pypsa-eur/scripts/prepare_sector_network.py

1951 lines
82 KiB
Python

# coding: utf-8
import logging
logger = logging.getLogger(__name__)
import pandas as pd
idx = pd.IndexSlice
import numpy as np
import scipy as sp
import xarray as xr
import re, os
from six import iteritems, string_types
import pypsa
import yaml
import pytz
from vresutils.costdata import annuity
#First tell PyPSA that links can have multiple outputs by
#overriding the component_attrs. This can be done for
#as many buses as you need with format busi for i = 2,3,4,5,....
#See https://pypsa.org/doc/components.html#link-with-multiple-outputs-or-inputs
override_component_attrs = pypsa.descriptors.Dict({k : v.copy() for k,v in pypsa.components.component_attrs.items()})
override_component_attrs["Link"].loc["bus2"] = ["string",np.nan,np.nan,"2nd bus","Input (optional)"]
override_component_attrs["Link"].loc["bus3"] = ["string",np.nan,np.nan,"3rd bus","Input (optional)"]
override_component_attrs["Link"].loc["bus4"] = ["string",np.nan,np.nan,"4th bus","Input (optional)"]
override_component_attrs["Link"].loc["efficiency2"] = ["static or series","per unit",1.,"2nd bus efficiency","Input (optional)"]
override_component_attrs["Link"].loc["efficiency3"] = ["static or series","per unit",1.,"3rd bus efficiency","Input (optional)"]
override_component_attrs["Link"].loc["efficiency4"] = ["static or series","per unit",1.,"4th bus efficiency","Input (optional)"]
override_component_attrs["Link"].loc["p2"] = ["series","MW",0.,"2nd bus output","Output"]
override_component_attrs["Link"].loc["p3"] = ["series","MW",0.,"3rd bus output","Output"]
override_component_attrs["Link"].loc["p4"] = ["series","MW",0.,"4th bus output","Output"]
override_component_attrs["Link"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
override_component_attrs["Link"].loc["lifetime"] = ["float","years",np.nan,"lifetime","Input (optional)"]
override_component_attrs["Generator"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
override_component_attrs["Generator"].loc["lifetime"] = ["float","years",np.nan,"lifetime","Input (optional)"]
override_component_attrs["Store"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
override_component_attrs["Store"].loc["lifetime"] = ["float","years",np.nan,"lifetime","Input (optional)"]
def add_lifetime_wind_solar(n):
"""
Add lifetime for solar and wind generators
"""
for carrier in ['solar', 'onwind', 'offwind-dc', 'offwind-ac']:
carrier_name='offwind' if carrier in ['offwind-dc', 'offwind-ac'] else carrier
n.generators.loc[[index for index in n.generators.index.to_list()
if carrier in index], 'lifetime']=costs.at[carrier_name,'lifetime']
def update_wind_solar_costs(n,costs):
"""
Update costs for wind and solar generators added with pypsa-eur to those
cost in the planning year
"""
#NB: solar costs are also manipulated for rooftop
#when distribution grid is inserted
n.generators.loc[n.generators.carrier=='solar','capital_cost'] = costs.at['solar-utility', 'fixed']
n.generators.loc[n.generators.carrier=='onwind','capital_cost'] = costs.at['onwind', 'fixed']
#for offshore wind, need to calculated connection costs
#assign clustered bus
#map initial network -> simplified network
busmap_s = pd.read_csv(snakemake.input.busmap_s, index_col=0).squeeze()
busmap_s.index = busmap_s.index.astype(str)
busmap_s = busmap_s.astype(str)
#map simplified network -> clustered network
busmap = pd.read_csv(snakemake.input.busmap, index_col=0).squeeze()
busmap.index = busmap.index.astype(str)
busmap = busmap.astype(str)
#map initial network -> clustered network
clustermaps = busmap_s.map(busmap)
#code adapted from pypsa-eur/scripts/add_electricity.py
for connection in ['dc','ac']:
tech = "offwind-" + connection
profile = snakemake.input['profile_offwind_' + connection]
with xr.open_dataset(profile) as ds:
underwater_fraction = ds['underwater_fraction'].to_pandas()
connection_cost = (snakemake.config['costs']['lines']['length_factor'] *
ds['average_distance'].to_pandas() *
(underwater_fraction *
costs.at[tech + '-connection-submarine', 'fixed'] +
(1. - underwater_fraction) *
costs.at[tech + '-connection-underground', 'fixed']))
#convert to aggregated clusters with weighting
weight = ds['weight'].to_pandas()
#e.g. clusters == 37m means that VRE generators are left
#at clustering of simplified network, but that they are
#connected to 37-node network
if snakemake.wildcards.clusters[-1:] == "m":
genmap = busmap_s
else:
genmap = clustermaps
connection_cost = (connection_cost*weight).groupby(genmap).sum()/weight.groupby(genmap).sum()
capital_cost = (costs.at['offwind', 'fixed'] +
costs.at[tech + '-station', 'fixed'] +
connection_cost)
logger.info("Added connection cost of {:0.0f}-{:0.0f} Eur/MW/a to {}"
.format(connection_cost[0].min(), connection_cost[0].max(), tech))
n.generators.loc[n.generators.carrier==tech,'capital_cost'] = capital_cost.rename(index=lambda node: node + ' ' + tech)
def add_carrier_buses(n, carriers):
"""
Add buses to connect e.g. coal, nuclear and oil plants
"""
for carrier in carriers:
n.add("Carrier",
carrier)
#use madd to get location inserted
n.madd("Bus",
["EU " + carrier],
location="EU",
carrier=carrier)
#use madd to get carrier inserted
n.madd("Store",
["EU " + carrier + " Store"],
bus=["EU " + carrier],
e_nom_extendable=True,
e_cyclic=True,
carrier=carrier,
capital_cost=0.) #could correct to e.g. 0.2 EUR/kWh * annuity and O&M
n.add("Generator",
"EU " + carrier,
bus="EU " + carrier,
p_nom_extendable=True,
carrier=carrier,
capital_cost=0.,
marginal_cost=costs.at[carrier,'fuel'])
def remove_elec_base_techs(n):
"""remove conventional generators (e.g. OCGT) and storage units (e.g. batteries and H2)
from base electricity-only network, since they're added here differently using links
"""
for c in n.iterate_components(snakemake.config["pypsa_eur"]):
to_keep = snakemake.config["pypsa_eur"][c.name]
to_remove = pd.Index(c.df.carrier.unique())^to_keep
print("Removing",c.list_name,"with carrier",to_remove)
names = c.df.index[c.df.carrier.isin(to_remove)]
print(names)
n.mremove(c.name, names)
n.carriers.drop(to_remove, inplace=True, errors="ignore")
def add_co2_tracking(n):
#minus sign because opposite to how fossil fuels used:
#CH4 burning puts CH4 down, atmosphere up
n.add("Carrier","co2",
co2_emissions=-1.)
#this tracks CO2 in the atmosphere
n.madd("Bus",
["co2 atmosphere"],
location="EU",
carrier="co2")
#NB: can also be negative
n.madd("Store",["co2 atmosphere"],
e_nom_extendable=True,
e_min_pu=-1,
carrier="co2",
bus="co2 atmosphere")
#this tracks CO2 stored, e.g. underground
n.madd("Bus",
["co2 stored"],
location="EU",
carrier="co2 stored")
n.madd("Store",["co2 stored"],
e_nom_extendable=True,
e_nom_max=options['co2_sequestration_potential']*1e6,
capital_cost=options['co2_sequestration_cost'],
carrier="co2 stored",
bus="co2 stored")
if options['co2_vent']:
n.madd("Link",["co2 vent"],
bus0="co2 stored",
bus1="co2 atmosphere",
carrier="co2 vent",
efficiency=1.,
p_nom_extendable=True)
if options['dac']:
#direct air capture consumes electricity to take CO2 from the air to the underground store
#TODO do with cost from Breyer - later use elec and heat and capital cost
n.madd("Link",["DAC"],
bus0="co2 atmosphere",
bus1="co2 stored",
carrier="DAC",
marginal_cost=75.,
efficiency=1.,
p_nom_extendable=True,
lifetime=costs.at['DAC','lifetime'])
def add_co2limit(n, Nyears=1.,limit=0.):
cts = pop_layout.ct.value_counts().index
co2_limit = co2_totals.loc[cts, "electricity"].sum()
if "T" in opts:
co2_limit += co2_totals.loc[cts, [i+ " non-elec" for i in ["rail","road"]]].sum().sum()
if "H" in opts:
co2_limit += co2_totals.loc[cts, [i+ " non-elec" for i in ["residential","services"]]].sum().sum()
if "I" in opts:
co2_limit += co2_totals.loc[cts, ["industrial non-elec","industrial processes",
"domestic aviation","international aviation",
"domestic navigation","international navigation"]].sum().sum()
co2_limit *= limit*Nyears
n.add("GlobalConstraint", "CO2Limit",
carrier_attribute="co2_emissions", sense="<=",
constant=co2_limit)
def add_emission_prices(n, emission_prices=None, exclude_co2=False):
assert False, "Needs to be fixed, adds NAN"
if emission_prices is None:
emission_prices = snakemake.config['costs']['emission_prices']
if exclude_co2: emission_prices.pop('co2')
ep = (pd.Series(emission_prices).rename(lambda x: x+'_emissions') * n.carriers).sum(axis=1)
n.generators['marginal_cost'] += n.generators.carrier.map(ep)
n.storage_units['marginal_cost'] += n.storage_units.carrier.map(ep)
def set_line_s_max_pu(n):
# set n-1 security margin to 0.5 for 37 clusters and to 0.7 from 200 clusters
# 128 reproduces 98% of line volume in TWkm, but clustering distortions inside node
n_clusters = len(n.buses.index[n.buses.carrier == "AC"])
s_max_pu = np.clip(0.5 + 0.2 * (n_clusters - 37) / (200 - 37), 0.5, 0.7)
n.lines['s_max_pu'] = s_max_pu
dc_b = n.links.carrier == 'DC'
n.links.loc[dc_b, 'p_max_pu'] = snakemake.config['links']['p_max_pu']
n.links.loc[dc_b, 'p_min_pu'] = - snakemake.config['links']['p_max_pu']
def set_line_volume_limit(n, lv):
dc_b = n.links.carrier == 'DC'
if lv != "opt":
lv = float(lv)
# Either line_volume cap or cost
n.lines['capital_cost'] = 0.
n.links.loc[dc_b,'capital_cost'] = 0.
else:
n.lines['capital_cost'] = (n.lines['length'] *
costs.at['HVAC overhead', 'fixed'])
#add HVDC inverter post factor, to maintain consistency with LV limit
n.links.loc[dc_b, 'capital_cost'] = (n.links.loc[dc_b, 'length'] *
costs.at['HVDC overhead', 'fixed'])# +
#costs.at['HVDC inverter pair', 'fixed'])
if lv != 1.0:
lines_s_nom = n.lines.s_nom.where(
n.lines.type == '',
np.sqrt(3) * n.lines.num_parallel *
n.lines.type.map(n.line_types.i_nom) *
n.lines.bus0.map(n.buses.v_nom)
)
n.lines['s_nom_min'] = lines_s_nom
n.links.loc[dc_b,'p_nom_min'] = n.links['p_nom']
n.lines['s_nom_extendable'] = True
n.links.loc[dc_b,'p_nom_extendable'] = True
if lv != "opt":
n.line_volume_limit = lv * ((lines_s_nom * n.lines['length']).sum() +
n.links.loc[dc_b].eval('p_nom * length').sum())
return n
def average_every_nhours(n, offset):
logger.info('Resampling the network to {}'.format(offset))
m = n.copy(with_time=False)
#fix copying of network attributes
#copied from pypsa/io.py, should be in pypsa/components.py#Network.copy()
allowed_types = (float,int,bool) + string_types + tuple(np.typeDict.values())
attrs = dict((attr, getattr(n, attr))
for attr in dir(n)
if (not attr.startswith("__") and
isinstance(getattr(n,attr), allowed_types)))
for k,v in iteritems(attrs):
setattr(m,k,v)
snapshot_weightings = n.snapshot_weightings.resample(offset).sum()
m.set_snapshots(snapshot_weightings.index)
m.snapshot_weightings = snapshot_weightings
for c in n.iterate_components():
pnl = getattr(m, c.list_name+"_t")
for k, df in iteritems(c.pnl):
if not df.empty:
if c.list_name == "stores" and k == "e_max_pu":
pnl[k] = df.resample(offset).min()
elif c.list_name == "stores" and k == "e_min_pu":
pnl[k] = df.resample(offset).max()
else:
pnl[k] = df.resample(offset).mean()
return m
def generate_periodic_profiles(dt_index=pd.date_range("2011-01-01 00:00","2011-12-31 23:00",freq="H",tz="UTC"),
nodes=[],
weekly_profile=range(24*7)):
"""Give a 24*7 long list of weekly hourly profiles, generate this for
each country for the period dt_index, taking account of time
zones and Summer Time.
"""
weekly_profile = pd.Series(weekly_profile,range(24*7))
week_df = pd.DataFrame(index=dt_index,columns=nodes)
for ct in nodes:
week_df[ct] = [24*dt.weekday()+dt.hour for dt in dt_index.tz_convert(pytz.timezone(timezone_mappings[ct[:2]]))]
week_df[ct] = week_df[ct].map(weekly_profile)
return week_df
def shift_df(df,hours=1):
"""Works both on Series and DataFrame"""
df = df.copy()
df.values[:] = np.concatenate([df.values[-hours:],
df.values[:-hours]])
return df
def transport_degree_factor(temperature,deadband_lower=15,deadband_upper=20,
lower_degree_factor=0.5,
upper_degree_factor=1.6):
"""Work out how much energy demand in vehicles increases due to heating and cooling.
There is a deadband where there is no increase.
Degree factors are % increase in demand compared to no heating/cooling fuel consumption.
Returns per unit increase in demand for each place and time
"""
dd = temperature.copy()
dd[(temperature > deadband_lower) & (temperature < deadband_upper)] = 0.
dd[temperature < deadband_lower] = lower_degree_factor/100.*(deadband_lower-temperature[temperature < deadband_lower])
dd[temperature > deadband_upper] = upper_degree_factor/100.*(temperature[temperature > deadband_upper]-deadband_upper)
return dd
def prepare_data(network):
##############
#Heating
##############
ashp_cop = xr.open_dataarray(snakemake.input.cop_air_total).T.to_pandas().reindex(index=network.snapshots)
gshp_cop = xr.open_dataarray(snakemake.input.cop_soil_total).T.to_pandas().reindex(index=network.snapshots)
solar_thermal = xr.open_dataarray(snakemake.input.solar_thermal_total).T.to_pandas().reindex(index=network.snapshots)
#1e3 converts from W/m^2 to MW/(1000m^2) = kW/m^2
solar_thermal = options['solar_cf_correction'] * solar_thermal/1e3
energy_totals = pd.read_csv(snakemake.input.energy_totals_name,index_col=0)
nodal_energy_totals = energy_totals.loc[pop_layout.ct].fillna(0.)
nodal_energy_totals.index = pop_layout.index
nodal_energy_totals = nodal_energy_totals.multiply(pop_layout.fraction,axis=0)
#copy forward the daily average heat demand into each hour, so it can be multipled by the intraday profile
daily_space_heat_demand = xr.open_dataarray(snakemake.input.heat_demand_total).T.to_pandas().reindex(index=network.snapshots, method="ffill")
intraday_profiles = pd.read_csv(snakemake.input.heat_profile,index_col=0)
sectors = ["residential","services"]
uses = ["water","space"]
heat_demand = {}
electric_heat_supply = {}
for sector in sectors:
for use in uses:
intraday_year_profile = generate_periodic_profiles(daily_space_heat_demand.index.tz_localize("UTC"),
nodes=daily_space_heat_demand.columns,
weekly_profile=(list(intraday_profiles["{} {} weekday".format(sector,use)])*5 + list(intraday_profiles["{} {} weekend".format(sector,use)])*2)).tz_localize(None)
if use == "space":
heat_demand_shape = daily_space_heat_demand*intraday_year_profile
else:
heat_demand_shape = intraday_year_profile
heat_demand["{} {}".format(sector,use)] = (heat_demand_shape/heat_demand_shape.sum()).multiply(nodal_energy_totals["total {} {}".format(sector,use)])*1e6
electric_heat_supply["{} {}".format(sector,use)] = (heat_demand_shape/heat_demand_shape.sum()).multiply(nodal_energy_totals["electricity {} {}".format(sector,use)])*1e6
heat_demand = pd.concat(heat_demand,axis=1)
electric_heat_supply = pd.concat(electric_heat_supply,axis=1)
#subtract from electricity load since heat demand already in heat_demand
electric_nodes = n.loads.index[n.loads.carrier == "electricity"]
n.loads_t.p_set[electric_nodes] = n.loads_t.p_set[electric_nodes] - electric_heat_supply.groupby(level=1,axis=1).sum()[electric_nodes]
##############
#Transport
##############
## Get overall demand curve for all vehicles
traffic = pd.read_csv(os.path.join(snakemake.input.traffic_data,"KFZ__count"),
skiprows=2)["count"]
#Generate profiles
transport_shape = generate_periodic_profiles(dt_index=network.snapshots.tz_localize("UTC"),
nodes=pop_layout.index,
weekly_profile=traffic.values).tz_localize(None)
transport_shape = transport_shape/transport_shape.sum()
transport_data = pd.read_csv(snakemake.input.transport_name,
index_col=0)
nodal_transport_data = transport_data.loc[pop_layout.ct].fillna(0.)
nodal_transport_data.index = pop_layout.index
nodal_transport_data["number cars"] = pop_layout["fraction"]*nodal_transport_data["number cars"]
nodal_transport_data.loc[nodal_transport_data["average fuel efficiency"] == 0.,"average fuel efficiency"] = transport_data["average fuel efficiency"].mean()
#electric motors are more efficient, so alter transport demand
#kWh/km from EPA https://www.fueleconomy.gov/feg/ for Tesla Model S
plug_to_wheels_eta = 0.20
battery_to_wheels_eta = plug_to_wheels_eta*0.9
efficiency_gain = nodal_transport_data["average fuel efficiency"]/battery_to_wheels_eta
#get heating demand for correction to demand time series
temperature = xr.open_dataarray(snakemake.input.temp_air_total).T.to_pandas()
#correction factors for vehicle heating
dd_ICE = transport_degree_factor(temperature,
options['transport_heating_deadband_lower'],
options['transport_heating_deadband_upper'],
options['ICE_lower_degree_factor'],
options['ICE_upper_degree_factor'])
dd_EV = transport_degree_factor(temperature,
options['transport_heating_deadband_lower'],
options['transport_heating_deadband_upper'],
options['EV_lower_degree_factor'],
options['EV_upper_degree_factor'])
#divide out the heating/cooling demand from ICE totals
ICE_correction = (transport_shape*(1+dd_ICE)).sum()/transport_shape.sum()
transport = (transport_shape.multiply(nodal_energy_totals["total road"] + nodal_energy_totals["total rail"]
- nodal_energy_totals["electricity rail"])*1e6*Nyears).divide(efficiency_gain*ICE_correction)
#multiply back in the heating/cooling demand for EVs
transport = transport.multiply(1+dd_EV)
## derive plugged-in availability for PKW's (cars)
traffic = pd.read_csv(os.path.join(snakemake.input.traffic_data,"Pkw__count"),
skiprows=2)["count"]
avail_max = 0.95
avail_mean = 0.8
avail = avail_max - (avail_max - avail_mean)*(traffic - traffic.min())/(traffic.mean() - traffic.min())
avail_profile = generate_periodic_profiles(dt_index=network.snapshots.tz_localize("UTC"),
nodes=pop_layout.index,
weekly_profile=avail.values).tz_localize(None)
dsm_week = np.zeros((24*7,))
dsm_week[(np.arange(0,7,1)*24+options['bev_dsm_restriction_time'])] = options['bev_dsm_restriction_value']
dsm_profile = generate_periodic_profiles(dt_index=network.snapshots.tz_localize("UTC"),
nodes=pop_layout.index,
weekly_profile=dsm_week).tz_localize(None)
###############
#CO2
###############
#1e6 to convert Mt to tCO2
co2_totals = 1e6*pd.read_csv(snakemake.input.co2_totals_name,index_col=0)
return nodal_energy_totals, heat_demand, ashp_cop, gshp_cop, solar_thermal, transport, avail_profile, dsm_profile, co2_totals, nodal_transport_data
def prepare_costs(cost_file, USD_to_EUR, discount_rate, Nyears, lifetime):
#set all asset costs and other parameters
costs = pd.read_csv(cost_file,index_col=list(range(2))).sort_index()
#correct units to MW and EUR
costs.loc[costs.unit.str.contains("/kW"),"value"]*=1e3
costs.loc[costs.unit.str.contains("USD"),"value"]*=USD_to_EUR
#min_count=1 is important to generate NaNs which are then filled by fillna
costs = costs.loc[:, "value"].unstack(level=1).groupby("technology").sum(min_count=1)
costs = costs.fillna({"CO2 intensity" : 0,
"FOM" : 0,
"VOM" : 0,
"discount rate" : discount_rate,
"efficiency" : 1,
"fuel" : 0,
"investment" : 0,
"lifetime" : lifetime
})
costs["fixed"] = [(annuity(v["lifetime"],v["discount rate"])+v["FOM"]/100.)*v["investment"]*Nyears for i,v in costs.iterrows()]
return costs
def add_generation(network):
print("adding electricity generation")
nodes = pop_layout.index
conventionals = [("OCGT","gas")]
for generator,carrier in [("OCGT","gas")]:
network.add("Carrier",
carrier)
network.madd("Bus",
["EU " + carrier],
location="EU",
carrier=carrier)
#use madd to get carrier inserted
network.madd("Store",
["EU " + carrier + " Store"],
bus=["EU " + carrier],
e_nom_extendable=True,
e_cyclic=True,
carrier=carrier,
capital_cost=0.) #could correct to e.g. 0.2 EUR/kWh * annuity and O&M
network.add("Generator",
"EU fossil " + carrier,
bus="EU " + carrier,
p_nom_extendable=True,
carrier=carrier,
capital_cost=0.,
marginal_cost=costs.at[carrier,'fuel'])
network.madd("Link",
nodes + " " + generator,
bus0=["EU " + carrier]*len(nodes),
bus1=nodes,
bus2="co2 atmosphere",
marginal_cost=costs.at[generator,'efficiency']*costs.at[generator,'VOM'], #NB: VOM is per MWel
capital_cost=costs.at[generator,'efficiency']*costs.at[generator,'fixed'], #NB: fixed cost is per MWel
p_nom_extendable=True,
carrier=generator,
efficiency=costs.at[generator,'efficiency'],
efficiency2=costs.at[carrier,'CO2 intensity'],
lifetime=costs.at[generator,'lifetime'])
def add_wave(network, wave_cost_factor):
wave_fn = "data/WindWaveWEC_GLTB.xlsx"
locations = ["FirthForth","Hebrides"]
#in kW
capacity = pd.Series([750,1000,600],["Attenuator","F2HB","MultiPA"])
#in EUR/MW
costs = wave_cost_factor*pd.Series([2.5,2,1.5],["Attenuator","F2HB","MultiPA"])*1e6
sheets = {}
for l in locations:
sheets[l] = pd.read_excel(wave_fn,
index_col=0,skiprows=[0],parse_dates=True,
sheet_name=l)
to_drop = ["Vestas 3MW","Vestas 8MW"]
wave = pd.concat([sheets[l].drop(to_drop,axis=1).divide(capacity,axis=1) for l in locations],
keys=locations,
axis=1)
for wave_type in costs.index:
n.add("Generator",
"Hebrides "+wave_type,
bus="GB4 0",
p_nom_extendable=True,
carrier="wave",
capital_cost=(annuity(25,0.07)+0.03)*costs[wave_type],
p_max_pu=wave["Hebrides",wave_type])
def insert_electricity_distribution_grid(network):
print("Inserting electricity distribution grid with investment cost factor of",
snakemake.config["sector"]['electricity_distribution_grid_cost_factor'])
nodes = pop_layout.index
network.madd("Bus",
nodes+ " low voltage",
location=nodes,
carrier="low voltage")
network.madd("Link",
nodes + " electricity distribution grid",
bus0=nodes,
bus1=nodes + " low voltage",
p_nom_extendable=True,
p_min_pu=-1,
carrier="electricity distribution grid",
efficiency=1,
marginal_cost=0,
lifetime=costs.at['electricity distribution grid','lifetime'],
capital_cost=costs.at['electricity distribution grid','fixed']*snakemake.config["sector"]['electricity_distribution_grid_cost_factor'])
#this catches regular electricity load and "industry electricity"
loads = network.loads.index[network.loads.carrier.str.contains("electricity")]
network.loads.loc[loads,"bus"] += " low voltage"
bevs = network.links.index[network.links.carrier == "BEV charger"]
network.links.loc[bevs,"bus0"] += " low voltage"
v2gs = network.links.index[network.links.carrier == "V2G"]
network.links.loc[v2gs,"bus1"] += " low voltage"
hps = network.links.index[network.links.carrier.str.contains("heat pump")]
network.links.loc[hps,"bus0"] += " low voltage"
rh = network.links.index[network.links.carrier.str.contains("resistive heater")]
network.links.loc[rh, "bus0"] += " low voltage"
mchp = network.links.index[network.links.carrier.str.contains("micro gas")]
network.links.loc[mchp, "bus1"] += " low voltage"
#set existing solar to cost of utility cost rather the 50-50 rooftop-utility
solar = network.generators.index[network.generators.carrier == "solar"]
network.generators.loc[solar, "capital_cost"] = costs.at['solar-utility',
'fixed']
if snakemake.wildcards.clusters[-1:] == "m":
pop_solar = simplified_pop_layout.total.rename(index = lambda x: x + " solar")
else:
pop_solar = pop_layout.total.rename(index = lambda x: x + " solar")
# add max solar rooftop potential assuming 0.1 kW/m2 and 10 m2/person,
#i.e. 1 kW/person (population data is in thousands of people) so we get MW
potential = 0.1*10*pop_solar
network.madd("Generator",
solar,
suffix=" rooftop",
bus=network.generators.loc[solar, "bus"] + " low voltage",
carrier="solar rooftop",
p_nom_extendable=True,
p_nom_max=potential,
marginal_cost=network.generators.loc[solar, 'marginal_cost'],
capital_cost=costs.at['solar-rooftop', 'fixed'],
efficiency=network.generators.loc[solar, 'efficiency'],
p_max_pu=network.generators_t.p_max_pu[solar])
network.add("Carrier","home battery")
network.madd("Bus",
nodes + " home battery",
location=nodes,
carrier="home battery")
network.madd("Store",
nodes + " home battery",
bus=nodes + " home battery",
e_cyclic=True,
e_nom_extendable=True,
carrier="home battery",
capital_cost=costs.at['battery storage','fixed'],
lifetime=costs.at['battery storage','lifetime'])
network.madd("Link",
nodes + " home battery charger",
bus0=nodes + " low voltage",
bus1=nodes + " home battery",
carrier="home battery charger",
efficiency=costs.at['battery inverter','efficiency']**0.5,
capital_cost=costs.at['battery inverter','fixed'],
p_nom_extendable=True,
lifetime=costs.at['battery inverter','lifetime'])
network.madd("Link",
nodes + " home battery discharger",
bus0=nodes + " home battery",
bus1=nodes + " low voltage",
carrier="home battery discharger",
efficiency=costs.at['battery inverter','efficiency']**0.5,
marginal_cost=options['marginal_cost_storage'],
p_nom_extendable=True,
lifetime=costs.at['battery inverter','lifetime'])
def insert_gas_distribution_costs(network):
f_costs = options['gas_distribution_grid_cost_factor']
print("Inserting gas distribution grid with investment cost\
factor of", f_costs)
# gas boilers
gas_b = network.links[network.links.carrier.str.contains("gas boiler") &
(~network.links.carrier.str.contains("urban central"))].index
network.links.loc[gas_b, "capital_cost"] += costs.loc['electricity distribution grid']["fixed"] * f_costs
# micro CHPs
mchp = network.links.index[network.links.carrier.str.contains("micro gas")]
network.links.loc[mchp, "capital_cost"] += costs.loc['electricity distribution grid']["fixed"] * f_costs
def add_electricity_grid_connection(network):
carriers = ["onwind","solar"]
gens = network.generators.index[network.generators.carrier.isin(carriers)]
network.generators.loc[gens,"capital_cost"] += costs.at['electricity grid connection','fixed']
def add_storage(network):
print("adding electricity storage")
nodes = pop_layout.index
network.add("Carrier","H2")
network.madd("Bus",
nodes+ " H2",
location=nodes,
carrier="H2")
network.madd("Link",
nodes + " H2 Electrolysis",
bus1=nodes + " H2",
bus0=nodes,
p_nom_extendable=True,
carrier="H2 Electrolysis",
efficiency=costs.at["electrolysis","efficiency"],
capital_cost=costs.at["electrolysis","fixed"],
lifetime=costs.at['electrolysis','lifetime'])
network.madd("Link",
nodes + " H2 Fuel Cell",
bus0=nodes + " H2",
bus1=nodes,
p_nom_extendable=True,
carrier ="H2 Fuel Cell",
efficiency=costs.at["fuel cell","efficiency"],
capital_cost=costs.at["fuel cell","fixed"]*costs.at["fuel cell","efficiency"], #NB: fixed cost is per MWel
lifetime=costs.at['fuel cell','lifetime'])
cavern_nodes = pd.DataFrame()
if options['hydrogen_underground_storage']:
h2_salt_cavern_potential = pd.read_csv(snakemake.input.h2_cavern,
index_col=0,squeeze=True)
h2_cavern_ct = h2_salt_cavern_potential[~h2_salt_cavern_potential.isna()]
cavern_nodes = pop_layout[pop_layout.ct.isin(h2_cavern_ct.index)]
h2_capital_cost = costs.at["hydrogen storage underground", "fixed"]
# assumptions: weight storage potential in a country by population
# TODO: fix with real geographic potentials
#convert TWh to MWh with 1e6
h2_pot = h2_cavern_ct.loc[cavern_nodes.ct]
h2_pot.index = cavern_nodes.index
h2_pot = h2_pot * cavern_nodes.fraction * 1e6
network.madd("Store",
cavern_nodes.index + " H2 Store",
bus=cavern_nodes.index + " H2",
e_nom_extendable=True,
e_nom_max=h2_pot.values,
e_cyclic=True,
carrier="H2 Store",
capital_cost=h2_capital_cost)
# hydrogen stored overground
h2_capital_cost = costs.at["hydrogen storage tank", "fixed"]
nodes_overground = nodes ^ cavern_nodes.index
network.madd("Store",
nodes_overground + " H2 Store",
bus=nodes_overground + " H2",
e_nom_extendable=True,
e_cyclic=True,
carrier="H2 Store",
capital_cost=h2_capital_cost)
h2_links = pd.DataFrame(columns=["bus0","bus1","length"])
prefix = "H2 pipeline "
connector = " -> "
attrs = ["bus0","bus1","length"]
candidates = pd.concat([network.lines[attrs],network.links.loc[network.links.carrier == "DC",attrs]],
keys=["lines","links"])
for candidate in candidates.index:
buses = [candidates.at[candidate,"bus0"],candidates.at[candidate,"bus1"]]
buses.sort()
name = prefix + buses[0] + connector + buses[1]
if name not in h2_links.index:
h2_links.at[name,"bus0"] = buses[0]
h2_links.at[name,"bus1"] = buses[1]
h2_links.at[name,"length"] = candidates.at[candidate,"length"]
#TODO Add efficiency losses
network.madd("Link",
h2_links.index,
bus0=h2_links.bus0.values + " H2",
bus1=h2_links.bus1.values + " H2",
p_min_pu=-1,
p_nom_extendable=True,
length=h2_links.length.values,
capital_cost=costs.at['H2 pipeline','fixed']*h2_links.length.values,
carrier="H2 pipeline",
lifetime=costs.at['H2 pipeline','lifetime'])
network.add("Carrier","battery")
network.madd("Bus",
nodes + " battery",
location=nodes,
carrier="battery")
network.madd("Store",
nodes + " battery",
bus=nodes + " battery",
e_cyclic=True,
e_nom_extendable=True,
carrier="battery",
capital_cost=costs.at['battery storage','fixed'],
lifetime=costs.at['battery storage','lifetime'])
network.madd("Link",
nodes + " battery charger",
bus0=nodes,
bus1=nodes + " battery",
carrier="battery charger",
efficiency=costs.at['battery inverter','efficiency']**0.5,
capital_cost=costs.at['battery inverter','fixed'],
p_nom_extendable=True,
lifetime=costs.at['battery inverter','lifetime'])
network.madd("Link",
nodes + " battery discharger",
bus0=nodes + " battery",
bus1=nodes,
carrier="battery discharger",
efficiency=costs.at['battery inverter','efficiency']**0.5,
marginal_cost=options['marginal_cost_storage'],
p_nom_extendable=True,
lifetime=costs.at['battery inverter','lifetime'])
if options['methanation']:
network.madd("Link",
nodes + " Sabatier",
bus0=nodes+" H2",
bus1=["EU gas"]*len(nodes),
bus2="co2 stored",
p_nom_extendable=True,
carrier="Sabatier",
efficiency=costs.at["methanation","efficiency"],
efficiency2=-costs.at["methanation","efficiency"]*costs.at['gas','CO2 intensity'],
capital_cost=costs.at["methanation","fixed"],
lifetime=costs.at['methanation','lifetime'])
if options['helmeth']:
network.madd("Link",
nodes + " helmeth",
bus0=nodes,
bus1=["EU gas"]*len(nodes),
bus2="co2 stored",
carrier="helmeth",
p_nom_extendable=True,
efficiency=costs.at["helmeth","efficiency"],
efficiency2=-costs.at["helmeth","efficiency"]*costs.at['gas','CO2 intensity'],
capital_cost=costs.at["helmeth","fixed"],
lifetime=costs.at['helmeth','lifetime'])
if options['SMR']:
network.madd("Link",
nodes + " SMR CCS",
bus0=["EU gas"]*len(nodes),
bus1=nodes+" H2",
bus2="co2 atmosphere",
bus3="co2 stored",
p_nom_extendable=True,
carrier="SMR CCS",
efficiency=costs.at["SMR CCS","efficiency"],
efficiency2=costs.at['gas','CO2 intensity']*(1-options["ccs_fraction"]),
efficiency3=costs.at['gas','CO2 intensity']*options["ccs_fraction"],
capital_cost=costs.at["SMR CCS","fixed"],
lifetime=costs.at['SMR CCS','lifetime'])
network.madd("Link",
nodes + " SMR",
bus0=["EU gas"]*len(nodes),
bus1=nodes+" H2",
bus2="co2 atmosphere",
p_nom_extendable=True,
carrier="SMR",
efficiency=costs.at["SMR","efficiency"],
efficiency2=costs.at['gas','CO2 intensity'],
capital_cost=costs.at["SMR","fixed"],
lifetime=costs.at['SMR','lifetime'])
def add_land_transport(network):
print("adding land transport")
fuel_cell_share = get_parameter(options["land_transport_fuel_cell_share"])
electric_share = get_parameter(options["land_transport_electric_share"])
fossil_share = 1 - fuel_cell_share - electric_share
print("shares of FCEV, EV and ICEV are",
fuel_cell_share,
electric_share,
fossil_share)
if fossil_share < 0:
print("Error, more FCEV and EV share than 1.")
sys.exit()
nodes = pop_layout.index
if electric_share > 0:
network.add("Carrier","Li ion")
network.madd("Bus",
nodes,
location=nodes,
suffix=" EV battery",
carrier="Li ion")
network.madd("Load",
nodes,
suffix=" land transport EV",
bus=nodes + " EV battery",
carrier="land transport EV",
p_set=electric_share*(transport[nodes]+shift_df(transport[nodes],1)+shift_df(transport[nodes],2))/3.)
p_nom = nodal_transport_data["number cars"]*0.011*electric_share #3-phase charger with 11 kW * x% of time grid-connected
network.madd("Link",
nodes,
suffix= " BEV charger",
bus0=nodes,
bus1=nodes + " EV battery",
p_nom=p_nom,
carrier="BEV charger",
p_max_pu=avail_profile[nodes],
efficiency=0.9, #[B]
#These were set non-zero to find LU infeasibility when availability = 0.25
#p_nom_extendable=True,
#p_nom_min=p_nom,
#capital_cost=1e6, #i.e. so high it only gets built where necessary
)
if options["v2g"]:
network.madd("Link",
nodes,
suffix=" V2G",
bus1=nodes,
bus0=nodes + " EV battery",
p_nom=p_nom,
carrier="V2G",
p_max_pu=avail_profile[nodes],
efficiency=0.9) #[B]
if options["bev_dsm"]:
network.madd("Store",
nodes,
suffix=" battery storage",
bus=nodes + " EV battery",
carrier="battery storage",
e_cyclic=True,
e_nom=nodal_transport_data["number cars"]*0.05*options["bev_availability"]*electric_share, #50 kWh battery http://www.zeit.de/mobilitaet/2014-10/auto-fahrzeug-bestand
e_max_pu=1,
e_min_pu=dsm_profile[nodes])
if fuel_cell_share > 0:
network.madd("Load",
nodes,
suffix=" land transport fuel cell",
bus=nodes + " H2",
carrier="land transport fuel cell",
p_set=fuel_cell_share/options['transport_fuel_cell_efficiency']*transport[nodes])
if fossil_share > 0:
network.madd("Load",
nodes,
suffix=" land transport fossil",
bus="Fischer-Tropsch",
carrier="land transport fossil",
p_set=fossil_share/options['transport_internal_combustion_efficiency']*transport[nodes])
def add_heat(network):
print("adding heat")
sectors = ["residential", "services"]
nodes = create_nodes_for_heat_sector()
#NB: must add costs of central heating afterwards (EUR 400 / kWpeak, 50a, 1% FOM from Fraunhofer ISE)
urban_fraction = options['central_fraction']*pop_layout["urban"]/(pop_layout[["urban","rural"]].sum(axis=1))
# building retrofitting, exogenously reduce space heat demand
if options["retrofitting"]["retro_exogen"]:
dE = get_parameter(options["retrofitting"]["dE"])
print("retrofitting exogenously, assumed space heat reduction of ",
dE)
for sector in sectors:
heat_demand[sector + " space"] = (1-dE)*heat_demand[sector + " space"]
heat_systems = ["residential rural", "services rural",
"residential urban decentral","services urban decentral",
"urban central"]
for name in heat_systems:
name_type = "central" if name == "urban central" else "decentral"
network.add("Carrier",name + " heat")
network.madd("Bus",
nodes[name] + " " + name + " heat",
location=nodes[name],
carrier=name + " heat")
## Add heat load
for sector in sectors:
if "rural" in name:
factor = 1-urban_fraction[nodes[name]]
elif "urban" in name:
factor = urban_fraction[nodes[name]]
else:
factor = None
if sector in name:
heat_load = heat_demand[[sector + " water",sector + " space"]].groupby(level=1,axis=1).sum()[nodes[name]].multiply(factor)
if name == "urban central":
heat_load = heat_demand.groupby(level=1,axis=1).sum()[nodes[name]].multiply(urban_fraction[nodes[name]]*(1+options['district_heating_loss']))
network.madd("Load",
nodes[name],
suffix=" " + name + " heat",
bus=nodes[name] + " " + name + " heat",
carrier=name + " heat",
p_set=heat_load)
## Add heat pumps
heat_pump_type = "air" if "urban" in name else "ground"
costs_name = "{} {}-sourced heat pump".format(name_type,heat_pump_type)
cop = {"air" : ashp_cop, "ground" : gshp_cop}
efficiency = cop[heat_pump_type][nodes[name]] if options["time_dep_hp_cop"] else costs.at[costs_name,'efficiency']
network.madd("Link",
nodes[name],
suffix=" {} {} heat pump".format(name,heat_pump_type),
bus0=nodes[name],
bus1=nodes[name] + " " + name + " heat",
carrier="{} {} heat pump".format(name,heat_pump_type),
efficiency=efficiency,
capital_cost=costs.at[costs_name,'efficiency']*costs.at[costs_name,'fixed'],
p_nom_extendable=True,
lifetime=costs.at[costs_name,'lifetime'])
if options["tes"]:
network.add("Carrier",name + " water tanks")
network.madd("Bus",
nodes[name] + " " + name + " water tanks",
location=nodes[name],
carrier=name + " water tanks")
network.madd("Link",
nodes[name] + " " + name + " water tanks charger",
bus0=nodes[name] + " " + name + " heat",
bus1=nodes[name] + " " + name + " water tanks",
efficiency=costs.at['water tank charger','efficiency'],
carrier=name + " water tanks charger",
p_nom_extendable=True)
network.madd("Link",
nodes[name] + " " + name + " water tanks discharger",
bus0=nodes[name] + " " + name + " water tanks",
bus1=nodes[name] + " " + name + " heat",
carrier=name + " water tanks discharger",
efficiency=costs.at['water tank discharger','efficiency'],
p_nom_extendable=True)
# [HP] 180 day time constant for centralised, 3 day for decentralised
tes_time_constant_days = options["tes_tau"] if name_type == "decentral" else 180.
network.madd("Store",
nodes[name] + " " + name + " water tanks",
bus=nodes[name] + " " + name + " water tanks",
e_cyclic=True,
e_nom_extendable=True,
carrier=name + " water tanks",
standing_loss=1-np.exp(-1/(24.*tes_time_constant_days)),
capital_cost=costs.at[name_type + ' water tank storage','fixed']/(1.17e-3*40), #conversion from EUR/m^3 to EUR/MWh for 40 K diff and 1.17 kWh/m^3/K
lifetime=costs.at[name_type + ' water tank storage','lifetime'])
if options["boilers"]:
network.madd("Link",
nodes[name] + " " + name + " resistive heater",
bus0=nodes[name],
bus1=nodes[name] + " " + name + " heat",
carrier=name + " resistive heater",
efficiency=costs.at[name_type + ' resistive heater','efficiency'],
capital_cost=costs.at[name_type + ' resistive heater','efficiency']*costs.at[name_type + ' resistive heater','fixed'],
p_nom_extendable=True,
lifetime=costs.at[name_type + ' resistive heater','lifetime'])
network.madd("Link",
nodes[name] + " " + name + " gas boiler",
p_nom_extendable=True,
bus0=["EU gas"]*len(nodes[name]),
bus1=nodes[name] + " " + name + " heat",
bus2="co2 atmosphere",
carrier=name + " gas boiler",
efficiency=costs.at[name_type + ' gas boiler','efficiency'],
efficiency2=costs.at['gas','CO2 intensity'],
capital_cost=costs.at[name_type + ' gas boiler','efficiency']*costs.at[name_type + ' gas boiler','fixed'],
lifetime=costs.at[name_type + ' gas boiler','lifetime'])
if options["solar_thermal"]:
network.add("Carrier",name + " solar thermal")
network.madd("Generator",
nodes[name],
suffix=" " + name + " solar thermal collector",
bus=nodes[name] + " " + name + " heat",
carrier=name + " solar thermal",
p_nom_extendable=True,
capital_cost=costs.at[name_type + ' solar thermal','fixed'],
p_max_pu=solar_thermal[nodes[name]],
lifetime=costs.at[name_type + ' solar thermal','lifetime'])
if options["chp"]:
if name == "urban central":
#add gas CHP; biomass CHP is added in biomass section
network.madd("Link",
nodes[name] + " urban central gas CHP",
bus0="EU gas",
bus1=nodes[name],
bus2=nodes[name] + " urban central heat",
bus3="co2 atmosphere",
carrier="urban central gas CHP",
p_nom_extendable=True,
capital_cost=costs.at['central gas CHP','fixed']*costs.at['central gas CHP','efficiency'],
marginal_cost=costs.at['central gas CHP','VOM'],
efficiency=costs.at['central gas CHP','efficiency'],
efficiency2=costs.at['central gas CHP','efficiency']/costs.at['central gas CHP','c_b'],
efficiency3=costs.at['gas','CO2 intensity'],
lifetime=costs.at['central gas CHP','lifetime'])
network.madd("Link",
nodes[name] + " urban central gas CHP CCS",
bus0="EU gas",
bus1=nodes[name],
bus2=nodes[name] + " urban central heat",
bus3="co2 atmosphere",
bus4="co2 stored",
carrier="urban central gas CHP CCS",
p_nom_extendable=True,
capital_cost=costs.at['central gas CHP CCS','fixed']*costs.at['central gas CHP CCS','efficiency'],
marginal_cost=costs.at['central gas CHP CCS','VOM'],
efficiency=costs.at['central gas CHP CCS','efficiency'],
efficiency2=costs.at['central gas CHP CCS','efficiency']/costs.at['central gas CHP CCS','c_b'],
efficiency3=costs.at['gas','CO2 intensity']*(1-options["ccs_fraction"]),
efficiency4=costs.at['gas','CO2 intensity']*options["ccs_fraction"],
lifetime=costs.at['central gas CHP CCS','lifetime'])
else:
if options["micro_chp"]:
network.madd("Link",
nodes[name] + " " + name + " micro gas CHP",
p_nom_extendable=True,
bus0="EU gas",
bus1=nodes[name],
bus2=nodes[name] + " " + name + " heat",
bus3="co2 atmosphere",
carrier=name + " micro gas CHP",
efficiency=costs.at['micro CHP','efficiency'],
efficiency2=costs.at['micro CHP','efficiency-heat'],
efficiency3=costs.at['gas','CO2 intensity'],
capital_cost=costs.at['micro CHP','fixed'],
lifetime=costs.at['micro CHP','lifetime'])
if options['retrofitting']['retro_endogen']:
print("adding retrofitting endogenously")
# resample heat demand temporal 'heat_demand_r' depending on in config
# specified temporal resolution, to not overestimate retrofitting
hours = list(filter(re.compile(r'^\d+h$', re.IGNORECASE).search, opts))
if len(hours)==0:
hours = [n.snapshots[1] - n.snapshots[0]]
heat_demand_r = heat_demand.resample(hours[0]).mean()
# retrofitting data 'retro_data' with 'costs' [EUR/m^2] and heat
# demand 'dE' [per unit of original heat demand] for each country and
# different retrofitting strengths [additional insulation thickness in m]
retro_data = pd.read_csv(snakemake.input.retro_cost_energy,
index_col=[0, 1], skipinitialspace=True,
header=[0, 1])
# heated floor area [10^6 * m^2] per country
floor_area = pd.read_csv(snakemake.input.floor_area, index_col=[0, 1])
network.add("Carrier", "retrofitting")
# share of space heat demand 'w_space' of total heat demand
w_space = {}
for sector in sectors:
w_space[sector] = heat_demand_r[sector + " space"] / \
(heat_demand_r[sector + " space"] + heat_demand_r[sector + " water"])
w_space["tot"] = ((heat_demand_r["services space"] +
heat_demand_r["residential space"]) /
heat_demand_r.groupby(level=[1], axis=1).sum())
for name in network.loads[network.loads.carrier.isin([x + " heat" for x in heat_systems])].index:
node = network.buses.loc[name, "location"]
ct = pop_layout.loc[node, "ct"]
# weighting 'f' depending on the size of the population at the node
f = urban_fraction[node] if "urban" in name else (1-urban_fraction[node])
if f == 0:
continue
# get sector name ("residential"/"services"/or both "tot" for urban central)
sec = [x if x in name else "tot" for x in sectors][0]
# get floor aread at node and region (urban/rural) in m^2
floor_area_node = ((pop_layout.loc[node].fraction
* floor_area.loc[ct, "value"] * 10**6).loc[sec] * f)
# total heat demand at node [MWh]
demand = (network.loads_t.p_set[name].resample(hours[0])
.mean())
# space heat demand at node [MWh]
space_heat_demand = demand * w_space[sec][node]
# normed time profile of space heat demand 'space_pu' (values between 0-1),
# p_max_pu/p_min_pu of retrofitting generators
space_pu = (space_heat_demand / space_heat_demand.max()).to_frame(name=node)
# minimum heat demand 'dE' after retrofitting in units of original heat demand (values between 0-1)
dE = retro_data.loc[(ct, sec), ("dE")]
# get addtional energy savings 'dE_diff' between the different retrofitting strengths/generators at one node
dE_diff = abs(dE.diff()).fillna(1-dE.iloc[0])
# convert costs Euro/m^2 -> Euro/MWh
capital_cost = retro_data.loc[(ct, sec), ("cost")] * floor_area_node / \
((1 - dE) * space_heat_demand.max())
# number of possible retrofitting measures 'strengths' (set in list at config.yaml 'l_strength')
# given in additional insulation thickness [m]
# for each measure, a retrofitting generator is added at the node
strengths = retro_data.columns.levels[1]
# check that ambitious retrofitting has higher costs per MWh than moderate retrofitting
if (capital_cost.diff() < 0).sum():
print(
"warning, costs are not linear for ", ct, " ", sec)
s = capital_cost[(capital_cost.diff() < 0)].index
strengths = strengths.drop(s)
# reindex normed time profile of space heat demand back to hourly resolution
space_pu = (space_pu.reindex(index=heat_demand.index)
.fillna(method="ffill"))
# add for each retrofitting strength a generator with heat generation profile following the profile of the heat demand
for strength in strengths:
network.madd('Generator',
[node],
suffix=' retrofitting ' + strength + " " + name[6::],
bus=name,
carrier="retrofitting",
p_nom_extendable=True,
p_nom_max=dE_diff[strength] * space_heat_demand.max(), # maximum energy savings for this renovation strength
p_max_pu=space_pu,
p_min_pu=space_pu,
country=ct,
capital_cost=capital_cost[strength] * options['retrofitting']['cost_factor'])
def create_nodes_for_heat_sector():
sectors = ["residential", "services"]
# stores the different groups of nodes
nodes = {}
# rural are areas with low heating density and individual heating
# urban are areas with high heating density
# urban can be split into district heating (central) and individual heating (decentral)
for sector in sectors:
nodes[sector + " rural"] = pop_layout.index
if options["central"]:
urban_decentral_ct = pd.Index(["ES", "GR", "PT", "IT", "BG"])
nodes[sector + " urban decentral"] = pop_layout.index[pop_layout.ct.isin(urban_decentral_ct)]
else:
nodes[sector + " urban decentral"] = pop_layout.index
# for central nodes, residential and services are aggregated
nodes["urban central"] = pop_layout.index ^ nodes["residential urban decentral"]
return nodes
def add_biomass(network):
print("adding biomass")
nodes = pop_layout.index
#biomass distributed at country level - i.e. transport within country allowed
cts = pop_layout.ct.value_counts().index
biomass_potentials = pd.read_csv(snakemake.input.biomass_potentials,
index_col=0)
network.add("Carrier","biogas")
network.add("Carrier","solid biomass")
network.madd("Bus",
["EU biogas"],
location="EU",
carrier="biogas")
network.madd("Bus",
["EU solid biomass"],
location="EU",
carrier="solid biomass")
network.madd("Store",
["EU biogas"],
bus="EU biogas",
carrier="biogas",
e_nom=biomass_potentials.loc[cts,"biogas"].sum(),
marginal_cost=costs.at['biogas','fuel'],
e_initial=biomass_potentials.loc[cts,"biogas"].sum())
network.madd("Store",
["EU solid biomass"],
bus="EU solid biomass",
carrier="solid biomass",
e_nom=biomass_potentials.loc[cts,"solid biomass"].sum(),
marginal_cost=costs.at['solid biomass','fuel'],
e_initial=biomass_potentials.loc[cts,"solid biomass"].sum())
network.madd("Link",
["biogas to gas"],
bus0="EU biogas",
bus1="EU gas",
bus2="co2 atmosphere",
carrier="biogas to gas",
efficiency2=-costs.at['gas','CO2 intensity'],
p_nom_extendable=True)
#AC buses with district heating
urban_central = network.buses.index[network.buses.carrier == "urban central heat"]
if not urban_central.empty and options["chp"]:
urban_central = urban_central.str[:-len(" urban central heat")]
network.madd("Link",
urban_central + " urban central solid biomass CHP",
bus0="EU solid biomass",
bus1=urban_central,
bus2=urban_central + " urban central heat",
carrier="urban central solid biomass CHP",
p_nom_extendable=True,
capital_cost=costs.at['central solid biomass CHP','fixed']*costs.at['central solid biomass CHP','efficiency'],
marginal_cost=costs.at['central solid biomass CHP','VOM'],
efficiency=costs.at['central solid biomass CHP','efficiency'],
efficiency2=costs.at['central solid biomass CHP','efficiency-heat'],
lifetime=costs.at['central solid biomass CHP','lifetime'])
network.madd("Link",
urban_central + " urban central solid biomass CHP CCS",
bus0="EU solid biomass",
bus1=urban_central,
bus2=urban_central + " urban central heat",
bus3="co2 atmosphere",
bus4="co2 stored",
carrier="urban central solid biomass CHP CCS",
p_nom_extendable=True,
capital_cost=costs.at['central solid biomass CHP CCS','fixed']*costs.at['central solid biomass CHP CCS','efficiency'],
marginal_cost=costs.at['central solid biomass CHP CCS','VOM'],
efficiency=costs.at['central solid biomass CHP CCS','efficiency'],
efficiency2=costs.at['central solid biomass CHP CCS','efficiency-heat'],
efficiency3=-costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
efficiency4=costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
lifetime=costs.at['central solid biomass CHP CCS','lifetime'])
def add_industry(network):
print("adding industrial demand")
nodes = pop_layout.index
#1e6 to convert TWh to MWh
industrial_demand = 1e6*pd.read_csv(snakemake.input.industrial_demand,
index_col=0)
solid_biomass_by_country = industrial_demand["solid biomass"].groupby(pop_layout.ct).sum()
countries = solid_biomass_by_country.index
network.madd("Bus",
["solid biomass for industry"],
location="EU",
carrier="solid biomass for industry")
network.madd("Load",
["solid biomass for industry"],
bus="solid biomass for industry",
carrier="solid biomass for industry",
p_set=solid_biomass_by_country.sum()/8760.)
network.madd("Link",
["solid biomass for industry"],
bus0="EU solid biomass",
bus1="solid biomass for industry",
carrier="solid biomass for industry",
p_nom_extendable=True,
efficiency=1.)
network.madd("Link",
["solid biomass for industry CCS"],
bus0="EU solid biomass",
bus1="solid biomass for industry",
bus2="co2 atmosphere",
bus3="co2 stored",
carrier="solid biomass for industry CCS",
p_nom_extendable=True,
capital_cost=costs.at["industry CCS","fixed"]*costs.at['solid biomass','CO2 intensity']*8760, #8760 converts EUR/(tCO2/a) to EUR/(tCO2/h)
efficiency=0.9,
efficiency2=-costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
efficiency3=costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
lifetime=costs.at['industry CCS','lifetime'])
network.madd("Bus",
["gas for industry"],
location="EU",
carrier="gas for industry")
network.madd("Load",
["gas for industry"],
bus="gas for industry",
carrier="gas for industry",
p_set=industrial_demand.loc[nodes,"methane"].sum()/8760.)
network.madd("Link",
["gas for industry"],
bus0="EU gas",
bus1="gas for industry",
bus2="co2 atmosphere",
carrier="gas for industry",
p_nom_extendable=True,
efficiency=1.,
efficiency2=costs.at['gas','CO2 intensity'])
network.madd("Link",
["gas for industry CCS"],
bus0="EU gas",
bus1="gas for industry",
bus2="co2 atmosphere",
bus3="co2 stored",
carrier="gas for industry CCS",
p_nom_extendable=True,
capital_cost=costs.at["industry CCS","fixed"]*costs.at['gas','CO2 intensity']*8760, #8760 converts EUR/(tCO2/a) to EUR/(tCO2/h)
efficiency=0.9,
efficiency2=costs.at['gas','CO2 intensity']*(1-options["ccs_fraction"]),
efficiency3=costs.at['gas','CO2 intensity']*options["ccs_fraction"],
lifetime=costs.at['industry CCS','lifetime'])
network.madd("Load",
nodes,
suffix=" H2 for industry",
bus=nodes + " H2",
carrier="H2 for industry",
p_set=industrial_demand.loc[nodes,"hydrogen"]/8760.)
network.madd("Load",
nodes,
suffix=" H2 for shipping",
bus=nodes + " H2",
carrier="H2 for shipping",
p_set = nodal_energy_totals.loc[nodes,["total international navigation","total domestic navigation"]].sum(axis=1)*1e6*options['shipping_average_efficiency']/costs.at["fuel cell","efficiency"]/8760.)
network.madd("Bus",
["Fischer-Tropsch"],
location="EU",
carrier="Fischer-Tropsch")
#use madd to get carrier inserted
network.madd("Store",
["Fischer-Tropsch Store"],
bus="Fischer-Tropsch",
e_nom_extendable=True,
e_cyclic=True,
carrier="Fischer-Tropsch",
capital_cost=0.) #could correct to e.g. 0.001 EUR/kWh * annuity and O&M
network.add("Generator",
"fossil oil",
bus="Fischer-Tropsch",
p_nom_extendable=True,
carrier="oil",
capital_cost=0.,
marginal_cost=costs.at["oil",'fuel'])
if options["oil_boilers"]:
nodes_heat = create_nodes_for_heat_sector()
for name in ["residential rural", "services rural", "residential urban decentral", "services urban decentral"]:
network.madd("Link",
nodes_heat[name] + " " + name + " oil boiler",
p_nom_extendable=True,
bus0=["Fischer-Tropsch"] * len(nodes_heat[name]),
bus1=nodes_heat[name] + " " + name + " heat",
bus2="co2 atmosphere",
carrier=name + " oil boiler",
efficiency=costs.at['decentral oil boiler', 'efficiency'],
efficiency2=costs.at['oil', 'CO2 intensity'],
capital_cost=costs.at['decentral oil boiler', 'efficiency'] * costs.at[
'decentral oil boiler', 'fixed'],
lifetime=costs.at['decentral oil boiler','lifetime'])
network.madd("Link",
nodes + " Fischer-Tropsch",
bus0=nodes + " H2",
bus1="Fischer-Tropsch",
bus2="co2 stored",
carrier="Fischer-Tropsch",
efficiency=costs.at["Fischer-Tropsch",'efficiency'],
capital_cost=costs.at["Fischer-Tropsch",'fixed'],
efficiency2=-costs.at["oil",'CO2 intensity']*costs.at["Fischer-Tropsch",'efficiency'],
p_nom_extendable=True,
lifetime=costs.at['Fischer-Tropsch','lifetime'])
network.madd("Load",
["naphtha for industry"],
bus="Fischer-Tropsch",
carrier="naphtha for industry",
p_set = industrial_demand.loc[nodes,"naphtha"].sum()/8760.)
network.madd("Load",
["kerosene for aviation"],
bus="Fischer-Tropsch",
carrier="kerosene for aviation",
p_set = nodal_energy_totals.loc[nodes,["total international aviation","total domestic aviation"]].sum(axis=1).sum()*1e6/8760.)
#NB: CO2 gets released again to atmosphere when plastics decay or kerosene is burned
#except for the process emissions when naphtha is used for petrochemicals, which can be captured with other industry process emissions
#tco2 per hour
co2 = network.loads.loc[["naphtha for industry","kerosene for aviation"],"p_set"].sum()*costs.at["oil",'CO2 intensity'] - industrial_demand.loc[nodes,"process emission from feedstock"].sum()/8760.
network.madd("Load",
["Fischer-Tropsch emissions"],
bus="co2 atmosphere",
carrier="Fischer-Tropsch emissions",
p_set=-co2)
network.madd("Load",
nodes,
suffix=" low-temperature heat for industry",
bus=[node + " urban central heat" if node + " urban central heat" in network.buses.index else node + " services urban decentral heat" for node in nodes],
carrier="low-temperature heat for industry",
p_set=industrial_demand.loc[nodes,"low-temperature heat"]/8760.)
#remove today's industrial electricity demand by scaling down total electricity demand
for ct in n.buses.country.unique():
loads = n.loads.index[(n.loads.index.str[:2] == ct) & (n.loads.carrier == "electricity")]
factor = 1 - industrial_demand.loc[loads,"current electricity"].sum()/n.loads_t.p_set[loads].sum().sum()
n.loads_t.p_set[loads] *= factor
network.madd("Load",
nodes,
suffix=" industry electricity",
bus=nodes,
carrier="industry electricity",
p_set=industrial_demand.loc[nodes,"electricity"]/8760.)
network.madd("Bus",
["process emissions"],
location="EU",
carrier="process emissions")
#this should be process emissions fossil+feedstock
#then need load on atmosphere for feedstock emissions that are currently going to atmosphere via Link Fischer-Tropsch demand
network.madd("Load",
["process emissions"],
bus="process emissions",
carrier="process emissions",
p_set = -industrial_demand.loc[nodes,["process emission","process emission from feedstock"]].sum(axis=1).sum()/8760.)
network.madd("Link",
["process emissions"],
bus0="process emissions",
bus1="co2 atmosphere",
carrier="process emissions",
p_nom_extendable=True,
efficiency=1.)
#assume enough local waste heat for CCS
network.madd("Link",
["process emissions CCS"],
bus0="process emissions",
bus1="co2 atmosphere",
bus2="co2 stored",
carrier="process emissions CCS",
p_nom_extendable=True,
capital_cost=costs.at["industry CCS","fixed"]*8760, #8760 converts EUR/(tCO2/a) to EUR/(tCO2/h)
efficiency=(1-options["ccs_fraction"]),
efficiency2=options["ccs_fraction"],
lifetime=costs.at['industry CCS','lifetime'])
def add_waste_heat(network):
print("adding possibility to use industrial waste heat in district heating")
#AC buses with district heating
urban_central = network.buses.index[network.buses.carrier == "urban central heat"]
if not urban_central.empty:
urban_central = urban_central.str[:-len(" urban central heat")]
if options['use_fischer_tropsch_waste_heat']:
network.links.loc[urban_central + " Fischer-Tropsch","bus3"] = urban_central + " urban central heat"
network.links.loc[urban_central + " Fischer-Tropsch","efficiency3"] = 0.95 - network.links.loc[urban_central + " Fischer-Tropsch","efficiency"]
if options['use_fuel_cell_waste_heat']:
network.links.loc[urban_central + " H2 Fuel Cell","bus2"] = urban_central + " urban central heat"
network.links.loc[urban_central + " H2 Fuel Cell","efficiency2"] = 0.95 - network.links.loc[urban_central + " H2 Fuel Cell","efficiency"]
def restrict_technology_potential(n,tech,limit):
print("restricting potentials (p_nom_max) for {} to {} of technical potential".format(tech,limit))
gens = n.generators.index[n.generators.carrier.str.contains(tech)]
#beware if limit is 0 and p_nom_max is np.inf, 0*np.inf is nan
n.generators.loc[gens,"p_nom_max"] *=limit
def decentral(n):
n.lines.drop(n.lines.index,inplace=True)
n.links.drop(n.links.index[n.links.carrier.isin(["DC","B2B"])],inplace=True)
def remove_h2_network(n):
nodes = pop_layout.index
n.links.drop(n.links.index[n.links.carrier.isin(["H2 pipeline"])],inplace=True)
n.stores.drop(["EU H2 Store"],inplace=True)
if options['hydrogen_underground_storage']:
h2_capital_cost = costs.at["gas storage","fixed"]
#h2_capital_cost = costs.at["hydrogen underground storage","fixed"]
else:
h2_capital_cost = costs.at["hydrogen storage","fixed"]
#put back nodal H2 storage
n.madd("Store",
nodes + " H2 Store",
bus=nodes + " H2",
e_nom_extendable=True,
e_cyclic=True,
carrier="H2 Store",
capital_cost=h2_capital_cost)
def get_parameter(item):
"""Check whether it depends on investment year"""
if type(item) is dict:
return item[investment_year]
else:
return item
#%%
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake
snakemake = MockSnakemake(
wildcards=dict(network='elec', simpl='', clusters='37', lv='1.0',
opts='', planning_horizons='2030', co2_budget_name="go",
sector_opts='Co2L0-120H-T-H-B-I-solar3-dist1'),
input=dict( network='../pypsa-eur/networks/{network}_s{simpl}_{clusters}_ec_lv{lv}_{opts}.nc',
energy_totals_name='resources/energy_totals.csv',
co2_totals_name='resources/co2_totals.csv',
transport_name='resources/transport_data.csv',
traffic_data = "data/emobility/",
biomass_potentials='resources/biomass_potentials.csv',
timezone_mappings='data/timezone_mappings.csv',
heat_profile="data/heat_load_profile_BDEW.csv",
costs="../technology-data/outputs/costs_{planning_horizons}.csv",
h2_cavern = "data/hydrogen_salt_cavern_potentials.csv",
profile_offwind_ac="../pypsa-eur/resources/profile_offwind-ac.nc",
profile_offwind_dc="../pypsa-eur/resources/profile_offwind-dc.nc",
busmap_s="../pypsa-eur/resources/busmap_{network}_s{simpl}.csv",
busmap="../pypsa-eur/resources/busmap_{network}_s{simpl}_{clusters}.csv",
clustered_pop_layout="resources/pop_layout_{network}_s{simpl}_{clusters}.csv",
simplified_pop_layout="resources/pop_layout_{network}_s{simpl}.csv",
industrial_demand="resources/industrial_energy_demand_{network}_s{simpl}_{clusters}.csv",
heat_demand_urban="resources/heat_demand_urban_{network}_s{simpl}_{clusters}.nc",
heat_demand_rural="resources/heat_demand_rural_{network}_s{simpl}_{clusters}.nc",
heat_demand_total="resources/heat_demand_total_{network}_s{simpl}_{clusters}.nc",
temp_soil_total="resources/temp_soil_total_{network}_s{simpl}_{clusters}.nc",
temp_soil_rural="resources/temp_soil_rural_{network}_s{simpl}_{clusters}.nc",
temp_soil_urban="resources/temp_soil_urban_{network}_s{simpl}_{clusters}.nc",
temp_air_total="resources/temp_air_total_{network}_s{simpl}_{clusters}.nc",
temp_air_rural="resources/temp_air_rural_{network}_s{simpl}_{clusters}.nc",
temp_air_urban="resources/temp_air_urban_{network}_s{simpl}_{clusters}.nc",
cop_soil_total="resources/cop_soil_total_{network}_s{simpl}_{clusters}.nc",
cop_soil_rural="resources/cop_soil_rural_{network}_s{simpl}_{clusters}.nc",
cop_soil_urban="resources/cop_soil_urban_{network}_s{simpl}_{clusters}.nc",
cop_air_total="resources/cop_air_total_{network}_s{simpl}_{clusters}.nc",
cop_air_rural="resources/cop_air_rural_{network}_s{simpl}_{clusters}.nc",
cop_air_urban="resources/cop_air_urban_{network}_s{simpl}_{clusters}.nc",
solar_thermal_total="resources/solar_thermal_total_{network}_s{simpl}_{clusters}.nc",
solar_thermal_urban="resources/solar_thermal_urban_{network}_s{simpl}_{clusters}.nc",
solar_thermal_rural="resources/solar_thermal_rural_{network}_s{simpl}_{clusters}.nc",
retro_cost_energy = "resources/retro_cost_{network}_s{simpl}_{clusters}.csv",
floor_area = "resources/floor_area_{network}_s{simpl}_{clusters}.csv"
),
output=['pypsa-eur-sec/results/test/prenetworks/{network}_s{simpl}_{clusters}_lv{lv}__{sector_opts}_{co2_budget_name}_{planning_horizons}.nc']
)
import yaml
with open('config.yaml', encoding='utf8') as f:
snakemake.config = yaml.safe_load(f)
logging.basicConfig(level=snakemake.config['logging_level'])
timezone_mappings = pd.read_csv(snakemake.input.timezone_mappings,index_col=0,squeeze=True,header=None)
options = snakemake.config["sector"]
opts = snakemake.wildcards.sector_opts.split('-')
investment_year=int(snakemake.wildcards.planning_horizons[-4:])
n = pypsa.Network(snakemake.input.network,
override_component_attrs=override_component_attrs)
Nyears = n.snapshot_weightings.sum()/8760.
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout,index_col=0)
pop_layout["ct"] = pop_layout.index.str[:2]
ct_total = pop_layout.total.groupby(pop_layout["ct"]).sum()
pop_layout["ct_total"] = pop_layout["ct"].map(ct_total.get)
pop_layout["fraction"] = pop_layout["total"]/pop_layout["ct_total"]
simplified_pop_layout = pd.read_csv(snakemake.input.simplified_pop_layout,index_col=0)
costs = prepare_costs(snakemake.input.costs,
snakemake.config['costs']['USD2013_to_EUR2013'],
snakemake.config['costs']['discountrate'],
Nyears,
snakemake.config['costs']['lifetime'])
remove_elec_base_techs(n)
n.loads["carrier"] = "electricity"
n.buses["location"] = n.buses.index
update_wind_solar_costs(n, costs)
if snakemake.config["foresight"]=='myopic':
add_lifetime_wind_solar(n)
add_carrier_buses(n,snakemake.config['existing_capacities']['conventional_carriers'])
add_co2_tracking(n)
add_generation(n)
add_storage(n)
for o in opts:
if o[:4] == "wave":
wave_cost_factor = float(o[4:].replace("p",".").replace("m","-"))
print("Including wave generators with cost factor of", wave_cost_factor)
add_wave(n, wave_cost_factor)
if o[:4] == "dist":
snakemake.config["sector"]['electricity_distribution_grid'] = True
snakemake.config["sector"]['electricity_distribution_grid_cost_factor'] = float(o[4:].replace("p",".").replace("m","-"))
nodal_energy_totals, heat_demand, ashp_cop, gshp_cop, solar_thermal, transport, avail_profile, dsm_profile, co2_totals, nodal_transport_data = prepare_data(n)
if "nodistrict" in opts:
options["central"] = False
if "T" in opts:
add_land_transport(n)
if "H" in opts:
add_heat(n)
if "B" in opts:
add_biomass(n)
if "I" in opts:
add_industry(n)
if "I" in opts and "H" in opts:
add_waste_heat(n)
if "decentral" in opts:
decentral(n)
if "noH2network" in opts:
remove_h2_network(n)
for o in opts:
m = re.match(r'^\d+h$', o, re.IGNORECASE)
if m is not None:
n = average_every_nhours(n, m.group(0))
break
else:
logger.info("No resampling")
#process CO2 limit
limit = get_parameter(snakemake.config["co2_budget"])
print("CO2 limit set to",limit)
for o in opts:
if "Co2L" in o:
limit = o[o.find("Co2L")+4:]
limit = float(limit.replace("p",".").replace("m","-"))
print("overriding CO2 limit with scenario limit",limit)
print("adding CO2 budget limit as per unit of 1990 levels of",limit)
add_co2limit(n, Nyears, limit)
for o in opts:
for tech in ["solar","onwind","offwind"]:
if tech in o:
limit = o[o.find(tech)+len(tech):]
limit = float(limit.replace("p",".").replace("m","-"))
print("changing potential for",tech,"by factor",limit)
restrict_technology_potential(n,tech,limit)
if o[:10] == 'linemaxext':
maxext = float(o[10:])*1e3
print("limiting new HVAC and HVDC extensions to",maxext,"MW")
n.lines['s_nom_max'] = n.lines['s_nom'] + maxext
hvdc = n.links.index[n.links.carrier == 'DC']
n.links.loc[hvdc,'p_nom_max'] = n.links.loc[hvdc,'p_nom'] + maxext
if snakemake.config["sector"]['electricity_distribution_grid']:
insert_electricity_distribution_grid(n)
if snakemake.config["sector"]['gas_distribution_grid']:
insert_gas_distribution_costs(n)
if snakemake.config["sector"]['electricity_grid_connection']:
add_electricity_grid_connection(n)
n.export_to_netcdf(snakemake.output[0])