Calculate grid extension costs for offshore based on weighted average distance from weather cell to substation.
12 KiB
12 KiB
1 | technology | year | parameter | value | unit | source |
---|---|---|---|---|---|---|
2 | solar-rooftop | 2030 | discount rate | 0.04 | per unit | standard for decentral |
3 | onwind | 2030 | lifetime | 30 | years | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
4 | offwind | 2030 | lifetime | 30 | years | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
5 | solar | 2030 | lifetime | 25 | years | IEA2010 |
6 | solar-rooftop | 2030 | lifetime | 25 | years | IEA2010 |
7 | solar-utility | 2030 | lifetime | 25 | years | IEA2010 |
8 | PHS | 2030 | lifetime | 80 | years | IEA2010 |
9 | hydro | 2030 | lifetime | 80 | years | IEA2010 |
10 | ror | 2030 | lifetime | 80 | years | IEA2010 |
11 | OCGT | 2030 | lifetime | 30 | years | IEA2010 |
12 | nuclear | 2030 | lifetime | 45 | years | ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 |
13 | CCGT | 2030 | lifetime | 30 | years | IEA2010 |
14 | coal | 2030 | lifetime | 40 | years | IEA2010 |
15 | lignite | 2030 | lifetime | 40 | years | IEA2010 |
16 | geothermal | 2030 | lifetime | 40 | years | IEA2010 |
17 | biomass | 2030 | lifetime | 30 | years | ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 |
18 | oil | 2030 | lifetime | 30 | years | ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 |
19 | onwind | 2030 | investment | 910 | EUR/kWel | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
20 | offwind | 2030 | investment | 1640 | EUR/kWel | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
21 | offwind-grid | 2030 | investment | 255 | EUR/kWel | Haertel 2017; assuming one onshore and one offshore node |
22 | offwind-grid-perlength | 2030 | investment | 0.97 | EUR/kWel/km | Haertel 2017 |
23 | solar | 2030 | investment | 600 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
24 | biomass | 2030 | investment | 2209 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
25 | geothermal | 2030 | investment | 3392 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
26 | coal | 2030 | investment | 1300 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
27 | lignite | 2030 | investment | 1500 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
28 | solar-rooftop | 2030 | investment | 725 | EUR/kWel | ETIP PV |
29 | solar-utility | 2030 | investment | 425 | EUR/kWel | ETIP PV |
30 | PHS | 2030 | investment | 2000 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
31 | hydro | 2030 | investment | 2000 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
32 | ror | 2030 | investment | 3000 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
33 | OCGT | 2030 | investment | 400 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
34 | nuclear | 2030 | investment | 6000 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
35 | CCGT | 2030 | investment | 800 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
36 | oil | 2030 | investment | 400 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
37 | onwind | 2030 | FOM | 2.450549 | %/year | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
38 | offwind | 2030 | FOM | 2.304878 | %/year | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
39 | solar | 2030 | FOM | 4.166667 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
40 | solar-rooftop | 2030 | FOM | 2 | %/year | ETIP PV |
41 | solar-utility | 2030 | FOM | 3 | %/year | ETIP PV |
42 | biomass | 2030 | FOM | 4.526935 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
43 | geothermal | 2030 | FOM | 2.358491 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
44 | coal | 2030 | FOM | 1.923076 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
45 | lignite | 2030 | FOM | 2.0 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
46 | oil | 2030 | FOM | 1.5 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
47 | PHS | 2030 | FOM | 1 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
48 | hydro | 2030 | FOM | 1 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
49 | ror | 2030 | FOM | 2 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
50 | CCGT | 2030 | FOM | 2.5 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
51 | OCGT | 2030 | FOM | 3.75 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
52 | onwind | 2030 | VOM | 2.3 | EUR/MWhel | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
53 | offwind | 2030 | VOM | 2.7 | EUR/MWhel | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
54 | solar | 2030 | VOM | 0.01 | EUR/MWhel | RES costs made up to fix curtailment order |
55 | coal | 2030 | VOM | 6 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
56 | lignite | 2030 | VOM | 7 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
57 | CCGT | 2030 | VOM | 4 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
58 | OCGT | 2030 | VOM | 3 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
59 | nuclear | 2030 | VOM | 8 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
60 | gas | 2030 | fuel | 21.6 | EUR/MWhth | IEA2011b |
61 | uranium | 2030 | fuel | 3 | EUR/MWhth | DIW DataDoc http://hdl.handle.net/10419/80348 |
62 | oil | 2030 | VOM | 3 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
63 | nuclear | 2030 | fuel | 3 | EUR/MWhth | IEA2011b |
64 | biomass | 2030 | fuel | 7 | EUR/MWhth | IEA2011b |
65 | coal | 2030 | fuel | 8.4 | EUR/MWhth | IEA2011b |
66 | lignite | 2030 | fuel | 2.9 | EUR/MWhth | IEA2011b |
67 | oil | 2030 | fuel | 50 | EUR/MWhth | IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf |
68 | PHS | 2030 | efficiency | 0.75 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
69 | hydro | 2030 | efficiency | 0.9 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
70 | ror | 2030 | efficiency | 0.9 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
71 | OCGT | 2030 | efficiency | 0.39 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
72 | CCGT | 2030 | efficiency | 0.5 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
73 | biomass | 2030 | efficiency | 0.468 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
74 | geothermal | 2030 | efficiency | 0.239 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
75 | nuclear | 2030 | efficiency | 0.337 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
76 | gas | 2030 | CO2 intensity | 0.187 | tCO2/MWth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
77 | coal | 2030 | efficiency | 0.464 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
78 | lignite | 2030 | efficiency | 0.447 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
79 | oil | 2030 | efficiency | 0.393 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 CT |
80 | coal | 2030 | CO2 intensity | 0.354 | tCO2/MWth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
81 | lignite | 2030 | CO2 intensity | 0.334 | tCO2/MWth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
82 | oil | 2030 | CO2 intensity | 0.248 | tCO2/MWth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
83 | geothermal | 2030 | CO2 intensity | 0.026 | tCO2/MWth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
84 | electrolysis | 2030 | investment | 350 | EUR/kWel | Palzer Thesis |
85 | electrolysis | 2030 | FOM | 4 | %/year | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
86 | electrolysis | 2030 | lifetime | 18 | years | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
87 | electrolysis | 2030 | efficiency | 0.8 | per unit | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
88 | fuel cell | 2030 | investment | 339 | EUR/kWel | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
89 | fuel cell | 2030 | FOM | 3 | %/year | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
90 | fuel cell | 2030 | lifetime | 20 | years | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
91 | fuel cell | 2030 | efficiency | 0.58 | per unit | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 conservative 2020 |
92 | hydrogen storage | 2030 | investment | 11.2 | USD/kWh | budischak2013 |
93 | hydrogen storage | 2030 | lifetime | 20 | years | budischak2013 |
94 | methanation | 2030 | investment | 1000 | EUR/kWH2 | Schaber thesis |
95 | methanation | 2030 | lifetime | 25 | years | Schaber thesis |
96 | methanation | 2030 | FOM | 3 | %/year | Schaber thesis |
97 | methanation | 2030 | efficiency | 0.6 | per unit | Palzer; Breyer for DAC |
98 | helmeth | 2030 | investment | 1000 | EUR/kW | no source |
99 | helmeth | 2030 | lifetime | 25 | years | no source |
100 | helmeth | 2030 | FOM | 3 | %/year | no source |
101 | helmeth | 2030 | efficiency | 0.8 | per unit | HELMETH press release |
102 | DAC | 2030 | investment | 250 | EUR/(tCO2/a) | Fasihi/Climeworks |
103 | DAC | 2030 | lifetime | 30 | years | Fasihi |
104 | DAC | 2030 | FOM | 4 | %/year | Fasihi |
105 | battery inverter | 2030 | investment | 411 | USD/kWel | budischak2013 |
106 | battery inverter | 2030 | lifetime | 20 | years | budischak2013 |
107 | battery inverter | 2030 | efficiency | 0.81 | per unit | budischak2013; Lund and Kempton (2008) http://dx.doi.org/10.1016/j.enpol.2008.06.007 |
108 | battery inverter | 2030 | FOM | 3 | %/year | budischak2013 |
109 | battery storage | 2030 | investment | 192 | USD/kWh | budischak2013 |
110 | battery storage | 2030 | lifetime | 15 | years | budischak2013 |
111 | decentral air-sourced heat pump | 2030 | investment | 1050 | EUR/kWth | HP; Palzer thesis |
112 | decentral air-sourced heat pump | 2030 | lifetime | 20 | years | HP; Palzer thesis |
113 | decentral air-sourced heat pump | 2030 | FOM | 3.5 | %/year | Palzer thesis |
114 | decentral air-sourced heat pump | 2030 | efficiency | 3 | per unit | default for costs |
115 | decentral air-sourced heat pump | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
116 | decentral ground-sourced heat pump | 2030 | investment | 1400 | EUR/kWth | Palzer thesis |
117 | decentral ground-sourced heat pump | 2030 | lifetime | 20 | years | Palzer thesis |
118 | decentral ground-sourced heat pump | 2030 | FOM | 3.5 | %/year | Palzer thesis |
119 | decentral ground-sourced heat pump | 2030 | efficiency | 4 | per unit | default for costs |
120 | decentral ground-sourced heat pump | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
121 | central air-sourced heat pump | 2030 | investment | 700 | EUR/kWth | Palzer thesis |
122 | central air-sourced heat pump | 2030 | lifetime | 20 | years | Palzer thesis |
123 | central air-sourced heat pump | 2030 | FOM | 3.5 | %/year | Palzer thesis |
124 | central air-sourced heat pump | 2030 | efficiency | 3 | per unit | default for costs |
125 | retrofitting I | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
126 | retrofitting I | 2030 | lifetime | 50 | years | Palzer thesis |
127 | retrofitting I | 2030 | FOM | 1 | %/year | Palzer thesis |
128 | retrofitting I | 2030 | investment | 50 | EUR/m2/fraction reduction | Palzer thesis |
129 | retrofitting II | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
130 | retrofitting II | 2030 | lifetime | 50 | years | Palzer thesis |
131 | retrofitting II | 2030 | FOM | 1 | %/year | Palzer thesis |
132 | retrofitting II | 2030 | investment | 250 | EUR/m2/fraction reduction | Palzer thesis |
133 | water tank charger | 2030 | efficiency | 0.9 | per unit | HP |
134 | water tank discharger | 2030 | efficiency | 0.9 | per unit | HP |
135 | decentral water tank storage | 2030 | investment | 860 | EUR/m3 | IWES Interaktion |
136 | decentral water tank storage | 2030 | FOM | 1 | %/year | HP |
137 | decentral water tank storage | 2030 | lifetime | 20 | years | HP |
138 | decentral water tank storage | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
139 | central water tank storage | 2030 | investment | 30 | EUR/m3 | IWES Interaktion |
140 | central water tank storage | 2030 | FOM | 1 | %/year | HP |
141 | central water tank storage | 2030 | lifetime | 40 | years | HP |
142 | decentral resistive heater | 2030 | investment | 100 | EUR/kWhth | Schaber thesis |
143 | decentral resistive heater | 2030 | lifetime | 20 | years | Schaber thesis |
144 | decentral resistive heater | 2030 | FOM | 2 | %/year | Schaber thesis |
145 | decentral resistive heater | 2030 | efficiency | 0.9 | per unit | Schaber thesis |
146 | decentral resistive heater | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
147 | central resistive heater | 2030 | investment | 100 | EUR/kWhth | Schaber thesis |
148 | central resistive heater | 2030 | lifetime | 20 | years | Schaber thesis |
149 | central resistive heater | 2030 | FOM | 2 | %/year | Schaber thesis |
150 | central resistive heater | 2030 | efficiency | 0.9 | per unit | Schaber thesis |
151 | decentral gas boiler | 2030 | investment | 175 | EUR/kWhth | Palzer thesis |
152 | decentral gas boiler | 2030 | lifetime | 20 | years | Palzer thesis |
153 | decentral gas boiler | 2030 | FOM | 2 | %/year | Palzer thesis |
154 | decentral gas boiler | 2030 | efficiency | 0.9 | per unit | Palzer thesis |
155 | decentral gas boiler | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
156 | central gas boiler | 2030 | investment | 63 | EUR/kWhth | Palzer thesis |
157 | central gas boiler | 2030 | lifetime | 22 | years | Palzer thesis |
158 | central gas boiler | 2030 | FOM | 1 | %/year | Palzer thesis |
159 | central gas boiler | 2030 | efficiency | 0.9 | per unit | Palzer thesis |
160 | decentral CHP | 2030 | lifetime | 25 | years | HP |
161 | decentral CHP | 2030 | investment | 1400 | EUR/kWel | HP |
162 | decentral CHP | 2030 | FOM | 3 | %/year | HP |
163 | decentral CHP | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
164 | central CHP | 2030 | lifetime | 25 | years | HP |
165 | central CHP | 2030 | investment | 650 | EUR/kWel | HP |
166 | central CHP | 2030 | FOM | 3 | %/year | HP |
167 | decentral solar thermal | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
168 | decentral solar thermal | 2030 | FOM | 1.3 | %/year | HP |
169 | decentral solar thermal | 2030 | investment | 270000 | EUR/1000m2 | HP |
170 | decentral solar thermal | 2030 | lifetime | 20 | years | HP |
171 | central solar thermal | 2030 | FOM | 1.4 | %/year | HP |
172 | central solar thermal | 2030 | investment | 140000 | EUR/1000m2 | HP |
173 | central solar thermal | 2030 | lifetime | 20 | years | HP |
174 | HVAC overhead | 2030 | investment | 400 | EUR/MW/km | Hagspiel |
175 | HVAC overhead | 2030 | lifetime | 40 | years | Hagspiel |
176 | HVAC overhead | 2030 | FOM | 2 | %/year | Hagspiel |
177 | HVDC overhead | 2030 | investment | 400 | EUR/MW/km | Hagspiel |
178 | HVDC overhead | 2030 | lifetime | 40 | years | Hagspiel |
179 | HVDC overhead | 2030 | FOM | 2 | %/year | Hagspiel |
180 | HVDC submarine | 2030 | investment | 2000 | EUR/MW/km | Own analysis of European submarine HVDC projects since 2000 |
181 | HVDC submarine | 2030 | lifetime | 40 | years | Hagspiel |
182 | HVDC submarine | 2030 | FOM | 2 | %/year | Hagspiel |
183 | HVDC inverter pair | 2030 | investment | 150000 | EUR/MW | Hagspiel |
184 | HVDC inverter pair | 2030 | lifetime | 40 | years | Hagspiel |
185 | HVDC inverter pair | 2030 | FOM | 2 | %/year | Hagspiel |