702 lines
24 KiB
Python
702 lines
24 KiB
Python
# -*- coding: utf-8 -*-
|
|
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
"""
|
|
Solves optimal operation and capacity for a network with the option to
|
|
iteratively optimize while updating line reactances.
|
|
|
|
This script is used for optimizing the electrical network as well as the
|
|
sector coupled network.
|
|
|
|
Description
|
|
-----------
|
|
|
|
Total annual system costs are minimised with PyPSA. The full formulation of the
|
|
linear optimal power flow (plus investment planning
|
|
is provided in the
|
|
`documentation of PyPSA <https://pypsa.readthedocs.io/en/latest/optimal_power_flow.html#linear-optimal-power-flow>`_.
|
|
|
|
The optimization is based on the :func:`network.optimize` function.
|
|
Additionally, some extra constraints specified in :mod:`solve_network` are added.
|
|
|
|
.. note::
|
|
|
|
The rules ``solve_elec_networks`` and ``solve_sector_networks`` run
|
|
the workflow for all scenarios in the configuration file (``scenario:``)
|
|
based on the rule :mod:`solve_network`.
|
|
"""
|
|
import logging
|
|
import re
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pypsa
|
|
import xarray as xr
|
|
from _helpers import (
|
|
configure_logging,
|
|
override_component_attrs,
|
|
update_config_with_sector_opts,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
pypsa.pf.logger.setLevel(logging.WARNING)
|
|
from pypsa.descriptors import get_switchable_as_dense as get_as_dense
|
|
|
|
|
|
def add_land_use_constraint(n, planning_horizons, config):
|
|
if "m" in snakemake.wildcards.clusters:
|
|
_add_land_use_constraint_m(n, planning_horizons, config)
|
|
else:
|
|
_add_land_use_constraint(n)
|
|
|
|
|
|
def _add_land_use_constraint(n):
|
|
# warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
|
|
|
|
for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]:
|
|
ext_i = (n.generators.carrier == carrier) & ~n.generators.p_nom_extendable
|
|
existing = (
|
|
n.generators.loc[ext_i, "p_nom"]
|
|
.groupby(n.generators.bus.map(n.buses.location))
|
|
.sum()
|
|
)
|
|
existing.index += " " + carrier + "-" + snakemake.wildcards.planning_horizons
|
|
n.generators.loc[existing.index, "p_nom_max"] -= existing
|
|
|
|
# check if existing capacities are larger than technical potential
|
|
existing_large = n.generators[
|
|
n.generators["p_nom_min"] > n.generators["p_nom_max"]
|
|
].index
|
|
if len(existing_large):
|
|
logger.warning(
|
|
f"Existing capacities larger than technical potential for {existing_large},\
|
|
adjust technical potential to existing capacities"
|
|
)
|
|
n.generators.loc[existing_large, "p_nom_max"] = n.generators.loc[
|
|
existing_large, "p_nom_min"
|
|
]
|
|
|
|
n.generators.p_nom_max.clip(lower=0, inplace=True)
|
|
|
|
|
|
def _add_land_use_constraint_m(n, planning_horizons, config):
|
|
# if generators clustering is lower than network clustering, land_use accounting is at generators clusters
|
|
|
|
planning_horizons = param["planning_horizons"]
|
|
grouping_years = config["existing_capacities"]["grouping_years"]
|
|
current_horizon = snakemake.wildcards.planning_horizons
|
|
|
|
for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]:
|
|
existing = n.generators.loc[n.generators.carrier == carrier, "p_nom"]
|
|
ind = list(
|
|
set(
|
|
[
|
|
i.split(sep=" ")[0] + " " + i.split(sep=" ")[1]
|
|
for i in existing.index
|
|
]
|
|
)
|
|
)
|
|
|
|
previous_years = [
|
|
str(y)
|
|
for y in planning_horizons + grouping_years
|
|
if y < int(snakemake.wildcards.planning_horizons)
|
|
]
|
|
|
|
for p_year in previous_years:
|
|
ind2 = [
|
|
i for i in ind if i + " " + carrier + "-" + p_year in existing.index
|
|
]
|
|
sel_current = [i + " " + carrier + "-" + current_horizon for i in ind2]
|
|
sel_p_year = [i + " " + carrier + "-" + p_year for i in ind2]
|
|
n.generators.loc[sel_current, "p_nom_max"] -= existing.loc[
|
|
sel_p_year
|
|
].rename(lambda x: x[:-4] + current_horizon)
|
|
|
|
n.generators.p_nom_max.clip(lower=0, inplace=True)
|
|
|
|
|
|
def add_co2_sequestration_limit(n, limit=200):
|
|
"""
|
|
Add a global constraint on the amount of Mt CO2 that can be sequestered.
|
|
"""
|
|
n.carriers.loc["co2 stored", "co2_absorptions"] = -1
|
|
n.carriers.co2_absorptions = n.carriers.co2_absorptions.fillna(0)
|
|
|
|
limit = limit * 1e6
|
|
for o in opts:
|
|
if "seq" not in o:
|
|
continue
|
|
limit = float(o[o.find("seq") + 3 :]) * 1e6
|
|
break
|
|
|
|
n.add(
|
|
"GlobalConstraint",
|
|
"co2_sequestration_limit",
|
|
sense="<=",
|
|
constant=limit,
|
|
type="primary_energy",
|
|
carrier_attribute="co2_absorptions",
|
|
)
|
|
|
|
|
|
def prepare_network(
|
|
n,
|
|
solve_opts=None,
|
|
config=None,
|
|
foresight=None,
|
|
planning_horizons=None,
|
|
co2_sequestration_potential=None,
|
|
):
|
|
if "clip_p_max_pu" in solve_opts:
|
|
for df in (
|
|
n.generators_t.p_max_pu,
|
|
n.generators_t.p_min_pu, # TODO: check if this can be removed
|
|
n.storage_units_t.inflow,
|
|
):
|
|
df.where(df > solve_opts["clip_p_max_pu"], other=0.0, inplace=True)
|
|
|
|
load_shedding = solve_opts.get("load_shedding")
|
|
if load_shedding:
|
|
# intersect between macroeconomic and surveybased willingness to pay
|
|
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full
|
|
# TODO: retrieve color and nice name from config
|
|
n.add("Carrier", "load", color="#dd2e23", nice_name="Load shedding")
|
|
buses_i = n.buses.query("carrier == 'AC'").index
|
|
if not np.isscalar(load_shedding):
|
|
# TODO: do not scale via sign attribute (use Eur/MWh instead of Eur/kWh)
|
|
load_shedding = 1e2 # Eur/kWh
|
|
|
|
n.madd(
|
|
"Generator",
|
|
buses_i,
|
|
" load",
|
|
bus=buses_i,
|
|
carrier="load",
|
|
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
|
|
marginal_cost=load_shedding, # Eur/kWh
|
|
p_nom=1e9, # kW
|
|
)
|
|
|
|
if solve_opts.get("noisy_costs"):
|
|
for t in n.iterate_components():
|
|
# if 'capital_cost' in t.df:
|
|
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
|
|
if "marginal_cost" in t.df:
|
|
t.df["marginal_cost"] += 1e-2 + 2e-3 * (
|
|
np.random.random(len(t.df)) - 0.5
|
|
)
|
|
|
|
for t in n.iterate_components(["Line", "Link"]):
|
|
t.df["capital_cost"] += (
|
|
1e-1 + 2e-2 * (np.random.random(len(t.df)) - 0.5)
|
|
) * t.df["length"]
|
|
|
|
if solve_opts.get("nhours"):
|
|
nhours = solve_opts["nhours"]
|
|
n.set_snapshots(n.snapshots[:nhours])
|
|
n.snapshot_weightings[:] = 8760.0 / nhours
|
|
|
|
if foresight == "myopic":
|
|
add_land_use_constraint(n, planning_horizons, config)
|
|
|
|
if n.stores.carrier.eq("co2 stored").any():
|
|
limit = co2_sequestration_potential
|
|
add_co2_sequestration_limit(n, limit=limit)
|
|
|
|
return n
|
|
|
|
|
|
def add_CCL_constraints(n, config):
|
|
"""
|
|
Add CCL (country & carrier limit) constraint to the network.
|
|
|
|
Add minimum and maximum levels of generator nominal capacity per carrier
|
|
for individual countries. Opts and path for agg_p_nom_minmax.csv must be defined
|
|
in config.yaml. Default file is available at data/agg_p_nom_minmax.csv.
|
|
|
|
Parameters
|
|
----------
|
|
n : pypsa.Network
|
|
config : dict
|
|
|
|
Example
|
|
-------
|
|
scenario:
|
|
opts: [Co2L-CCL-24H]
|
|
electricity:
|
|
agg_p_nom_limits: data/agg_p_nom_minmax.csv
|
|
"""
|
|
agg_p_nom_minmax = pd.read_csv(
|
|
config["electricity"]["agg_p_nom_limits"], index_col=[0, 1]
|
|
)
|
|
logger.info("Adding generation capacity constraints per carrier and country")
|
|
p_nom = n.model["Generator-p_nom"]
|
|
|
|
gens = n.generators.query("p_nom_extendable").rename_axis(index="Generator-ext")
|
|
grouper = pd.concat([gens.bus.map(n.buses.country), gens.carrier])
|
|
lhs = p_nom.groupby(grouper).sum().rename(bus="country")
|
|
|
|
minimum = xr.DataArray(agg_p_nom_minmax["min"].dropna()).rename(dim_0="group")
|
|
index = minimum.indexes["group"].intersection(lhs.indexes["group"])
|
|
if not index.empty:
|
|
n.model.add_constraints(
|
|
lhs.sel(group=index) >= minimum.loc[index], name="agg_p_nom_min"
|
|
)
|
|
|
|
maximum = xr.DataArray(agg_p_nom_minmax["max"].dropna()).rename(dim_0="group")
|
|
index = maximum.indexes["group"].intersection(lhs.indexes["group"])
|
|
if not index.empty:
|
|
n.model.add_constraints(
|
|
lhs.sel(group=index) <= maximum.loc[index], name="agg_p_nom_max"
|
|
)
|
|
|
|
|
|
def add_EQ_constraints(n, o, scaling=1e-1):
|
|
"""
|
|
Add equity constraints to the network.
|
|
|
|
Currently this is only implemented for the electricity sector only.
|
|
|
|
Opts must be specified in the config.yaml.
|
|
|
|
Parameters
|
|
----------
|
|
n : pypsa.Network
|
|
o : str
|
|
|
|
Example
|
|
-------
|
|
scenario:
|
|
opts: [Co2L-EQ0.7-24H]
|
|
|
|
Require each country or node to on average produce a minimal share
|
|
of its total electricity consumption itself. Example: EQ0.7c demands each country
|
|
to produce on average at least 70% of its consumption; EQ0.7 demands
|
|
each node to produce on average at least 70% of its consumption.
|
|
"""
|
|
# TODO: Generalize to cover myopic and other sectors?
|
|
float_regex = "[0-9]*\.?[0-9]+"
|
|
level = float(re.findall(float_regex, o)[0])
|
|
if o[-1] == "c":
|
|
ggrouper = n.generators.bus.map(n.buses.country).to_xarray()
|
|
lgrouper = n.loads.bus.map(n.buses.country).to_xarray()
|
|
sgrouper = n.storage_units.bus.map(n.buses.country).to_xarray()
|
|
else:
|
|
ggrouper = n.generators.bus.to_xarray()
|
|
lgrouper = n.loads.bus.to_xarray()
|
|
sgrouper = n.storage_units.bus.to_xarray()
|
|
load = (
|
|
n.snapshot_weightings.generators
|
|
@ n.loads_t.p_set.groupby(lgrouper, axis=1).sum()
|
|
)
|
|
inflow = (
|
|
n.snapshot_weightings.stores
|
|
@ n.storage_units_t.inflow.groupby(sgrouper, axis=1).sum()
|
|
)
|
|
inflow = inflow.reindex(load.index).fillna(0.0)
|
|
rhs = scaling * (level * load - inflow)
|
|
p = n.model["Generator-p"]
|
|
lhs_gen = (
|
|
(p * (n.snapshot_weightings.generators * scaling))
|
|
.groupby(ggrouper)
|
|
.sum()
|
|
.sum("snapshot")
|
|
)
|
|
# TODO: double check that this is really needed, why do have to subtract the spillage
|
|
if not n.storage_units_t.inflow.empty:
|
|
spillage = n.model["StorageUnit-spill"]
|
|
lhs_spill = (
|
|
(spillage * (-n.snapshot_weightings.stores * scaling))
|
|
.groupby(sgrouper)
|
|
.sum()
|
|
.sum("snapshot")
|
|
)
|
|
lhs = lhs_gen + lhs_spill
|
|
else:
|
|
lhs = lhs_gen
|
|
n.model.add_constraints(lhs >= rhs, name="equity_min")
|
|
|
|
|
|
def add_BAU_constraints(n, config):
|
|
"""
|
|
Add a per-carrier minimal overall capacity.
|
|
|
|
BAU_mincapacities and opts must be adjusted in the config.yaml.
|
|
|
|
Parameters
|
|
----------
|
|
n : pypsa.Network
|
|
config : dict
|
|
|
|
Example
|
|
-------
|
|
scenario:
|
|
opts: [Co2L-BAU-24H]
|
|
electricity:
|
|
BAU_mincapacities:
|
|
solar: 0
|
|
onwind: 0
|
|
OCGT: 100000
|
|
offwind-ac: 0
|
|
offwind-dc: 0
|
|
Which sets minimum expansion across all nodes e.g. in Europe to 100GW.
|
|
OCGT bus 1 + OCGT bus 2 + ... > 100000
|
|
"""
|
|
mincaps = pd.Series(config["electricity"]["BAU_mincapacities"])
|
|
p_nom = n.model["Generator-p_nom"]
|
|
ext_i = n.generators.query("p_nom_extendable")
|
|
ext_carrier_i = xr.DataArray(ext_i.carrier.rename_axis("Generator-ext"))
|
|
lhs = p_nom.groupby(ext_carrier_i).sum()
|
|
index = mincaps.index.intersection(lhs.indexes["carrier"])
|
|
rhs = mincaps[index].rename_axis("carrier")
|
|
n.model.add_constraints(lhs >= rhs, name="bau_mincaps")
|
|
|
|
|
|
# TODO: think about removing or make per country
|
|
def add_SAFE_constraints(n, config):
|
|
"""
|
|
Add a capacity reserve margin of a certain fraction above the peak demand.
|
|
Renewable generators and storage do not contribute. Ignores network.
|
|
|
|
Parameters
|
|
----------
|
|
n : pypsa.Network
|
|
config : dict
|
|
|
|
Example
|
|
-------
|
|
config.yaml requires to specify opts:
|
|
|
|
scenario:
|
|
opts: [Co2L-SAFE-24H]
|
|
electricity:
|
|
SAFE_reservemargin: 0.1
|
|
Which sets a reserve margin of 10% above the peak demand.
|
|
"""
|
|
peakdemand = n.loads_t.p_set.sum(axis=1).max()
|
|
margin = 1.0 + config["electricity"]["SAFE_reservemargin"]
|
|
reserve_margin = peakdemand * margin
|
|
conventional_carriers = config["electricity"]["conventional_carriers"]
|
|
ext_gens_i = n.generators.query(
|
|
"carrier in @conventional_carriers & p_nom_extendable"
|
|
).index
|
|
p_nom = n.model["Generator-p_nom"].loc[ext_gens_i]
|
|
lhs = p_nom.sum()
|
|
exist_conv_caps = n.generators.query(
|
|
"~p_nom_extendable & carrier in @conventional_carriers"
|
|
).p_nom.sum()
|
|
rhs = reserve_margin - exist_conv_caps
|
|
n.model.add_constraints(lhs >= rhs, name="safe_mintotalcap")
|
|
|
|
|
|
def add_operational_reserve_margin(n, sns, config):
|
|
"""
|
|
Build reserve margin constraints based on the formulation given in
|
|
https://genxproject.github.io/GenX/dev/core/#Reserves.
|
|
|
|
Parameters
|
|
----------
|
|
n : pypsa.Network
|
|
sns: pd.DatetimeIndex
|
|
config : dict
|
|
|
|
Example:
|
|
--------
|
|
config.yaml requires to specify operational_reserve:
|
|
operational_reserve: # like https://genxproject.github.io/GenX/dev/core/#Reserves
|
|
activate: true
|
|
epsilon_load: 0.02 # percentage of load at each snapshot
|
|
epsilon_vres: 0.02 # percentage of VRES at each snapshot
|
|
contingency: 400000 # MW
|
|
"""
|
|
reserve_config = config["electricity"]["operational_reserve"]
|
|
EPSILON_LOAD = reserve_config["epsilon_load"]
|
|
EPSILON_VRES = reserve_config["epsilon_vres"]
|
|
CONTINGENCY = reserve_config["contingency"]
|
|
|
|
# Reserve Variables
|
|
n.model.add_variables(
|
|
0, np.inf, coords=[sns, n.generators.index], name="Generator-r"
|
|
)
|
|
reserve = n.model["Generator-r"]
|
|
summed_reserve = reserve.sum("Generator")
|
|
|
|
# Share of extendable renewable capacities
|
|
ext_i = n.generators.query("p_nom_extendable").index
|
|
vres_i = n.generators_t.p_max_pu.columns
|
|
if not ext_i.empty and not vres_i.empty:
|
|
capacity_factor = n.generators_t.p_max_pu[vres_i.intersection(ext_i)]
|
|
p_nom_vres = (
|
|
n.model["Generator-p_nom"]
|
|
.loc[vres_i.intersection(ext_i)]
|
|
.rename({"Generator-ext": "Generator"})
|
|
)
|
|
lhs = summed_reserve + (p_nom_vres * (-EPSILON_VRES * capacity_factor)).sum(
|
|
"Generator"
|
|
)
|
|
|
|
# Total demand per t
|
|
demand = get_as_dense(n, "Load", "p_set").sum(axis=1)
|
|
|
|
# VRES potential of non extendable generators
|
|
capacity_factor = n.generators_t.p_max_pu[vres_i.difference(ext_i)]
|
|
renewable_capacity = n.generators.p_nom[vres_i.difference(ext_i)]
|
|
potential = (capacity_factor * renewable_capacity).sum(axis=1)
|
|
|
|
# Right-hand-side
|
|
rhs = EPSILON_LOAD * demand + EPSILON_VRES * potential + CONTINGENCY
|
|
|
|
n.model.add_constraints(lhs >= rhs, name="reserve_margin")
|
|
|
|
# additional constraint that capacity is not exceeded
|
|
gen_i = n.generators.index
|
|
ext_i = n.generators.query("p_nom_extendable").index
|
|
fix_i = n.generators.query("not p_nom_extendable").index
|
|
|
|
dispatch = n.model["Generator-p"]
|
|
reserve = n.model["Generator-r"]
|
|
|
|
capacity_variable = n.model["Generator-p_nom"].rename(
|
|
{"Generator-ext": "Generator"}
|
|
)
|
|
capacity_fixed = n.generators.p_nom[fix_i]
|
|
|
|
p_max_pu = get_as_dense(n, "Generator", "p_max_pu")
|
|
|
|
lhs = dispatch + reserve - capacity_variable * p_max_pu[ext_i]
|
|
|
|
rhs = (p_max_pu[fix_i] * capacity_fixed).reindex(columns=gen_i, fill_value=0)
|
|
|
|
n.model.add_constraints(lhs <= rhs, name="Generator-p-reserve-upper")
|
|
|
|
|
|
def add_battery_constraints(n):
|
|
"""
|
|
Add constraint ensuring that charger = discharger, i.e.
|
|
1 * charger_size - efficiency * discharger_size = 0
|
|
"""
|
|
if not n.links.p_nom_extendable.any():
|
|
return
|
|
|
|
discharger_bool = n.links.index.str.contains("battery discharger")
|
|
charger_bool = n.links.index.str.contains("battery charger")
|
|
|
|
dischargers_ext = n.links[discharger_bool].query("p_nom_extendable").index
|
|
chargers_ext = n.links[charger_bool].query("p_nom_extendable").index
|
|
|
|
eff = n.links.efficiency[dischargers_ext].values
|
|
lhs = (
|
|
n.model["Link-p_nom"].loc[chargers_ext]
|
|
- n.model["Link-p_nom"].loc[dischargers_ext] * eff
|
|
)
|
|
|
|
n.model.add_constraints(lhs == 0, name="Link-charger_ratio")
|
|
|
|
|
|
def add_chp_constraints(n):
|
|
electric = (
|
|
n.links.index.str.contains("urban central")
|
|
& n.links.index.str.contains("CHP")
|
|
& n.links.index.str.contains("electric")
|
|
)
|
|
heat = (
|
|
n.links.index.str.contains("urban central")
|
|
& n.links.index.str.contains("CHP")
|
|
& n.links.index.str.contains("heat")
|
|
)
|
|
|
|
electric_ext = n.links[electric].query("p_nom_extendable").index
|
|
heat_ext = n.links[heat].query("p_nom_extendable").index
|
|
|
|
electric_fix = n.links[electric].query("~p_nom_extendable").index
|
|
heat_fix = n.links[heat].query("~p_nom_extendable").index
|
|
|
|
p = n.model["Link-p"] # dimension: [time, link]
|
|
|
|
# output ratio between heat and electricity and top_iso_fuel_line for extendable
|
|
if not electric_ext.empty:
|
|
p_nom = n.model["Link-p_nom"]
|
|
|
|
lhs = (
|
|
p_nom.loc[electric_ext]
|
|
* (n.links.p_nom_ratio * n.links.efficiency)[electric_ext].values
|
|
- p_nom.loc[heat_ext] * n.links.efficiency[heat_ext].values
|
|
)
|
|
n.model.add_constraints(lhs == 0, name="chplink-fix_p_nom_ratio")
|
|
|
|
rename = {"Link-ext": "Link"}
|
|
lhs = (
|
|
p.loc[:, electric_ext]
|
|
+ p.loc[:, heat_ext]
|
|
- p_nom.rename(rename).loc[electric_ext]
|
|
)
|
|
n.model.add_constraints(lhs <= 0, name="chplink-top_iso_fuel_line_ext")
|
|
|
|
# top_iso_fuel_line for fixed
|
|
if not electric_fix.empty:
|
|
lhs = p.loc[:, electric_fix] + p.loc[:, heat_fix]
|
|
rhs = n.links.p_nom[electric_fix]
|
|
n.model.add_constraints(lhs <= rhs, name="chplink-top_iso_fuel_line_fix")
|
|
|
|
# back-pressure
|
|
if not electric.empty:
|
|
lhs = (
|
|
p.loc[:, heat] * (n.links.efficiency[heat] * n.links.c_b[electric].values)
|
|
- p.loc[:, electric] * n.links.efficiency[electric]
|
|
)
|
|
n.model.add_constraints(lhs <= rhs, name="chplink-backpressure")
|
|
|
|
|
|
def add_pipe_retrofit_constraint(n):
|
|
"""
|
|
Add constraint for retrofitting existing CH4 pipelines to H2 pipelines.
|
|
"""
|
|
gas_pipes_i = n.links.query("carrier == 'gas pipeline' and p_nom_extendable").index
|
|
h2_retrofitted_i = n.links.query(
|
|
"carrier == 'H2 pipeline retrofitted' and p_nom_extendable"
|
|
).index
|
|
|
|
if h2_retrofitted_i.empty or gas_pipes_i.empty:
|
|
return
|
|
|
|
p_nom = n.model["Link-p_nom"]
|
|
|
|
CH4_per_H2 = 1 / n.config["sector"]["H2_retrofit_capacity_per_CH4"]
|
|
lhs = p_nom.loc[gas_pipes_i] + CH4_per_H2 * p_nom.loc[h2_retrofitted_i]
|
|
rhs = n.links.p_nom[gas_pipes_i].rename_axis("Link-ext")
|
|
|
|
n.model.add_constraints(lhs == rhs, name="Link-pipe_retrofit")
|
|
|
|
|
|
def extra_functionality(n, snapshots):
|
|
"""
|
|
Collects supplementary constraints which will be passed to
|
|
``pypsa.optimization.optimize``.
|
|
|
|
If you want to enforce additional custom constraints, this is a good
|
|
location to add them. The arguments ``opts`` and
|
|
``snakemake.config`` are expected to be attached to the network.
|
|
"""
|
|
opts = n.opts
|
|
config = n.config
|
|
if "BAU" in opts and n.generators.p_nom_extendable.any():
|
|
add_BAU_constraints(n, config)
|
|
if "SAFE" in opts and n.generators.p_nom_extendable.any():
|
|
add_SAFE_constraints(n, config)
|
|
if "CCL" in opts and n.generators.p_nom_extendable.any():
|
|
add_CCL_constraints(n, config)
|
|
reserve = config["electricity"].get("operational_reserve", {})
|
|
if reserve.get("activate"):
|
|
add_operational_reserve_margin(n, snapshots, config)
|
|
for o in opts:
|
|
if "EQ" in o:
|
|
add_EQ_constraints(n, o)
|
|
add_battery_constraints(n)
|
|
add_pipe_retrofit_constraint(n)
|
|
|
|
|
|
def solve_network(n, config, solving, opts="", **kwargs):
|
|
set_of_options = solving["solver"]["options"]
|
|
solver_options = solving["solver_options"][set_of_options] if set_of_options else {}
|
|
solver_name = solving["solver"]["name"]
|
|
cf_solving = solving["options"]
|
|
track_iterations = cf_solving.get("track_iterations", False)
|
|
min_iterations = cf_solving.get("min_iterations", 4)
|
|
max_iterations = cf_solving.get("max_iterations", 6)
|
|
transmission_losses = cf_solving.get("transmission_losses", 0)
|
|
|
|
# add to network for extra_functionality
|
|
n.config = config
|
|
n.opts = opts
|
|
|
|
skip_iterations = cf_solving.get("skip_iterations", False)
|
|
if not n.lines.s_nom_extendable.any():
|
|
skip_iterations = True
|
|
logger.info("No expandable lines found. Skipping iterative solving.")
|
|
|
|
if skip_iterations:
|
|
status, condition = n.optimize(
|
|
solver_name=solver_name,
|
|
transmission_losses=transmission_losses,
|
|
extra_functionality=extra_functionality,
|
|
**solver_options,
|
|
**kwargs,
|
|
)
|
|
else:
|
|
status, condition = n.optimize.optimize_transmission_expansion_iteratively(
|
|
solver_name=solver_name,
|
|
track_iterations=track_iterations,
|
|
min_iterations=min_iterations,
|
|
max_iterations=max_iterations,
|
|
transmission_losses=transmission_losses,
|
|
extra_functionality=extra_functionality,
|
|
**solver_options,
|
|
**kwargs,
|
|
)
|
|
|
|
if status != "ok":
|
|
logger.warning(
|
|
f"Solving status '{status}' with termination condition '{condition}'"
|
|
)
|
|
if "infeasible" in condition:
|
|
raise RuntimeError("Solving status 'infeasible'")
|
|
|
|
return n
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if "snakemake" not in globals():
|
|
from _helpers import mock_snakemake
|
|
|
|
snakemake = mock_snakemake(
|
|
"solve_sector_network",
|
|
configfiles="test/config.overnight.yaml",
|
|
simpl="",
|
|
opts="",
|
|
clusters="5",
|
|
ll="v1.5",
|
|
sector_opts="CO2L0-24H-T-H-B-I-A-solar+p3-dist1",
|
|
planning_horizons="2030",
|
|
)
|
|
configure_logging(snakemake)
|
|
if "sector_opts" in snakemake.wildcards.keys():
|
|
update_config_with_sector_opts(
|
|
snakemake.config, snakemake.wildcards.sector_opts
|
|
)
|
|
|
|
opts = snakemake.wildcards.opts
|
|
if "sector_opts" in snakemake.wildcards.keys():
|
|
opts += "-" + snakemake.wildcards.sector_opts
|
|
opts = [o for o in opts.split("-") if o != ""]
|
|
solve_opts = snakemake.params.solving["options"]
|
|
|
|
np.random.seed(solve_opts.get("seed", 123))
|
|
|
|
if "overrides" in snakemake.input.keys():
|
|
overrides = override_component_attrs(snakemake.input.overrides)
|
|
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
|
else:
|
|
n = pypsa.Network(snakemake.input.network)
|
|
|
|
n = prepare_network(
|
|
n,
|
|
solve_opts,
|
|
config=snakemake.config,
|
|
foresight=snakemake.params.foresight,
|
|
planning_horizons=snakemake.params.planning_horizons,
|
|
co2_sequestration_potential=snakemake.params["co2_sequestration_potential"],
|
|
)
|
|
|
|
n = solve_network(
|
|
n,
|
|
config=snakemake.config,
|
|
solving=snakemake.params.solving,
|
|
opts=opts,
|
|
log_fn=snakemake.log.solver,
|
|
)
|
|
|
|
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
|
n.export_to_netcdf(snakemake.output[0])
|