14 KiB
14 KiB
1 | technology | year | parameter | value | unit | source |
---|---|---|---|---|---|---|
2 | solar-rooftop | 2030 | discount rate | 0.04 | per unit | standard for decentral |
3 | onwind | 2030 | lifetime | 30 | years | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
4 | offwind | 2030 | lifetime | 30 | years | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
5 | solar | 2030 | lifetime | 25 | years | IEA2010 |
6 | solar-rooftop | 2030 | lifetime | 25 | years | IEA2010 |
7 | solar-utility | 2030 | lifetime | 25 | years | IEA2010 |
8 | PHS | 2030 | lifetime | 80 | years | IEA2010 |
9 | hydro | 2030 | lifetime | 80 | years | IEA2010 |
10 | ror | 2030 | lifetime | 80 | years | IEA2010 |
11 | OCGT | 2030 | lifetime | 30 | years | IEA2010 |
12 | nuclear | 2030 | lifetime | 45 | years | ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 |
13 | CCGT | 2030 | lifetime | 30 | years | IEA2010 |
14 | coal | 2030 | lifetime | 40 | years | IEA2010 |
15 | lignite | 2030 | lifetime | 40 | years | IEA2010 |
16 | geothermal | 2030 | lifetime | 40 | years | IEA2010 |
17 | biomass | 2030 | lifetime | 30 | years | ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 |
18 | oil | 2030 | lifetime | 30 | years | ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 |
19 | onwind | 2030 | investment | 1040 | EUR/kWel | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
20 | offwind | 2030 | investment | 1640 | EUR/kWel | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
21 | offwind-ac-station | 2030 | investment | 250 | EUR/kWel | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
22 | offwind-ac-connection-submarine | 2030 | investment | 2685 | EUR/MW/km | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
23 | offwind-ac-connection-underground | 2030 | investment | 1342 | EUR/MW/km | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
24 | offwind-dc-station | 2030 | investment | 400 | EUR/kWel | Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction |
25 | offwind-dc-connection-submarine | 2030 | investment | 2000 | EUR/MW/km | DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf |
26 | offwind-dc-connection-underground | 2030 | investment | 1000 | EUR/MW/km | Haertel 2017; average + 13% learning reduction |
27 | offwind-float-station | 2030 | investment | 400 | EUR/kWel | Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction |
28 | offwind-float-connection-submarine | 2030 | investment | 2000 | EUR/MW/km | DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf |
29 | offwind-float-connection-underground | 2030 | investment | 1000 | EUR/MW/km | Haertel 2017; average + 13% learning reduction |
30 | solar | 2030 | investment | 600 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
31 | biomass | 2030 | investment | 2209 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
32 | geothermal | 2030 | investment | 3392 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
33 | coal | 2030 | investment | 1300 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
34 | lignite | 2030 | investment | 1500 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
35 | solar-rooftop | 2030 | investment | 725 | EUR/kWel | ETIP PV |
36 | solar-utility | 2030 | investment | 425 | EUR/kWel | ETIP PV |
37 | PHS | 2030 | investment | 2000 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
38 | hydro | 2030 | investment | 2000 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
39 | ror | 2030 | investment | 3000 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
40 | OCGT | 2030 | investment | 400 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
41 | nuclear | 2030 | investment | 6000 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
42 | CCGT | 2030 | investment | 800 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
43 | oil | 2030 | investment | 400 | EUR/kWel | DIW DataDoc http://hdl.handle.net/10419/80348 |
44 | onwind | 2030 | FOM | 2.450549 | %/year | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
45 | offwind | 2030 | FOM | 2.304878 | %/year | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
46 | solar | 2030 | FOM | 4.166667 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
47 | solar-rooftop | 2030 | FOM | 2 | %/year | ETIP PV |
48 | solar-utility | 2030 | FOM | 3 | %/year | ETIP PV |
49 | biomass | 2030 | FOM | 4.526935 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
50 | geothermal | 2030 | FOM | 2.358491 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
51 | coal | 2030 | FOM | 1.923076 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
52 | lignite | 2030 | FOM | 2.0 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
53 | oil | 2030 | FOM | 1.5 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
54 | PHS | 2030 | FOM | 1 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
55 | hydro | 2030 | FOM | 1 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
56 | ror | 2030 | FOM | 2 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
57 | CCGT | 2030 | FOM | 2.5 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
58 | OCGT | 2030 | FOM | 3.75 | %/year | DIW DataDoc http://hdl.handle.net/10419/80348 |
59 | onwind | 2030 | VOM | 2.3 | EUR/MWhel | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
60 | offwind | 2030 | VOM | 2.7 | EUR/MWhel | DEA https://ens.dk/en/our-services/projections-and-models/technology-data |
61 | solar | 2030 | VOM | 0.01 | EUR/MWhel | RES costs made up to fix curtailment order |
62 | coal | 2030 | VOM | 6 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
63 | lignite | 2030 | VOM | 7 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
64 | CCGT | 2030 | VOM | 4 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
65 | OCGT | 2030 | VOM | 3 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
66 | nuclear | 2030 | VOM | 8 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
67 | gas | 2030 | fuel | 21.6 | EUR/MWhth | IEA2011b |
68 | uranium | 2030 | fuel | 3 | EUR/MWhth | DIW DataDoc http://hdl.handle.net/10419/80348 |
69 | oil | 2030 | VOM | 3 | EUR/MWhel | DIW DataDoc http://hdl.handle.net/10419/80348 |
70 | nuclear | 2030 | fuel | 3 | EUR/MWhth | IEA2011b |
71 | biomass | 2030 | fuel | 7 | EUR/MWhth | IEA2011b |
72 | coal | 2030 | fuel | 8.4 | EUR/MWhth | IEA2011b |
73 | lignite | 2030 | fuel | 2.9 | EUR/MWhth | IEA2011b |
74 | oil | 2030 | fuel | 50 | EUR/MWhth | IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf |
75 | PHS | 2030 | efficiency | 0.75 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
76 | hydro | 2030 | efficiency | 0.9 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
77 | ror | 2030 | efficiency | 0.9 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
78 | OCGT | 2030 | efficiency | 0.39 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
79 | CCGT | 2030 | efficiency | 0.5 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
80 | biomass | 2030 | efficiency | 0.468 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
81 | geothermal | 2030 | efficiency | 0.239 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
82 | nuclear | 2030 | efficiency | 0.337 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
83 | gas | 2030 | CO2 intensity | 0.187 | tCO2/MWth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
84 | coal | 2030 | efficiency | 0.464 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) |
85 | lignite | 2030 | efficiency | 0.447 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 |
86 | oil | 2030 | efficiency | 0.393 | per unit | DIW DataDoc http://hdl.handle.net/10419/80348 CT |
87 | coal | 2030 | CO2 intensity | 0.354 | tCO2/MWth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
88 | lignite | 2030 | CO2 intensity | 0.334 | tCO2/MWth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
89 | oil | 2030 | CO2 intensity | 0.248 | tCO2/MWth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
90 | geothermal | 2030 | CO2 intensity | 0.026 | tCO2/MWth | https://www.eia.gov/environment/emissions/co2_vol_mass.php |
91 | electrolysis | 2030 | investment | 350 | EUR/kWel | Palzer Thesis |
92 | electrolysis | 2030 | FOM | 4 | %/year | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
93 | electrolysis | 2030 | lifetime | 18 | years | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
94 | electrolysis | 2030 | efficiency | 0.8 | per unit | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
95 | fuel cell | 2030 | investment | 339 | EUR/kWel | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
96 | fuel cell | 2030 | FOM | 3 | %/year | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
97 | fuel cell | 2030 | lifetime | 20 | years | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 |
98 | fuel cell | 2030 | efficiency | 0.58 | per unit | NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 conservative 2020 |
99 | hydrogen storage | 2030 | investment | 11.2 | USD/kWh | budischak2013 |
100 | hydrogen storage | 2030 | lifetime | 20 | years | budischak2013 |
101 | hydrogen underground storage | 2030 | investment | 0.5 | EUR/kWh | maximum from https://www.nrel.gov/docs/fy10osti/46719.pdf |
102 | hydrogen underground storage | 2030 | lifetime | 40 | years | http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Materialien/ESYS_Technologiesteckbrief_Energiespeicher.pdf |
103 | H2 pipeline | 2030 | investment | 267 | EUR/MW/km | Welder et al https://doi.org/10.1016/j.ijhydene.2018.12.156 |
104 | H2 pipeline | 2030 | lifetime | 40 | years | Krieg2012 http://juser.fz-juelich.de/record/136392/files/Energie%26Umwelt_144.pdf |
105 | H2 pipeline | 2030 | FOM | 5 | %/year | Krieg2012 http://juser.fz-juelich.de/record/136392/files/Energie%26Umwelt_144.pdf |
106 | H2 pipeline | 2030 | efficiency | 0.98 | per unit | Krieg2012 http://juser.fz-juelich.de/record/136392/files/Energie%26Umwelt_144.pdf |
107 | methanation | 2030 | investment | 1000 | EUR/kWH2 | Schaber thesis |
108 | methanation | 2030 | lifetime | 25 | years | Schaber thesis |
109 | methanation | 2030 | FOM | 3 | %/year | Schaber thesis |
110 | methanation | 2030 | efficiency | 0.6 | per unit | Palzer; Breyer for DAC |
111 | helmeth | 2030 | investment | 1000 | EUR/kW | no source |
112 | helmeth | 2030 | lifetime | 25 | years | no source |
113 | helmeth | 2030 | FOM | 3 | %/year | no source |
114 | helmeth | 2030 | efficiency | 0.8 | per unit | HELMETH press release |
115 | DAC | 2030 | investment | 250 | EUR/(tCO2/a) | Fasihi/Climeworks |
116 | DAC | 2030 | lifetime | 30 | years | Fasihi |
117 | DAC | 2030 | FOM | 4 | %/year | Fasihi |
118 | battery inverter | 2030 | investment | 411 | USD/kWel | budischak2013 |
119 | battery inverter | 2030 | lifetime | 20 | years | budischak2013 |
120 | battery inverter | 2030 | efficiency | 0.9 | per unit charge/discharge | budischak2013; Lund and Kempton (2008) http://dx.doi.org/10.1016/j.enpol.2008.06.007 |
121 | battery inverter | 2030 | FOM | 3 | %/year | budischak2013 |
122 | battery storage | 2030 | investment | 192 | USD/kWh | budischak2013 |
123 | battery storage | 2030 | lifetime | 15 | years | budischak2013 |
124 | decentral air-sourced heat pump | 2030 | investment | 1050 | EUR/kWth | HP; Palzer thesis |
125 | decentral air-sourced heat pump | 2030 | lifetime | 20 | years | HP; Palzer thesis |
126 | decentral air-sourced heat pump | 2030 | FOM | 3.5 | %/year | Palzer thesis |
127 | decentral air-sourced heat pump | 2030 | efficiency | 3 | per unit | default for costs |
128 | decentral air-sourced heat pump | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
129 | decentral ground-sourced heat pump | 2030 | investment | 1400 | EUR/kWth | Palzer thesis |
130 | decentral ground-sourced heat pump | 2030 | lifetime | 20 | years | Palzer thesis |
131 | decentral ground-sourced heat pump | 2030 | FOM | 3.5 | %/year | Palzer thesis |
132 | decentral ground-sourced heat pump | 2030 | efficiency | 4 | per unit | default for costs |
133 | decentral ground-sourced heat pump | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
134 | central air-sourced heat pump | 2030 | investment | 700 | EUR/kWth | Palzer thesis |
135 | central air-sourced heat pump | 2030 | lifetime | 20 | years | Palzer thesis |
136 | central air-sourced heat pump | 2030 | FOM | 3.5 | %/year | Palzer thesis |
137 | central air-sourced heat pump | 2030 | efficiency | 3 | per unit | default for costs |
138 | retrofitting I | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
139 | retrofitting I | 2030 | lifetime | 50 | years | Palzer thesis |
140 | retrofitting I | 2030 | FOM | 1 | %/year | Palzer thesis |
141 | retrofitting I | 2030 | investment | 50 | EUR/m2/fraction reduction | Palzer thesis |
142 | retrofitting II | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
143 | retrofitting II | 2030 | lifetime | 50 | years | Palzer thesis |
144 | retrofitting II | 2030 | FOM | 1 | %/year | Palzer thesis |
145 | retrofitting II | 2030 | investment | 250 | EUR/m2/fraction reduction | Palzer thesis |
146 | water tank charger | 2030 | efficiency | 0.9 | per unit | HP |
147 | water tank discharger | 2030 | efficiency | 0.9 | per unit | HP |
148 | decentral water tank storage | 2030 | investment | 860 | EUR/m3 | IWES Interaktion |
149 | decentral water tank storage | 2030 | FOM | 1 | %/year | HP |
150 | decentral water tank storage | 2030 | lifetime | 20 | years | HP |
151 | decentral water tank storage | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
152 | central water tank storage | 2030 | investment | 30 | EUR/m3 | IWES Interaktion |
153 | central water tank storage | 2030 | FOM | 1 | %/year | HP |
154 | central water tank storage | 2030 | lifetime | 40 | years | HP |
155 | decentral resistive heater | 2030 | investment | 100 | EUR/kWhth | Schaber thesis |
156 | decentral resistive heater | 2030 | lifetime | 20 | years | Schaber thesis |
157 | decentral resistive heater | 2030 | FOM | 2 | %/year | Schaber thesis |
158 | decentral resistive heater | 2030 | efficiency | 0.9 | per unit | Schaber thesis |
159 | decentral resistive heater | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
160 | central resistive heater | 2030 | investment | 100 | EUR/kWhth | Schaber thesis |
161 | central resistive heater | 2030 | lifetime | 20 | years | Schaber thesis |
162 | central resistive heater | 2030 | FOM | 2 | %/year | Schaber thesis |
163 | central resistive heater | 2030 | efficiency | 0.9 | per unit | Schaber thesis |
164 | decentral gas boiler | 2030 | investment | 175 | EUR/kWhth | Palzer thesis |
165 | decentral gas boiler | 2030 | lifetime | 20 | years | Palzer thesis |
166 | decentral gas boiler | 2030 | FOM | 2 | %/year | Palzer thesis |
167 | decentral gas boiler | 2030 | efficiency | 0.9 | per unit | Palzer thesis |
168 | decentral gas boiler | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
169 | central gas boiler | 2030 | investment | 63 | EUR/kWhth | Palzer thesis |
170 | central gas boiler | 2030 | lifetime | 22 | years | Palzer thesis |
171 | central gas boiler | 2030 | FOM | 1 | %/year | Palzer thesis |
172 | central gas boiler | 2030 | efficiency | 0.9 | per unit | Palzer thesis |
173 | decentral CHP | 2030 | lifetime | 25 | years | HP |
174 | decentral CHP | 2030 | investment | 1400 | EUR/kWel | HP |
175 | decentral CHP | 2030 | FOM | 3 | %/year | HP |
176 | decentral CHP | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
177 | central CHP | 2030 | lifetime | 25 | years | HP |
178 | central CHP | 2030 | investment | 650 | EUR/kWel | HP |
179 | central CHP | 2030 | FOM | 3 | %/year | HP |
180 | decentral solar thermal | 2030 | discount rate | 0.04 | per unit | Palzer thesis |
181 | decentral solar thermal | 2030 | FOM | 1.3 | %/year | HP |
182 | decentral solar thermal | 2030 | investment | 270000 | EUR/1000m2 | HP |
183 | decentral solar thermal | 2030 | lifetime | 20 | years | HP |
184 | central solar thermal | 2030 | FOM | 1.4 | %/year | HP |
185 | central solar thermal | 2030 | investment | 140000 | EUR/1000m2 | HP |
186 | central solar thermal | 2030 | lifetime | 20 | years | HP |
187 | HVAC overhead | 2030 | investment | 400 | EUR/MW/km | Hagspiel |
188 | HVAC overhead | 2030 | lifetime | 40 | years | Hagspiel |
189 | HVAC overhead | 2030 | FOM | 2 | %/year | Hagspiel |
190 | HVDC overhead | 2030 | investment | 400 | EUR/MW/km | Hagspiel |
191 | HVDC overhead | 2030 | lifetime | 40 | years | Hagspiel |
192 | HVDC overhead | 2030 | FOM | 2 | %/year | Hagspiel |
193 | HVDC submarine | 2030 | investment | 2000 | EUR/MW/km | DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf |
194 | HVDC submarine | 2030 | lifetime | 40 | years | Hagspiel |
195 | HVDC submarine | 2030 | FOM | 2 | %/year | Hagspiel |
196 | HVDC inverter pair | 2030 | investment | 150000 | EUR/MW | Hagspiel |
197 | HVDC inverter pair | 2030 | lifetime | 40 | years | Hagspiel |
198 | HVDC inverter pair | 2030 | FOM | 2 | %/year | Hagspiel |