plot_network: Split plotting into several functions to make sphinx happy

Also addresses part of issue #50: plot_map works again with cartopy.
This commit is contained in:
Jonas Hoersch 2019-08-12 12:42:33 +02:00
parent 89d89deec0
commit be8c9798c1

View File

@ -15,27 +15,6 @@ Description
"""
# Dirty work-around so that sphinx can import this module and get the
# doc-string should be refactored in the style of the other scripts, ideally
# several functions for the different plots
if __name__ != "__main__":
import sys
sys.exit(0)
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake, Dict
from snakemake.rules import expand
import yaml
snakemake = Dict()
snakemake = MockSnakemake(
path='..',
wildcards=dict(network='elec', simpl='', clusters='90', lv='1.25', opts='Co2L-3H', attr='p_nom', ext="pdf"),
input=dict(network="results/networks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}.nc",
tech_costs="data/costs.csv"),
output=dict(only_map="results/plots/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{attr}.{ext}",
ext="results/plots/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{attr}_ext.{ext}")
)
import pypsa
from _helpers import load_network, aggregate_p, aggregate_costs
@ -50,7 +29,9 @@ from itertools import product, chain
from six.moves import map, zip
from six import itervalues, iterkeys
from collections import OrderedDict as odict
import logging
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib.patches import Circle, Ellipse
@ -83,203 +64,242 @@ def make_handler_map_to_scale_circles_as_in(ax, dont_resize_actively=False):
def make_legend_circles_for(sizes, scale=1.0, **kw):
return [Circle((0,0), radius=(s/scale)**0.5, **kw) for s in sizes]
plt.style.use(['classic', 'seaborn-white',
{'axes.grid': False, 'grid.linestyle': '--', 'grid.color': u'0.6',
'hatch.color': 'white',
'patch.linewidth': 0.5,
'font.size': 12,
'legend.fontsize': 'medium',
'lines.linewidth': 1.5,
'pdf.fonttype': 42,
# 'font.family': 'Times New Roman'
}])
def set_plot_style():
plt.style.use(['classic', 'seaborn-white',
{'axes.grid': False, 'grid.linestyle': '--', 'grid.color': u'0.6',
'hatch.color': 'white',
'patch.linewidth': 0.5,
'font.size': 12,
'legend.fontsize': 'medium',
'lines.linewidth': 1.5,
'pdf.fonttype': 42,
# 'font.family': 'Times New Roman'
}])
opts = snakemake.config['plotting']
map_figsize = opts['map']['figsize']
map_boundaries = opts['map']['boundaries']
def plot_map(n, ax=None, attribute='p_nom', opts={}):
if ax is None:
ax = plt.gca()
n = load_network(snakemake.input.network, snakemake.input.tech_costs, snakemake.config)
## DATA
line_colors = {'cur': "purple",
'exp': to_rgba("red", 0.7)}
tech_colors = opts['tech_colors']
scenario_opts = snakemake.wildcards.opts.split('-')
## DATA
line_colors = {'cur': "purple",
'exp': to_rgba("red", 0.7)}
tech_colors = opts['tech_colors']
if snakemake.wildcards.attr == 'p_nom':
# bus_sizes = n.generators_t.p.sum().loc[n.generators.carrier == "load"].groupby(n.generators.bus).sum()
bus_sizes = pd.concat((n.generators.query('carrier != "load"').groupby(['bus', 'carrier']).p_nom_opt.sum(),
n.storage_units.groupby(['bus', 'carrier']).p_nom_opt.sum()))
line_widths_exp = dict(Line=n.lines.s_nom_opt, Link=n.links.p_nom_opt)
line_widths_cur = dict(Line=n.lines.s_nom_min, Link=n.links.p_nom_min)
else:
raise 'plotting of {} has not been implemented yet'.format(plot)
if attribute == 'p_nom':
# bus_sizes = n.generators_t.p.sum().loc[n.generators.carrier == "load"].groupby(n.generators.bus).sum()
bus_sizes = pd.concat((n.generators.query('carrier != "load"').groupby(['bus', 'carrier']).p_nom_opt.sum(),
n.storage_units.groupby(['bus', 'carrier']).p_nom_opt.sum()))
line_widths_exp = dict(Line=n.lines.s_nom_opt, Link=n.links.p_nom_opt)
line_widths_cur = dict(Line=n.lines.s_nom_min, Link=n.links.p_nom_min)
else:
raise 'plotting of {} has not been implemented yet'.format(plot)
line_colors_with_alpha = \
dict(Line=(line_widths_cur['Line'] / n.lines.s_nom > 1e-3)
.map({True: line_colors['cur'], False: to_rgba(line_colors['cur'], 0.)}),
Link=(line_widths_cur['Link'] / n.links.p_nom > 1e-3)
.map({True: line_colors['cur'], False: to_rgba(line_colors['cur'], 0.)}))
line_colors_with_alpha = \
dict(Line=(line_widths_cur['Line'] / n.lines.s_nom > 1e-3)
.map({True: line_colors['cur'], False: to_rgba(line_colors['cur'], 0.)}),
Link=(line_widths_cur['Link'] / n.links.p_nom > 1e-3)
.map({True: line_colors['cur'], False: to_rgba(line_colors['cur'], 0.)}))
## FORMAT
linewidth_factor = opts['map'][snakemake.wildcards.attr]['linewidth_factor']
bus_size_factor = opts['map'][snakemake.wildcards.attr]['bus_size_factor']
## FORMAT
linewidth_factor = opts['map'][attribute]['linewidth_factor']
bus_size_factor = opts['map'][attribute]['bus_size_factor']
## PLOT
fig, ax = plt.subplots(figsize=map_figsize)
n.plot(line_widths=pd.concat(line_widths_exp)/linewidth_factor,
line_colors=dict(Line=line_colors['exp'], Link=line_colors['exp']),
bus_sizes=bus_sizes/bus_size_factor,
bus_colors=tech_colors,
boundaries=map_boundaries,
basemap=True,
ax=ax)
n.plot(line_widths=pd.concat(line_widths_cur)/linewidth_factor,
line_colors=pd.concat(line_colors_with_alpha),
bus_sizes=0,
bus_colors=tech_colors,
boundaries=map_boundaries,
basemap=False,
ax=ax)
ax.set_aspect('equal')
ax.axis('off')
## PLOT
n.plot(line_widths=pd.concat(line_widths_exp)/linewidth_factor,
line_colors=dict(Line=line_colors['exp'], Link=line_colors['exp']),
bus_sizes=bus_sizes/bus_size_factor,
bus_colors=tech_colors,
boundaries=map_boundaries,
geomap=True,
ax=ax)
n.plot(line_widths=pd.concat(line_widths_cur)/linewidth_factor,
line_colors=pd.concat(line_colors_with_alpha),
bus_sizes=0,
bus_colors=tech_colors,
boundaries=map_boundaries,
geomap=True, # TODO : Turn to False, after the release of PyPSA 0.14.2 (refer to https://github.com/PyPSA/PyPSA/issues/75)
ax=ax)
ax.set_aspect('equal')
ax.axis('off')
# x1, y1, x2, y2 = map_boundaries
# ax.set_xlim(x1, x2)
# ax.set_ylim(y1, y2)
# x1, y1, x2, y2 = map_boundaries
# ax.set_xlim(x1, x2)
# ax.set_ylim(y1, y2)
# Rasterize basemap
for c in ax.collections[:2]: c.set_rasterized(True)
# Rasterize basemap
# TODO : Check if this also works with cartopy
for c in ax.collections[:2]: c.set_rasterized(True)
# LEGEND
handles = []
labels = []
# LEGEND
handles = []
labels = []
for s in (10, 1):
handles.append(plt.Line2D([0],[0],color=line_colors['exp'],
linewidth=s*1e3/linewidth_factor))
labels.append("{} GW".format(s))
l1 = l1_1 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.24, 1.01),
frameon=False,
labelspacing=0.8, handletextpad=1.5,
title='Transmission Exist./Exp. ')
ax.add_artist(l1_1)
for s in (10, 1):
handles.append(plt.Line2D([0],[0],color=line_colors['exp'],
linewidth=s*1e3/linewidth_factor))
labels.append("{} GW".format(s))
l1 = l1_1 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.24, 1.01),
frameon=False,
labelspacing=0.8, handletextpad=1.5,
title='Transmission Exist./Exp. ')
ax.add_artist(l1_1)
handles = []
labels = []
for s in (10, 5):
handles.append(plt.Line2D([0],[0],color=line_colors['cur'],
linewidth=s*1e3/linewidth_factor))
labels.append("/")
l1_2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.26, 1.01),
frameon=False,
labelspacing=0.8, handletextpad=0.5,
title=' ')
ax.add_artist(l1_2)
handles = []
labels = []
for s in (10, 5):
handles.append(plt.Line2D([0],[0],color=line_colors['cur'],
linewidth=s*1e3/linewidth_factor))
labels.append("/")
l1_2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.26, 1.01),
frameon=False,
labelspacing=0.8, handletextpad=0.5,
title=' ')
ax.add_artist(l1_2)
handles = make_legend_circles_for([10e3, 5e3, 1e3], scale=bus_size_factor, facecolor="w")
labels = ["{} GW".format(s) for s in (10, 5, 3)]
l2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.01, 1.01),
frameon=False, labelspacing=1.0,
title='Generation',
handler_map=make_handler_map_to_scale_circles_as_in(ax))
ax.add_artist(l2)
handles = make_legend_circles_for([10e3, 5e3, 1e3], scale=bus_size_factor, facecolor="w")
labels = ["{} GW".format(s) for s in (10, 5, 3)]
l2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.01, 1.01),
frameon=False, labelspacing=1.0,
title='Generation',
handler_map=make_handler_map_to_scale_circles_as_in(ax))
ax.add_artist(l2)
techs = (bus_sizes.index.levels[1]) & pd.Index(opts['vre_techs'] + opts['conv_techs'] + opts['storage_techs'])
handles = []
labels = []
for t in techs:
handles.append(plt.Line2D([0], [0], color=tech_colors[t], marker='o', markersize=8, linewidth=0))
labels.append(opts['nice_names'].get(t, t))
l3 = ax.legend(handles, labels, loc="upper center", bbox_to_anchor=(0.5, -0.), # bbox_to_anchor=(0.72, -0.05),
handletextpad=0., columnspacing=0.5, ncol=4, title='Technology')
techs = (bus_sizes.index.levels[1]) & pd.Index(opts['vre_techs'] + opts['conv_techs'] + opts['storage_techs'])
handles = []
labels = []
for t in techs:
handles.append(plt.Line2D([0], [0], color=tech_colors[t], marker='o', markersize=8, linewidth=0))
labels.append(opts['nice_names'].get(t, t))
l3 = ax.legend(handles, labels, loc="upper center", bbox_to_anchor=(0.5, -0.), # bbox_to_anchor=(0.72, -0.05),
handletextpad=0., columnspacing=0.5, ncol=4, title='Technology')
fig.savefig(snakemake.output.only_map, dpi=150,
bbox_inches='tight', bbox_extra_artists=[l1,l2,l3])
return fig
#n = load_network(snakemake.input.network, opts, combine_hydro_ps=False)
## Add total energy p
ax1 = ax = fig.add_axes([-0.115, 0.625, 0.2, 0.2])
ax.set_title('Energy per technology', fontdict=dict(fontsize="medium"))
def plot_total_energy_pie(n, ax=None):
"""Add total energy pie plot"""
if ax is None:
ax = plt.gca()
e_primary = aggregate_p(n).drop('load', errors='ignore').loc[lambda s: s>0]
ax.set_title('Energy per technology', fontdict=dict(fontsize="medium"))
patches, texts, autotexts = ax.pie(e_primary,
startangle=90,
labels = e_primary.rename(opts['nice_names_n']).index,
autopct='%.0f%%',
shadow=False,
colors = [tech_colors[tech] for tech in e_primary.index])
for t1, t2, i in zip(texts, autotexts, e_primary.index):
if e_primary.at[i] < 0.04 * e_primary.sum():
t1.remove()
t2.remove()
e_primary = aggregate_p(n).drop('load', errors='ignore').loc[lambda s: s>0]
## Add average system cost bar plot
# ax2 = ax = fig.add_axes([-0.1, 0.2, 0.1, 0.33])
# ax2 = ax = fig.add_axes([-0.1, 0.15, 0.1, 0.37])
ax2 = ax = fig.add_axes([-0.075, 0.1, 0.1, 0.45])
total_load = (n.snapshot_weightings * n.loads_t.p.sum(axis=1)).sum()
patches, texts, autotexts = ax.pie(e_primary,
startangle=90,
labels = e_primary.rename(opts['nice_names_n']).index,
autopct='%.0f%%',
shadow=False,
colors = [tech_colors[tech] for tech in e_primary.index])
for t1, t2, i in zip(texts, autotexts, e_primary.index):
if e_primary.at[i] < 0.04 * e_primary.sum():
t1.remove()
t2.remove()
def split_costs(n):
costs = aggregate_costs(n).reset_index(level=0, drop=True)
costs_ex = aggregate_costs(n, existing_only=True).reset_index(level=0, drop=True)
return (costs['capital'].add(costs['marginal'], fill_value=0.),
costs_ex['capital'], costs['capital'] - costs_ex['capital'], costs['marginal'])
def plot_total_cost_bar(n, ax=None):
"""Add average system cost bar plot"""
if ax is None:
ax = plt.gca()
costs, costs_cap_ex, costs_cap_new, costs_marg = split_costs(n)
total_load = (n.snapshot_weightings * n.loads_t.p.sum(axis=1)).sum()
costs_graph = pd.DataFrame(dict(a=costs.drop('load', errors='ignore')),
index=['AC-AC', 'AC line', 'onwind', 'offwind-ac', 'offwind-dc', 'solar', 'OCGT','CCGT', 'battery', 'H2']).dropna()
bottom = np.array([0., 0.])
texts = []
def split_costs(n):
costs = aggregate_costs(n).reset_index(level=0, drop=True)
costs_ex = aggregate_costs(n, existing_only=True).reset_index(level=0, drop=True)
return (costs['capital'].add(costs['marginal'], fill_value=0.),
costs_ex['capital'], costs['capital'] - costs_ex['capital'], costs['marginal'])
for i,ind in enumerate(costs_graph.index):
data = np.asarray(costs_graph.loc[ind])/total_load
ax.bar([0.5], data, bottom=bottom, color=tech_colors[ind], width=0.7, zorder=-1)
bottom_sub = bottom
bottom = bottom+data
costs, costs_cap_ex, costs_cap_new, costs_marg = split_costs(n)
if ind in opts['conv_techs'] + ['AC line']:
for c in [costs_cap_ex, costs_marg]:
if ind in c:
data_sub = np.asarray([c.loc[ind]])/total_load
ax.bar([0.5], data_sub, linewidth=0,
bottom=bottom_sub, color=tech_colors[ind],
width=0.7, zorder=-1, alpha=0.8)
bottom_sub += data_sub
costs_graph = pd.DataFrame(dict(a=costs.drop('load', errors='ignore')),
index=['AC-AC', 'AC line', 'onwind', 'offwind-ac', 'offwind-dc', 'solar', 'OCGT','CCGT', 'battery', 'H2']).dropna()
bottom = np.array([0., 0.])
texts = []
if abs(data[-1]) < 5:
continue
for i,ind in enumerate(costs_graph.index):
data = np.asarray(costs_graph.loc[ind])/total_load
ax.bar([0.5], data, bottom=bottom, color=tech_colors[ind], width=0.7, zorder=-1)
bottom_sub = bottom
bottom = bottom+data
text = ax.text(1.1,(bottom-0.5*data)[-1]-3,opts['nice_names_n'].get(ind,ind))
texts.append(text)
if ind in opts['conv_techs'] + ['AC line']:
for c in [costs_cap_ex, costs_marg]:
if ind in c:
data_sub = np.asarray([c.loc[ind]])/total_load
ax.bar([0.5], data_sub, linewidth=0,
bottom=bottom_sub, color=tech_colors[ind],
width=0.7, zorder=-1, alpha=0.8)
bottom_sub += data_sub
ax.set_ylabel("Average system cost [Eur/MWh]")
ax.set_ylim([0,80]) # opts['costs_max']])
ax.set_xlim([0,1])
#ax.set_xticks([0.5])
ax.set_xticklabels([]) #["w/o\nEp", "w/\nEp"])
ax.grid(True, axis="y", color='k', linestyle='dotted')
if abs(data[-1]) < 5:
continue
#fig.tight_layout()
text = ax.text(1.1,(bottom-0.5*data)[-1]-3,opts['nice_names_n'].get(ind,ind))
texts.append(text)
ll = snakemake.wildcards.ll
ll_type = ll[0]
ll_factor = ll[1:]
lbl = dict(c='line cost', v='line volume')[ll_type]
amnt = '{ll} x today\'s'.format(ll=ll_factor) if ll_factor != 'opt' else 'optimal'
fig.suptitle('Expansion to {amount} {label} at {clusters} clusters'
.format(amount=amnt, label=lbl, clusters=snakemake.wildcards.clusters))
ax.set_ylabel("Average system cost [Eur/MWh]")
ax.set_ylim([0,80]) # opts['costs_max']])
ax.set_xlim([0,1])
#ax.set_xticks([0.5])
ax.set_xticklabels([]) #["w/o\nEp", "w/\nEp"])
ax.grid(True, axis="y", color='k', linestyle='dotted')
fig.savefig(snakemake.output.ext, transparent=True,
bbox_inches='tight', bbox_extra_artists=[l1, l2, l3, ax1, ax2])
if __name__ == "__main__":
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake, Dict
from snakemake.rules import expand
snakemake = Dict()
snakemake = MockSnakemake(
path='..',
wildcards=dict(network='elec', simpl='', clusters='90', lv='1.25', opts='Co2L-3H', attr='p_nom', ext="pdf"),
input=dict(network="results/networks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}.nc",
tech_costs="data/costs.csv"),
output=dict(only_map="results/plots/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{attr}.{ext}",
ext="results/plots/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{attr}_ext.{ext}")
)
logging.basicConfig(level=snakemake.config['logging_level'])
set_plot_style()
opts = snakemake.config['plotting']
map_figsize = opts['map']['figsize']
map_boundaries = opts['map']['boundaries']
n = load_network(snakemake.input.network, snakemake.input.tech_costs, snakemake.config)
scenario_opts = snakemake.wildcards.opts.split('-')
fig, ax = plt.subplots(figsize=map_figsize, subplot_kw={"projection": ccrs.PlateCarree()})
plot_map(n, ax, snakemake.wildcards.attr, opts)
fig.savefig(snakemake.output.only_map, dpi=150,
bbox_inches='tight', bbox_extra_artists=[l1,l2,l3])
ax1 = fig.add_axes([-0.115, 0.625, 0.2, 0.2])
plot_total_energy_pie(n, ax1)
ax2 = fig.add_axes([-0.075, 0.1, 0.1, 0.45])
plot_total_cost_bar(n, ax2)
#fig.tight_layout()
ll = snakemake.wildcards.ll
ll_type = ll[0]
ll_factor = ll[1:]
lbl = dict(c='line cost', v='line volume')[ll_type]
amnt = '{ll} x today\'s'.format(ll=ll_factor) if ll_factor != 'opt' else 'optimal'
fig.suptitle('Expansion to {amount} {label} at {clusters} clusters'
.format(amount=amnt, label=lbl, clusters=snakemake.wildcards.clusters))
fig.savefig(snakemake.output.ext, transparent=True,
bbox_inches='tight', bbox_extra_artists=[l1, l2, l3, ax1, ax2])