17 KiB
17 KiB
1 | technology | year | parameter | value | unit | source |
---|---|---|---|---|---|---|
2 | solar-rooftop | 2030 | discount rate | 0.04 | per unit | standard for decentral |
3 | onwind | 2030 | lifetime | 25 | years | IEA2010 |
4 | offwind | 2030 | lifetime | 25 | years | IEA2010 |
5 | solar | 2030 | lifetime | 25 | years | IEA2010 |
6 | solar-rooftop | 2030 | lifetime | 25 | years | IEA2010 |
7 | solar-utility | 2030 | lifetime | 25 | years | IEA2010 |
8 | PHS | 2030 | lifetime | 80 | years | IEA2010 |
9 | hydro | 2030 | lifetime | 80 | years | IEA2010 |
10 | ror | 2030 | lifetime | 80 | years | IEA2010 |
11 | OCGT | 2030 | lifetime | 30 | years | IEA2010 |
12 | nuclear | 2030 | lifetime | 45 | years | ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 |
13 | CCGT | 2030 | lifetime | 30 | years | IEA2010 |
14 | coal | 2030 | lifetime | 40 | years | IEA2010 |
15 | lignite | 2030 | lifetime | 40 | years | IEA2010 |
16 | geothermal | 2030 | lifetime | 40 | years | IEA2010 |
17 | biomass | 2030 | lifetime | 30 | years | ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 |
18 | oil | 2030 | lifetime | 30 | years | ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 |
19 | onwind | 2030 | investment | 1182 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
20 | offwind | 2030 | investment | 2506 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
21 | solar | 2030 | investment | 600 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
22 | biomass | 2030 | investment | 2209 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
23 | geothermal | 2030 | investment | 3392 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
24 | coal | 2030 | investment | 1300 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
25 | lignite | 2030 | investment | 1500 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
26 | solar-rooftop | 2030 | investment | 725 | EUR/kWel | ETIP PV |
27 | solar-utility | 2030 | investment | 425 | EUR/kWel | ETIP PV |
28 | PHS | 2030 | investment | 2000 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
29 | hydro | 2030 | investment | 2000 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
30 | ror | 2030 | investment | 3000 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
31 | OCGT | 2030 | investment | 400 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
32 | nuclear | 2030 | investment | 6000 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
33 | CCGT | 2030 | investment | 800 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
34 | oil | 2030 | investment | 400 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
35 | onwind | 2030 | FOM | 2.961083 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
36 | offwind | 2030 | FOM | 3.192338 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
37 | solar | 2030 | FOM | 4.166667 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
38 | solar-rooftop | 2030 | FOM | 2 | %/year | ETIP PV |
39 | solar-utility | 2030 | FOM | 3 | %/year | ETIP PV |
40 | biomass | 2030 | FOM | 4.526935 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
41 | geothermal | 2030 | FOM | 2.358491 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
42 | coal | 2030 | FOM | 1.923076 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
43 | lignite | 2030 | FOM | 2.0 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
44 | oil | 2030 | FOM | 1.5 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
45 | PHS | 2030 | FOM | 1 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
46 | hydro | 2030 | FOM | 1 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
47 | ror | 2030 | FOM | 2 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
48 | CCGT | 2030 | FOM | 2.5 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
49 | OCGT | 2030 | FOM | 3.75 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
50 | onwind | 2030 | VOM | 0.015 | EUR/MWhel | RES costs made up to fix curtailment order |
51 | offwind | 2030 | VOM | 0.02 | EUR/MWhel | RES costs made up to fix curtailment order |
52 | solar | 2030 | VOM | 0.01 | EUR/MWhel | RES costs made up to fix curtailment order |
53 | coal | 2030 | VOM | 6 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
54 | lignite | 2030 | VOM | 7 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
55 | CCGT | 2030 | VOM | 4 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
56 | OCGT | 2030 | VOM | 3 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
57 | nuclear | 2030 | VOM | 8 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
58 | gas | 2030 | fuel | 21.6 | EUR/MWhth | IEA2011b |
59 | uranium | 2030 | fuel | 3 | EUR/MWhth | DIW DataDoc http://hdl.handle.net/10419/80348 |
60 | oil | 2030 | VOM | 3 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
61 | nuclear | 2030 | fuel | 3 | EUR/MWhth | IEA2011b |
62 | biomass | 2030 | fuel | 7 | EUR/MWhth | IEA2011b |
63 | coal | 2030 | fuel | 8.4 | EUR/MWhth | IEA2011b |
64 | lignite | 2030 | fuel | 2.9 | EUR/MWhth | IEA2011b |
65 | biogas | 2030 | fuel | 59 | EUR/MWhth | JRC and Zappa |
66 | solid biomass | 2030 | fuel | 25.2 | EUR/MWhth | JRC and Zappa |
67 | oil | 2030 | fuel | 50 | EUR/MWhth | IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf |
68 | PHS | 2030 | efficiency | 0.75 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
69 | hydro | 2030 | efficiency | 0.9 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
70 | ror | 2030 | efficiency | 0.9 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
71 | OCGT | 2030 | efficiency | 0.39 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
72 | CCGT | 2030 | efficiency | 0.5 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
73 | biomass | 2030 | efficiency | 0.468 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
74 | geothermal | 2030 | efficiency | 0.239 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
75 | nuclear | 2030 | efficiency | 0.337 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
76 | gas | 2030 | CO2 intensity | 0.187 | tCO2/MWhth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
77 | coal | 2030 | efficiency | 0.464 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
78 | lignite | 2030 | efficiency | 0.447 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
79 | oil | 2030 | efficiency | 0.393 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 CT |
80 | coal | 2030 | CO2 intensity | 0.354 | tCO2/MWhth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
81 | lignite | 2030 | CO2 intensity | 0.4 | tCO2/MWhth | German sources |
82 | oil | 2030 | CO2 intensity | 0.248 | tCO2/MWhth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
83 | geothermal | 2030 | CO2 intensity | 0.026 | tCO2/MWhth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
84 | solid biomass | 2030 | CO2 intensity | 0.3 | tCO2/MWhth | TODO |
85 | electrolysis | 2030 | investment | 350 | EUR/kWel | Palzer Thesis |
86 | electrolysis | 2030 | FOM | 4 | %/year | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
87 | electrolysis | 2030 | lifetime | 18 | years | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
88 | electrolysis | 2030 | efficiency | 0.8 | per unit | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
89 | fuel cell | 2030 | investment | 339 | EUR/kWel | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
90 | fuel cell | 2030 | FOM | 3 | %/year | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
91 | fuel cell | 2030 | lifetime | 20 | years | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
92 | fuel cell | 2030 | efficiency | 0.58 | per unit | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 conservative 2020 |
93 | hydrogen storage | 2030 | investment | 11.2 | USD/kWh | budischak2013 |
94 | hydrogen storage | 2030 | lifetime | 20 | years | budischak2013 |
95 | hydrogen underground storage | 2030 | investment | 0.5 | EUR/kWh | maximum from https://www.nrel.gov/docs/fy10osti/46719.pdf |
96 | hydrogen underground storage | 2030 | lifetime | 40 | years | http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Materialien/ESYS_Technologiesteckbrief_Energiespeicher.pdf |
97 | H2 pipeline | 2030 | investment | 267 | EUR/MW/km | Welder et al https://doi.org/10.1016/j.ijhydene.2018.12.156 |
98 | H2 pipeline | 2030 | lifetime | 40 | years | TODO |
99 | H2 pipeline | 2030 | FOM | 3 | %/year | TODO |
100 | methanation | 2030 | investment | 1000 | EUR/kWH2 | Schaber thesis |
101 | methanation | 2030 | lifetime | 25 | years | Schaber thesis |
102 | methanation | 2030 | FOM | 3 | %/year | Schaber thesis |
103 | methanation | 2030 | efficiency | 0.8 | per unit | Palzer and Schaber thesis |
104 | helmeth | 2030 | investment | 2000 | EUR/kW | no source |
105 | helmeth | 2030 | lifetime | 25 | years | no source |
106 | helmeth | 2030 | FOM | 3 | %/year | no source |
107 | helmeth | 2030 | efficiency | 0.8 | per unit | HELMETH press release |
108 | SMR | 2030 | investment | 540.56 | EUR/kWCH4 | https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; GBP 466 exchange 1.16 |
109 | SMR | 2030 | lifetime | 25 | years | TODO |
110 | SMR | 2030 | FOM | 5.4 | %/year | https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030 |
111 | SMR | 2030 | efficiency | 0.74 | per unit | https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030 |
112 | SMR CCS | 2030 | investment | 1032 | EUR/kWCH4 | https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; GBP 466 exchange 1.16; CCS costed at 300 EUR/tCO2/a |
113 | SMR CCS | 2030 | lifetime | 25 | years | TODO |
114 | SMR CCS | 2030 | FOM | 5.4 | %/year | https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030 |
115 | SMR CCS | 2030 | efficiency | 0.67 | per unit | https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; CCS uses 10% of gas |
116 | industry CCS | 2030 | investment | 300 | EUR/tCO2/a | Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032 |
117 | industry CCS | 2030 | FOM | 2 | %/year | Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032 |
118 | industry CCS | 2030 | lifetime | 25 | years | Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032 |
119 | industry CCS | 2030 | efficiency | 0.9 | per unit | Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032 |
120 | Fischer-Tropsch | 2030 | investment | 677.6 | EUR/kWH2 | Fasihi doi:10.3390/su9020306 (60 kEUR/bpd = 847 EUR/kWL (1b = 1.7 MWh) 847*0.8 = 677.6) |
121 | Fischer-Tropsch | 2030 | lifetime | 30 | years | doi:10.3390/su9020306 |
122 | Fischer-Tropsch | 2030 | FOM | 3 | %/year | doi:10.3390/su9020306 |
123 | Fischer-Tropsch | 2030 | efficiency | 0.8 | per unit | TODO |
124 | DAC | 2030 | investment | 250 | EUR/(tCO2/a) | Fasihi doi:10.3390/su9020306/Climeworks |
125 | DAC | 2030 | lifetime | 30 | years | Fasihi |
126 | DAC | 2030 | FOM | 4 | %/year | Fasihi |
127 | battery inverter | 2030 | investment | 411 | USD/kWel | budischak2013 |
128 | battery inverter | 2030 | lifetime | 20 | years | budischak2013 |
129 | battery inverter | 2030 | efficiency | 0.81 | per unit | budischak2013; Lund and Kempton (2008) https://doi.org/10.1016/j.enpol.2008.06.007 |
130 | battery inverter | 2030 | FOM | 3 | %/year | budischak2013 |
131 | battery storage | 2030 | investment | 192 | USD/kWh | budischak2013 |
132 | battery storage | 2030 | lifetime | 15 | years | budischak2013 |
133 | decentral air-sourced heat pump | 2030 | investment | 1050 | EUR/kWth | HP; Palzer thesis |
134 | decentral air-sourced heat pump | 2030 | lifetime | 20 | years | HP; Palzer thesis |
135 | decentral air-sourced heat pump | 2030 | FOM | 3.5 | %/year | Palzer thesis |
136 | decentral air-sourced heat pump | 2030 | efficiency | 3 | per unit | default for costs |
137 | decentral air-sourced heat pump | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
138 | decentral ground-sourced heat pump | 2030 | investment | 1400 | EUR/kWth | Palzer thesis |
139 | decentral ground-sourced heat pump | 2030 | lifetime | 20 | years | Palzer thesis |
140 | decentral ground-sourced heat pump | 2030 | FOM | 3.5 | %/year | Palzer thesis |
141 | decentral ground-sourced heat pump | 2030 | efficiency | 4 | per unit | default for costs |
142 | decentral ground-sourced heat pump | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
143 | central air-sourced heat pump | 2030 | investment | 700 | EUR/kWth | Palzer thesis |
144 | central air-sourced heat pump | 2030 | lifetime | 20 | years | Palzer thesis |
145 | central air-sourced heat pump | 2030 | FOM | 3.5 | %/year | Palzer thesis |
146 | central air-sourced heat pump | 2030 | efficiency | 3 | per unit | default for costs |
147 | retrofitting I | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
148 | retrofitting I | 2030 | lifetime | 50 | years | Palzer thesis |
149 | retrofitting I | 2030 | FOM | 1 | %/year | Palzer thesis |
150 | retrofitting I | 2030 | investment | 50 | EUR/m2/fraction reduction | Palzer thesis |
151 | retrofitting II | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
152 | retrofitting II | 2030 | lifetime | 50 | years | Palzer thesis |
153 | retrofitting II | 2030 | FOM | 1 | %/year | Palzer thesis |
154 | retrofitting II | 2030 | investment | 250 | EUR/m2/fraction reduction | Palzer thesis |
155 | water tank charger | 2030 | efficiency | 0.9 | per unit | HP |
156 | water tank discharger | 2030 | efficiency | 0.9 | per unit | HP |
157 | decentral water tank storage | 2030 | investment | 860 | EUR/m3 | IWES Interaktion |
158 | decentral water tank storage | 2030 | FOM | 1 | %/year | HP |
159 | decentral water tank storage | 2030 | lifetime | 20 | years | HP |
160 | decentral water tank storage | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
161 | central water tank storage | 2030 | investment | 30 | EUR/m3 | IWES Interaktion |
162 | central water tank storage | 2030 | FOM | 1 | %/year | HP |
163 | central water tank storage | 2030 | lifetime | 40 | years | HP |
164 | decentral resistive heater | 2030 | investment | 100 | EUR/kWhth | Schaber thesis |
165 | decentral resistive heater | 2030 | lifetime | 20 | years | Schaber thesis |
166 | decentral resistive heater | 2030 | FOM | 2 | %/year | Schaber thesis |
167 | decentral resistive heater | 2030 | efficiency | 0.9 | per unit | Schaber thesis |
168 | decentral resistive heater | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
169 | central resistive heater | 2030 | investment | 100 | EUR/kWhth | Schaber thesis |
170 | central resistive heater | 2030 | lifetime | 20 | years | Schaber thesis |
171 | central resistive heater | 2030 | FOM | 2 | %/year | Schaber thesis |
172 | central resistive heater | 2030 | efficiency | 0.9 | per unit | Schaber thesis |
173 | decentral gas boiler | 2030 | investment | 175 | EUR/kWhth | Palzer thesis |
174 | decentral gas boiler | 2030 | lifetime | 20 | years | Palzer thesis |
175 | decentral gas boiler | 2030 | FOM | 2 | %/year | Palzer thesis |
176 | decentral gas boiler | 2030 | efficiency | 0.9 | per unit | Palzer thesis |
177 | decentral gas boiler | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
178 | central gas boiler | 2030 | investment | 63 | EUR/kWhth | Palzer thesis |
179 | central gas boiler | 2030 | lifetime | 22 | years | Palzer thesis |
180 | central gas boiler | 2030 | FOM | 1 | %/year | Palzer thesis |
181 | central gas boiler | 2030 | efficiency | 0.9 | per unit | Palzer thesis |
182 | decentral CHP | 2030 | lifetime | 25 | years | HP |
183 | decentral CHP | 2030 | investment | 1400 | EUR/kWel | HP |
184 | decentral CHP | 2030 | FOM | 3 | %/year | HP |
185 | decentral CHP | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
186 | central gas CHP | 2030 | lifetime | 30 | years | DEA |
187 | central gas CHP | 2030 | investment | 1300 | EUR/kWel | DEA |
188 | central gas CHP | 2030 | FOM | 3 | %/year | DEA |
189 | central gas CHP | 2030 | efficiency | 0.45 | per unit | DEA (condensation mode) |
190 | central gas CHP | 2030 | c_b | 0.7 | per unit | DEA (backpressure ratio) |
191 | central gas CHP | 2030 | c_v | 0.17 | per unit | DEA (loss of fuel for additional heat) |
192 | central gas CHP | 2030 | p_nom_ratio | 1. | per unit | |
193 | central gas CHP | 2030 | VOM | 0.82 | EUR/MWh | DEA |
194 | central gas CHP CCS | 2030 | lifetime | 30 | years | DEA |
195 | central gas CHP CCS | 2030 | investment | 1900 | EUR/kWel | DEA + DIW extra for CCS on gas plant |
196 | central gas CHP CCS | 2030 | FOM | 3 | %/year | DEA |
197 | central gas CHP CCS | 2030 | efficiency | 0.405 | per unit | DEA (condensation mode + efficiency loss due to capture) |
198 | central gas CHP CCS | 2030 | c_b | 0.7 | per unit | DEA (backpressure ratio) |
199 | central gas CHP CCS | 2030 | c_v | 0.17 | per unit | DEA (loss of fuel for additional heat) |
200 | central gas CHP CCS | 2030 | p_nom_ratio | 1. | per unit | |
201 | central gas CHP CCS | 2030 | VOM | 0.82 | EUR/MWh | DEA |
202 | central solid biomass CHP | 2030 | lifetime | 40 | years | DEA for wood pellets CHP |
203 | central solid biomass CHP | 2030 | investment | 1990 | EUR/kWel | DEA for wood pellets CHP |
204 | central solid biomass CHP | 2030 | FOM | 3 | %/year | DEA for wood pellets CHP |
205 | central solid biomass CHP | 2030 | efficiency | 0.52 | per unit | DEA for wood pellets CHP (condensation mode) |
206 | central solid biomass CHP | 2030 | c_b | 1.01 | per unit | DEA for wood pellets CHP (backpressure ratio) |
207 | central solid biomass CHP | 2030 | c_v | 0.15 | per unit | DEA for wood pellets CHP (loss of fuel for additional heat) |
208 | central solid biomass CHP | 2030 | p_nom_ratio | 1. | per unit | |
209 | central solid biomass CHP | 2030 | VOM | 2.2 | EUR/MWh | DEA for wood pellets CHP |
210 | central solid biomass CHP CCS | 2030 | lifetime | 40 | years | DEA for wood pellets CHP |
211 | central solid biomass CHP CCS | 2030 | investment | 2590 | EUR/kWel | DEA for wood pellets CHP + DIW extra for CCS on gas plant |
212 | central solid biomass CHP CCS | 2030 | FOM | 3 | %/year | DEA for wood pellets CHP |
213 | central solid biomass CHP CCS | 2030 | efficiency | 0.468 | per unit | DEA for wood pellets CHP (condensation mode + efficiency loss due to capture) |
214 | central solid biomass CHP CCS | 2030 | c_b | 1.01 | per unit | DEA for wood pellets CHP (backpressure ratio) |
215 | central solid biomass CHP CCS | 2030 | c_v | 0.15 | per unit | DEA for wood pellets CHP (loss of fuel for additional heat) |
216 | central solid biomass CHP CCS | 2030 | p_nom_ratio | 1. | per unit | |
217 | central solid biomass CHP CCS | 2030 | VOM | 2.2 | EUR/MWh | DEA for wood pellets CHP |
218 | micro CHP | 2030 | lifetime | 20 | years | DEA for PEMFC with methane (for unit consuming 2kW CH4) |
219 | micro CHP | 2030 | investment | 4500 | EUR/kWCH4 | DEA for PEMFC with methane (for unit consuming 2kW CH4) |
220 | micro CHP | 2030 | FOM | 6 | %/year | DEA for PEMFC with methane (for unit consuming 2kW CH4) |
221 | micro CHP | 2030 | efficiency | 0.351 | per unit | DEA for PEMFC with methane (for unit consuming 2kW CH4) |
222 | micro CHP | 2030 | efficiency-heat | 0.609 | per unit | DEA for PEMFC with methane (for unit consuming 2kW CH4) |
223 | decentral solar thermal | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
224 | decentral solar thermal | 2030 | FOM | 1.3 | %/year | HP |
225 | decentral solar thermal | 2030 | investment | 270000 | EUR/1000m2 | HP |
226 | decentral solar thermal | 2030 | lifetime | 20 | years | HP |
227 | central solar thermal | 2030 | FOM | 1.4 | %/year | HP |
228 | central solar thermal | 2030 | investment | 140000 | EUR/1000m2 | HP |
229 | central solar thermal | 2030 | lifetime | 20 | years | HP |
230 | HVAC overhead | 2030 | investment | 400 | EUR/MW/km | Hagspiel |
231 | HVAC overhead | 2030 | lifetime | 40 | years | Hagspiel |
232 | HVAC overhead | 2030 | FOM | 2 | %/year | Hagspiel |
233 | HVDC overhead | 2030 | investment | 400 | EUR/MW/km | Hagspiel |
234 | HVDC overhead | 2030 | lifetime | 40 | years | Hagspiel |
235 | HVDC overhead | 2030 | FOM | 2 | %/year | Hagspiel |
236 | HVDC submarine | 2030 | investment | 2000 | EUR/MW/km | Own analysis of European submarine HVDC projects since 2000 |
237 | HVDC submarine | 2030 | lifetime | 40 | years | Hagspiel |
238 | HVDC submarine | 2030 | FOM | 2 | %/year | Hagspiel |
239 | HVDC inverter pair | 2030 | investment | 150000 | EUR/MW | Hagspiel |
240 | HVDC inverter pair | 2030 | lifetime | 40 | years | Hagspiel |
241 | HVDC inverter pair | 2030 | FOM | 2 | %/year | Hagspiel |