pypsa-eur/scripts/plot_network.py
Jonas Hoersch be8c9798c1 plot_network: Split plotting into several functions to make sphinx happy
Also addresses part of issue #50: plot_map works again with cartopy.
2019-08-12 20:40:36 +02:00

306 lines
11 KiB
Python

"""
Plots map with pie charts and cost box bar charts.
Relevant Settings
-----------------
Inputs
------
Outputs
-------
Description
-----------
"""
import pypsa
from _helpers import load_network, aggregate_p, aggregate_costs
from vresutils import plot as vplot
import os
import pypsa
import pandas as pd
import geopandas as gpd
import numpy as np
from itertools import product, chain
from six.moves import map, zip
from six import itervalues, iterkeys
from collections import OrderedDict as odict
import logging
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib.patches import Circle, Ellipse
from matplotlib.legend_handler import HandlerPatch
import seaborn as sns
to_rgba = mpl.colors.colorConverter.to_rgba
def make_handler_map_to_scale_circles_as_in(ax, dont_resize_actively=False):
fig = ax.get_figure()
def axes2pt():
return np.diff(ax.transData.transform([(0,0), (1,1)]), axis=0)[0] * (72./fig.dpi)
ellipses = []
if not dont_resize_actively:
def update_width_height(event):
dist = axes2pt()
for e, radius in ellipses: e.width, e.height = 2. * radius * dist
fig.canvas.mpl_connect('resize_event', update_width_height)
ax.callbacks.connect('xlim_changed', update_width_height)
ax.callbacks.connect('ylim_changed', update_width_height)
def legend_circle_handler(legend, orig_handle, xdescent, ydescent,
width, height, fontsize):
w, h = 2. * orig_handle.get_radius() * axes2pt()
e = Ellipse(xy=(0.5*width-0.5*xdescent, 0.5*height-0.5*ydescent), width=w, height=w)
ellipses.append((e, orig_handle.get_radius()))
return e
return {Circle: HandlerPatch(patch_func=legend_circle_handler)}
def make_legend_circles_for(sizes, scale=1.0, **kw):
return [Circle((0,0), radius=(s/scale)**0.5, **kw) for s in sizes]
def set_plot_style():
plt.style.use(['classic', 'seaborn-white',
{'axes.grid': False, 'grid.linestyle': '--', 'grid.color': u'0.6',
'hatch.color': 'white',
'patch.linewidth': 0.5,
'font.size': 12,
'legend.fontsize': 'medium',
'lines.linewidth': 1.5,
'pdf.fonttype': 42,
# 'font.family': 'Times New Roman'
}])
def plot_map(n, ax=None, attribute='p_nom', opts={}):
if ax is None:
ax = plt.gca()
## DATA
line_colors = {'cur': "purple",
'exp': to_rgba("red", 0.7)}
tech_colors = opts['tech_colors']
if attribute == 'p_nom':
# bus_sizes = n.generators_t.p.sum().loc[n.generators.carrier == "load"].groupby(n.generators.bus).sum()
bus_sizes = pd.concat((n.generators.query('carrier != "load"').groupby(['bus', 'carrier']).p_nom_opt.sum(),
n.storage_units.groupby(['bus', 'carrier']).p_nom_opt.sum()))
line_widths_exp = dict(Line=n.lines.s_nom_opt, Link=n.links.p_nom_opt)
line_widths_cur = dict(Line=n.lines.s_nom_min, Link=n.links.p_nom_min)
else:
raise 'plotting of {} has not been implemented yet'.format(plot)
line_colors_with_alpha = \
dict(Line=(line_widths_cur['Line'] / n.lines.s_nom > 1e-3)
.map({True: line_colors['cur'], False: to_rgba(line_colors['cur'], 0.)}),
Link=(line_widths_cur['Link'] / n.links.p_nom > 1e-3)
.map({True: line_colors['cur'], False: to_rgba(line_colors['cur'], 0.)}))
## FORMAT
linewidth_factor = opts['map'][attribute]['linewidth_factor']
bus_size_factor = opts['map'][attribute]['bus_size_factor']
## PLOT
n.plot(line_widths=pd.concat(line_widths_exp)/linewidth_factor,
line_colors=dict(Line=line_colors['exp'], Link=line_colors['exp']),
bus_sizes=bus_sizes/bus_size_factor,
bus_colors=tech_colors,
boundaries=map_boundaries,
geomap=True,
ax=ax)
n.plot(line_widths=pd.concat(line_widths_cur)/linewidth_factor,
line_colors=pd.concat(line_colors_with_alpha),
bus_sizes=0,
bus_colors=tech_colors,
boundaries=map_boundaries,
geomap=True, # TODO : Turn to False, after the release of PyPSA 0.14.2 (refer to https://github.com/PyPSA/PyPSA/issues/75)
ax=ax)
ax.set_aspect('equal')
ax.axis('off')
# x1, y1, x2, y2 = map_boundaries
# ax.set_xlim(x1, x2)
# ax.set_ylim(y1, y2)
# Rasterize basemap
# TODO : Check if this also works with cartopy
for c in ax.collections[:2]: c.set_rasterized(True)
# LEGEND
handles = []
labels = []
for s in (10, 1):
handles.append(plt.Line2D([0],[0],color=line_colors['exp'],
linewidth=s*1e3/linewidth_factor))
labels.append("{} GW".format(s))
l1 = l1_1 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.24, 1.01),
frameon=False,
labelspacing=0.8, handletextpad=1.5,
title='Transmission Exist./Exp. ')
ax.add_artist(l1_1)
handles = []
labels = []
for s in (10, 5):
handles.append(plt.Line2D([0],[0],color=line_colors['cur'],
linewidth=s*1e3/linewidth_factor))
labels.append("/")
l1_2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.26, 1.01),
frameon=False,
labelspacing=0.8, handletextpad=0.5,
title=' ')
ax.add_artist(l1_2)
handles = make_legend_circles_for([10e3, 5e3, 1e3], scale=bus_size_factor, facecolor="w")
labels = ["{} GW".format(s) for s in (10, 5, 3)]
l2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.01, 1.01),
frameon=False, labelspacing=1.0,
title='Generation',
handler_map=make_handler_map_to_scale_circles_as_in(ax))
ax.add_artist(l2)
techs = (bus_sizes.index.levels[1]) & pd.Index(opts['vre_techs'] + opts['conv_techs'] + opts['storage_techs'])
handles = []
labels = []
for t in techs:
handles.append(plt.Line2D([0], [0], color=tech_colors[t], marker='o', markersize=8, linewidth=0))
labels.append(opts['nice_names'].get(t, t))
l3 = ax.legend(handles, labels, loc="upper center", bbox_to_anchor=(0.5, -0.), # bbox_to_anchor=(0.72, -0.05),
handletextpad=0., columnspacing=0.5, ncol=4, title='Technology')
return fig
#n = load_network(snakemake.input.network, opts, combine_hydro_ps=False)
def plot_total_energy_pie(n, ax=None):
"""Add total energy pie plot"""
if ax is None:
ax = plt.gca()
ax.set_title('Energy per technology', fontdict=dict(fontsize="medium"))
e_primary = aggregate_p(n).drop('load', errors='ignore').loc[lambda s: s>0]
patches, texts, autotexts = ax.pie(e_primary,
startangle=90,
labels = e_primary.rename(opts['nice_names_n']).index,
autopct='%.0f%%',
shadow=False,
colors = [tech_colors[tech] for tech in e_primary.index])
for t1, t2, i in zip(texts, autotexts, e_primary.index):
if e_primary.at[i] < 0.04 * e_primary.sum():
t1.remove()
t2.remove()
def plot_total_cost_bar(n, ax=None):
"""Add average system cost bar plot"""
if ax is None:
ax = plt.gca()
total_load = (n.snapshot_weightings * n.loads_t.p.sum(axis=1)).sum()
def split_costs(n):
costs = aggregate_costs(n).reset_index(level=0, drop=True)
costs_ex = aggregate_costs(n, existing_only=True).reset_index(level=0, drop=True)
return (costs['capital'].add(costs['marginal'], fill_value=0.),
costs_ex['capital'], costs['capital'] - costs_ex['capital'], costs['marginal'])
costs, costs_cap_ex, costs_cap_new, costs_marg = split_costs(n)
costs_graph = pd.DataFrame(dict(a=costs.drop('load', errors='ignore')),
index=['AC-AC', 'AC line', 'onwind', 'offwind-ac', 'offwind-dc', 'solar', 'OCGT','CCGT', 'battery', 'H2']).dropna()
bottom = np.array([0., 0.])
texts = []
for i,ind in enumerate(costs_graph.index):
data = np.asarray(costs_graph.loc[ind])/total_load
ax.bar([0.5], data, bottom=bottom, color=tech_colors[ind], width=0.7, zorder=-1)
bottom_sub = bottom
bottom = bottom+data
if ind in opts['conv_techs'] + ['AC line']:
for c in [costs_cap_ex, costs_marg]:
if ind in c:
data_sub = np.asarray([c.loc[ind]])/total_load
ax.bar([0.5], data_sub, linewidth=0,
bottom=bottom_sub, color=tech_colors[ind],
width=0.7, zorder=-1, alpha=0.8)
bottom_sub += data_sub
if abs(data[-1]) < 5:
continue
text = ax.text(1.1,(bottom-0.5*data)[-1]-3,opts['nice_names_n'].get(ind,ind))
texts.append(text)
ax.set_ylabel("Average system cost [Eur/MWh]")
ax.set_ylim([0,80]) # opts['costs_max']])
ax.set_xlim([0,1])
#ax.set_xticks([0.5])
ax.set_xticklabels([]) #["w/o\nEp", "w/\nEp"])
ax.grid(True, axis="y", color='k', linestyle='dotted')
if __name__ == "__main__":
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake, Dict
from snakemake.rules import expand
snakemake = Dict()
snakemake = MockSnakemake(
path='..',
wildcards=dict(network='elec', simpl='', clusters='90', lv='1.25', opts='Co2L-3H', attr='p_nom', ext="pdf"),
input=dict(network="results/networks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}.nc",
tech_costs="data/costs.csv"),
output=dict(only_map="results/plots/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{attr}.{ext}",
ext="results/plots/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{attr}_ext.{ext}")
)
logging.basicConfig(level=snakemake.config['logging_level'])
set_plot_style()
opts = snakemake.config['plotting']
map_figsize = opts['map']['figsize']
map_boundaries = opts['map']['boundaries']
n = load_network(snakemake.input.network, snakemake.input.tech_costs, snakemake.config)
scenario_opts = snakemake.wildcards.opts.split('-')
fig, ax = plt.subplots(figsize=map_figsize, subplot_kw={"projection": ccrs.PlateCarree()})
plot_map(n, ax, snakemake.wildcards.attr, opts)
fig.savefig(snakemake.output.only_map, dpi=150,
bbox_inches='tight', bbox_extra_artists=[l1,l2,l3])
ax1 = fig.add_axes([-0.115, 0.625, 0.2, 0.2])
plot_total_energy_pie(n, ax1)
ax2 = fig.add_axes([-0.075, 0.1, 0.1, 0.45])
plot_total_cost_bar(n, ax2)
#fig.tight_layout()
ll = snakemake.wildcards.ll
ll_type = ll[0]
ll_factor = ll[1:]
lbl = dict(c='line cost', v='line volume')[ll_type]
amnt = '{ll} x today\'s'.format(ll=ll_factor) if ll_factor != 'opt' else 'optimal'
fig.suptitle('Expansion to {amount} {label} at {clusters} clusters'
.format(amount=amnt, label=lbl, clusters=snakemake.wildcards.clusters))
fig.savefig(snakemake.output.ext, transparent=True,
bbox_inches='tight', bbox_extra_artists=[l1, l2, l3, ax1, ax2])