD
|
||||
color=[config["plotting"]["tech_colors"][i] for i in new_index],
|
||||
=======
|
||||
color=[snakemake.config["plotting"]["tech_colors"][i] for i in new_index],
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
)
|
||||
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
@ -170,12 +363,22 @@ def plot_energy(infn, config, fn=None):
|
||||
handles.reverse()
|
||||
labels.reverse()
|
||||
|
||||
<<<<<<< HEAD
|
||||
ax.set_ylim([config["plotting"]["energy_min"], config["plotting"]["energy_max"]])
|
||||
=======
|
||||
ax.set_ylim(
|
||||
[
|
||||
snakemake.config["plotting"]["energy_min"],
|
||||
snakemake.config["plotting"]["energy_max"],
|
||||
]
|
||||
)
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
ax.set_ylabel("Energy [TWh/a]")
|
||||
|
||||
ax.set_xlabel("")
|
||||
|
||||
<<<<<<< HEAD
|
||||
ax.grid(axis="y")
|
||||
|
||||
ax.legend(handles, labels, ncol=4, loc="upper left")
|
||||
@ -184,10 +387,309 @@ def plot_energy(infn, config, fn=None):
|
||||
|
||||
if fn is not None:
|
||||
fig.savefig(fn, transparent=True)
|
||||
=======
|
||||
ax.grid(axis="x")
|
||||
|
||||
ax.legend(
|
||||
handles, labels, ncol=1, loc="upper left", bbox_to_anchor=[1, 1], frameon=False
|
||||
)
|
||||
|
||||
fig.savefig(snakemake.output.energy, bbox_inches="tight")
|
||||
|
||||
|
||||
def plot_balances():
|
||||
co2_carriers = ["co2", "co2 stored", "process emissions"]
|
||||
|
||||
balances_df = pd.read_csv(
|
||||
snakemake.input.balances, index_col=list(range(3)), header=list(range(n_header))
|
||||
)
|
||||
|
||||
balances = {i.replace(" ", "_"): [i] for i in balances_df.index.levels[0]}
|
||||
balances["energy"] = [
|
||||
i for i in balances_df.index.levels[0] if i not in co2_carriers
|
||||
]
|
||||
|
||||
fig, ax = plt.subplots(figsize=(12, 8))
|
||||
|
||||
for k, v in balances.items():
|
||||
df = balances_df.loc[v]
|
||||
df = df.groupby(df.index.get_level_values(2)).sum()
|
||||
|
||||
# convert MWh to TWh
|
||||
df = df / 1e6
|
||||
|
||||
# remove trailing link ports
|
||||
df.index = [
|
||||
i[:-1]
|
||||
if ((i not in ["co2", "NH3"]) and (i[-1:] in ["0", "1", "2", "3"]))
|
||||
else i
|
||||
for i in df.index
|
||||
]
|
||||
|
||||
df = df.groupby(df.index.map(rename_techs)).sum()
|
||||
|
||||
to_drop = df.index[
|
||||
df.abs().max(axis=1) < snakemake.config["plotting"]["energy_threshold"] / 10
|
||||
]
|
||||
|
||||
if v[0] in co2_carriers:
|
||||
units = "MtCO2/a"
|
||||
else:
|
||||
units = "TWh/a"
|
||||
|
||||
logger.debug(
|
||||
f"Dropping technology energy balance smaller than {snakemake.config['plotting']['energy_threshold']/10} {units}"
|
||||
)
|
||||
logger.debug(df.loc[to_drop])
|
||||
|
||||
df = df.drop(to_drop)
|
||||
|
||||
logger.debug(f"Total energy balance for {v} of {round(df.sum()[0],2)} {units}")
|
||||
|
||||
if df.empty:
|
||||
continue
|
||||
|
||||
new_index = preferred_order.intersection(df.index).append(
|
||||
df.index.difference(preferred_order)
|
||||
)
|
||||
|
||||
new_columns = df.columns.sort_values()
|
||||
|
||||
df.loc[new_index, new_columns].T.plot(
|
||||
kind="bar",
|
||||
ax=ax,
|
||||
stacked=True,
|
||||
color=[snakemake.config["plotting"]["tech_colors"][i] for i in new_index],
|
||||
)
|
||||
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
|
||||
handles.reverse()
|
||||
labels.reverse()
|
||||
|
||||
if v[0] in co2_carriers:
|
||||
ax.set_ylabel("CO2 [MtCO2/a]")
|
||||
else:
|
||||
ax.set_ylabel("Energy [TWh/a]")
|
||||
|
||||
ax.set_xlabel("")
|
||||
|
||||
ax.grid(axis="x")
|
||||
|
||||
ax.legend(
|
||||
handles,
|
||||
labels,
|
||||
ncol=1,
|
||||
loc="upper left",
|
||||
bbox_to_anchor=[1, 1],
|
||||
frameon=False,
|
||||
)
|
||||
|
||||
fig.savefig(snakemake.output.balances[:-10] + k + ".pdf", bbox_inches="tight")
|
||||
|
||||
plt.cla()
|
||||
|
||||
|
||||
def historical_emissions(cts):
|
||||
"""
|
||||
Read historical emissions to add them to the carbon budget plot.
|
||||
"""
|
||||
# https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
|
||||
# downloaded 201228 (modified by EEA last on 201221)
|
||||
fn = "data/eea/UNFCCC_v23.csv"
|
||||
df = pd.read_csv(fn, encoding="latin-1")
|
||||
df.loc[df["Year"] == "1985-1987", "Year"] = 1986
|
||||
df["Year"] = df["Year"].astype(int)
|
||||
df = df.set_index(
|
||||
["Year", "Sector_name", "Country_code", "Pollutant_name"]
|
||||
).sort_index()
|
||||
|
||||
e = pd.Series()
|
||||
e["electricity"] = "1.A.1.a - Public Electricity and Heat Production"
|
||||
e["residential non-elec"] = "1.A.4.b - Residential"
|
||||
e["services non-elec"] = "1.A.4.a - Commercial/Institutional"
|
||||
e["rail non-elec"] = "1.A.3.c - Railways"
|
||||
e["road non-elec"] = "1.A.3.b - Road Transportation"
|
||||
e["domestic navigation"] = "1.A.3.d - Domestic Navigation"
|
||||
e["international navigation"] = "1.D.1.b - International Navigation"
|
||||
e["domestic aviation"] = "1.A.3.a - Domestic Aviation"
|
||||
e["international aviation"] = "1.D.1.a - International Aviation"
|
||||
e["total energy"] = "1 - Energy"
|
||||
e["industrial processes"] = "2 - Industrial Processes and Product Use"
|
||||
e["agriculture"] = "3 - Agriculture"
|
||||
e["LULUCF"] = "4 - Land Use, Land-Use Change and Forestry"
|
||||
e["waste management"] = "5 - Waste management"
|
||||
e["other"] = "6 - Other Sector"
|
||||
e["indirect"] = "ind_CO2 - Indirect CO2"
|
||||
e["total wL"] = "Total (with LULUCF)"
|
||||
e["total woL"] = "Total (without LULUCF)"
|
||||
|
||||
pol = ["CO2"] # ["All greenhouse gases - (CO2 equivalent)"]
|
||||
cts
|
||||
if "GB" in cts:
|
||||
cts.remove("GB")
|
||||
cts.append("UK")
|
||||
|
||||
year = np.arange(1990, 2018).tolist()
|
||||
|
||||
idx = pd.IndexSlice
|
||||
co2_totals = (
|
||||
df.loc[idx[year, e.values, cts, pol], "emissions"]
|
||||
.unstack("Year")
|
||||
.rename(index=pd.Series(e.index, e.values))
|
||||
)
|
||||
|
||||
co2_totals = (1 / 1e6) * co2_totals.groupby(level=0, axis=0).sum() # Gton CO2
|
||||
|
||||
co2_totals.loc["industrial non-elec"] = (
|
||||
co2_totals.loc["total energy"]
|
||||
- co2_totals.loc[
|
||||
[
|
||||
"electricity",
|
||||
"services non-elec",
|
||||
"residential non-elec",
|
||||
"road non-elec",
|
||||
"rail non-elec",
|
||||
"domestic aviation",
|
||||
"international aviation",
|
||||
"domestic navigation",
|
||||
"international navigation",
|
||||
]
|
||||
].sum()
|
||||
)
|
||||
|
||||
emissions = co2_totals.loc["electricity"]
|
||||
if "T" in opts:
|
||||
emissions += co2_totals.loc[[i + " non-elec" for i in ["rail", "road"]]].sum()
|
||||
if "H" in opts:
|
||||
emissions += co2_totals.loc[
|
||||
[i + " non-elec" for i in ["residential", "services"]]
|
||||
].sum()
|
||||
if "I" in opts:
|
||||
emissions += co2_totals.loc[
|
||||
[
|
||||
"industrial non-elec",
|
||||
"industrial processes",
|
||||
"domestic aviation",
|
||||
"international aviation",
|
||||
"domestic navigation",
|
||||
"international navigation",
|
||||
]
|
||||
].sum()
|
||||
return emissions
|
||||
|
||||
|
||||
def plot_carbon_budget_distribution(input_eurostat):
|
||||
"""
|
||||
Plot historical carbon emissions in the EU and decarbonization path.
|
||||
"""
|
||||
|
||||
import seaborn as sns
|
||||
|
||||
sns.set()
|
||||
sns.set_style("ticks")
|
||||
plt.style.use("seaborn-ticks")
|
||||
plt.rcParams["xtick.direction"] = "in"
|
||||
plt.rcParams["ytick.direction"] = "in"
|
||||
plt.rcParams["xtick.labelsize"] = 20
|
||||
plt.rcParams["ytick.labelsize"] = 20
|
||||
|
||||
plt.figure(figsize=(10, 7))
|
||||
gs1 = gridspec.GridSpec(1, 1)
|
||||
ax1 = plt.subplot(gs1[0, 0])
|
||||
ax1.set_ylabel("CO$_2$ emissions (Gt per year)", fontsize=22)
|
||||
ax1.set_ylim([0, 5])
|
||||
ax1.set_xlim([1990, snakemake.config["scenario"]["planning_horizons"][-1] + 1])
|
||||
|
||||
path_cb = snakemake.config["results_dir"] + snakemake.config["run"] + "/csvs/"
|
||||
countries = pd.read_csv(snakemake.input.country_codes, index_col=1)
|
||||
cts = countries.index.to_list()
|
||||
e_1990 = co2_emissions_year(cts, input_eurostat, opts, year=1990)
|
||||
CO2_CAP = pd.read_csv(path_cb + "carbon_budget_distribution.csv", index_col=0)
|
||||
|
||||
ax1.plot(e_1990 * CO2_CAP[o], linewidth=3, color="dodgerblue", label=None)
|
||||
|
||||
emissions = historical_emissions(cts)
|
||||
|
||||
ax1.plot(emissions, color="black", linewidth=3, label=None)
|
||||
|
||||
# plot committed and uder-discussion targets
|
||||
# (notice that historical emissions include all countries in the
|
||||
# network, but targets refer to EU)
|
||||
ax1.plot(
|
||||
[2020],
|
||||
[0.8 * emissions[1990]],
|
||||
marker="*",
|
||||
markersize=12,
|
||||
markerfacecolor="black",
|
||||
markeredgecolor="black",
|
||||
)
|
||||
|
||||
ax1.plot(
|
||||
[2030],
|
||||
[0.45 * emissions[1990]],
|
||||
marker="*",
|
||||
markersize=12,
|
||||
markerfacecolor="white",
|
||||
markeredgecolor="black",
|
||||
)
|
||||
|
||||
ax1.plot(
|
||||
[2030],
|
||||
[0.6 * emissions[1990]],
|
||||
marker="*",
|
||||
markersize=12,
|
||||
markerfacecolor="black",
|
||||
markeredgecolor="black",
|
||||
)
|
||||
|
||||
ax1.plot(
|
||||
[2050, 2050],
|
||||
[x * emissions[1990] for x in [0.2, 0.05]],
|
||||
color="gray",
|
||||
linewidth=2,
|
||||
marker="_",
|
||||
alpha=0.5,
|
||||
)
|
||||
|
||||
ax1.plot(
|
||||
[2050],
|
||||
[0.01 * emissions[1990]],
|
||||
marker="*",
|
||||
markersize=12,
|
||||
markerfacecolor="white",
|
||||
linewidth=0,
|
||||
markeredgecolor="black",
|
||||
label="EU under-discussion target",
|
||||
zorder=10,
|
||||
clip_on=False,
|
||||
)
|
||||
|
||||
ax1.plot(
|
||||
[2050],
|
||||
[0.125 * emissions[1990]],
|
||||
"ro",
|
||||
marker="*",
|
||||
markersize=12,
|
||||
markerfacecolor="black",
|
||||
markeredgecolor="black",
|
||||
label="EU committed target",
|
||||
)
|
||||
|
||||
ax1.legend(
|
||||
fancybox=True, fontsize=18, loc=(0.01, 0.01), facecolor="white", frameon=True
|
||||
)
|
||||
|
||||
path_cb_plot = (
|
||||
snakemake.config["results_dir"] + snakemake.config["run"] + "/graphs/"
|
||||
)
|
||||
plt.savefig(path_cb_plot + "carbon_budget_plot.pdf", dpi=300)
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
<<<<<<< HEAD
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
@ -214,3 +716,24 @@ if __name__ == "__main__":
|
||||
func(
|
||||
os.path.join(snakemake.input[0], f"{summary}.csv"), config, snakemake.output[0]
|
||||
)
|
||||
=======
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("plot_summary")
|
||||
|
||||
logging.basicConfig(level=snakemake.config["logging_level"])
|
||||
|
||||
n_header = 4
|
||||
|
||||
plot_costs()
|
||||
|
||||
plot_energy()
|
||||
|
||||
plot_balances()
|
||||
|
||||
for sector_opts in snakemake.config["scenario"]["sector_opts"]:
|
||||
opts = sector_opts.split("-")
|
||||
for o in opts:
|
||||
if "cb" in o:
|
||||
plot_carbon_budget_distribution(snakemake.input.eurostat)
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
3411
scripts/prepare_sector_network.py
Normal file
39
scripts/retrieve_gas_infrastructure_data.py
Normal file
@ -0,0 +1,39 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Retrieve gas infrastructure data from
|
||||
https://zenodo.org/record/4767098/files/IGGIELGN.zip.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
|
||||
from helper import progress_retrieve
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("retrieve_gas_network_data")
|
||||
rootpath = ".."
|
||||
else:
|
||||
rootpath = "."
|
||||
|
||||
url = "https://zenodo.org/record/4767098/files/IGGIELGN.zip"
|
||||
|
||||
# Save locations
|
||||
zip_fn = Path(f"{rootpath}/IGGIELGN.zip")
|
||||
to_fn = Path(f"{rootpath}/data/gas_network/scigrid-gas")
|
||||
|
||||
logger.info(f"Downloading databundle from '{url}'.")
|
||||
progress_retrieve(url, zip_fn)
|
||||
|
||||
logger.info(f"Extracting databundle.")
|
||||
zipfile.ZipFile(zip_fn).extractall(to_fn)
|
||||
|
||||
zip_fn.unlink()
|
||||
|
||||
logger.info(f"Gas infrastructure data available in '{to_fn}'.")
|
36
scripts/retrieve_sector_databundle.py
Normal file
@ -0,0 +1,36 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Retrieve and extract sector data bundle.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import os
|
||||
import sys
|
||||
import tarfile
|
||||
from pathlib import Path
|
||||
|
||||
# Add pypsa-eur scripts to path for import of _helpers
|
||||
sys.path.insert(0, os.getcwd() + "/../pypsa-eur/scripts")
|
||||
|
||||
from _helpers import configure_logging, progress_retrieve
|
||||
|
||||
if __name__ == "__main__":
|
||||
configure_logging(snakemake)
|
||||
|
||||
url = "https://zenodo.org/record/5824485/files/pypsa-eur-sec-data-bundle.tar.gz"
|
||||
|
||||
tarball_fn = Path("sector-bundle.tar.gz")
|
||||
to_fn = Path("data")
|
||||
|
||||
logger.info(f"Downloading databundle from '{url}'.")
|
||||
progress_retrieve(url, tarball_fn)
|
||||
|
||||
logger.info(f"Extracting databundle.")
|
||||
tarfile.open(tarball_fn).extractall(to_fn)
|
||||
|
||||
tarball_fn.unlink()
|
||||
|
||||
logger.info(f"Databundle available in '{to_fn}'.")
|
@ -1,4 +1,5 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
<<<<<<< HEAD
|
||||
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
@ -122,19 +123,166 @@ def prepare_network(n, solve_opts):
|
||||
carrier="load",
|
||||
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
|
||||
marginal_cost=load_shedding,
|
||||
=======
|
||||
"""
|
||||
Solve network.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import pypsa
|
||||
from helper import override_component_attrs, update_config_with_sector_opts
|
||||
from vresutils.benchmark import memory_logger
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
pypsa.pf.logger.setLevel(logging.WARNING)
|
||||
|
||||
|
||||
def add_land_use_constraint(n):
|
||||
if "m" in snakemake.wildcards.clusters:
|
||||
_add_land_use_constraint_m(n)
|
||||
else:
|
||||
_add_land_use_constraint(n)
|
||||
|
||||
|
||||
def _add_land_use_constraint(n):
|
||||
# warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
|
||||
|
||||
for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]:
|
||||
ext_i = (n.generators.carrier == carrier) & ~n.generators.p_nom_extendable
|
||||
existing = (
|
||||
n.generators.loc[ext_i, "p_nom"]
|
||||
.groupby(n.generators.bus.map(n.buses.location))
|
||||
.sum()
|
||||
)
|
||||
existing.index += " " + carrier + "-" + snakemake.wildcards.planning_horizons
|
||||
n.generators.loc[existing.index, "p_nom_max"] -= existing
|
||||
|
||||
# check if existing capacities are larger than technical potential
|
||||
existing_large = n.generators[
|
||||
n.generators["p_nom_min"] > n.generators["p_nom_max"]
|
||||
].index
|
||||
if len(existing_large):
|
||||
logger.warning(
|
||||
f"Existing capacities larger than technical potential for {existing_large},\
|
||||
adjust technical potential to existing capacities"
|
||||
)
|
||||
n.generators.loc[existing_large, "p_nom_max"] = n.generators.loc[
|
||||
existing_large, "p_nom_min"
|
||||
]
|
||||
|
||||
n.generators.p_nom_max.clip(lower=0, inplace=True)
|
||||
|
||||
|
||||
def _add_land_use_constraint_m(n):
|
||||
# if generators clustering is lower than network clustering, land_use accounting is at generators clusters
|
||||
|
||||
planning_horizons = snakemake.config["scenario"]["planning_horizons"]
|
||||
grouping_years = snakemake.config["existing_capacities"]["grouping_years"]
|
||||
current_horizon = snakemake.wildcards.planning_horizons
|
||||
|
||||
for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]:
|
||||
existing = n.generators.loc[n.generators.carrier == carrier, "p_nom"]
|
||||
ind = list(
|
||||
set(
|
||||
[
|
||||
i.split(sep=" ")[0] + " " + i.split(sep=" ")[1]
|
||||
for i in existing.index
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
previous_years = [
|
||||
str(y)
|
||||
for y in planning_horizons + grouping_years
|
||||
if y < int(snakemake.wildcards.planning_horizons)
|
||||
]
|
||||
|
||||
for p_year in previous_years:
|
||||
ind2 = [
|
||||
i for i in ind if i + " " + carrier + "-" + p_year in existing.index
|
||||
]
|
||||
sel_current = [i + " " + carrier + "-" + current_horizon for i in ind2]
|
||||
sel_p_year = [i + " " + carrier + "-" + p_year for i in ind2]
|
||||
n.generators.loc[sel_current, "p_nom_max"] -= existing.loc[
|
||||
sel_p_year
|
||||
].rename(lambda x: x[:-4] + current_horizon)
|
||||
|
||||
n.generators.p_nom_max.clip(lower=0, inplace=True)
|
||||
|
||||
|
||||
def add_co2_sequestration_limit(n, limit=200):
|
||||
"""
|
||||
Add a global constraint on the amount of Mt CO2 that can be sequestered.
|
||||
"""
|
||||
n.carriers.loc["co2 stored", "co2_absorptions"] = -1
|
||||
n.carriers.co2_absorptions = n.carriers.co2_absorptions.fillna(0)
|
||||
|
||||
limit = limit * 1e6
|
||||
for o in opts:
|
||||
if not "seq" in o:
|
||||
continue
|
||||
limit = float(o[o.find("seq") + 3 :]) * 1e6
|
||||
break
|
||||
|
||||
n.add(
|
||||
"GlobalConstraint",
|
||||
"co2_sequestration_limit",
|
||||
sense="<=",
|
||||
constant=limit,
|
||||
type="primary_energy",
|
||||
carrier_attribute="co2_absorptions",
|
||||
)
|
||||
|
||||
|
||||
def prepare_network(n, solve_opts=None, config=None):
|
||||
if "clip_p_max_pu" in solve_opts:
|
||||
for df in (
|
||||
n.generators_t.p_max_pu,
|
||||
n.generators_t.p_min_pu,
|
||||
n.storage_units_t.inflow,
|
||||
):
|
||||
df.where(df > solve_opts["clip_p_max_pu"], other=0.0, inplace=True)
|
||||
|
||||
if solve_opts.get("load_shedding"):
|
||||
# intersect between macroeconomic and surveybased willingness to pay
|
||||
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full
|
||||
n.add("Carrier", "Load")
|
||||
n.madd(
|
||||
"Generator",
|
||||
n.buses.index,
|
||||
" load",
|
||||
bus=n.buses.index,
|
||||
carrier="load",
|
||||
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
|
||||
marginal_cost=1e2, # Eur/kWh
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
p_nom=1e9, # kW
|
||||
)
|
||||
|
||||
if solve_opts.get("noisy_costs"):
|
||||
<<<<<<< HEAD
|
||||
for t in n.iterate_components(n.one_port_components):
|
||||
# if 'capital_cost' in t.df:
|
||||
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
|
||||
if "marginal_cost" in t.df:
|
||||
=======
|
||||
for t in n.iterate_components():
|
||||
# if 'capital_cost' in t.df:
|
||||
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
|
||||
if "marginal_cost" in t.df:
|
||||
np.random.seed(174)
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
t.df["marginal_cost"] += 1e-2 + 2e-3 * (
|
||||
np.random.random(len(t.df)) - 0.5
|
||||
)
|
||||
|
||||
for t in n.iterate_components(["Line", "Link"]):
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
np.random.seed(123)
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
t.df["capital_cost"] += (
|
||||
1e-1 + 2e-2 * (np.random.random(len(t.df)) - 0.5)
|
||||
) * t.df["length"]
|
||||
@ -144,6 +292,7 @@ def prepare_network(n, solve_opts):
|
||||
n.set_snapshots(n.snapshots[:nhours])
|
||||
n.snapshot_weightings[:] = 8760.0 / nhours
|
||||
|
||||
<<<<<<< HEAD
|
||||
return n
|
||||
|
||||
|
||||
@ -370,6 +519,116 @@ def extra_functionality(n, snapshots):
|
||||
if "EQ" in o:
|
||||
add_EQ_constraints(n, o)
|
||||
add_battery_constraints(n)
|
||||
=======
|
||||
if snakemake.config["foresight"] == "myopic":
|
||||
add_land_use_constraint(n)
|
||||
|
||||
if n.stores.carrier.eq("co2 stored").any():
|
||||
limit = config["sector"].get("co2_sequestration_potential", 200)
|
||||
add_co2_sequestration_limit(n, limit=limit)
|
||||
|
||||
return n
|
||||
|
||||
|
||||
def add_battery_constraints(n):
|
||||
"""
|
||||
Add constraint ensuring that charger = discharger:
|
||||
1 * charger_size - efficiency * discharger_size = 0
|
||||
"""
|
||||
discharger_bool = n.links.index.str.contains("battery discharger")
|
||||
charger_bool = n.links.index.str.contains("battery charger")
|
||||
|
||||
dischargers_ext = n.links[discharger_bool].query("p_nom_extendable").index
|
||||
chargers_ext = n.links[charger_bool].query("p_nom_extendable").index
|
||||
|
||||
eff = n.links.efficiency[dischargers_ext].values
|
||||
lhs = (
|
||||
n.model["Link-p_nom"].loc[chargers_ext]
|
||||
- n.model["Link-p_nom"].loc[dischargers_ext] * eff
|
||||
)
|
||||
|
||||
n.model.add_constraints(lhs == 0, name="Link-charger_ratio")
|
||||
|
||||
|
||||
def add_chp_constraints(n):
|
||||
electric = (
|
||||
n.links.index.str.contains("urban central")
|
||||
& n.links.index.str.contains("CHP")
|
||||
& n.links.index.str.contains("electric")
|
||||
)
|
||||
heat = (
|
||||
n.links.index.str.contains("urban central")
|
||||
& n.links.index.str.contains("CHP")
|
||||
& n.links.index.str.contains("heat")
|
||||
)
|
||||
|
||||
electric_ext = n.links[electric].query("p_nom_extendable").index
|
||||
heat_ext = n.links[heat].query("p_nom_extendable").index
|
||||
|
||||
electric_fix = n.links[electric].query("~p_nom_extendable").index
|
||||
heat_fix = n.links[heat].query("~p_nom_extendable").index
|
||||
|
||||
p = n.model["Link-p"] # dimension: [time, link]
|
||||
|
||||
# output ratio between heat and electricity and top_iso_fuel_line for extendable
|
||||
if not electric_ext.empty:
|
||||
p_nom = n.model["Link-p_nom"]
|
||||
|
||||
lhs = (
|
||||
p_nom.loc[electric_ext]
|
||||
* (n.links.p_nom_ratio * n.links.efficiency)[electric_ext].values
|
||||
- p_nom.loc[heat_ext] * n.links.efficiency[heat_ext].values
|
||||
)
|
||||
n.model.add_constraints(lhs == 0, name="chplink-fix_p_nom_ratio")
|
||||
|
||||
rename = {"Link-ext": "Link"}
|
||||
lhs = (
|
||||
p.loc[:, electric_ext]
|
||||
+ p.loc[:, heat_ext]
|
||||
- p_nom.rename(rename).loc[electric_ext]
|
||||
)
|
||||
n.model.add_constraints(lhs <= 0, name="chplink-top_iso_fuel_line_ext")
|
||||
|
||||
# top_iso_fuel_line for fixed
|
||||
if not electric_fix.empty:
|
||||
lhs = p.loc[:, electric_fix] + p.loc[:, heat_fix]
|
||||
rhs = n.links.p_nom[electric_fix]
|
||||
n.model.add_constraints(lhs <= rhs, name="chplink-top_iso_fuel_line_fix")
|
||||
|
||||
# back-pressure
|
||||
if not electric.empty:
|
||||
lhs = (
|
||||
p.loc[:, heat] * (n.links.efficiency[heat] * n.links.c_b[electric].values)
|
||||
- p.loc[:, electric] * n.links.efficiency[electric]
|
||||
)
|
||||
n.model.add_constraints(lhs <= rhs, name="chplink-backpressure")
|
||||
|
||||
|
||||
def add_pipe_retrofit_constraint(n):
|
||||
"""
|
||||
Add constraint for retrofitting existing CH4 pipelines to H2 pipelines.
|
||||
"""
|
||||
gas_pipes_i = n.links.query("carrier == 'gas pipeline' and p_nom_extendable").index
|
||||
h2_retrofitted_i = n.links.query(
|
||||
"carrier == 'H2 pipeline retrofitted' and p_nom_extendable"
|
||||
).index
|
||||
|
||||
if h2_retrofitted_i.empty or gas_pipes_i.empty:
|
||||
return
|
||||
|
||||
p_nom = n.model["Link-p_nom"]
|
||||
|
||||
CH4_per_H2 = 1 / n.config["sector"]["H2_retrofit_capacity_per_CH4"]
|
||||
lhs = p_nom.loc[gas_pipes_i] + CH4_per_H2 * p_nom.loc[h2_retrofitted_i]
|
||||
rhs = n.links.p_nom[gas_pipes_i].rename_axis("Link-ext")
|
||||
|
||||
n.model.add_constraints(lhs == rhs, name="Link-pipe_retrofit")
|
||||
|
||||
|
||||
def extra_functionality(n, snapshots):
|
||||
add_battery_constraints(n)
|
||||
add_pipe_retrofit_constraint(n)
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
|
||||
|
||||
def solve_network(n, config, opts="", **kwargs):
|
||||
@ -393,6 +652,7 @@ def solve_network(n, config, opts="", **kwargs):
|
||||
logger.info("No expandable lines found. Skipping iterative solving.")
|
||||
|
||||
if skip_iterations:
|
||||
<<<<<<< HEAD
|
||||
network_lopf(
|
||||
n, solver_name=solver_name, solver_options=solver_options, **kwargs
|
||||
)
|
||||
@ -422,10 +682,65 @@ if __name__ == "__main__":
|
||||
if tmpdir is not None:
|
||||
Path(tmpdir).mkdir(parents=True, exist_ok=True)
|
||||
opts = snakemake.wildcards.opts.split("-")
|
||||
=======
|
||||
status, condition = n.optimize(
|
||||
solver_name=solver_name,
|
||||
extra_functionality=extra_functionality,
|
||||
**solver_options,
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
status, condition = n.optimize.optimize_transmission_expansion_iteratively(
|
||||
solver_name=solver_name,
|
||||
track_iterations=track_iterations,
|
||||
min_iterations=min_iterations,
|
||||
max_iterations=max_iterations,
|
||||
extra_functionality=extra_functionality,
|
||||
**solver_options,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
if status != "ok":
|
||||
logger.warning(
|
||||
f"Solving status '{status}' with termination condition '{condition}'"
|
||||
)
|
||||
|
||||
return n
|
||||
|
||||
|
||||
# %%
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"solve_network_myopic",
|
||||
simpl="",
|
||||
opts="",
|
||||
clusters="45",
|
||||
lv=1.0,
|
||||
sector_opts="8760H-T-H-B-I-A-solar+p3-dist1",
|
||||
planning_horizons="2020",
|
||||
)
|
||||
|
||||
logging.basicConfig(
|
||||
filename=snakemake.log.python, level=snakemake.config["logging_level"]
|
||||
)
|
||||
|
||||
update_config_with_sector_opts(snakemake.config, snakemake.wildcards.sector_opts)
|
||||
|
||||
tmpdir = snakemake.config["solving"].get("tmpdir")
|
||||
if tmpdir is not None:
|
||||
from pathlib import Path
|
||||
|
||||
Path(tmpdir).mkdir(parents=True, exist_ok=True)
|
||||
opts = snakemake.wildcards.sector_opts.split("-")
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
solve_opts = snakemake.config["solving"]["options"]
|
||||
|
||||
fn = getattr(snakemake.log, "memory", None)
|
||||
with memory_logger(filename=fn, interval=30.0) as mem:
|
||||
<<<<<<< HEAD
|
||||
n = pypsa.Network(snakemake.input[0])
|
||||
n = prepare_network(n, solve_opts)
|
||||
n = solve_network(
|
||||
@ -436,6 +751,21 @@ if __name__ == "__main__":
|
||||
solver_dir=tmpdir,
|
||||
solver_logfile=snakemake.log.solver,
|
||||
)
|
||||
=======
|
||||
overrides = override_component_attrs(snakemake.input.overrides)
|
||||
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
||||
|
||||
n = prepare_network(n, solve_opts, config=snakemake.config)
|
||||
|
||||
n = solve_network(
|
||||
n, config=snakemake.config, opts=opts, log_fn=snakemake.log.solver
|
||||
)
|
||||
|
||||
if "lv_limit" in n.global_constraints.index:
|
||||
n.line_volume_limit = n.global_constraints.at["lv_limit", "constant"]
|
||||
n.line_volume_limit_dual = n.global_constraints.at["lv_limit", "mu"]
|
||||
|
||||
>>>>>>> pypsa-eur-sec/master
|
||||
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
||||
n.export_to_netcdf(snakemake.output[0])
|
||||
|
||||
|
27
test/config.myopic.yaml
Normal file
@ -0,0 +1,27 @@
|
||||
run: test-myopic
|
||||
foresight: myopic
|
||||
|
||||
scenario:
|
||||
lv:
|
||||
- 1.5
|
||||
clusters:
|
||||
- 5
|
||||
sector_opts:
|
||||
- 191H-T-H-B-I-A-solar+p3-dist1
|
||||
planning_horizons:
|
||||
- 2030
|
||||
- 2040
|
||||
- 2050
|
||||
|
||||
snapshots:
|
||||
start: "2013-03-01"
|
||||
end: "2013-04-01"
|
||||
|
||||
atlite:
|
||||
cutout: ../pypsa-eur/cutouts/be-03-2013-era5.nc
|
||||
|
||||
solving:
|
||||
solver:
|
||||
name: cbc
|
||||
options: cbc-default
|
||||
mem: 4000
|
29
test/config.overnight.yaml
Normal file
@ -0,0 +1,29 @@
|
||||
run: test-overnight
|
||||
foresight: overnight
|
||||
|
||||
scenario:
|
||||
lv:
|
||||
- 1.5
|
||||
clusters:
|
||||
- 5
|
||||
sector_opts:
|
||||
- CO2L0-191H-T-H-B-I-A-solar+p3-dist1
|
||||
planning_horizons:
|
||||
- 2030
|
||||
|
||||
snapshots:
|
||||
start: "2013-03-01"
|
||||
end: "2013-04-01"
|
||||
|
||||
atlite:
|
||||
cutout: ../pypsa-eur/cutouts/be-03-2013-era5.nc
|
||||
|
||||
sector:
|
||||
gas_network: true
|
||||
H2_retrofit: true
|
||||
|
||||
solving:
|
||||
solver:
|
||||
name: cbc
|
||||
options: cbc-default
|
||||
mem: 4000
|