152 KiB
152 KiB
1 | technology | year | parameter | value | unit | source | further description |
---|---|---|---|---|---|---|---|
2 | Ammonia cracker | 2020 | FOM | 4.3 | %/year | Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7. | |
3 | Ammonia cracker | 2020 | investment | 1062107.74 | EUR/MW_H2 | Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6. | |
4 | Ammonia cracker | 2020 | lifetime | 25.0 | years | Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7. | |
5 | BioSNG | 2020 | C in fuel | 0.32 | per unit | Stoichiometric calculation | |
6 | BioSNG | 2020 | C stored | 0.68 | per unit | Stoichiometric calculation | |
7 | BioSNG | 2020 | CO2 stored | 0.25 | tCO2/MWh_th | Stoichiometric calculation | |
8 | BioSNG | 2020 | FOM | 1.61 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 84 Gasif. CFB, Bio-SNG: Fixed O&M |
9 | BioSNG | 2020 | VOM | 2.7 | EUR/MWh_th | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 84 Gasif. CFB, Bio-SNG: Variable O&M |
10 | BioSNG | 2020 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
11 | BioSNG | 2020 | efficiency | 0.6 | per unit | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 84 Gasif. CFB, Bio-SNG: Bio SNG |
12 | BioSNG | 2020 | investment | 2500.0 | EUR/kW_th | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 84 Gasif. CFB, Bio-SNG: Specific investment |
13 | BioSNG | 2020 | lifetime | 25.0 | years | TODO | 84 Gasif. CFB, Bio-SNG: Technical lifetime |
14 | BtL | 2020 | C in fuel | 0.32 | per unit | Stoichiometric calculation | |
15 | BtL | 2020 | C stored | 0.68 | per unit | Stoichiometric calculation | |
16 | BtL | 2020 | CO2 stored | 0.25 | tCO2/MWh_th | Stoichiometric calculation | |
17 | BtL | 2020 | FOM | 2.4 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 85 Gasif. Ent. Flow FT, liq fu : Fixed O&M |
18 | BtL | 2020 | VOM | 1.06 | EUR/MWh_FT | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 85 Gasif. Ent. Flow FT, liq fu : Variable O&M |
19 | BtL | 2020 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
20 | BtL | 2020 | efficiency | 0.45 | per unit | doi:10.1016/j.enpol.2017.05.013 | |
21 | BtL | 2020 | investment | 2000.0 | EUR/kW_th | doi:10.1016/j.enpol.2017.05.013 | 85 Gasif. Ent. Flow FT, liq fu : Specific investment |
22 | BtL | 2020 | lifetime | 25.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 85 Gasif. Ent. Flow FT, liq fu : Technical lifetime |
23 | CCGT | 2020 | FOM | 3.33 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Fixed O&M |
24 | CCGT | 2020 | VOM | 4.4 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Variable O&M |
25 | CCGT | 2020 | c_b | 1.8 | 50oC/100oC | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Cb coefficient |
26 | CCGT | 2020 | c_v | 0.15 | 50oC/100oC | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Cv coefficient |
27 | CCGT | 2020 | efficiency | 0.56 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Electricity efficiency, annual average |
28 | CCGT | 2020 | investment | 880.0 | EUR/kW | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Nominal investment |
29 | CCGT | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Technical lifetime |
30 | CH4 (g) fill compressor station | 2020 | FOM | 1.7 | %/year | Assume same as for H2 (g) fill compressor station. | |
31 | CH4 (g) fill compressor station | 2020 | investment | 1498.95 | EUR/MW_CH4 | Guesstimate, based on H2 (g) pipeline and fill compressor station cost. | |
32 | CH4 (g) fill compressor station | 2020 | lifetime | 20.0 | years | Assume same as for H2 (g) fill compressor station. | |
33 | CH4 (g) pipeline | 2020 | FOM | 1.5 | %/year | Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology). | |
34 | CH4 (g) pipeline | 2020 | investment | 79.0 | EUR/MW/km | Guesstimate. | |
35 | CH4 (g) pipeline | 2020 | lifetime | 50.0 | years | Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology). | |
36 | CH4 (g) submarine pipeline | 2020 | FOM | 3.0 | %/year | d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material. | |
37 | CH4 (g) submarine pipeline | 2020 | investment | 114.89 | EUR/MW/km | Kaiser (2017): 10.1016/j.marpol.2017.05.003 . | |
38 | CH4 (g) submarine pipeline | 2020 | lifetime | 30.0 | years | d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material. | |
39 | CH4 (l) transport ship | 2020 | FOM | 3.5 | %/year | Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
40 | CH4 (l) transport ship | 2020 | capacity | 58300.0 | t_CH4 | Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
41 | CH4 (l) transport ship | 2020 | investment | 151000000.0 | EUR | Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
42 | CH4 (l) transport ship | 2020 | lifetime | 25.0 | years | Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
43 | CH4 evaporation | 2020 | FOM | 3.5 | %/year | Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
44 | CH4 evaporation | 2020 | investment | 87.6 | EUR/kW_CH4 | Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
45 | CH4 evaporation | 2020 | lifetime | 30.0 | years | Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
46 | CH4 liquefaction | 2020 | FOM | 3.5 | %/year | Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
47 | CH4 liquefaction | 2020 | investment | 232.13 | EUR/kW_CH4 | Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
48 | CH4 liquefaction | 2020 | lifetime | 25.0 | years | Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
49 | CO2 liquefaction | 2020 | FOM | 5.0 | %/year | Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf . | |
50 | CO2 liquefaction | 2020 | investment | 16.03 | EUR/t_CO2/h | Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf . | |
51 | CO2 liquefaction | 2020 | lifetime | 25.0 | years | Guesstimate, based on CH4 liquefaction. | |
52 | CO2 pipeline | 2020 | FOM | 0.9 | %/year | Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline. | |
53 | CO2 pipeline | 2020 | investment | 2000.0 | EUR/(tCO2/h)/km | Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline. | |
54 | CO2 pipeline | 2020 | lifetime | 50.0 | years | Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline. | |
55 | CO2 storage tank | 2020 | FOM | 1.0 | %/year | Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 . | |
56 | CO2 storage tank | 2020 | investment | 2528.17 | EUR/t_CO2 | Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3. | |
57 | CO2 storage tank | 2020 | lifetime | 25.0 | years | Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 . | |
58 | CO2 submarine pipeline | 2020 | FOM | 0.5 | %/year | Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline. | |
59 | CO2 submarine pipeline | 2020 | investment | 4000.0 | EUR/(tCO2/h)/km | Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline. | |
60 | FT fuel transport ship | 2020 | FOM | 5.0 | %/year | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
61 | FT fuel transport ship | 2020 | capacity | 75000.0 | t_FTfuel | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
62 | FT fuel transport ship | 2020 | investment | 31700578.34 | EUR | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
63 | FT fuel transport ship | 2020 | lifetime | 15.0 | years | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
64 | Fischer-Tropsch | 2020 | FOM | 3.0 | %/year | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1. | |
65 | Fischer-Tropsch | 2020 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
66 | Fischer-Tropsch | 2020 | efficiency | 0.8 | per unit | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2. | |
67 | Fischer-Tropsch | 2020 | investment | 757401.0 | EUR/MW_FT | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”. | |
68 | Fischer-Tropsch | 2020 | lifetime | 20.0 | years | Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”. | |
69 | Gasnetz | 2020 | FOM | 2.5 | % | WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg | Gasnetz |
70 | Gasnetz | 2020 | investment | 28.0 | EUR/kWGas | WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg | Gasnetz |
71 | Gasnetz | 2020 | lifetime | 30.0 | years | WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg | Gasnetz |
72 | General liquid hydrocarbon storage (crude) | 2020 | FOM | 6.25 | %/year | Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 . | |
73 | General liquid hydrocarbon storage (crude) | 2020 | investment | 135.83 | EUR/m^3 | Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F . | |
74 | General liquid hydrocarbon storage (crude) | 2020 | lifetime | 30.0 | years | Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11. | |
75 | General liquid hydrocarbon storage (product) | 2020 | FOM | 6.25 | %/year | Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 . | |
76 | General liquid hydrocarbon storage (product) | 2020 | investment | 169.79 | EUR/m^3 | Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F . | |
77 | General liquid hydrocarbon storage (product) | 2020 | lifetime | 30.0 | years | Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11. | |
78 | H2 (g) fill compressor station | 2020 | FOM | 1.7 | %/year | Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5) | |
79 | H2 (g) fill compressor station | 2020 | investment | 4478.0 | EUR/MW_H2 | Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor). | |
80 | H2 (g) fill compressor station | 2020 | lifetime | 20.0 | years | Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor). | |
81 | H2 (g) pipeline | 2020 | FOM | 4.0 | %/year | Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140. | |
82 | H2 (g) pipeline | 2020 | investment | 226.47 | EUR/MW/km | European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf. | |
83 | H2 (g) pipeline | 2020 | lifetime | 50.0 | years | Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140. | |
84 | H2 (g) pipeline repurposed | 2020 | FOM | 4.0 | %/year | Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140. | |
85 | H2 (g) pipeline repurposed | 2020 | investment | 105.88 | EUR/MW/km | European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf. | |
86 | H2 (g) pipeline repurposed | 2020 | lifetime | 50.0 | years | Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140. | |
87 | H2 (g) submarine pipeline | 2020 | FOM | 3.0 | %/year | Assume same as for CH4 (g) submarine pipeline. | |
88 | H2 (g) submarine pipeline | 2020 | investment | 329.37 | EUR/MW/km | Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km). | |
89 | H2 (g) submarine pipeline | 2020 | lifetime | 30.0 | years | Assume same as for CH4 (g) submarine pipeline. | |
90 | H2 (l) storage tank | 2020 | FOM | 2.0 | %/year | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6. | |
91 | H2 (l) storage tank | 2020 | investment | 750.08 | EUR/MWh_H2 | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6. | |
92 | H2 (l) storage tank | 2020 | lifetime | 20.0 | years | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6. | |
93 | H2 (l) transport ship | 2020 | FOM | 4.0 | %/year | Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019. | |
94 | H2 (l) transport ship | 2020 | capacity | 11000.0 | t_H2 | Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019. | |
95 | H2 (l) transport ship | 2020 | investment | 361223561.58 | EUR | Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019. | |
96 | H2 (l) transport ship | 2020 | lifetime | 20.0 | years | Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019. | |
97 | H2 evaporation | 2020 | FOM | 2.5 | %/year | DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf . | |
98 | H2 evaporation | 2020 | investment | 143.64 | EUR/kW_H2 | IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f. | |
99 | H2 evaporation | 2020 | lifetime | 20.0 | years | Guesstimate. | |
100 | H2 liquefaction | 2020 | FOM | 2.5 | %/year | DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf . | |
101 | H2 liquefaction | 2020 | investment | 870.56 | EUR/kW_H2 | IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f. | |
102 | H2 liquefaction | 2020 | lifetime | 20.0 | years | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
103 | H2 pipeline | 2020 | FOM | 3.0 | %/year | TODO | from old pypsa cost assumptions |
104 | H2 pipeline | 2020 | investment | 267.0 | EUR/MW/km | Welder et al https://doi.org/10.1016/j.energy.2018.05.059 | from old pypsa cost assumptions |
105 | H2 pipeline | 2020 | lifetime | 40.0 | years | TODO | from old pypsa cost assumptions |
106 | HVAC overhead | 2020 | FOM | 2.0 | %/year | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
107 | HVAC overhead | 2020 | investment | 432.97 | EUR/MW/km | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
108 | HVAC overhead | 2020 | lifetime | 40.0 | years | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
109 | HVDC inverter pair | 2020 | FOM | 2.0 | %/year | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
110 | HVDC inverter pair | 2020 | investment | 162364.82 | EUR/MW | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
111 | HVDC inverter pair | 2020 | lifetime | 40.0 | years | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
112 | HVDC overhead | 2020 | FOM | 2.0 | %/year | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
113 | HVDC overhead | 2020 | investment | 432.97 | EUR/MW/km | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
114 | HVDC overhead | 2020 | lifetime | 40.0 | years | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
115 | HVDC submarine | 2020 | FOM | 0.35 | %/year | Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 . | |
116 | HVDC submarine | 2020 | investment | 471.16 | EUR/MW/km | Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 . | |
117 | HVDC submarine | 2020 | lifetime | 40.0 | years | Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 . | |
118 | Haber-Bosch | 2020 | FOM | 3.0 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Fixed O&M |
119 | Haber-Bosch | 2020 | VOM | 0.02 | EUR/MWh_NH3 | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Variable O&M |
120 | Haber-Bosch | 2020 | investment | 1586.29 | EUR/kW_NH3 | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Specific investment |
121 | Haber-Bosch | 2020 | lifetime | 30.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Technical lifetime |
122 | LNG storage tank | 2020 | FOM | 2.0 | %/year | Guesstimate, based on H2 (l) storage tank with comparable requirements. | |
123 | LNG storage tank | 2020 | investment | 611.59 | EUR/m^3 | Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59). | |
124 | LNG storage tank | 2020 | lifetime | 20.0 | years | Guesstimate, based on H2 (l) storage tank with comparable requirements. | |
125 | LOHC chemical | 2020 | investment | 2264.33 | EUR/t | Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514 | |
126 | LOHC chemical | 2020 | lifetime | 20.0 | years | Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514 | |
127 | LOHC dehydrogenation | 2020 | FOM | 3.0 | %/year | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
128 | LOHC dehydrogenation | 2020 | investment | 50728.03 | EUR/MW_H2 | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
129 | LOHC dehydrogenation | 2020 | lifetime | 20.0 | years | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
130 | LOHC dehydrogenation (small scale) | 2020 | FOM | 3.0 | %/year | Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514 | |
131 | LOHC dehydrogenation (small scale) | 2020 | investment | 759908.15 | EUR/MW_H2 | Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514 | |
132 | LOHC dehydrogenation (small scale) | 2020 | lifetime | 20.0 | years | Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514 | |
133 | LOHC hydrogenation | 2020 | FOM | 3.0 | %/year | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
134 | LOHC hydrogenation | 2020 | investment | 51259.54 | EUR/MW_H2 | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
135 | LOHC hydrogenation | 2020 | lifetime | 20.0 | years | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
136 | LOHC loaded DBT storage | 2020 | FOM | 6.25 | %/year | ||
137 | LOHC loaded DBT storage | 2020 | investment | 149.27 | EUR/t | Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11. | |
138 | LOHC loaded DBT storage | 2020 | lifetime | 30.0 | years | ||
139 | LOHC transport ship | 2020 | FOM | 5.0 | %/year | Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 | |
140 | LOHC transport ship | 2020 | capacity | 75000.0 | t_LOHC | Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 | |
141 | LOHC transport ship | 2020 | investment | 31700578.34 | EUR | Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 | |
142 | LOHC transport ship | 2020 | lifetime | 15.0 | years | Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 | |
143 | LOHC unloaded DBT storage | 2020 | FOM | 6.25 | %/year | ||
144 | LOHC unloaded DBT storage | 2020 | investment | 132.26 | EUR/t | Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11. | |
145 | LOHC unloaded DBT storage | 2020 | lifetime | 30.0 | years | ||
146 | MeOH transport ship | 2020 | FOM | 5.0 | %/year | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
147 | MeOH transport ship | 2020 | capacity | 75000.0 | t_MeOH | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
148 | MeOH transport ship | 2020 | investment | 31700578.34 | EUR | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
149 | MeOH transport ship | 2020 | lifetime | 15.0 | years | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
150 | Methanol steam reforming | 2020 | FOM | 4.0 | %/year | Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4. | |
151 | Methanol steam reforming | 2020 | investment | 16318.43 | EUR/MW_H2 | Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4. | |
152 | Methanol steam reforming | 2020 | lifetime | 20.0 | years | Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4. | |
153 | NH3 (l) storage tank incl. liquefaction | 2020 | FOM | 2.0 | %/year | Guesstimate, based on H2 (l) storage tank. | |
154 | NH3 (l) storage tank incl. liquefaction | 2020 | investment | 161.93 | EUR/MWh_NH3 | Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58. | |
155 | NH3 (l) storage tank incl. liquefaction | 2020 | lifetime | 20.0 | years | Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290 | |
156 | NH3 (l) transport ship | 2020 | FOM | 4.0 | %/year | Cihlar et al 2020 based on IEA 2019, Table 3-B | |
157 | NH3 (l) transport ship | 2020 | capacity | 53000.0 | t_NH3 | Cihlar et al 2020 based on IEA 2019, Table 3-B | |
158 | NH3 (l) transport ship | 2020 | investment | 74461941.34 | EUR | Cihlar et al 2020 based on IEA 2019, Table 3-B | |
159 | NH3 (l) transport ship | 2020 | lifetime | 20.0 | years | Guess estimated based on H2 (l) tanker, but more mature technology | |
160 | OCGT | 2020 | FOM | 1.78 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 52 OCGT - Natural gas: Fixed O&M |
161 | OCGT | 2020 | VOM | 4.5 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 52 OCGT - Natural gas: Variable O&M |
162 | OCGT | 2020 | efficiency | 0.4 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 52 OCGT - Natural gas: Electricity efficiency, annual average |
163 | OCGT | 2020 | investment | 453.96 | EUR/kW | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 52 OCGT - Natural gas: Specific investment |
164 | OCGT | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 52 OCGT - Natural gas: Technical lifetime |
165 | PHS | 2020 | FOM | 1.0 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
166 | PHS | 2020 | efficiency | 0.75 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
167 | PHS | 2020 | investment | 2208.16 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
168 | PHS | 2020 | lifetime | 80.0 | years | IEA2010 | from old pypsa cost assumptions |
169 | SMR | 2020 | FOM | 5.0 | %/year | Danish Energy Agency | Technology data for renewable fuels, in pdf on table 3 p.311 |
170 | SMR | 2020 | efficiency | 0.76 | per unit (in LHV) | IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 | |
171 | SMR | 2020 | investment | 493470.4 | EUR/MW_CH4 | Danish Energy Agency | Technology data for renewable fuels, in pdf on table 3 p.311 |
172 | SMR | 2020 | lifetime | 30.0 | years | IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 | |
173 | SMR CC | 2020 | FOM | 5.0 | %/year | Danish Energy Agency | Technology data for renewable fuels, in pdf on table 3 p.311 |
174 | SMR CC | 2020 | capture_rate | 0.9 | EUR/MW_CH4 | IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 | wide range: capture rates betwen 54%-90% |
175 | SMR CC | 2020 | efficiency | 0.69 | per unit (in LHV) | IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 | |
176 | SMR CC | 2020 | investment | 572425.66 | EUR/MW_CH4 | Danish Energy Agency | Technology data for renewable fuels, in pdf on table 3 p.311 |
177 | SMR CC | 2020 | lifetime | 30.0 | years | IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 | |
178 | Steam methane reforming | 2020 | FOM | 3.0 | %/year | International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15. | |
179 | Steam methane reforming | 2020 | investment | 470085.47 | EUR/MW_H2 | International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15. | |
180 | Steam methane reforming | 2020 | lifetime | 30.0 | years | International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15. | |
181 | air separation unit | 2020 | FOM | 3.0 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Fixed O&M |
182 | air separation unit | 2020 | investment | 891679.11 | EUR/t_N2/h | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Specific investment |
183 | air separation unit | 2020 | lifetime | 30.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Technical lifetime |
184 | battery inverter | 2020 | FOM | 0.2 | %/year | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Fixed O&M |
185 | battery inverter | 2020 | efficiency | 0.95 | per unit | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Round trip efficiency DC |
186 | battery inverter | 2020 | investment | 270.0 | EUR/kW | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Output capacity expansion cost investment |
187 | battery inverter | 2020 | lifetime | 10.0 | years | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K. | : Technical lifetime |
188 | battery storage | 2020 | investment | 232.0 | EUR/kWh | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Energy storage expansion cost investment |
189 | battery storage | 2020 | lifetime | 20.0 | years | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Technical lifetime |
190 | biogas | 2020 | CO2 stored | 0.09 | tCO2/MWh_th | Stoichiometric calculation | |
191 | biogas | 2020 | FOM | 11.38 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 81 Biogas Plant, Basic conf.: Total O&M |
192 | biogas | 2020 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
193 | biogas | 2020 | efficiency | 1.0 | per unit | Assuming input biomass is already given in biogas output | |
194 | biogas | 2020 | fuel | 59.0 | EUR/MWhth | JRC and Zappa | from old pypsa cost assumptions |
195 | biogas | 2020 | investment | 1710.69 | EUR/kW | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 81 Biogas Plant, Basic conf.: Specific investment |
196 | biogas | 2020 | lifetime | 20.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 81 Biogas Plant, Basic conf.: Technical lifetime |
197 | biogas plus hydrogen | 2020 | FOM | 4.0 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 99 SNG from methan. of biogas: Fixed O&M |
198 | biogas plus hydrogen | 2020 | investment | 907.2 | EUR/kW_CH4 | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 99 SNG from methan. of biogas: Specific investment |
199 | biogas plus hydrogen | 2020 | lifetime | 25.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 99 SNG from methan. of biogas: Technical lifetime |
200 | biogas upgrading | 2020 | FOM | 2.51 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 82 Biogas, upgrading: Fixed O&M |
201 | biogas upgrading | 2020 | VOM | 3.69 | EUR/MWh input | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 82 Biogas, upgrading: Variable O&M |
202 | biogas upgrading | 2020 | investment | 423.0 | EUR/kW input | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 82 Biogas, upgrading: investment (upgrading, methane redution and grid injection) |
203 | biogas upgrading | 2020 | lifetime | 15.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 82 Biogas, upgrading: Technical lifetime |
204 | biomass | 2020 | FOM | 4.53 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
205 | biomass | 2020 | efficiency | 0.47 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
206 | biomass | 2020 | fuel | 7.0 | EUR/MWhth | IEA2011b | from old pypsa cost assumptions |
207 | biomass | 2020 | investment | 2209.0 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
208 | biomass | 2020 | lifetime | 30.0 | years | ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
209 | biomass CHP | 2020 | FOM | 3.61 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Fixed O&M |
210 | biomass CHP | 2020 | VOM | 2.11 | EUR/MWh_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Variable O&M |
211 | biomass CHP | 2020 | c_b | 0.45 | 40°C/80°C | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Cb coefficient |
212 | biomass CHP | 2020 | c_v | 1.0 | 40°C/80°C | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Cv coefficient |
213 | biomass CHP | 2020 | efficiency | 0.3 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Electricity efficiency, net, annual average |
214 | biomass CHP | 2020 | efficiency-heat | 0.71 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Heat efficiency, net, annual average |
215 | biomass CHP | 2020 | investment | 3381.27 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Nominal investment |
216 | biomass CHP | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Technical lifetime |
217 | biomass CHP capture | 2020 | FOM | 3.0 | %/year | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
218 | biomass CHP capture | 2020 | capture_rate | 0.9 | per unit | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
219 | biomass CHP capture | 2020 | compression-electricity-input | 0.1 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
220 | biomass CHP capture | 2020 | compression-heat-output | 0.16 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
221 | biomass CHP capture | 2020 | electricity-input | 0.03 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
222 | biomass CHP capture | 2020 | heat-input | 0.83 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
223 | biomass CHP capture | 2020 | heat-output | 0.83 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
224 | biomass CHP capture | 2020 | investment | 3300000.0 | EUR/(tCO2/h) | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
225 | biomass CHP capture | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
226 | biomass EOP | 2020 | FOM | 3.61 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Fixed O&M |
227 | biomass EOP | 2020 | VOM | 2.11 | EUR/MWh_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Variable O&M |
228 | biomass EOP | 2020 | c_b | 0.45 | 40°C/80°C | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Cb coefficient |
229 | biomass EOP | 2020 | c_v | 1.0 | 40°C/80°C | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Cv coefficient |
230 | biomass EOP | 2020 | efficiency | 0.3 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Electricity efficiency, net, annual average |
231 | biomass EOP | 2020 | efficiency-heat | 0.71 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Heat efficiency, net, annual average |
232 | biomass EOP | 2020 | investment | 3381.27 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Nominal investment |
233 | biomass EOP | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Technical lifetime |
234 | biomass HOP | 2020 | FOM | 5.8 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw HOP: Fixed O&M, heat output |
235 | biomass HOP | 2020 | VOM | 2.11 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw HOP: Variable O&M heat output |
236 | biomass HOP | 2020 | efficiency | 1.03 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw HOP: Total efficiency , net, annual average |
237 | biomass HOP | 2020 | investment | 875.42 | EUR/kW_th - heat output | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw HOP: Nominal investment |
238 | biomass HOP | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw HOP: Technical lifetime |
239 | biomass boiler | 2020 | FOM | 7.39 | %/year | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 204 Biomass boiler, automatic: Fixed O&M |
240 | biomass boiler | 2020 | efficiency | 0.82 | per unit | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 204 Biomass boiler, automatic: Heat efficiency, annual average, net |
241 | biomass boiler | 2020 | investment | 682.67 | EUR/kW_th | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 204 Biomass boiler, automatic: Specific investment |
242 | biomass boiler | 2020 | lifetime | 20.0 | years | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 204 Biomass boiler, automatic: Technical lifetime |
243 | cement capture | 2020 | FOM | 3.0 | %/year | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
244 | cement capture | 2020 | capture_rate | 0.9 | per unit | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
245 | cement capture | 2020 | compression-electricity-input | 0.1 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
246 | cement capture | 2020 | compression-heat-output | 0.16 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
247 | cement capture | 2020 | electricity-input | 0.02 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
248 | cement capture | 2020 | heat-input | 0.83 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
249 | cement capture | 2020 | heat-output | 1.65 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
250 | cement capture | 2020 | investment | 3000000.0 | EUR/(tCO2/h) | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
251 | cement capture | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
252 | central air-sourced heat pump | 2020 | FOM | 0.21 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Comp. hp, airsource 3 MW: Fixed O&M |
253 | central air-sourced heat pump | 2020 | VOM | 2.19 | EUR/MWh_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Comp. hp, airsource 3 MW: Variable O&M |
254 | central air-sourced heat pump | 2020 | efficiency | 3.4 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average |
255 | central air-sourced heat pump | 2020 | investment | 951.39 | EUR/kW_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Comp. hp, airsource 3 MW: Specific investment |
256 | central air-sourced heat pump | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Comp. hp, airsource 3 MW: Technical lifetime |
257 | central coal CHP | 2020 | FOM | 1.63 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Fixed O&M |
258 | central coal CHP | 2020 | VOM | 2.9 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Variable O&M |
259 | central coal CHP | 2020 | c_b | 0.84 | 50oC/100oC | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Cb coefficient |
260 | central coal CHP | 2020 | c_v | 0.15 | 50oC/100oC | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Cv coefficient |
261 | central coal CHP | 2020 | efficiency | 0.48 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Electricity efficiency, condensation mode, net |
262 | central coal CHP | 2020 | investment | 1900.0 | EUR/kW | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Nominal investment |
263 | central coal CHP | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Technical lifetime |
264 | central gas CHP | 2020 | FOM | 3.31 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 04 Gas turb. simple cycle, L: Fixed O&M |
265 | central gas CHP | 2020 | VOM | 4.4 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 04 Gas turb. simple cycle, L: Variable O&M |
266 | central gas CHP | 2020 | c_b | 0.96 | 50oC/100oC | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 04 Gas turb. simple cycle, L: Cb coefficient |
267 | central gas CHP | 2020 | c_v | 0.17 | per unit | DEA (loss of fuel for additional heat) | from old pypsa cost assumptions |
268 | central gas CHP | 2020 | efficiency | 0.4 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 04 Gas turb. simple cycle, L: Electricity efficiency, annual average |
269 | central gas CHP | 2020 | investment | 590.0 | EUR/kW | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 04 Gas turb. simple cycle, L: Nominal investment |
270 | central gas CHP | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 04 Gas turb. simple cycle, L: Technical lifetime |
271 | central gas CHP | 2020 | p_nom_ratio | 1.0 | per unit | from old pypsa cost assumptions | |
272 | central gas boiler | 2020 | FOM | 3.25 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 44 Natural Gas DH Only: Fixed O&M |
273 | central gas boiler | 2020 | VOM | 1.1 | EUR/MWh_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 44 Natural Gas DH Only: Variable O&M |
274 | central gas boiler | 2020 | efficiency | 1.03 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 44 Natural Gas DH Only: Total efficiency , net, annual average |
275 | central gas boiler | 2020 | investment | 60.0 | EUR/kW_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 44 Natural Gas DH Only: Nominal investment |
276 | central gas boiler | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 44 Natural Gas DH Only: Technical lifetime |
277 | central ground-sourced heat pump | 2020 | FOM | 0.35 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Absorption heat pump, DH: Fixed O&M |
278 | central ground-sourced heat pump | 2020 | VOM | 0.98 | EUR/MWh_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Absorption heat pump, DH: Variable O&M |
279 | central ground-sourced heat pump | 2020 | efficiency | 1.71 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Absorption heat pump, DH: Total efficiency , net, annual average |
280 | central ground-sourced heat pump | 2020 | investment | 564.0 | EUR/kW_th excluding drive energy | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Absorption heat pump, DH: Nominal investment |
281 | central ground-sourced heat pump | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Absorption heat pump, DH: Technical lifetime |
282 | central resistive heater | 2020 | FOM | 1.53 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 41 Electric Boilers: Fixed O&M |
283 | central resistive heater | 2020 | VOM | 0.9 | EUR/MWh_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 41 Electric Boilers: Variable O&M |
284 | central resistive heater | 2020 | efficiency | 0.99 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 41 Electric Boilers: Total efficiency , net, annual average |
285 | central resistive heater | 2020 | investment | 70.0 | EUR/kW_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW |
286 | central resistive heater | 2020 | lifetime | 20.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 41 Electric Boilers: Technical lifetime |
287 | central solar thermal | 2020 | FOM | 1.4 | %/year | HP | from old pypsa cost assumptions |
288 | central solar thermal | 2020 | investment | 140000.0 | EUR/1000m2 | HP | from old pypsa cost assumptions |
289 | central solar thermal | 2020 | lifetime | 20.0 | years | HP | from old pypsa cost assumptions |
290 | central solid biomass CHP | 2020 | FOM | 2.89 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Fixed O&M |
291 | central solid biomass CHP | 2020 | VOM | 4.6 | EUR/MWh_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Variable O&M |
292 | central solid biomass CHP | 2020 | c_b | 0.35 | 50°C/100°C | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Cb coefficient |
293 | central solid biomass CHP | 2020 | c_v | 1.0 | 50°C/100°C | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Cv coefficient |
294 | central solid biomass CHP | 2020 | efficiency | 0.27 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average |
295 | central solid biomass CHP | 2020 | efficiency-heat | 0.83 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average |
296 | central solid biomass CHP | 2020 | investment | 3534.65 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Nominal investment |
297 | central solid biomass CHP | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Technical lifetime |
298 | central solid biomass CHP | 2020 | p_nom_ratio | 1.0 | per unit | from old pypsa cost assumptions | |
299 | central water tank storage | 2020 | FOM | 0.52 | %/year | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 140 PTES seasonal: Fixed O&M |
300 | central water tank storage | 2020 | investment | 0.58 | EUR/kWhCapacity | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 140 PTES seasonal: Specific investment |
301 | central water tank storage | 2020 | lifetime | 20.0 | years | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 140 PTES seasonal: Technical lifetime |
302 | clean water tank storage | 2020 | FOM | 2.0 | %/year | Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1. | |
303 | clean water tank storage | 2020 | investment | 67.63 | EUR/m^3-H2O | Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1. | |
304 | clean water tank storage | 2020 | lifetime | 30.0 | years | Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1. | |
305 | coal | 2020 | CO2 intensity | 0.34 | tCO2/MWh_th | Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018 | |
306 | coal | 2020 | FOM | 1.6 | %/year | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
307 | coal | 2020 | VOM | 3.5 | EUR/MWh_e | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
308 | coal | 2020 | efficiency | 0.33 | per unit | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
309 | coal | 2020 | fuel | 8.15 | EUR/MWh_th | BP 2019 | |
310 | coal | 2020 | investment | 3845.51 | EUR/kW_e | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
311 | coal | 2020 | lifetime | 40.0 | years | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
312 | csp-tower | 2020 | FOM | 1.0 | %/year | ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) | |
313 | csp-tower | 2020 | investment | 144.88 | EUR/kW_th,dp | ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/). | |
314 | csp-tower | 2020 | lifetime | 30.0 | years | ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) | |
315 | csp-tower TES | 2020 | FOM | 1.0 | %/year | see solar-tower. | |
316 | csp-tower TES | 2020 | investment | 19.41 | EUR/kWh_th | ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/). | |
317 | csp-tower TES | 2020 | lifetime | 30.0 | years | see solar-tower. | |
318 | csp-tower power block | 2020 | FOM | 1.0 | %/year | see solar-tower. | |
319 | csp-tower power block | 2020 | investment | 1014.93 | EUR/kW_e | ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/). | |
320 | csp-tower power block | 2020 | lifetime | 30.0 | years | see solar-tower. | |
321 | decentral CHP | 2020 | FOM | 3.0 | %/year | HP | from old pypsa cost assumptions |
322 | decentral CHP | 2020 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
323 | decentral CHP | 2020 | investment | 1400.0 | EUR/kWel | HP | from old pypsa cost assumptions |
324 | decentral CHP | 2020 | lifetime | 25.0 | years | HP | from old pypsa cost assumptions |
325 | decentral air-sourced heat pump | 2020 | FOM | 2.96 | %/year | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.3 Air to water existing: Fixed O&M |
326 | decentral air-sourced heat pump | 2020 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
327 | decentral air-sourced heat pump | 2020 | efficiency | 3.4 | per unit | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house |
328 | decentral air-sourced heat pump | 2020 | investment | 940.0 | EUR/kW_th | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.3 Air to water existing: Specific investment |
329 | decentral air-sourced heat pump | 2020 | lifetime | 18.0 | years | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.3 Air to water existing: Technical lifetime |
330 | decentral gas boiler | 2020 | FOM | 6.56 | %/year | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 202 Natural gas boiler: Fixed O&M |
331 | decentral gas boiler | 2020 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
332 | decentral gas boiler | 2020 | efficiency | 0.97 | per unit | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 202 Natural gas boiler: Total efficiency, annual average, net |
333 | decentral gas boiler | 2020 | investment | 312.08 | EUR/kW_th | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 202 Natural gas boiler: Specific investment |
334 | decentral gas boiler | 2020 | lifetime | 20.0 | years | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 202 Natural gas boiler: Technical lifetime |
335 | decentral gas boiler connection | 2020 | investment | 195.05 | EUR/kW_th | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | : Possible additional specific investment |
336 | decentral gas boiler connection | 2020 | lifetime | 50.0 | years | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | : Technical lifetime |
337 | decentral ground-sourced heat pump | 2020 | FOM | 1.85 | %/year | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.7 Ground source existing: Fixed O&M |
338 | decentral ground-sourced heat pump | 2020 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
339 | decentral ground-sourced heat pump | 2020 | efficiency | 3.8 | per unit | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house |
340 | decentral ground-sourced heat pump | 2020 | investment | 1500.0 | EUR/kW_th | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.7 Ground source existing: Specific investment |
341 | decentral ground-sourced heat pump | 2020 | lifetime | 20.0 | years | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.7 Ground source existing: Technical lifetime |
342 | decentral oil boiler | 2020 | FOM | 2.0 | %/year | Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) | from old pypsa cost assumptions |
343 | decentral oil boiler | 2020 | efficiency | 0.9 | per unit | Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) | from old pypsa cost assumptions |
344 | decentral oil boiler | 2020 | investment | 156.01 | EUR/kWth | Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung) | from old pypsa cost assumptions |
345 | decentral oil boiler | 2020 | lifetime | 20.0 | years | Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) | from old pypsa cost assumptions |
346 | decentral resistive heater | 2020 | FOM | 2.0 | %/year | Schaber thesis | from old pypsa cost assumptions |
347 | decentral resistive heater | 2020 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
348 | decentral resistive heater | 2020 | efficiency | 0.9 | per unit | Schaber thesis | from old pypsa cost assumptions |
349 | decentral resistive heater | 2020 | investment | 100.0 | EUR/kWhth | Schaber thesis | from old pypsa cost assumptions |
350 | decentral resistive heater | 2020 | lifetime | 20.0 | years | Schaber thesis | from old pypsa cost assumptions |
351 | decentral solar thermal | 2020 | FOM | 1.3 | %/year | HP | from old pypsa cost assumptions |
352 | decentral solar thermal | 2020 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
353 | decentral solar thermal | 2020 | investment | 270000.0 | EUR/1000m2 | HP | from old pypsa cost assumptions |
354 | decentral solar thermal | 2020 | lifetime | 20.0 | years | HP | from old pypsa cost assumptions |
355 | decentral water tank storage | 2020 | FOM | 1.0 | %/year | HP | from old pypsa cost assumptions |
356 | decentral water tank storage | 2020 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
357 | decentral water tank storage | 2020 | investment | 18.38 | EUR/kWh | IWES Interaktion | from old pypsa cost assumptions |
358 | decentral water tank storage | 2020 | lifetime | 20.0 | years | HP | from old pypsa cost assumptions |
359 | digestible biomass | 2020 | fuel | 15.0 | EUR/MWh_th | JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040 | |
360 | digestible biomass to hydrogen | 2020 | FOM | 4.25 | %/year | Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014 | |
361 | digestible biomass to hydrogen | 2020 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
362 | digestible biomass to hydrogen | 2020 | efficiency | 0.39 | per unit | Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014 | |
363 | digestible biomass to hydrogen | 2020 | investment | 2500.0 | EUR/kW_th | Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014 | |
364 | direct air capture | 2020 | FOM | 4.95 | %/year | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
365 | direct air capture | 2020 | compression-electricity-input | 0.15 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
366 | direct air capture | 2020 | compression-heat-output | 0.2 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
367 | direct air capture | 2020 | electricity-input | 0.35 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
368 | direct air capture | 2020 | heat-input | 2.5 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
369 | direct air capture | 2020 | heat-output | 1.25 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
370 | direct air capture | 2020 | investment | 7000000.0 | EUR/(tCO2/h) | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
371 | direct air capture | 2020 | lifetime | 20.0 | years | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
372 | electric boiler steam | 2020 | FOM | 1.34 | %/year | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 310.1 Electric boiler steam : Fixed O&M |
373 | electric boiler steam | 2020 | VOM | 0.86 | EUR/MWh | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 310.1 Electric boiler steam : Variable O&M |
374 | electric boiler steam | 2020 | efficiency | 0.99 | per unit | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 310.1 Electric boiler steam : Total efficiency, net, annual average |
375 | electric boiler steam | 2020 | investment | 80.0 | EUR/kW | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 310.1 Electric boiler steam : Nominal investment |
376 | electric boiler steam | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 310.1 Electric boiler steam : Technical lifetime |
377 | electricity distribution grid | 2020 | FOM | 2.0 | %/year | TODO | from old pypsa cost assumptions |
378 | electricity distribution grid | 2020 | investment | 500.0 | EUR/kW | TODO | from old pypsa cost assumptions |
379 | electricity distribution grid | 2020 | lifetime | 40.0 | years | TODO | from old pypsa cost assumptions |
380 | electricity grid connection | 2020 | FOM | 2.0 | %/year | TODO | from old pypsa cost assumptions |
381 | electricity grid connection | 2020 | investment | 140.0 | EUR/kW | DEA | from old pypsa cost assumptions |
382 | electricity grid connection | 2020 | lifetime | 40.0 | years | TODO | from old pypsa cost assumptions |
383 | electrolysis | 2020 | FOM | 2.0 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 86 AEC 100MW: Fixed O&M |
384 | electrolysis | 2020 | efficiency | 0.66 | per unit | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 86 AEC 100MW: Hydrogen |
385 | electrolysis | 2020 | investment | 650.0 | EUR/kW_e | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 86 AEC 100MW: Specific investment |
386 | electrolysis | 2020 | lifetime | 25.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 86 AEC 100MW: Technical lifetime |
387 | fuel cell | 2020 | FOM | 5.0 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 12 LT-PEMFC CHP: Fixed O&M |
388 | fuel cell | 2020 | c_b | 1.25 | 50oC/100oC | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 12 LT-PEMFC CHP: Cb coefficient |
389 | fuel cell | 2020 | efficiency | 0.5 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 12 LT-PEMFC CHP: Electricity efficiency, annual average |
390 | fuel cell | 2020 | investment | 1300.0 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 12 LT-PEMFC CHP: Nominal investment |
391 | fuel cell | 2020 | lifetime | 10.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 12 LT-PEMFC CHP: Technical lifetime |
392 | gas | 2020 | CO2 intensity | 0.2 | tCO2/MWh_th | Stoichiometric calculation with 50 GJ/t CH4 | |
393 | gas | 2020 | fuel | 20.1 | EUR/MWh_th | BP 2019 | |
394 | gas boiler steam | 2020 | FOM | 3.67 | %/year | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1c Steam boiler Gas: Fixed O&M |
395 | gas boiler steam | 2020 | VOM | 1.1 | EUR/MWh | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1c Steam boiler Gas: Variable O&M |
396 | gas boiler steam | 2020 | efficiency | 0.92 | per unit | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1c Steam boiler Gas: Total efficiency, net, annual average |
397 | gas boiler steam | 2020 | investment | 54.55 | EUR/kW | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1c Steam boiler Gas: Nominal investment |
398 | gas boiler steam | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1c Steam boiler Gas: Technical lifetime |
399 | gas storage | 2020 | FOM | 3.59 | % | Danish Energy Agency | 150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted) |
400 | gas storage | 2020 | investment | 0.03 | EUR/kWh | Danish Energy Agency | 150 Underground Storage of Gas, Establishment of one cavern (units converted) |
401 | gas storage | 2020 | lifetime | 100.0 | years | TODO no source | estimation: most underground storage are already build, they do have a long lifetime |
402 | gas storage charger | 2020 | investment | 14.34 | EUR/kW | Danish Energy Agency | 150 Underground Storage of Gas, Process equipment (units converted) |
403 | gas storage discharger | 2020 | investment | 4.78 | EUR/kW | Danish Energy Agency | 150 Underground Storage of Gas, Process equipment (units converted) |
404 | geothermal | 2020 | CO2 intensity | 0.03 | tCO2/MWhth | https://www.eia.gov/environment/emissions/co2_vol_mass.php | from old pypsa cost assumptions |
405 | geothermal | 2020 | FOM | 2.36 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
406 | geothermal | 2020 | efficiency | 0.24 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
407 | geothermal | 2020 | investment | 3392.0 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
408 | geothermal | 2020 | lifetime | 40.0 | years | IEA2010 | from old pypsa cost assumptions |
409 | helmeth | 2020 | FOM | 3.0 | %/year | no source | from old pypsa cost assumptions |
410 | helmeth | 2020 | efficiency | 0.8 | per unit | HELMETH press release | from old pypsa cost assumptions |
411 | helmeth | 2020 | investment | 2000.0 | EUR/kW | no source | from old pypsa cost assumptions |
412 | helmeth | 2020 | lifetime | 25.0 | years | no source | from old pypsa cost assumptions |
413 | home battery inverter | 2020 | FOM | 0.2 | %/year | Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Fixed O&M |
414 | home battery inverter | 2020 | efficiency | 0.95 | per unit | Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Round trip efficiency DC |
415 | home battery inverter | 2020 | investment | 377.0 | EUR/kW | Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Output capacity expansion cost investment |
416 | home battery inverter | 2020 | lifetime | 10.0 | years | Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K. | : Technical lifetime |
417 | home battery storage | 2020 | investment | 323.53 | EUR/kWh | Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Energy storage expansion cost investment |
418 | home battery storage | 2020 | lifetime | 20.0 | years | Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Technical lifetime |
419 | hydro | 2020 | FOM | 1.0 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
420 | hydro | 2020 | efficiency | 0.9 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
421 | hydro | 2020 | investment | 2208.16 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
422 | hydro | 2020 | lifetime | 80.0 | years | IEA2010 | from old pypsa cost assumptions |
423 | hydrogen storage | 2020 | investment | 11.2 | USD/kWh | budischak2013 | from old pypsa cost assumptions |
424 | hydrogen storage | 2020 | lifetime | 20.0 | years | budischak2013 | from old pypsa cost assumptions |
425 | hydrogen storage tank incl. compressor | 2020 | FOM | 1.05 | %/year | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151a Hydrogen Storage - Tanks: Fixed O&M |
426 | hydrogen storage tank incl. compressor | 2020 | investment | 57.0 | EUR/kWh | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151a Hydrogen Storage - Tanks: Specific investment |
427 | hydrogen storage tank incl. compressor | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151a Hydrogen Storage - Tanks: Technical lifetime |
428 | hydrogen storage underground | 2020 | FOM | 0.0 | %/year | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151c Hydrogen Storage - Caverns: Fixed O&M |
429 | hydrogen storage underground | 2020 | VOM | 0.0 | EUR/MWh | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151c Hydrogen Storage - Caverns: Variable O&M |
430 | hydrogen storage underground | 2020 | investment | 3.0 | EUR/kWh | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151c Hydrogen Storage - Caverns: Specific investment |
431 | hydrogen storage underground | 2020 | lifetime | 100.0 | years | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151c Hydrogen Storage - Caverns: Technical lifetime |
432 | industrial heat pump high temperature | 2020 | FOM | 0.09 | %/year | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.b High temp. hp Up to 150: Fixed O&M |
433 | industrial heat pump high temperature | 2020 | VOM | 3.26 | EUR/MWh | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.b High temp. hp Up to 150: Variable O&M |
434 | industrial heat pump high temperature | 2020 | efficiency | 2.95 | per unit | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.b High temp. hp Up to 150: Total efficiency, net, annual average |
435 | industrial heat pump high temperature | 2020 | investment | 1045.44 | EUR/kW | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.b High temp. hp Up to 150: Nominal investment |
436 | industrial heat pump high temperature | 2020 | lifetime | 20.0 | years | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.b High temp. hp Up to 150: Technical lifetime |
437 | industrial heat pump medium temperature | 2020 | FOM | 0.11 | %/year | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.a High temp. hp Up to 125 C: Fixed O&M |
438 | industrial heat pump medium temperature | 2020 | VOM | 3.26 | EUR/MWh | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.a High temp. hp Up to 125 C: Variable O&M |
439 | industrial heat pump medium temperature | 2020 | efficiency | 2.55 | per unit | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.a High temp. hp Up to 125 C: Total efficiency, net, annual average |
440 | industrial heat pump medium temperature | 2020 | investment | 871.2 | EUR/kW | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.a High temp. hp Up to 125 C: Nominal investment |
441 | industrial heat pump medium temperature | 2020 | lifetime | 20.0 | years | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.a High temp. hp Up to 125 C: Technical lifetime |
442 | lignite | 2020 | CO2 intensity | 0.41 | tCO2/MWh_th | Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018 | |
443 | lignite | 2020 | FOM | 1.6 | %/year | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
444 | lignite | 2020 | VOM | 3.5 | EUR/MWh_e | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
445 | lignite | 2020 | efficiency | 0.33 | per unit | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
446 | lignite | 2020 | fuel | 2.9 | EUR/MWh_th | DIW | |
447 | lignite | 2020 | investment | 3845.51 | EUR/kW_e | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
448 | lignite | 2020 | lifetime | 40.0 | years | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
449 | methanation | 2020 | FOM | 3.0 | %/year | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1 | |
450 | methanation | 2020 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
451 | methanation | 2020 | efficiency | 0.8 | per unit | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1 | |
452 | methanation | 2020 | investment | 718.95 | EUR/MW_CH4; and EUR/kW_CH4 | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”. | |
453 | methanation | 2020 | lifetime | 20.0 | years | Guesstimate. | |
454 | methane storage tank incl. compressor | 2020 | FOM | 1.9 | %/year | Guesstimate, based on hydrogen storage tank by DEA. | |
455 | methane storage tank incl. compressor | 2020 | investment | 8629.2 | EUR/m^3 | Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10). | |
456 | methane storage tank incl. compressor | 2020 | lifetime | 30.0 | years | Guesstimate, based on hydrogen storage tank by DEA. | |
457 | methanolisation | 2020 | FOM | 3.0 | %/year | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1. | |
458 | methanolisation | 2020 | investment | 757401.0 | EUR/MW_MeOH | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”. | |
459 | methanolisation | 2020 | lifetime | 20.0 | years | Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”. | |
460 | micro CHP | 2020 | FOM | 6.67 | %/year | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 219 LT-PEMFC mCHP - natural gas: Fixed O&M |
461 | micro CHP | 2020 | efficiency | 0.35 | per unit | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net |
462 | micro CHP | 2020 | efficiency-heat | 0.6 | per unit | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net |
463 | micro CHP | 2020 | investment | 10045.31 | EUR/kW_th | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 219 LT-PEMFC mCHP - natural gas: Specific investment |
464 | micro CHP | 2020 | lifetime | 20.0 | years | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 219 LT-PEMFC mCHP - natural gas: Technical lifetime |
465 | nuclear | 2020 | FOM | 1.4 | %/year | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
466 | nuclear | 2020 | VOM | 3.5 | EUR/MWh_e | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
467 | nuclear | 2020 | efficiency | 0.33 | per unit | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
468 | nuclear | 2020 | fuel | 2.6 | EUR/MWh_th | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
469 | nuclear | 2020 | investment | 7940.45 | EUR/kW_e | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
470 | nuclear | 2020 | lifetime | 40.0 | years | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
471 | offwind | 2020 | FOM | 2.51 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020] |
472 | offwind | 2020 | VOM | 0.02 | EUR/MWhel | RES costs made up to fix curtailment order | from old pypsa cost assumptions |
473 | offwind | 2020 | investment | 1804.77 | EUR/kW_e, 2020 | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs |
474 | offwind | 2020 | lifetime | 27.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 21 Offshore turbines: Technical lifetime [years] |
475 | offwind-ac-connection-submarine | 2020 | investment | 2685.0 | EUR/MW/km | DEA https://ens.dk/en/our-services/projections-and-models/technology-data | from old pypsa cost assumptions |
476 | offwind-ac-connection-underground | 2020 | investment | 1342.0 | EUR/MW/km | DEA https://ens.dk/en/our-services/projections-and-models/technology-data | from old pypsa cost assumptions |
477 | offwind-ac-station | 2020 | investment | 250.0 | EUR/kWel | DEA https://ens.dk/en/our-services/projections-and-models/technology-data | from old pypsa cost assumptions |
478 | offwind-dc-connection-submarine | 2020 | investment | 2000.0 | EUR/MW/km | DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf | from old pypsa cost assumptions |
479 | offwind-dc-connection-underground | 2020 | investment | 1000.0 | EUR/MW/km | Haertel 2017; average + 13% learning reduction | from old pypsa cost assumptions |
480 | offwind-dc-station | 2020 | investment | 400.0 | EUR/kWel | Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction | from old pypsa cost assumptions |
481 | oil | 2020 | CO2 intensity | 0.26 | tCO2/MWh_th | Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel | |
482 | oil | 2020 | FOM | 2.57 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 50 Diesel engine farm: Fixed O&M |
483 | oil | 2020 | VOM | 6.0 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 50 Diesel engine farm: Variable O&M |
484 | oil | 2020 | efficiency | 0.35 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 50 Diesel engine farm: Electricity efficiency, annual average |
485 | oil | 2020 | fuel | 50.0 | EUR/MWhth | IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf | from old pypsa cost assumptions |
486 | oil | 2020 | investment | 343.0 | EUR/kW | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 50 Diesel engine farm: Specific investment |
487 | oil | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 50 Diesel engine farm: Technical lifetime |
488 | onwind | 2020 | FOM | 1.25 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 20 Onshore turbines: Fixed O&M |
489 | onwind | 2020 | VOM | 1.5 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 20 Onshore turbines: Variable O&M |
490 | onwind | 2020 | investment | 1118.77 | EUR/kW | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 20 Onshore turbines: Nominal investment |
491 | onwind | 2020 | lifetime | 27.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 20 Onshore turbines: Technical lifetime |
492 | ror | 2020 | FOM | 2.0 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
493 | ror | 2020 | efficiency | 0.9 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
494 | ror | 2020 | investment | 3312.24 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
495 | ror | 2020 | lifetime | 80.0 | years | IEA2010 | from old pypsa cost assumptions |
496 | seawater desalination | 2020 | FOM | 4.0 | %/year | Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1. | |
497 | seawater desalination | 2020 | electricity-input | 3.03 | kWh/m^3-H2O | Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4. | |
498 | seawater desalination | 2020 | investment | 40219.78 | EUR/(m^3-H2O/h) | Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4. | |
499 | seawater desalination | 2020 | lifetime | 30.0 | years | Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1. | |
500 | solar | 2020 | FOM | 1.58 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] |
501 | solar | 2020 | VOM | 0.01 | EUR/MWhel | RES costs made up to fix curtailment order | from old pypsa cost assumptions |
502 | solar | 2020 | investment | 733.47 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] |
503 | solar | 2020 | lifetime | 35.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Technical lifetime [years] |
504 | solar-rooftop | 2020 | FOM | 1.15 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] |
505 | solar-rooftop | 2020 | discount rate | 0.04 | per unit | standard for decentral | from old pypsa cost assumptions |
506 | solar-rooftop | 2020 | investment | 957.47 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] |
507 | solar-rooftop | 2020 | lifetime | 35.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Technical lifetime [years] |
508 | solar-rooftop commercial | 2020 | FOM | 1.22 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] |
509 | solar-rooftop commercial | 2020 | investment | 790.08 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] |
510 | solar-rooftop commercial | 2020 | lifetime | 35.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV commercial: Technical lifetime [years] |
511 | solar-rooftop residential | 2020 | FOM | 1.08 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] |
512 | solar-rooftop residential | 2020 | investment | 1124.86 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] |
513 | solar-rooftop residential | 2020 | lifetime | 35.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Technical lifetime [years] |
514 | solar-utility | 2020 | FOM | 2.01 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] |
515 | solar-utility | 2020 | investment | 509.47 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] |
516 | solar-utility | 2020 | lifetime | 35.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Utility-scale PV: Technical lifetime [years] |
517 | solid biomass | 2020 | CO2 intensity | 0.37 | tCO2/MWh_th | Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass | |
518 | solid biomass | 2020 | fuel | 12.0 | EUR/MWh_th | JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040 | |
519 | solid biomass boiler steam | 2020 | FOM | 5.45 | %/year | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1e Steam boiler Wood: Fixed O&M |
520 | solid biomass boiler steam | 2020 | VOM | 2.78 | EUR/MWh | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1e Steam boiler Wood: Variable O&M |
521 | solid biomass boiler steam | 2020 | efficiency | 0.89 | per unit | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1e Steam boiler Wood: Total efficiency, net, annual average |
522 | solid biomass boiler steam | 2020 | investment | 618.18 | EUR/kW | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1e Steam boiler Wood: Nominal investment |
523 | solid biomass boiler steam | 2020 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1e Steam boiler Wood: Technical lifetime |
524 | solid biomass to hydrogen | 2020 | FOM | 4.25 | %/year | Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014 | |
525 | solid biomass to hydrogen | 2020 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
526 | solid biomass to hydrogen | 2020 | efficiency | 0.56 | per unit | Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014 | |
527 | solid biomass to hydrogen | 2020 | investment | 2500.0 | EUR/kW_th | Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014 | |
528 | uranium | 2020 | fuel | 2.6 | EUR/MWh_th | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
529 | water tank charger | 2020 | efficiency | 0.84 | per unit | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : efficiency from sqr(Round trip efficiency) |
530 | water tank discharger | 2020 | efficiency | 0.84 | per unit | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : efficiency from sqr(Round trip efficiency) |
531 | Ammonia cracker | 2030 | FOM | 4.3 | %/year | Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7. | |
532 | Ammonia cracker | 2030 | investment | 1062107.74 | EUR/MW_H2 | Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6. | |
533 | Ammonia cracker | 2030 | lifetime | 25.0 | years | Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7. | |
534 | BioSNG | 2030 | C in fuel | 0.34 | per unit | Stoichiometric calculation | |
535 | BioSNG | 2030 | C stored | 0.66 | per unit | Stoichiometric calculation | |
536 | BioSNG | 2030 | CO2 stored | 0.24 | tCO2/MWh_th | Stoichiometric calculation | |
537 | BioSNG | 2030 | FOM | 1.64 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 84 Gasif. CFB, Bio-SNG: Fixed O&M |
538 | BioSNG | 2030 | VOM | 1.7 | EUR/MWh_th | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 84 Gasif. CFB, Bio-SNG: Variable O&M |
539 | BioSNG | 2030 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
540 | BioSNG | 2030 | efficiency | 0.63 | per unit | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 84 Gasif. CFB, Bio-SNG: Bio SNG |
541 | BioSNG | 2030 | investment | 1600.0 | EUR/kW_th | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 84 Gasif. CFB, Bio-SNG: Specific investment |
542 | BioSNG | 2030 | lifetime | 25.0 | years | TODO | 84 Gasif. CFB, Bio-SNG: Technical lifetime |
543 | BtL | 2030 | C in fuel | 0.32 | per unit | Stoichiometric calculation | |
544 | BtL | 2030 | C stored | 0.68 | per unit | Stoichiometric calculation | |
545 | BtL | 2030 | CO2 stored | 0.25 | tCO2/MWh_th | Stoichiometric calculation | |
546 | BtL | 2030 | FOM | 2.67 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 85 Gasif. Ent. Flow FT, liq fu : Fixed O&M |
547 | BtL | 2030 | VOM | 1.06 | EUR/MWh_FT | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 85 Gasif. Ent. Flow FT, liq fu : Variable O&M |
548 | BtL | 2030 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
549 | BtL | 2030 | efficiency | 0.45 | per unit | doi:10.1016/j.enpol.2017.05.013 | |
550 | BtL | 2030 | investment | 2000.0 | EUR/kW_th | doi:10.1016/j.enpol.2017.05.013 | 85 Gasif. Ent. Flow FT, liq fu : Specific investment |
551 | BtL | 2030 | lifetime | 25.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 85 Gasif. Ent. Flow FT, liq fu : Technical lifetime |
552 | CCGT | 2030 | FOM | 3.35 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Fixed O&M |
553 | CCGT | 2030 | VOM | 4.2 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Variable O&M |
554 | CCGT | 2030 | c_b | 2.0 | 50oC/100oC | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Cb coefficient |
555 | CCGT | 2030 | c_v | 0.15 | 50oC/100oC | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Cv coefficient |
556 | CCGT | 2030 | efficiency | 0.58 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Electricity efficiency, annual average |
557 | CCGT | 2030 | investment | 830.0 | EUR/kW | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Nominal investment |
558 | CCGT | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 05 Gas turb. CC, steam extract.: Technical lifetime |
559 | CH4 (g) fill compressor station | 2030 | FOM | 1.7 | %/year | Assume same as for H2 (g) fill compressor station. | |
560 | CH4 (g) fill compressor station | 2030 | investment | 1498.95 | EUR/MW_CH4 | Guesstimate, based on H2 (g) pipeline and fill compressor station cost. | |
561 | CH4 (g) fill compressor station | 2030 | lifetime | 20.0 | years | Assume same as for H2 (g) fill compressor station. | |
562 | CH4 (g) pipeline | 2030 | FOM | 1.5 | %/year | Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology). | |
563 | CH4 (g) pipeline | 2030 | investment | 79.0 | EUR/MW/km | Guesstimate. | |
564 | CH4 (g) pipeline | 2030 | lifetime | 50.0 | years | Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology). | |
565 | CH4 (g) submarine pipeline | 2030 | FOM | 3.0 | %/year | d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material. | |
566 | CH4 (g) submarine pipeline | 2030 | investment | 114.89 | EUR/MW/km | Kaiser (2017): 10.1016/j.marpol.2017.05.003 . | |
567 | CH4 (g) submarine pipeline | 2030 | lifetime | 30.0 | years | d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material. | |
568 | CH4 (l) transport ship | 2030 | FOM | 3.5 | %/year | Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
569 | CH4 (l) transport ship | 2030 | capacity | 58300.0 | t_CH4 | Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
570 | CH4 (l) transport ship | 2030 | investment | 151000000.0 | EUR | Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
571 | CH4 (l) transport ship | 2030 | lifetime | 25.0 | years | Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
572 | CH4 evaporation | 2030 | FOM | 3.5 | %/year | Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
573 | CH4 evaporation | 2030 | investment | 87.6 | EUR/kW_CH4 | Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
574 | CH4 evaporation | 2030 | lifetime | 30.0 | years | Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
575 | CH4 liquefaction | 2030 | FOM | 3.5 | %/year | Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
576 | CH4 liquefaction | 2030 | investment | 232.13 | EUR/kW_CH4 | Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
577 | CH4 liquefaction | 2030 | lifetime | 25.0 | years | Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306 | |
578 | CO2 liquefaction | 2030 | FOM | 5.0 | %/year | Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf . | |
579 | CO2 liquefaction | 2030 | investment | 16.03 | EUR/t_CO2/h | Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf . | |
580 | CO2 liquefaction | 2030 | lifetime | 25.0 | years | Guesstimate, based on CH4 liquefaction. | |
581 | CO2 pipeline | 2030 | FOM | 0.9 | %/year | Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline. | |
582 | CO2 pipeline | 2030 | investment | 2000.0 | EUR/(tCO2/h)/km | Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline. | |
583 | CO2 pipeline | 2030 | lifetime | 50.0 | years | Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline. | |
584 | CO2 storage tank | 2030 | FOM | 1.0 | %/year | Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 . | |
585 | CO2 storage tank | 2030 | investment | 2528.17 | EUR/t_CO2 | Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3. | |
586 | CO2 storage tank | 2030 | lifetime | 25.0 | years | Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 . | |
587 | CO2 submarine pipeline | 2030 | FOM | 0.5 | %/year | Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline. | |
588 | CO2 submarine pipeline | 2030 | investment | 4000.0 | EUR/(tCO2/h)/km | Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline. | |
589 | FT fuel transport ship | 2030 | FOM | 5.0 | %/year | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
590 | FT fuel transport ship | 2030 | capacity | 75000.0 | t_FTfuel | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
591 | FT fuel transport ship | 2030 | investment | 31700578.34 | EUR | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
592 | FT fuel transport ship | 2030 | lifetime | 15.0 | years | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
593 | Fischer-Tropsch | 2030 | FOM | 3.0 | %/year | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1. | |
594 | Fischer-Tropsch | 2030 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
595 | Fischer-Tropsch | 2030 | efficiency | 0.8 | per unit | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2. | |
596 | Fischer-Tropsch | 2030 | investment | 650711.26 | EUR/MW_FT | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”. | |
597 | Fischer-Tropsch | 2030 | lifetime | 20.0 | years | Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”. | |
598 | Gasnetz | 2030 | FOM | 2.5 | % | WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg | Gasnetz |
599 | Gasnetz | 2030 | investment | 28.0 | EUR/kWGas | WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg | Gasnetz |
600 | Gasnetz | 2030 | lifetime | 30.0 | years | WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg | Gasnetz |
601 | General liquid hydrocarbon storage (crude) | 2030 | FOM | 6.25 | %/year | Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 . | |
602 | General liquid hydrocarbon storage (crude) | 2030 | investment | 135.83 | EUR/m^3 | Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F . | |
603 | General liquid hydrocarbon storage (crude) | 2030 | lifetime | 30.0 | years | Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11. | |
604 | General liquid hydrocarbon storage (product) | 2030 | FOM | 6.25 | %/year | Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 . | |
605 | General liquid hydrocarbon storage (product) | 2030 | investment | 169.79 | EUR/m^3 | Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F . | |
606 | General liquid hydrocarbon storage (product) | 2030 | lifetime | 30.0 | years | Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11. | |
607 | H2 (g) fill compressor station | 2030 | FOM | 1.7 | %/year | Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5) | |
608 | H2 (g) fill compressor station | 2030 | investment | 4478.0 | EUR/MW_H2 | Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor). | |
609 | H2 (g) fill compressor station | 2030 | lifetime | 20.0 | years | Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor). | |
610 | H2 (g) pipeline | 2030 | FOM | 3.17 | %/year | Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140. | |
611 | H2 (g) pipeline | 2030 | investment | 226.47 | EUR/MW/km | European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf. | |
612 | H2 (g) pipeline | 2030 | lifetime | 50.0 | years | Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140. | |
613 | H2 (g) pipeline repurposed | 2030 | FOM | 3.17 | %/year | Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140. | |
614 | H2 (g) pipeline repurposed | 2030 | investment | 105.88 | EUR/MW/km | European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf. | |
615 | H2 (g) pipeline repurposed | 2030 | lifetime | 50.0 | years | Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140. | |
616 | H2 (g) submarine pipeline | 2030 | FOM | 3.0 | %/year | Assume same as for CH4 (g) submarine pipeline. | |
617 | H2 (g) submarine pipeline | 2030 | investment | 329.37 | EUR/MW/km | Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km). | |
618 | H2 (g) submarine pipeline | 2030 | lifetime | 30.0 | years | Assume same as for CH4 (g) submarine pipeline. | |
619 | H2 (l) storage tank | 2030 | FOM | 2.0 | %/year | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6. | |
620 | H2 (l) storage tank | 2030 | investment | 750.08 | EUR/MWh_H2 | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6. | |
621 | H2 (l) storage tank | 2030 | lifetime | 20.0 | years | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6. | |
622 | H2 (l) transport ship | 2030 | FOM | 4.0 | %/year | Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019. | |
623 | H2 (l) transport ship | 2030 | capacity | 11000.0 | t_H2 | Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019. | |
624 | H2 (l) transport ship | 2030 | investment | 361223561.58 | EUR | Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019. | |
625 | H2 (l) transport ship | 2030 | lifetime | 20.0 | years | Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019. | |
626 | H2 evaporation | 2030 | FOM | 2.5 | %/year | DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf . | |
627 | H2 evaporation | 2030 | investment | 143.64 | EUR/kW_H2 | IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f. | |
628 | H2 evaporation | 2030 | lifetime | 20.0 | years | Guesstimate. | |
629 | H2 liquefaction | 2030 | FOM | 2.5 | %/year | DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf . | |
630 | H2 liquefaction | 2030 | investment | 870.56 | EUR/kW_H2 | IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f. | |
631 | H2 liquefaction | 2030 | lifetime | 20.0 | years | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
632 | H2 pipeline | 2030 | FOM | 3.0 | %/year | TODO | from old pypsa cost assumptions |
633 | H2 pipeline | 2030 | investment | 267.0 | EUR/MW/km | Welder et al https://doi.org/10.1016/j.energy.2018.05.059 | from old pypsa cost assumptions |
634 | H2 pipeline | 2030 | lifetime | 40.0 | years | TODO | from old pypsa cost assumptions |
635 | HVAC overhead | 2030 | FOM | 2.0 | %/year | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
636 | HVAC overhead | 2030 | investment | 432.97 | EUR/MW/km | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
637 | HVAC overhead | 2030 | lifetime | 40.0 | years | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
638 | HVDC inverter pair | 2030 | FOM | 2.0 | %/year | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
639 | HVDC inverter pair | 2030 | investment | 162364.82 | EUR/MW | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
640 | HVDC inverter pair | 2030 | lifetime | 40.0 | years | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
641 | HVDC overhead | 2030 | FOM | 2.0 | %/year | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
642 | HVDC overhead | 2030 | investment | 432.97 | EUR/MW/km | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
643 | HVDC overhead | 2030 | lifetime | 40.0 | years | Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 . | |
644 | HVDC submarine | 2030 | FOM | 0.35 | %/year | Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 . | |
645 | HVDC submarine | 2030 | investment | 471.16 | EUR/MW/km | Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 . | |
646 | HVDC submarine | 2030 | lifetime | 40.0 | years | Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 . | |
647 | Haber-Bosch | 2030 | FOM | 3.0 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Fixed O&M |
648 | Haber-Bosch | 2030 | VOM | 0.02 | EUR/MWh_NH3 | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Variable O&M |
649 | Haber-Bosch | 2030 | investment | 1297.43 | EUR/kW_NH3 | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Specific investment |
650 | Haber-Bosch | 2030 | lifetime | 30.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Technical lifetime |
651 | LNG storage tank | 2030 | FOM | 2.0 | %/year | Guesstimate, based on H2 (l) storage tank with comparable requirements. | |
652 | LNG storage tank | 2030 | investment | 611.59 | EUR/m^3 | Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59). | |
653 | LNG storage tank | 2030 | lifetime | 20.0 | years | Guesstimate, based on H2 (l) storage tank with comparable requirements. | |
654 | LOHC chemical | 2030 | investment | 2264.33 | EUR/t | Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514 | |
655 | LOHC chemical | 2030 | lifetime | 20.0 | years | Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514 | |
656 | LOHC dehydrogenation | 2030 | FOM | 3.0 | %/year | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
657 | LOHC dehydrogenation | 2030 | investment | 50728.03 | EUR/MW_H2 | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
658 | LOHC dehydrogenation | 2030 | lifetime | 20.0 | years | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
659 | LOHC dehydrogenation (small scale) | 2030 | FOM | 3.0 | %/year | Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514 | |
660 | LOHC dehydrogenation (small scale) | 2030 | investment | 759908.15 | EUR/MW_H2 | Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514 | |
661 | LOHC dehydrogenation (small scale) | 2030 | lifetime | 20.0 | years | Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514 | |
662 | LOHC hydrogenation | 2030 | FOM | 3.0 | %/year | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
663 | LOHC hydrogenation | 2030 | investment | 51259.54 | EUR/MW_H2 | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
664 | LOHC hydrogenation | 2030 | lifetime | 20.0 | years | Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9. | |
665 | LOHC loaded DBT storage | 2030 | FOM | 6.25 | %/year | ||
666 | LOHC loaded DBT storage | 2030 | investment | 149.27 | EUR/t | Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11. | |
667 | LOHC loaded DBT storage | 2030 | lifetime | 30.0 | years | ||
668 | LOHC transport ship | 2030 | FOM | 5.0 | %/year | Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 | |
669 | LOHC transport ship | 2030 | capacity | 75000.0 | t_LOHC | Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 | |
670 | LOHC transport ship | 2030 | investment | 31700578.34 | EUR | Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 | |
671 | LOHC transport ship | 2030 | lifetime | 15.0 | years | Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 | |
672 | LOHC unloaded DBT storage | 2030 | FOM | 6.25 | %/year | ||
673 | LOHC unloaded DBT storage | 2030 | investment | 132.26 | EUR/t | Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11. | |
674 | LOHC unloaded DBT storage | 2030 | lifetime | 30.0 | years | ||
675 | MeOH transport ship | 2030 | FOM | 5.0 | %/year | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
676 | MeOH transport ship | 2030 | capacity | 75000.0 | t_MeOH | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
677 | MeOH transport ship | 2030 | investment | 31700578.34 | EUR | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
678 | MeOH transport ship | 2030 | lifetime | 15.0 | years | Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 . | |
679 | Methanol steam reforming | 2030 | FOM | 4.0 | %/year | Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4. | |
680 | Methanol steam reforming | 2030 | investment | 16318.43 | EUR/MW_H2 | Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4. | |
681 | Methanol steam reforming | 2030 | lifetime | 20.0 | years | Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4. | |
682 | NH3 (l) storage tank incl. liquefaction | 2030 | FOM | 2.0 | %/year | Guesstimate, based on H2 (l) storage tank. | |
683 | NH3 (l) storage tank incl. liquefaction | 2030 | investment | 161.93 | EUR/MWh_NH3 | Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58. | |
684 | NH3 (l) storage tank incl. liquefaction | 2030 | lifetime | 20.0 | years | Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290 | |
685 | NH3 (l) transport ship | 2030 | FOM | 4.0 | %/year | Cihlar et al 2020 based on IEA 2019, Table 3-B | |
686 | NH3 (l) transport ship | 2030 | capacity | 53000.0 | t_NH3 | Cihlar et al 2020 based on IEA 2019, Table 3-B | |
687 | NH3 (l) transport ship | 2030 | investment | 74461941.34 | EUR | Cihlar et al 2020 based on IEA 2019, Table 3-B | |
688 | NH3 (l) transport ship | 2030 | lifetime | 20.0 | years | Guess estimated based on H2 (l) tanker, but more mature technology | |
689 | OCGT | 2030 | FOM | 1.78 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 52 OCGT - Natural gas: Fixed O&M |
690 | OCGT | 2030 | VOM | 4.5 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 52 OCGT - Natural gas: Variable O&M |
691 | OCGT | 2030 | efficiency | 0.41 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 52 OCGT - Natural gas: Electricity efficiency, annual average |
692 | OCGT | 2030 | investment | 435.24 | EUR/kW | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 52 OCGT - Natural gas: Specific investment |
693 | OCGT | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 52 OCGT - Natural gas: Technical lifetime |
694 | PHS | 2030 | FOM | 1.0 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
695 | PHS | 2030 | efficiency | 0.75 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
696 | PHS | 2030 | investment | 2208.16 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
697 | PHS | 2030 | lifetime | 80.0 | years | IEA2010 | from old pypsa cost assumptions |
698 | SMR | 2030 | FOM | 5.0 | %/year | Danish Energy Agency | Technology data for renewable fuels, in pdf on table 3 p.311 |
699 | SMR | 2030 | efficiency | 0.76 | per unit (in LHV) | IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 | |
700 | SMR | 2030 | investment | 493470.4 | EUR/MW_CH4 | Danish Energy Agency | Technology data for renewable fuels, in pdf on table 3 p.311 |
701 | SMR | 2030 | lifetime | 30.0 | years | IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 | |
702 | SMR CC | 2030 | FOM | 5.0 | %/year | Danish Energy Agency | Technology data for renewable fuels, in pdf on table 3 p.311 |
703 | SMR CC | 2030 | capture_rate | 0.9 | EUR/MW_CH4 | IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 | wide range: capture rates betwen 54%-90% |
704 | SMR CC | 2030 | efficiency | 0.69 | per unit (in LHV) | IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 | |
705 | SMR CC | 2030 | investment | 572425.66 | EUR/MW_CH4 | Danish Energy Agency | Technology data for renewable fuels, in pdf on table 3 p.311 |
706 | SMR CC | 2030 | lifetime | 30.0 | years | IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 | |
707 | Steam methane reforming | 2030 | FOM | 3.0 | %/year | International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15. | |
708 | Steam methane reforming | 2030 | investment | 470085.47 | EUR/MW_H2 | International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15. | |
709 | Steam methane reforming | 2030 | lifetime | 30.0 | years | International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15. | |
710 | air separation unit | 2030 | FOM | 3.0 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Fixed O&M |
711 | air separation unit | 2030 | investment | 729306.18 | EUR/t_N2/h | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Specific investment |
712 | air separation unit | 2030 | lifetime | 30.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 103 Hydrogen to Ammonia: Technical lifetime |
713 | battery inverter | 2030 | FOM | 0.34 | %/year | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Fixed O&M |
714 | battery inverter | 2030 | efficiency | 0.96 | per unit | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Round trip efficiency DC |
715 | battery inverter | 2030 | investment | 160.0 | EUR/kW | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Output capacity expansion cost investment |
716 | battery inverter | 2030 | lifetime | 10.0 | years | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K. | : Technical lifetime |
717 | battery storage | 2030 | investment | 142.0 | EUR/kWh | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Energy storage expansion cost investment |
718 | battery storage | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Technical lifetime |
719 | biogas | 2030 | CO2 stored | 0.09 | tCO2/MWh_th | Stoichiometric calculation | |
720 | biogas | 2030 | FOM | 12.84 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 81 Biogas Plant, Basic conf.: Total O&M |
721 | biogas | 2030 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
722 | biogas | 2030 | efficiency | 1.0 | per unit | Assuming input biomass is already given in biogas output | |
723 | biogas | 2030 | fuel | 59.0 | EUR/MWhth | JRC and Zappa | from old pypsa cost assumptions |
724 | biogas | 2030 | investment | 1539.62 | EUR/kW | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 81 Biogas Plant, Basic conf.: Specific investment |
725 | biogas | 2030 | lifetime | 20.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 81 Biogas Plant, Basic conf.: Technical lifetime |
726 | biogas plus hydrogen | 2030 | FOM | 4.0 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 99 SNG from methan. of biogas: Fixed O&M |
727 | biogas plus hydrogen | 2030 | investment | 756.0 | EUR/kW_CH4 | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 99 SNG from methan. of biogas: Specific investment |
728 | biogas plus hydrogen | 2030 | lifetime | 25.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 99 SNG from methan. of biogas: Technical lifetime |
729 | biogas upgrading | 2030 | FOM | 2.49 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 82 Biogas, upgrading: Fixed O&M |
730 | biogas upgrading | 2030 | VOM | 3.18 | EUR/MWh input | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 82 Biogas, upgrading: Variable O&M |
731 | biogas upgrading | 2030 | investment | 381.0 | EUR/kW input | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 82 Biogas, upgrading: investment (upgrading, methane redution and grid injection) |
732 | biogas upgrading | 2030 | lifetime | 15.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 82 Biogas, upgrading: Technical lifetime |
733 | biomass | 2030 | FOM | 4.53 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
734 | biomass | 2030 | efficiency | 0.47 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
735 | biomass | 2030 | fuel | 7.0 | EUR/MWhth | IEA2011b | from old pypsa cost assumptions |
736 | biomass | 2030 | investment | 2209.0 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
737 | biomass | 2030 | lifetime | 30.0 | years | ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
738 | biomass CHP | 2030 | FOM | 3.58 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Fixed O&M |
739 | biomass CHP | 2030 | VOM | 2.1 | EUR/MWh_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Variable O&M |
740 | biomass CHP | 2030 | c_b | 0.46 | 40°C/80°C | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Cb coefficient |
741 | biomass CHP | 2030 | c_v | 1.0 | 40°C/80°C | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Cv coefficient |
742 | biomass CHP | 2030 | efficiency | 0.3 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Electricity efficiency, net, annual average |
743 | biomass CHP | 2030 | efficiency-heat | 0.71 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Heat efficiency, net, annual average |
744 | biomass CHP | 2030 | investment | 3210.28 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Nominal investment |
745 | biomass CHP | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Technical lifetime |
746 | biomass CHP capture | 2030 | FOM | 3.0 | %/year | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
747 | biomass CHP capture | 2030 | capture_rate | 0.9 | per unit | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
748 | biomass CHP capture | 2030 | compression-electricity-input | 0.08 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
749 | biomass CHP capture | 2030 | compression-heat-output | 0.14 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
750 | biomass CHP capture | 2030 | electricity-input | 0.02 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
751 | biomass CHP capture | 2030 | heat-input | 0.72 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
752 | biomass CHP capture | 2030 | heat-output | 0.72 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
753 | biomass CHP capture | 2030 | investment | 2700000.0 | EUR/(tCO2/h) | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
754 | biomass CHP capture | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.a Post comb - small CHP |
755 | biomass EOP | 2030 | FOM | 3.58 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Fixed O&M |
756 | biomass EOP | 2030 | VOM | 2.1 | EUR/MWh_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Variable O&M |
757 | biomass EOP | 2030 | c_b | 0.46 | 40°C/80°C | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Cb coefficient |
758 | biomass EOP | 2030 | c_v | 1.0 | 40°C/80°C | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Cv coefficient |
759 | biomass EOP | 2030 | efficiency | 0.3 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Electricity efficiency, net, annual average |
760 | biomass EOP | 2030 | efficiency-heat | 0.71 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Heat efficiency, net, annual average |
761 | biomass EOP | 2030 | investment | 3210.28 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Nominal investment |
762 | biomass EOP | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw, Large, 40 degree: Technical lifetime |
763 | biomass HOP | 2030 | FOM | 5.75 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw HOP: Fixed O&M, heat output |
764 | biomass HOP | 2030 | VOM | 2.78 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw HOP: Variable O&M heat output |
765 | biomass HOP | 2030 | efficiency | 1.03 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw HOP: Total efficiency , net, annual average |
766 | biomass HOP | 2030 | investment | 832.63 | EUR/kW_th - heat output | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw HOP: Nominal investment |
767 | biomass HOP | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09c Straw HOP: Technical lifetime |
768 | biomass boiler | 2030 | FOM | 7.49 | %/year | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 204 Biomass boiler, automatic: Fixed O&M |
769 | biomass boiler | 2030 | efficiency | 0.86 | per unit | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 204 Biomass boiler, automatic: Heat efficiency, annual average, net |
770 | biomass boiler | 2030 | investment | 649.3 | EUR/kW_th | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 204 Biomass boiler, automatic: Specific investment |
771 | biomass boiler | 2030 | lifetime | 20.0 | years | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 204 Biomass boiler, automatic: Technical lifetime |
772 | cement capture | 2030 | FOM | 3.0 | %/year | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
773 | cement capture | 2030 | capture_rate | 0.9 | per unit | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
774 | cement capture | 2030 | compression-electricity-input | 0.08 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
775 | cement capture | 2030 | compression-heat-output | 0.14 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
776 | cement capture | 2030 | electricity-input | 0.02 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
777 | cement capture | 2030 | heat-input | 0.72 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
778 | cement capture | 2030 | heat-output | 1.54 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
779 | cement capture | 2030 | investment | 2600000.0 | EUR/(tCO2/h) | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
780 | cement capture | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 401.c Post comb - Cement kiln |
781 | central air-sourced heat pump | 2030 | FOM | 0.23 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Comp. hp, airsource 3 MW: Fixed O&M |
782 | central air-sourced heat pump | 2030 | VOM | 2.51 | EUR/MWh_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Comp. hp, airsource 3 MW: Variable O&M |
783 | central air-sourced heat pump | 2030 | efficiency | 3.6 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average |
784 | central air-sourced heat pump | 2030 | investment | 856.25 | EUR/kW_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Comp. hp, airsource 3 MW: Specific investment |
785 | central air-sourced heat pump | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Comp. hp, airsource 3 MW: Technical lifetime |
786 | central coal CHP | 2030 | FOM | 1.63 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Fixed O&M |
787 | central coal CHP | 2030 | VOM | 2.84 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Variable O&M |
788 | central coal CHP | 2030 | c_b | 1.01 | 50oC/100oC | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Cb coefficient |
789 | central coal CHP | 2030 | c_v | 0.15 | 50oC/100oC | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Cv coefficient |
790 | central coal CHP | 2030 | efficiency | 0.52 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Electricity efficiency, condensation mode, net |
791 | central coal CHP | 2030 | investment | 1860.47 | EUR/kW | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Nominal investment |
792 | central coal CHP | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 01 Coal CHP: Technical lifetime |
793 | central gas CHP | 2030 | FOM | 3.32 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 04 Gas turb. simple cycle, L: Fixed O&M |
794 | central gas CHP | 2030 | VOM | 4.2 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 04 Gas turb. simple cycle, L: Variable O&M |
795 | central gas CHP | 2030 | c_b | 1.0 | 50oC/100oC | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 04 Gas turb. simple cycle, L: Cb coefficient |
796 | central gas CHP | 2030 | c_v | 0.17 | per unit | DEA (loss of fuel for additional heat) | from old pypsa cost assumptions |
797 | central gas CHP | 2030 | efficiency | 0.41 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 04 Gas turb. simple cycle, L: Electricity efficiency, annual average |
798 | central gas CHP | 2030 | investment | 560.0 | EUR/kW | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 04 Gas turb. simple cycle, L: Nominal investment |
799 | central gas CHP | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 04 Gas turb. simple cycle, L: Technical lifetime |
800 | central gas CHP | 2030 | p_nom_ratio | 1.0 | per unit | from old pypsa cost assumptions | |
801 | central gas boiler | 2030 | FOM | 3.8 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 44 Natural Gas DH Only: Fixed O&M |
802 | central gas boiler | 2030 | VOM | 1.0 | EUR/MWh_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 44 Natural Gas DH Only: Variable O&M |
803 | central gas boiler | 2030 | efficiency | 1.04 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 44 Natural Gas DH Only: Total efficiency , net, annual average |
804 | central gas boiler | 2030 | investment | 50.0 | EUR/kW_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 44 Natural Gas DH Only: Nominal investment |
805 | central gas boiler | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 44 Natural Gas DH Only: Technical lifetime |
806 | central ground-sourced heat pump | 2030 | FOM | 0.39 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Absorption heat pump, DH: Fixed O&M |
807 | central ground-sourced heat pump | 2030 | VOM | 1.25 | EUR/MWh_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Absorption heat pump, DH: Variable O&M |
808 | central ground-sourced heat pump | 2030 | efficiency | 1.73 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Absorption heat pump, DH: Total efficiency , net, annual average |
809 | central ground-sourced heat pump | 2030 | investment | 507.6 | EUR/kW_th excluding drive energy | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Absorption heat pump, DH: Nominal investment |
810 | central ground-sourced heat pump | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 40 Absorption heat pump, DH: Technical lifetime |
811 | central resistive heater | 2030 | FOM | 1.7 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 41 Electric Boilers: Fixed O&M |
812 | central resistive heater | 2030 | VOM | 1.0 | EUR/MWh_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 41 Electric Boilers: Variable O&M |
813 | central resistive heater | 2030 | efficiency | 0.99 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 41 Electric Boilers: Total efficiency , net, annual average |
814 | central resistive heater | 2030 | investment | 60.0 | EUR/kW_th | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW |
815 | central resistive heater | 2030 | lifetime | 20.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 41 Electric Boilers: Technical lifetime |
816 | central solar thermal | 2030 | FOM | 1.4 | %/year | HP | from old pypsa cost assumptions |
817 | central solar thermal | 2030 | investment | 140000.0 | EUR/1000m2 | HP | from old pypsa cost assumptions |
818 | central solar thermal | 2030 | lifetime | 20.0 | years | HP | from old pypsa cost assumptions |
819 | central solid biomass CHP | 2030 | FOM | 2.87 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Fixed O&M |
820 | central solid biomass CHP | 2030 | VOM | 4.58 | EUR/MWh_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Variable O&M |
821 | central solid biomass CHP | 2030 | c_b | 0.35 | 50°C/100°C | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Cb coefficient |
822 | central solid biomass CHP | 2030 | c_v | 1.0 | 50°C/100°C | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Cv coefficient |
823 | central solid biomass CHP | 2030 | efficiency | 0.27 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average |
824 | central solid biomass CHP | 2030 | efficiency-heat | 0.82 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average |
825 | central solid biomass CHP | 2030 | investment | 3349.49 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Nominal investment |
826 | central solid biomass CHP | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 09a Wood Chips, Large 50 degree: Technical lifetime |
827 | central solid biomass CHP | 2030 | p_nom_ratio | 1.0 | per unit | from old pypsa cost assumptions | |
828 | central water tank storage | 2030 | FOM | 0.55 | %/year | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 140 PTES seasonal: Fixed O&M |
829 | central water tank storage | 2030 | investment | 0.54 | EUR/kWhCapacity | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 140 PTES seasonal: Specific investment |
830 | central water tank storage | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 140 PTES seasonal: Technical lifetime |
831 | clean water tank storage | 2030 | FOM | 2.0 | %/year | Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1. | |
832 | clean water tank storage | 2030 | investment | 67.63 | EUR/m^3-H2O | Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1. | |
833 | clean water tank storage | 2030 | lifetime | 30.0 | years | Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1. | |
834 | coal | 2030 | CO2 intensity | 0.34 | tCO2/MWh_th | Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018 | |
835 | coal | 2030 | FOM | 1.6 | %/year | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
836 | coal | 2030 | VOM | 3.5 | EUR/MWh_e | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
837 | coal | 2030 | efficiency | 0.33 | per unit | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
838 | coal | 2030 | fuel | 8.15 | EUR/MWh_th | BP 2019 | |
839 | coal | 2030 | investment | 3845.51 | EUR/kW_e | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
840 | coal | 2030 | lifetime | 40.0 | years | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
841 | csp-tower | 2030 | FOM | 1.1 | %/year | ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) | |
842 | csp-tower | 2030 | investment | 98.15 | EUR/kW_th,dp | ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/). | |
843 | csp-tower | 2030 | lifetime | 30.0 | years | ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) | |
844 | csp-tower TES | 2030 | FOM | 1.1 | %/year | see solar-tower. | |
845 | csp-tower TES | 2030 | investment | 13.15 | EUR/kWh_th | ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/). | |
846 | csp-tower TES | 2030 | lifetime | 30.0 | years | see solar-tower. | |
847 | csp-tower power block | 2030 | FOM | 1.1 | %/year | see solar-tower. | |
848 | csp-tower power block | 2030 | investment | 687.6 | EUR/kW_e | ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/). | |
849 | csp-tower power block | 2030 | lifetime | 30.0 | years | see solar-tower. | |
850 | decentral CHP | 2030 | FOM | 3.0 | %/year | HP | from old pypsa cost assumptions |
851 | decentral CHP | 2030 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
852 | decentral CHP | 2030 | investment | 1400.0 | EUR/kWel | HP | from old pypsa cost assumptions |
853 | decentral CHP | 2030 | lifetime | 25.0 | years | HP | from old pypsa cost assumptions |
854 | decentral air-sourced heat pump | 2030 | FOM | 3.0 | %/year | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.3 Air to water existing: Fixed O&M |
855 | decentral air-sourced heat pump | 2030 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
856 | decentral air-sourced heat pump | 2030 | efficiency | 3.6 | per unit | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house |
857 | decentral air-sourced heat pump | 2030 | investment | 850.0 | EUR/kW_th | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.3 Air to water existing: Specific investment |
858 | decentral air-sourced heat pump | 2030 | lifetime | 18.0 | years | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.3 Air to water existing: Technical lifetime |
859 | decentral gas boiler | 2030 | FOM | 6.69 | %/year | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 202 Natural gas boiler: Fixed O&M |
860 | decentral gas boiler | 2030 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
861 | decentral gas boiler | 2030 | efficiency | 0.98 | per unit | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 202 Natural gas boiler: Total efficiency, annual average, net |
862 | decentral gas boiler | 2030 | investment | 296.82 | EUR/kW_th | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 202 Natural gas boiler: Specific investment |
863 | decentral gas boiler | 2030 | lifetime | 20.0 | years | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 202 Natural gas boiler: Technical lifetime |
864 | decentral gas boiler connection | 2030 | investment | 185.51 | EUR/kW_th | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | : Possible additional specific investment |
865 | decentral gas boiler connection | 2030 | lifetime | 50.0 | years | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | : Technical lifetime |
866 | decentral ground-sourced heat pump | 2030 | FOM | 1.82 | %/year | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.7 Ground source existing: Fixed O&M |
867 | decentral ground-sourced heat pump | 2030 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
868 | decentral ground-sourced heat pump | 2030 | efficiency | 3.9 | per unit | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house |
869 | decentral ground-sourced heat pump | 2030 | investment | 1400.0 | EUR/kW_th | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.7 Ground source existing: Specific investment |
870 | decentral ground-sourced heat pump | 2030 | lifetime | 20.0 | years | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 207.7 Ground source existing: Technical lifetime |
871 | decentral oil boiler | 2030 | FOM | 2.0 | %/year | Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) | from old pypsa cost assumptions |
872 | decentral oil boiler | 2030 | efficiency | 0.9 | per unit | Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) | from old pypsa cost assumptions |
873 | decentral oil boiler | 2030 | investment | 156.01 | EUR/kWth | Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung) | from old pypsa cost assumptions |
874 | decentral oil boiler | 2030 | lifetime | 20.0 | years | Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) | from old pypsa cost assumptions |
875 | decentral resistive heater | 2030 | FOM | 2.0 | %/year | Schaber thesis | from old pypsa cost assumptions |
876 | decentral resistive heater | 2030 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
877 | decentral resistive heater | 2030 | efficiency | 0.9 | per unit | Schaber thesis | from old pypsa cost assumptions |
878 | decentral resistive heater | 2030 | investment | 100.0 | EUR/kWhth | Schaber thesis | from old pypsa cost assumptions |
879 | decentral resistive heater | 2030 | lifetime | 20.0 | years | Schaber thesis | from old pypsa cost assumptions |
880 | decentral solar thermal | 2030 | FOM | 1.3 | %/year | HP | from old pypsa cost assumptions |
881 | decentral solar thermal | 2030 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
882 | decentral solar thermal | 2030 | investment | 270000.0 | EUR/1000m2 | HP | from old pypsa cost assumptions |
883 | decentral solar thermal | 2030 | lifetime | 20.0 | years | HP | from old pypsa cost assumptions |
884 | decentral water tank storage | 2030 | FOM | 1.0 | %/year | HP | from old pypsa cost assumptions |
885 | decentral water tank storage | 2030 | discount rate | 0.04 | per unit | Palzer thesis | from old pypsa cost assumptions |
886 | decentral water tank storage | 2030 | investment | 18.38 | EUR/kWh | IWES Interaktion | from old pypsa cost assumptions |
887 | decentral water tank storage | 2030 | lifetime | 20.0 | years | HP | from old pypsa cost assumptions |
888 | digestible biomass | 2030 | fuel | 15.0 | EUR/MWh_th | JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040 | |
889 | digestible biomass to hydrogen | 2030 | FOM | 4.25 | %/year | Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014 | |
890 | digestible biomass to hydrogen | 2030 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
891 | digestible biomass to hydrogen | 2030 | efficiency | 0.39 | per unit | Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014 | |
892 | digestible biomass to hydrogen | 2030 | investment | 2500.0 | EUR/kW_th | Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014 | |
893 | direct air capture | 2030 | FOM | 4.95 | %/year | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
894 | direct air capture | 2030 | compression-electricity-input | 0.15 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
895 | direct air capture | 2030 | compression-heat-output | 0.2 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
896 | direct air capture | 2030 | electricity-input | 0.32 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
897 | direct air capture | 2030 | heat-input | 2.0 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
898 | direct air capture | 2030 | heat-output | 1.0 | MWh/tCO2 | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
899 | direct air capture | 2030 | investment | 6000000.0 | EUR/(tCO2/h) | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
900 | direct air capture | 2030 | lifetime | 20.0 | years | Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx | 403.a Direct air capture |
901 | electric boiler steam | 2030 | FOM | 1.46 | %/year | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 310.1 Electric boiler steam : Fixed O&M |
902 | electric boiler steam | 2030 | VOM | 0.88 | EUR/MWh | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 310.1 Electric boiler steam : Variable O&M |
903 | electric boiler steam | 2030 | efficiency | 0.99 | per unit | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 310.1 Electric boiler steam : Total efficiency, net, annual average |
904 | electric boiler steam | 2030 | investment | 70.0 | EUR/kW | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 310.1 Electric boiler steam : Nominal investment |
905 | electric boiler steam | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 310.1 Electric boiler steam : Technical lifetime |
906 | electricity distribution grid | 2030 | FOM | 2.0 | %/year | TODO | from old pypsa cost assumptions |
907 | electricity distribution grid | 2030 | investment | 500.0 | EUR/kW | TODO | from old pypsa cost assumptions |
908 | electricity distribution grid | 2030 | lifetime | 40.0 | years | TODO | from old pypsa cost assumptions |
909 | electricity grid connection | 2030 | FOM | 2.0 | %/year | TODO | from old pypsa cost assumptions |
910 | electricity grid connection | 2030 | investment | 140.0 | EUR/kW | DEA | from old pypsa cost assumptions |
911 | electricity grid connection | 2030 | lifetime | 40.0 | years | TODO | from old pypsa cost assumptions |
912 | electrolysis | 2030 | FOM | 2.0 | %/year | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 86 AEC 100MW: Fixed O&M |
913 | electrolysis | 2030 | efficiency | 0.68 | per unit | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 86 AEC 100MW: Hydrogen |
914 | electrolysis | 2030 | investment | 450.0 | EUR/kW_e | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 86 AEC 100MW: Specific investment |
915 | electrolysis | 2030 | lifetime | 30.0 | years | Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx | 86 AEC 100MW: Technical lifetime |
916 | fuel cell | 2030 | FOM | 5.0 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 12 LT-PEMFC CHP: Fixed O&M |
917 | fuel cell | 2030 | c_b | 1.25 | 50oC/100oC | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 12 LT-PEMFC CHP: Cb coefficient |
918 | fuel cell | 2030 | efficiency | 0.5 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 12 LT-PEMFC CHP: Electricity efficiency, annual average |
919 | fuel cell | 2030 | investment | 1100.0 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 12 LT-PEMFC CHP: Nominal investment |
920 | fuel cell | 2030 | lifetime | 10.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 12 LT-PEMFC CHP: Technical lifetime |
921 | gas | 2030 | CO2 intensity | 0.2 | tCO2/MWh_th | Stoichiometric calculation with 50 GJ/t CH4 | |
922 | gas | 2030 | fuel | 20.1 | EUR/MWh_th | BP 2019 | |
923 | gas boiler steam | 2030 | FOM | 4.18 | %/year | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1c Steam boiler Gas: Fixed O&M |
924 | gas boiler steam | 2030 | VOM | 1.0 | EUR/MWh | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1c Steam boiler Gas: Variable O&M |
925 | gas boiler steam | 2030 | efficiency | 0.93 | per unit | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1c Steam boiler Gas: Total efficiency, net, annual average |
926 | gas boiler steam | 2030 | investment | 45.45 | EUR/kW | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1c Steam boiler Gas: Nominal investment |
927 | gas boiler steam | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1c Steam boiler Gas: Technical lifetime |
928 | gas storage | 2030 | FOM | 3.59 | % | Danish Energy Agency | 150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted) |
929 | gas storage | 2030 | investment | 0.03 | EUR/kWh | Danish Energy Agency | 150 Underground Storage of Gas, Establishment of one cavern (units converted) |
930 | gas storage | 2030 | lifetime | 100.0 | years | TODO no source | estimation: most underground storage are already build, they do have a long lifetime |
931 | gas storage charger | 2030 | investment | 14.34 | EUR/kW | Danish Energy Agency | 150 Underground Storage of Gas, Process equipment (units converted) |
932 | gas storage discharger | 2030 | investment | 4.78 | EUR/kW | Danish Energy Agency | 150 Underground Storage of Gas, Process equipment (units converted) |
933 | geothermal | 2030 | CO2 intensity | 0.03 | tCO2/MWhth | https://www.eia.gov/environment/emissions/co2_vol_mass.php | from old pypsa cost assumptions |
934 | geothermal | 2030 | FOM | 2.36 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
935 | geothermal | 2030 | efficiency | 0.24 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
936 | geothermal | 2030 | investment | 3392.0 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
937 | geothermal | 2030 | lifetime | 40.0 | years | IEA2010 | from old pypsa cost assumptions |
938 | helmeth | 2030 | FOM | 3.0 | %/year | no source | from old pypsa cost assumptions |
939 | helmeth | 2030 | efficiency | 0.8 | per unit | HELMETH press release | from old pypsa cost assumptions |
940 | helmeth | 2030 | investment | 2000.0 | EUR/kW | no source | from old pypsa cost assumptions |
941 | helmeth | 2030 | lifetime | 25.0 | years | no source | from old pypsa cost assumptions |
942 | home battery inverter | 2030 | FOM | 0.34 | %/year | Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Fixed O&M |
943 | home battery inverter | 2030 | efficiency | 0.96 | per unit | Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Round trip efficiency DC |
944 | home battery inverter | 2030 | investment | 228.06 | EUR/kW | Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Output capacity expansion cost investment |
945 | home battery inverter | 2030 | lifetime | 10.0 | years | Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K. | : Technical lifetime |
946 | home battery storage | 2030 | investment | 202.9 | EUR/kWh | Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Energy storage expansion cost investment |
947 | home battery storage | 2030 | lifetime | 25.0 | years | Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : Technical lifetime |
948 | hydro | 2030 | FOM | 1.0 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
949 | hydro | 2030 | efficiency | 0.9 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
950 | hydro | 2030 | investment | 2208.16 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
951 | hydro | 2030 | lifetime | 80.0 | years | IEA2010 | from old pypsa cost assumptions |
952 | hydrogen storage | 2030 | investment | 11.2 | USD/kWh | budischak2013 | from old pypsa cost assumptions |
953 | hydrogen storage | 2030 | lifetime | 20.0 | years | budischak2013 | from old pypsa cost assumptions |
954 | hydrogen storage tank incl. compressor | 2030 | FOM | 1.11 | %/year | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151a Hydrogen Storage - Tanks: Fixed O&M |
955 | hydrogen storage tank incl. compressor | 2030 | investment | 44.91 | EUR/kWh | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151a Hydrogen Storage - Tanks: Specific investment |
956 | hydrogen storage tank incl. compressor | 2030 | lifetime | 30.0 | years | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151a Hydrogen Storage - Tanks: Technical lifetime |
957 | hydrogen storage underground | 2030 | FOM | 0.0 | %/year | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151c Hydrogen Storage - Caverns: Fixed O&M |
958 | hydrogen storage underground | 2030 | VOM | 0.0 | EUR/MWh | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151c Hydrogen Storage - Caverns: Variable O&M |
959 | hydrogen storage underground | 2030 | investment | 2.0 | EUR/kWh | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151c Hydrogen Storage - Caverns: Specific investment |
960 | hydrogen storage underground | 2030 | lifetime | 100.0 | years | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | 151c Hydrogen Storage - Caverns: Technical lifetime |
961 | industrial heat pump high temperature | 2030 | FOM | 0.09 | %/year | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.b High temp. hp Up to 150: Fixed O&M |
962 | industrial heat pump high temperature | 2030 | VOM | 3.2 | EUR/MWh | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.b High temp. hp Up to 150: Variable O&M |
963 | industrial heat pump high temperature | 2030 | efficiency | 3.05 | per unit | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.b High temp. hp Up to 150: Total efficiency, net, annual average |
964 | industrial heat pump high temperature | 2030 | investment | 934.56 | EUR/kW | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.b High temp. hp Up to 150: Nominal investment |
965 | industrial heat pump high temperature | 2030 | lifetime | 20.0 | years | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.b High temp. hp Up to 150: Technical lifetime |
966 | industrial heat pump medium temperature | 2030 | FOM | 0.11 | %/year | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.a High temp. hp Up to 125 C: Fixed O&M |
967 | industrial heat pump medium temperature | 2030 | VOM | 3.2 | EUR/MWh | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.a High temp. hp Up to 125 C: Variable O&M |
968 | industrial heat pump medium temperature | 2030 | efficiency | 2.7 | per unit | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.a High temp. hp Up to 125 C: Total efficiency, net, annual average |
969 | industrial heat pump medium temperature | 2030 | investment | 778.8 | EUR/kW | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.a High temp. hp Up to 125 C: Nominal investment |
970 | industrial heat pump medium temperature | 2030 | lifetime | 20.0 | years | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 302.a High temp. hp Up to 125 C: Technical lifetime |
971 | lignite | 2030 | CO2 intensity | 0.41 | tCO2/MWh_th | Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018 | |
972 | lignite | 2030 | FOM | 1.6 | %/year | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
973 | lignite | 2030 | VOM | 3.5 | EUR/MWh_e | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
974 | lignite | 2030 | efficiency | 0.33 | per unit | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
975 | lignite | 2030 | fuel | 2.9 | EUR/MWh_th | DIW | |
976 | lignite | 2030 | investment | 3845.51 | EUR/kW_e | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
977 | lignite | 2030 | lifetime | 40.0 | years | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
978 | methanation | 2030 | FOM | 3.0 | %/year | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1 | |
979 | methanation | 2030 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
980 | methanation | 2030 | efficiency | 0.8 | per unit | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1 | |
981 | methanation | 2030 | investment | 628.6 | EUR/MW_CH4; and EUR/kW_CH4 | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”. | |
982 | methanation | 2030 | lifetime | 20.0 | years | Guesstimate. | |
983 | methane storage tank incl. compressor | 2030 | FOM | 1.9 | %/year | Guesstimate, based on hydrogen storage tank by DEA. | |
984 | methane storage tank incl. compressor | 2030 | investment | 8629.2 | EUR/m^3 | Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10). | |
985 | methane storage tank incl. compressor | 2030 | lifetime | 30.0 | years | Guesstimate, based on hydrogen storage tank by DEA. | |
986 | methanolisation | 2030 | FOM | 3.0 | %/year | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1. | |
987 | methanolisation | 2030 | investment | 650711.26 | EUR/MW_MeOH | Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”. | |
988 | methanolisation | 2030 | lifetime | 20.0 | years | Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”. | |
989 | micro CHP | 2030 | FOM | 6.11 | %/year | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 219 LT-PEMFC mCHP - natural gas: Fixed O&M |
990 | micro CHP | 2030 | efficiency | 0.35 | per unit | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net |
991 | micro CHP | 2030 | efficiency-heat | 0.61 | per unit | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net |
992 | micro CHP | 2030 | investment | 7410.27 | EUR/kW_th | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 219 LT-PEMFC mCHP - natural gas: Specific investment |
993 | micro CHP | 2030 | lifetime | 20.0 | years | Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx | 219 LT-PEMFC mCHP - natural gas: Technical lifetime |
994 | nuclear | 2030 | FOM | 1.4 | %/year | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
995 | nuclear | 2030 | VOM | 3.5 | EUR/MWh_e | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
996 | nuclear | 2030 | efficiency | 0.33 | per unit | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
997 | nuclear | 2030 | fuel | 2.6 | EUR/MWh_th | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
998 | nuclear | 2030 | investment | 7940.45 | EUR/kW_e | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
999 | nuclear | 2030 | lifetime | 40.0 | years | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
1000 | offwind | 2030 | FOM | 2.32 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020] |
1001 | offwind | 2030 | VOM | 0.02 | EUR/MWhel | RES costs made up to fix curtailment order | from old pypsa cost assumptions |
1002 | offwind | 2030 | investment | 1523.55 | EUR/kW_e, 2020 | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs |
1003 | offwind | 2030 | lifetime | 30.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 21 Offshore turbines: Technical lifetime [years] |
1004 | offwind-ac-connection-submarine | 2030 | investment | 2685.0 | EUR/MW/km | DEA https://ens.dk/en/our-services/projections-and-models/technology-data | from old pypsa cost assumptions |
1005 | offwind-ac-connection-underground | 2030 | investment | 1342.0 | EUR/MW/km | DEA https://ens.dk/en/our-services/projections-and-models/technology-data | from old pypsa cost assumptions |
1006 | offwind-ac-station | 2030 | investment | 250.0 | EUR/kWel | DEA https://ens.dk/en/our-services/projections-and-models/technology-data | from old pypsa cost assumptions |
1007 | offwind-dc-connection-submarine | 2030 | investment | 2000.0 | EUR/MW/km | DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf | from old pypsa cost assumptions |
1008 | offwind-dc-connection-underground | 2030 | investment | 1000.0 | EUR/MW/km | Haertel 2017; average + 13% learning reduction | from old pypsa cost assumptions |
1009 | offwind-dc-station | 2030 | investment | 400.0 | EUR/kWel | Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction | from old pypsa cost assumptions |
1010 | oil | 2030 | CO2 intensity | 0.26 | tCO2/MWh_th | Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel | |
1011 | oil | 2030 | FOM | 2.46 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 50 Diesel engine farm: Fixed O&M |
1012 | oil | 2030 | VOM | 6.0 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 50 Diesel engine farm: Variable O&M |
1013 | oil | 2030 | efficiency | 0.35 | per unit | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 50 Diesel engine farm: Electricity efficiency, annual average |
1014 | oil | 2030 | fuel | 50.0 | EUR/MWhth | IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf | from old pypsa cost assumptions |
1015 | oil | 2030 | investment | 343.0 | EUR/kW | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 50 Diesel engine farm: Specific investment |
1016 | oil | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 50 Diesel engine farm: Technical lifetime |
1017 | onwind | 2030 | FOM | 1.22 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 20 Onshore turbines: Fixed O&M |
1018 | onwind | 2030 | VOM | 1.35 | EUR/MWh | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 20 Onshore turbines: Variable O&M |
1019 | onwind | 2030 | investment | 1035.56 | EUR/kW | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 20 Onshore turbines: Nominal investment |
1020 | onwind | 2030 | lifetime | 30.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 20 Onshore turbines: Technical lifetime |
1021 | ror | 2030 | FOM | 2.0 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
1022 | ror | 2030 | efficiency | 0.9 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
1023 | ror | 2030 | investment | 3312.24 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 | from old pypsa cost assumptions |
1024 | ror | 2030 | lifetime | 80.0 | years | IEA2010 | from old pypsa cost assumptions |
1025 | seawater desalination | 2030 | FOM | 4.0 | %/year | Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1. | |
1026 | seawater desalination | 2030 | electricity-input | 3.03 | kWh/m^3-H2O | Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4. | |
1027 | seawater desalination | 2030 | investment | 32882.05 | EUR/(m^3-H2O/h) | Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4. | |
1028 | seawater desalination | 2030 | lifetime | 30.0 | years | Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1. | |
1029 | solar | 2030 | FOM | 1.95 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] |
1030 | solar | 2030 | VOM | 0.01 | EUR/MWhel | RES costs made up to fix curtailment order | from old pypsa cost assumptions |
1031 | solar | 2030 | investment | 492.11 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] |
1032 | solar | 2030 | lifetime | 40.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Technical lifetime [years] |
1033 | solar-rooftop | 2030 | FOM | 1.42 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] |
1034 | solar-rooftop | 2030 | discount rate | 0.04 | per unit | standard for decentral | from old pypsa cost assumptions |
1035 | solar-rooftop | 2030 | investment | 636.66 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] |
1036 | solar-rooftop | 2030 | lifetime | 40.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Technical lifetime [years] |
1037 | solar-rooftop commercial | 2030 | FOM | 1.57 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] |
1038 | solar-rooftop commercial | 2030 | investment | 512.47 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] |
1039 | solar-rooftop commercial | 2030 | lifetime | 40.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV commercial: Technical lifetime [years] |
1040 | solar-rooftop residential | 2030 | FOM | 1.27 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] |
1041 | solar-rooftop residential | 2030 | investment | 760.86 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] |
1042 | solar-rooftop residential | 2030 | lifetime | 40.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Rooftop PV residential: Technical lifetime [years] |
1043 | solar-utility | 2030 | FOM | 2.48 | %/year | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] |
1044 | solar-utility | 2030 | investment | 347.56 | EUR/kW_e | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] |
1045 | solar-utility | 2030 | lifetime | 40.0 | years | Danish Energy Agency, technology_data_for_el_and_dh.xlsx | 22 Utility-scale PV: Technical lifetime [years] |
1046 | solid biomass | 2030 | CO2 intensity | 0.37 | tCO2/MWh_th | Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass | |
1047 | solid biomass | 2030 | fuel | 12.0 | EUR/MWh_th | JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040 | |
1048 | solid biomass boiler steam | 2030 | FOM | 6.08 | %/year | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1e Steam boiler Wood: Fixed O&M |
1049 | solid biomass boiler steam | 2030 | VOM | 2.82 | EUR/MWh | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1e Steam boiler Wood: Variable O&M |
1050 | solid biomass boiler steam | 2030 | efficiency | 0.89 | per unit | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1e Steam boiler Wood: Total efficiency, net, annual average |
1051 | solid biomass boiler steam | 2030 | investment | 590.91 | EUR/kW | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1e Steam boiler Wood: Nominal investment |
1052 | solid biomass boiler steam | 2030 | lifetime | 25.0 | years | Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx | 311.1e Steam boiler Wood: Technical lifetime |
1053 | solid biomass to hydrogen | 2030 | FOM | 4.25 | %/year | Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014 | |
1054 | solid biomass to hydrogen | 2030 | capture rate | 0.98 | per unit | Assumption based on doi:10.1016/j.biombioe.2015.01.006 | |
1055 | solid biomass to hydrogen | 2030 | efficiency | 0.56 | per unit | Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014 | |
1056 | solid biomass to hydrogen | 2030 | investment | 2500.0 | EUR/kW_th | Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014 | |
1057 | uranium | 2030 | fuel | 2.6 | EUR/MWh_th | Lazard s Levelized Cost of Energy Analysis - Version 13.0 | |
1058 | water tank charger | 2030 | efficiency | 0.84 | per unit | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : efficiency from sqr(Round trip efficiency) |
1059 | water tank discharger | 2030 | efficiency | 0.84 | per unit | Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx | : efficiency from sqr(Round trip efficiency) |