773 lines
26 KiB
Python
Executable File
773 lines
26 KiB
Python
Executable File
# -*- coding: utf-8 -*-
|
|
<<<<<<< HEAD
|
|
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
|
|
"""
|
|
Solves linear optimal power flow for a network iteratively while updating
|
|
reactances.
|
|
|
|
Relevant Settings
|
|
-----------------
|
|
|
|
.. code:: yaml
|
|
|
|
solving:
|
|
tmpdir:
|
|
options:
|
|
formulation:
|
|
clip_p_max_pu:
|
|
load_shedding:
|
|
noisy_costs:
|
|
nhours:
|
|
min_iterations:
|
|
max_iterations:
|
|
skip_iterations:
|
|
track_iterations:
|
|
solver:
|
|
name:
|
|
|
|
.. seealso::
|
|
Documentation of the configuration file ``config.yaml`` at
|
|
:ref:`electricity_cf`, :ref:`solving_cf`, :ref:`plotting_cf`
|
|
|
|
Inputs
|
|
------
|
|
|
|
- ``networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc``: confer :ref:`prepare`
|
|
|
|
Outputs
|
|
-------
|
|
|
|
- ``results/networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc``: Solved PyPSA network including optimisation results
|
|
|
|
.. image:: ../img/results.png
|
|
:scale: 40 %
|
|
|
|
Description
|
|
-----------
|
|
|
|
Total annual system costs are minimised with PyPSA. The full formulation of the
|
|
linear optimal power flow (plus investment planning
|
|
is provided in the
|
|
`documentation of PyPSA <https://pypsa.readthedocs.io/en/latest/optimal_power_flow.html#linear-optimal-power-flow>`_.
|
|
The optimization is based on the ``pyomo=False`` setting in the :func:`network.lopf` and :func:`pypsa.linopf.ilopf` function.
|
|
Additionally, some extra constraints specified in :mod:`prepare_network` are added.
|
|
|
|
Solving the network in multiple iterations is motivated through the dependence of transmission line capacities and impedances.
|
|
As lines are expanded their electrical parameters change, which renders the optimisation bilinear even if the power flow
|
|
equations are linearized.
|
|
To retain the computational advantage of continuous linear programming, a sequential linear programming technique
|
|
is used, where in between iterations the line impedances are updated.
|
|
Details (and errors made through this heuristic) are discussed in the paper
|
|
|
|
- Fabian Neumann and Tom Brown. `Heuristics for Transmission Expansion Planning in Low-Carbon Energy System Models <https://arxiv.org/abs/1907.10548>`_), *16th International Conference on the European Energy Market*, 2019. `arXiv:1907.10548 <https://arxiv.org/abs/1907.10548>`_.
|
|
|
|
.. warning::
|
|
Capital costs of existing network components are not included in the objective function,
|
|
since for the optimisation problem they are just a constant term (no influence on optimal result).
|
|
|
|
Therefore, these capital costs are not included in ``network.objective``!
|
|
|
|
If you want to calculate the full total annual system costs add these to the objective value.
|
|
|
|
.. tip::
|
|
The rule :mod:`solve_all_networks` runs
|
|
for all ``scenario`` s in the configuration file
|
|
the rule :mod:`solve_network`.
|
|
"""
|
|
|
|
import logging
|
|
import re
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pypsa
|
|
from _helpers import configure_logging
|
|
from pypsa.descriptors import get_switchable_as_dense as get_as_dense
|
|
from pypsa.linopf import (
|
|
define_constraints,
|
|
define_variables,
|
|
get_var,
|
|
ilopf,
|
|
join_exprs,
|
|
linexpr,
|
|
network_lopf,
|
|
)
|
|
from vresutils.benchmark import memory_logger
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def prepare_network(n, solve_opts):
|
|
if "clip_p_max_pu" in solve_opts:
|
|
for df in (n.generators_t.p_max_pu, n.storage_units_t.inflow):
|
|
df.where(df > solve_opts["clip_p_max_pu"], other=0.0, inplace=True)
|
|
|
|
load_shedding = solve_opts.get("load_shedding")
|
|
if load_shedding:
|
|
n.add("Carrier", "load", color="#dd2e23", nice_name="Load shedding")
|
|
buses_i = n.buses.query("carrier == 'AC'").index
|
|
if not np.isscalar(load_shedding):
|
|
load_shedding = 1e2 # Eur/kWh
|
|
# intersect between macroeconomic and surveybased
|
|
# willingness to pay
|
|
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full)
|
|
n.madd(
|
|
"Generator",
|
|
buses_i,
|
|
" load",
|
|
bus=buses_i,
|
|
carrier="load",
|
|
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
|
|
marginal_cost=load_shedding,
|
|
=======
|
|
"""
|
|
Solve network.
|
|
"""
|
|
|
|
import logging
|
|
|
|
import numpy as np
|
|
import pypsa
|
|
from helper import override_component_attrs, update_config_with_sector_opts
|
|
from vresutils.benchmark import memory_logger
|
|
|
|
logger = logging.getLogger(__name__)
|
|
pypsa.pf.logger.setLevel(logging.WARNING)
|
|
|
|
|
|
def add_land_use_constraint(n):
|
|
if "m" in snakemake.wildcards.clusters:
|
|
_add_land_use_constraint_m(n)
|
|
else:
|
|
_add_land_use_constraint(n)
|
|
|
|
|
|
def _add_land_use_constraint(n):
|
|
# warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
|
|
|
|
for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]:
|
|
ext_i = (n.generators.carrier == carrier) & ~n.generators.p_nom_extendable
|
|
existing = (
|
|
n.generators.loc[ext_i, "p_nom"]
|
|
.groupby(n.generators.bus.map(n.buses.location))
|
|
.sum()
|
|
)
|
|
existing.index += " " + carrier + "-" + snakemake.wildcards.planning_horizons
|
|
n.generators.loc[existing.index, "p_nom_max"] -= existing
|
|
|
|
# check if existing capacities are larger than technical potential
|
|
existing_large = n.generators[
|
|
n.generators["p_nom_min"] > n.generators["p_nom_max"]
|
|
].index
|
|
if len(existing_large):
|
|
logger.warning(
|
|
f"Existing capacities larger than technical potential for {existing_large},\
|
|
adjust technical potential to existing capacities"
|
|
)
|
|
n.generators.loc[existing_large, "p_nom_max"] = n.generators.loc[
|
|
existing_large, "p_nom_min"
|
|
]
|
|
|
|
n.generators.p_nom_max.clip(lower=0, inplace=True)
|
|
|
|
|
|
def _add_land_use_constraint_m(n):
|
|
# if generators clustering is lower than network clustering, land_use accounting is at generators clusters
|
|
|
|
planning_horizons = snakemake.config["scenario"]["planning_horizons"]
|
|
grouping_years = snakemake.config["existing_capacities"]["grouping_years"]
|
|
current_horizon = snakemake.wildcards.planning_horizons
|
|
|
|
for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]:
|
|
existing = n.generators.loc[n.generators.carrier == carrier, "p_nom"]
|
|
ind = list(
|
|
set(
|
|
[
|
|
i.split(sep=" ")[0] + " " + i.split(sep=" ")[1]
|
|
for i in existing.index
|
|
]
|
|
)
|
|
)
|
|
|
|
previous_years = [
|
|
str(y)
|
|
for y in planning_horizons + grouping_years
|
|
if y < int(snakemake.wildcards.planning_horizons)
|
|
]
|
|
|
|
for p_year in previous_years:
|
|
ind2 = [
|
|
i for i in ind if i + " " + carrier + "-" + p_year in existing.index
|
|
]
|
|
sel_current = [i + " " + carrier + "-" + current_horizon for i in ind2]
|
|
sel_p_year = [i + " " + carrier + "-" + p_year for i in ind2]
|
|
n.generators.loc[sel_current, "p_nom_max"] -= existing.loc[
|
|
sel_p_year
|
|
].rename(lambda x: x[:-4] + current_horizon)
|
|
|
|
n.generators.p_nom_max.clip(lower=0, inplace=True)
|
|
|
|
|
|
def add_co2_sequestration_limit(n, limit=200):
|
|
"""
|
|
Add a global constraint on the amount of Mt CO2 that can be sequestered.
|
|
"""
|
|
n.carriers.loc["co2 stored", "co2_absorptions"] = -1
|
|
n.carriers.co2_absorptions = n.carriers.co2_absorptions.fillna(0)
|
|
|
|
limit = limit * 1e6
|
|
for o in opts:
|
|
if not "seq" in o:
|
|
continue
|
|
limit = float(o[o.find("seq") + 3 :]) * 1e6
|
|
break
|
|
|
|
n.add(
|
|
"GlobalConstraint",
|
|
"co2_sequestration_limit",
|
|
sense="<=",
|
|
constant=limit,
|
|
type="primary_energy",
|
|
carrier_attribute="co2_absorptions",
|
|
)
|
|
|
|
|
|
def prepare_network(n, solve_opts=None, config=None):
|
|
if "clip_p_max_pu" in solve_opts:
|
|
for df in (
|
|
n.generators_t.p_max_pu,
|
|
n.generators_t.p_min_pu,
|
|
n.storage_units_t.inflow,
|
|
):
|
|
df.where(df > solve_opts["clip_p_max_pu"], other=0.0, inplace=True)
|
|
|
|
if solve_opts.get("load_shedding"):
|
|
# intersect between macroeconomic and surveybased willingness to pay
|
|
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full
|
|
n.add("Carrier", "Load")
|
|
n.madd(
|
|
"Generator",
|
|
n.buses.index,
|
|
" load",
|
|
bus=n.buses.index,
|
|
carrier="load",
|
|
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
|
|
marginal_cost=1e2, # Eur/kWh
|
|
>>>>>>> pypsa-eur-sec/master
|
|
p_nom=1e9, # kW
|
|
)
|
|
|
|
if solve_opts.get("noisy_costs"):
|
|
<<<<<<< HEAD
|
|
for t in n.iterate_components(n.one_port_components):
|
|
# if 'capital_cost' in t.df:
|
|
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
|
|
if "marginal_cost" in t.df:
|
|
=======
|
|
for t in n.iterate_components():
|
|
# if 'capital_cost' in t.df:
|
|
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
|
|
if "marginal_cost" in t.df:
|
|
np.random.seed(174)
|
|
>>>>>>> pypsa-eur-sec/master
|
|
t.df["marginal_cost"] += 1e-2 + 2e-3 * (
|
|
np.random.random(len(t.df)) - 0.5
|
|
)
|
|
|
|
for t in n.iterate_components(["Line", "Link"]):
|
|
<<<<<<< HEAD
|
|
=======
|
|
np.random.seed(123)
|
|
>>>>>>> pypsa-eur-sec/master
|
|
t.df["capital_cost"] += (
|
|
1e-1 + 2e-2 * (np.random.random(len(t.df)) - 0.5)
|
|
) * t.df["length"]
|
|
|
|
if solve_opts.get("nhours"):
|
|
nhours = solve_opts["nhours"]
|
|
n.set_snapshots(n.snapshots[:nhours])
|
|
n.snapshot_weightings[:] = 8760.0 / nhours
|
|
|
|
<<<<<<< HEAD
|
|
return n
|
|
|
|
|
|
def add_CCL_constraints(n, config):
|
|
agg_p_nom_limits = config["electricity"].get("agg_p_nom_limits")
|
|
|
|
try:
|
|
agg_p_nom_minmax = pd.read_csv(agg_p_nom_limits, index_col=list(range(2)))
|
|
except IOError:
|
|
logger.exception(
|
|
"Need to specify the path to a .csv file containing "
|
|
"aggregate capacity limits per country in "
|
|
"config['electricity']['agg_p_nom_limit']."
|
|
)
|
|
logger.info(
|
|
"Adding per carrier generation capacity constraints for " "individual countries"
|
|
)
|
|
|
|
gen_country = n.generators.bus.map(n.buses.country)
|
|
# cc means country and carrier
|
|
p_nom_per_cc = (
|
|
pd.DataFrame(
|
|
{
|
|
"p_nom": linexpr((1, get_var(n, "Generator", "p_nom"))),
|
|
"country": gen_country,
|
|
"carrier": n.generators.carrier,
|
|
}
|
|
)
|
|
.dropna(subset=["p_nom"])
|
|
.groupby(["country", "carrier"])
|
|
.p_nom.apply(join_exprs)
|
|
)
|
|
minimum = agg_p_nom_minmax["min"].dropna()
|
|
if not minimum.empty:
|
|
minconstraint = define_constraints(
|
|
n, p_nom_per_cc[minimum.index], ">=", minimum, "agg_p_nom", "min"
|
|
)
|
|
maximum = agg_p_nom_minmax["max"].dropna()
|
|
if not maximum.empty:
|
|
maxconstraint = define_constraints(
|
|
n, p_nom_per_cc[maximum.index], "<=", maximum, "agg_p_nom", "max"
|
|
)
|
|
|
|
|
|
def add_EQ_constraints(n, o, scaling=1e-1):
|
|
float_regex = "[0-9]*\.?[0-9]+"
|
|
level = float(re.findall(float_regex, o)[0])
|
|
if o[-1] == "c":
|
|
ggrouper = n.generators.bus.map(n.buses.country)
|
|
lgrouper = n.loads.bus.map(n.buses.country)
|
|
sgrouper = n.storage_units.bus.map(n.buses.country)
|
|
else:
|
|
ggrouper = n.generators.bus
|
|
lgrouper = n.loads.bus
|
|
sgrouper = n.storage_units.bus
|
|
load = (
|
|
n.snapshot_weightings.generators
|
|
@ n.loads_t.p_set.groupby(lgrouper, axis=1).sum()
|
|
)
|
|
inflow = (
|
|
n.snapshot_weightings.stores
|
|
@ n.storage_units_t.inflow.groupby(sgrouper, axis=1).sum()
|
|
)
|
|
inflow = inflow.reindex(load.index).fillna(0.0)
|
|
rhs = scaling * (level * load - inflow)
|
|
lhs_gen = (
|
|
linexpr(
|
|
(n.snapshot_weightings.generators * scaling, get_var(n, "Generator", "p").T)
|
|
)
|
|
.T.groupby(ggrouper, axis=1)
|
|
.apply(join_exprs)
|
|
)
|
|
if not n.storage_units_t.inflow.empty:
|
|
lhs_spill = (
|
|
linexpr(
|
|
(
|
|
-n.snapshot_weightings.stores * scaling,
|
|
get_var(n, "StorageUnit", "spill").T,
|
|
)
|
|
)
|
|
.T.groupby(sgrouper, axis=1)
|
|
.apply(join_exprs)
|
|
)
|
|
lhs_spill = lhs_spill.reindex(lhs_gen.index).fillna("")
|
|
lhs = lhs_gen + lhs_spill
|
|
else:
|
|
lhs = lhs_gen
|
|
define_constraints(n, lhs, ">=", rhs, "equity", "min")
|
|
|
|
|
|
def add_BAU_constraints(n, config):
|
|
mincaps = pd.Series(config["electricity"]["BAU_mincapacities"])
|
|
lhs = (
|
|
linexpr((1, get_var(n, "Generator", "p_nom")))
|
|
.groupby(n.generators.carrier)
|
|
.apply(join_exprs)
|
|
)
|
|
define_constraints(n, lhs, ">=", mincaps[lhs.index], "Carrier", "bau_mincaps")
|
|
|
|
|
|
def add_SAFE_constraints(n, config):
|
|
peakdemand = (
|
|
1.0 + config["electricity"]["SAFE_reservemargin"]
|
|
) * n.loads_t.p_set.sum(axis=1).max()
|
|
conv_techs = config["plotting"]["conv_techs"]
|
|
exist_conv_caps = n.generators.query(
|
|
"~p_nom_extendable & carrier in @conv_techs"
|
|
).p_nom.sum()
|
|
ext_gens_i = n.generators.query("carrier in @conv_techs & p_nom_extendable").index
|
|
lhs = linexpr((1, get_var(n, "Generator", "p_nom")[ext_gens_i])).sum()
|
|
rhs = peakdemand - exist_conv_caps
|
|
define_constraints(n, lhs, ">=", rhs, "Safe", "mintotalcap")
|
|
|
|
|
|
def add_operational_reserve_margin_constraint(n, config):
|
|
reserve_config = config["electricity"]["operational_reserve"]
|
|
EPSILON_LOAD = reserve_config["epsilon_load"]
|
|
EPSILON_VRES = reserve_config["epsilon_vres"]
|
|
CONTINGENCY = reserve_config["contingency"]
|
|
|
|
# Reserve Variables
|
|
reserve = get_var(n, "Generator", "r")
|
|
lhs = linexpr((1, reserve)).sum(1)
|
|
|
|
# Share of extendable renewable capacities
|
|
ext_i = n.generators.query("p_nom_extendable").index
|
|
vres_i = n.generators_t.p_max_pu.columns
|
|
if not ext_i.empty and not vres_i.empty:
|
|
capacity_factor = n.generators_t.p_max_pu[vres_i.intersection(ext_i)]
|
|
renewable_capacity_variables = get_var(n, "Generator", "p_nom")[
|
|
vres_i.intersection(ext_i)
|
|
]
|
|
lhs += linexpr(
|
|
(-EPSILON_VRES * capacity_factor, renewable_capacity_variables)
|
|
).sum(1)
|
|
|
|
# Total demand at t
|
|
demand = n.loads_t.p_set.sum(1)
|
|
|
|
# VRES potential of non extendable generators
|
|
capacity_factor = n.generators_t.p_max_pu[vres_i.difference(ext_i)]
|
|
renewable_capacity = n.generators.p_nom[vres_i.difference(ext_i)]
|
|
potential = (capacity_factor * renewable_capacity).sum(1)
|
|
|
|
# Right-hand-side
|
|
rhs = EPSILON_LOAD * demand + EPSILON_VRES * potential + CONTINGENCY
|
|
|
|
define_constraints(n, lhs, ">=", rhs, "Reserve margin")
|
|
|
|
|
|
def update_capacity_constraint(n):
|
|
gen_i = n.generators.index
|
|
ext_i = n.generators.query("p_nom_extendable").index
|
|
fix_i = n.generators.query("not p_nom_extendable").index
|
|
|
|
dispatch = get_var(n, "Generator", "p")
|
|
reserve = get_var(n, "Generator", "r")
|
|
|
|
capacity_fixed = n.generators.p_nom[fix_i]
|
|
|
|
p_max_pu = get_as_dense(n, "Generator", "p_max_pu")
|
|
|
|
lhs = linexpr((1, dispatch), (1, reserve))
|
|
|
|
if not ext_i.empty:
|
|
capacity_variable = get_var(n, "Generator", "p_nom")
|
|
lhs += linexpr((-p_max_pu[ext_i], capacity_variable)).reindex(
|
|
columns=gen_i, fill_value=""
|
|
)
|
|
|
|
rhs = (p_max_pu[fix_i] * capacity_fixed).reindex(columns=gen_i, fill_value=0)
|
|
|
|
define_constraints(n, lhs, "<=", rhs, "Generators", "updated_capacity_constraint")
|
|
|
|
|
|
def add_operational_reserve_margin(n, sns, config):
|
|
"""
|
|
Build reserve margin constraints based on the formulation given in
|
|
https://genxproject.github.io/GenX/dev/core/#Reserves.
|
|
"""
|
|
define_variables(n, 0, np.inf, "Generator", "r", axes=[sns, n.generators.index])
|
|
|
|
add_operational_reserve_margin_constraint(n, config)
|
|
|
|
update_capacity_constraint(n)
|
|
|
|
|
|
def add_battery_constraints(n):
|
|
nodes = n.buses.index[n.buses.carrier == "battery"]
|
|
if nodes.empty or ("Link", "p_nom") not in n.variables.index:
|
|
return
|
|
link_p_nom = get_var(n, "Link", "p_nom")
|
|
lhs = linexpr(
|
|
(1, link_p_nom[nodes + " charger"]),
|
|
(
|
|
-n.links.loc[nodes + " discharger", "efficiency"].values,
|
|
link_p_nom[nodes + " discharger"].values,
|
|
),
|
|
)
|
|
define_constraints(n, lhs, "=", 0, "Link", "charger_ratio")
|
|
|
|
|
|
def extra_functionality(n, snapshots):
|
|
"""
|
|
Collects supplementary constraints which will be passed to
|
|
``pypsa.linopf.network_lopf``.
|
|
|
|
If you want to enforce additional custom constraints, this is a good
|
|
location to add them. The arguments ``opts`` and
|
|
``snakemake.config`` are expected to be attached to the network.
|
|
"""
|
|
opts = n.opts
|
|
config = n.config
|
|
if "BAU" in opts and n.generators.p_nom_extendable.any():
|
|
add_BAU_constraints(n, config)
|
|
if "SAFE" in opts and n.generators.p_nom_extendable.any():
|
|
add_SAFE_constraints(n, config)
|
|
if "CCL" in opts and n.generators.p_nom_extendable.any():
|
|
add_CCL_constraints(n, config)
|
|
reserve = config["electricity"].get("operational_reserve", {})
|
|
if reserve.get("activate"):
|
|
add_operational_reserve_margin(n, snapshots, config)
|
|
for o in opts:
|
|
if "EQ" in o:
|
|
add_EQ_constraints(n, o)
|
|
add_battery_constraints(n)
|
|
=======
|
|
if snakemake.config["foresight"] == "myopic":
|
|
add_land_use_constraint(n)
|
|
|
|
if n.stores.carrier.eq("co2 stored").any():
|
|
limit = config["sector"].get("co2_sequestration_potential", 200)
|
|
add_co2_sequestration_limit(n, limit=limit)
|
|
|
|
return n
|
|
|
|
|
|
def add_battery_constraints(n):
|
|
"""
|
|
Add constraint ensuring that charger = discharger:
|
|
1 * charger_size - efficiency * discharger_size = 0
|
|
"""
|
|
discharger_bool = n.links.index.str.contains("battery discharger")
|
|
charger_bool = n.links.index.str.contains("battery charger")
|
|
|
|
dischargers_ext = n.links[discharger_bool].query("p_nom_extendable").index
|
|
chargers_ext = n.links[charger_bool].query("p_nom_extendable").index
|
|
|
|
eff = n.links.efficiency[dischargers_ext].values
|
|
lhs = (
|
|
n.model["Link-p_nom"].loc[chargers_ext]
|
|
- n.model["Link-p_nom"].loc[dischargers_ext] * eff
|
|
)
|
|
|
|
n.model.add_constraints(lhs == 0, name="Link-charger_ratio")
|
|
|
|
|
|
def add_chp_constraints(n):
|
|
electric = (
|
|
n.links.index.str.contains("urban central")
|
|
& n.links.index.str.contains("CHP")
|
|
& n.links.index.str.contains("electric")
|
|
)
|
|
heat = (
|
|
n.links.index.str.contains("urban central")
|
|
& n.links.index.str.contains("CHP")
|
|
& n.links.index.str.contains("heat")
|
|
)
|
|
|
|
electric_ext = n.links[electric].query("p_nom_extendable").index
|
|
heat_ext = n.links[heat].query("p_nom_extendable").index
|
|
|
|
electric_fix = n.links[electric].query("~p_nom_extendable").index
|
|
heat_fix = n.links[heat].query("~p_nom_extendable").index
|
|
|
|
p = n.model["Link-p"] # dimension: [time, link]
|
|
|
|
# output ratio between heat and electricity and top_iso_fuel_line for extendable
|
|
if not electric_ext.empty:
|
|
p_nom = n.model["Link-p_nom"]
|
|
|
|
lhs = (
|
|
p_nom.loc[electric_ext]
|
|
* (n.links.p_nom_ratio * n.links.efficiency)[electric_ext].values
|
|
- p_nom.loc[heat_ext] * n.links.efficiency[heat_ext].values
|
|
)
|
|
n.model.add_constraints(lhs == 0, name="chplink-fix_p_nom_ratio")
|
|
|
|
rename = {"Link-ext": "Link"}
|
|
lhs = (
|
|
p.loc[:, electric_ext]
|
|
+ p.loc[:, heat_ext]
|
|
- p_nom.rename(rename).loc[electric_ext]
|
|
)
|
|
n.model.add_constraints(lhs <= 0, name="chplink-top_iso_fuel_line_ext")
|
|
|
|
# top_iso_fuel_line for fixed
|
|
if not electric_fix.empty:
|
|
lhs = p.loc[:, electric_fix] + p.loc[:, heat_fix]
|
|
rhs = n.links.p_nom[electric_fix]
|
|
n.model.add_constraints(lhs <= rhs, name="chplink-top_iso_fuel_line_fix")
|
|
|
|
# back-pressure
|
|
if not electric.empty:
|
|
lhs = (
|
|
p.loc[:, heat] * (n.links.efficiency[heat] * n.links.c_b[electric].values)
|
|
- p.loc[:, electric] * n.links.efficiency[electric]
|
|
)
|
|
n.model.add_constraints(lhs <= rhs, name="chplink-backpressure")
|
|
|
|
|
|
def add_pipe_retrofit_constraint(n):
|
|
"""
|
|
Add constraint for retrofitting existing CH4 pipelines to H2 pipelines.
|
|
"""
|
|
gas_pipes_i = n.links.query("carrier == 'gas pipeline' and p_nom_extendable").index
|
|
h2_retrofitted_i = n.links.query(
|
|
"carrier == 'H2 pipeline retrofitted' and p_nom_extendable"
|
|
).index
|
|
|
|
if h2_retrofitted_i.empty or gas_pipes_i.empty:
|
|
return
|
|
|
|
p_nom = n.model["Link-p_nom"]
|
|
|
|
CH4_per_H2 = 1 / n.config["sector"]["H2_retrofit_capacity_per_CH4"]
|
|
lhs = p_nom.loc[gas_pipes_i] + CH4_per_H2 * p_nom.loc[h2_retrofitted_i]
|
|
rhs = n.links.p_nom[gas_pipes_i].rename_axis("Link-ext")
|
|
|
|
n.model.add_constraints(lhs == rhs, name="Link-pipe_retrofit")
|
|
|
|
|
|
def extra_functionality(n, snapshots):
|
|
add_battery_constraints(n)
|
|
add_pipe_retrofit_constraint(n)
|
|
>>>>>>> pypsa-eur-sec/master
|
|
|
|
|
|
def solve_network(n, config, opts="", **kwargs):
|
|
set_of_options = config["solving"]["solver"]["options"]
|
|
solver_options = (
|
|
config["solving"]["solver_options"][set_of_options] if set_of_options else {}
|
|
)
|
|
solver_name = config["solving"]["solver"]["name"]
|
|
cf_solving = config["solving"]["options"]
|
|
track_iterations = cf_solving.get("track_iterations", False)
|
|
min_iterations = cf_solving.get("min_iterations", 4)
|
|
max_iterations = cf_solving.get("max_iterations", 6)
|
|
|
|
# add to network for extra_functionality
|
|
n.config = config
|
|
n.opts = opts
|
|
|
|
skip_iterations = cf_solving.get("skip_iterations", False)
|
|
if not n.lines.s_nom_extendable.any():
|
|
skip_iterations = True
|
|
logger.info("No expandable lines found. Skipping iterative solving.")
|
|
|
|
if skip_iterations:
|
|
<<<<<<< HEAD
|
|
network_lopf(
|
|
n, solver_name=solver_name, solver_options=solver_options, **kwargs
|
|
)
|
|
else:
|
|
ilopf(
|
|
n,
|
|
solver_name=solver_name,
|
|
solver_options=solver_options,
|
|
track_iterations=track_iterations,
|
|
min_iterations=min_iterations,
|
|
max_iterations=max_iterations,
|
|
**kwargs
|
|
)
|
|
return n
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if "snakemake" not in globals():
|
|
from _helpers import mock_snakemake
|
|
|
|
snakemake = mock_snakemake(
|
|
"solve_network", simpl="", clusters="5", ll="v1.5", opts=""
|
|
)
|
|
configure_logging(snakemake)
|
|
|
|
tmpdir = snakemake.config["solving"].get("tmpdir")
|
|
if tmpdir is not None:
|
|
Path(tmpdir).mkdir(parents=True, exist_ok=True)
|
|
opts = snakemake.wildcards.opts.split("-")
|
|
=======
|
|
status, condition = n.optimize(
|
|
solver_name=solver_name,
|
|
extra_functionality=extra_functionality,
|
|
**solver_options,
|
|
**kwargs,
|
|
)
|
|
else:
|
|
status, condition = n.optimize.optimize_transmission_expansion_iteratively(
|
|
solver_name=solver_name,
|
|
track_iterations=track_iterations,
|
|
min_iterations=min_iterations,
|
|
max_iterations=max_iterations,
|
|
extra_functionality=extra_functionality,
|
|
**solver_options,
|
|
**kwargs,
|
|
)
|
|
|
|
if status != "ok":
|
|
logger.warning(
|
|
f"Solving status '{status}' with termination condition '{condition}'"
|
|
)
|
|
|
|
return n
|
|
|
|
|
|
# %%
|
|
if __name__ == "__main__":
|
|
if "snakemake" not in globals():
|
|
from helper import mock_snakemake
|
|
|
|
snakemake = mock_snakemake(
|
|
"solve_network_myopic",
|
|
simpl="",
|
|
opts="",
|
|
clusters="45",
|
|
lv=1.0,
|
|
sector_opts="8760H-T-H-B-I-A-solar+p3-dist1",
|
|
planning_horizons="2020",
|
|
)
|
|
|
|
logging.basicConfig(
|
|
filename=snakemake.log.python, level=snakemake.config["logging_level"]
|
|
)
|
|
|
|
update_config_with_sector_opts(snakemake.config, snakemake.wildcards.sector_opts)
|
|
|
|
tmpdir = snakemake.config["solving"].get("tmpdir")
|
|
if tmpdir is not None:
|
|
from pathlib import Path
|
|
|
|
Path(tmpdir).mkdir(parents=True, exist_ok=True)
|
|
opts = snakemake.wildcards.sector_opts.split("-")
|
|
>>>>>>> pypsa-eur-sec/master
|
|
solve_opts = snakemake.config["solving"]["options"]
|
|
|
|
fn = getattr(snakemake.log, "memory", None)
|
|
with memory_logger(filename=fn, interval=30.0) as mem:
|
|
<<<<<<< HEAD
|
|
n = pypsa.Network(snakemake.input[0])
|
|
n = prepare_network(n, solve_opts)
|
|
n = solve_network(
|
|
n,
|
|
snakemake.config,
|
|
opts,
|
|
extra_functionality=extra_functionality,
|
|
solver_dir=tmpdir,
|
|
solver_logfile=snakemake.log.solver,
|
|
)
|
|
=======
|
|
overrides = override_component_attrs(snakemake.input.overrides)
|
|
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
|
|
|
n = prepare_network(n, solve_opts, config=snakemake.config)
|
|
|
|
n = solve_network(
|
|
n, config=snakemake.config, opts=opts, log_fn=snakemake.log.solver
|
|
)
|
|
|
|
if "lv_limit" in n.global_constraints.index:
|
|
n.line_volume_limit = n.global_constraints.at["lv_limit", "constant"]
|
|
n.line_volume_limit_dual = n.global_constraints.at["lv_limit", "mu"]
|
|
|
|
>>>>>>> pypsa-eur-sec/master
|
|
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
|
n.export_to_netcdf(snakemake.output[0])
|
|
|
|
logger.info("Maximum memory usage: {}".format(mem.mem_usage))
|