pypsa-eur/scripts/cluster_gas_network.py
Fabian Neumann 013b705ee4
Clustering: build renewable profiles and add all assets after clustering (#1201)
* Cluster first: build renewable profiles and add all assets after clustering

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* correction: pass landfall_lengths through functions

* assign landfall_lenghts correctly

* remove parameter add_land_use_constraint

* fix network_dict

* calculate distance to shoreline, remove underwater_fraction

* adjust simplification parameter to exclude Crete from offshore wind connections

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove unused geth2015 hydro capacities

* removing remaining traces of {simpl} wildcard

* add release notes and update workflow graphics

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: lisazeyen <lisa.zeyen@web.de>
2024-09-13 15:37:01 +02:00

130 lines
3.6 KiB
Python
Executable File

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Cluster gas transmission network to clustered model regions.
"""
import logging
import geopandas as gpd
import pandas as pd
from _helpers import configure_logging, set_scenario_config
from pypsa.geo import haversine_pts
from shapely import wkt
logger = logging.getLogger(__name__)
def concat_gdf(gdf_list, crs="EPSG:4326"):
"""
Concatenate multiple geopandas dataframes with common coordinate reference
system (crs).
"""
return gpd.GeoDataFrame(pd.concat(gdf_list), crs=crs)
def load_bus_regions(onshore_path, offshore_path):
"""
Load pypsa-eur on- and offshore regions and concat.
"""
bus_regions_offshore = gpd.read_file(offshore_path)
bus_regions_onshore = gpd.read_file(onshore_path)
bus_regions = concat_gdf([bus_regions_offshore, bus_regions_onshore])
bus_regions = bus_regions.dissolve(by="name", aggfunc="sum")
return bus_regions
def build_clustered_gas_network(df, bus_regions, length_factor=1.25):
for i in [0, 1]:
gdf = gpd.GeoDataFrame(geometry=df[f"point{i}"], crs="EPSG:4326")
bus_mapping = gpd.sjoin(gdf, bus_regions, how="left", predicate="within")[
"name"
]
bus_mapping = bus_mapping.groupby(bus_mapping.index).first()
df[f"bus{i}"] = bus_mapping
df[f"point{i}"] = df[f"bus{i}"].map(
bus_regions.to_crs(3035).centroid.to_crs(4326)
)
# drop pipes where not both buses are inside regions
df = df.loc[~df.bus0.isna() & ~df.bus1.isna()]
# drop pipes within the same region
df = df.loc[df.bus1 != df.bus0]
if df.empty:
return df
# recalculate lengths as center to center * length factor
df["length"] = df.apply(
lambda p: length_factor
* haversine_pts([p.point0.x, p.point0.y], [p.point1.x, p.point1.y]),
axis=1,
)
# tidy and create new numbered index
df.drop(["point0", "point1"], axis=1, inplace=True)
df.reset_index(drop=True, inplace=True)
return df
def reindex_pipes(df, prefix="gas pipeline"):
def make_index(x):
connector = " <-> " if x.bidirectional else " -> "
return prefix + " " + x.bus0 + connector + x.bus1
df.index = df.apply(make_index, axis=1)
df["p_min_pu"] = df.bidirectional.apply(lambda bi: -1 if bi else 0)
df.drop("bidirectional", axis=1, inplace=True)
df.sort_index(axis=1, inplace=True)
def aggregate_parallel_pipes(df):
strategies = {
"bus0": "first",
"bus1": "first",
"p_nom": "sum",
"p_nom_diameter": "sum",
"max_pressure_bar": "mean",
"build_year": "mean",
"diameter_mm": "mean",
"length": "mean",
"name": " ".join,
"p_min_pu": "min",
}
return df.groupby(df.index).agg(strategies)
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("cluster_gas_network", clusters="37")
configure_logging(snakemake)
set_scenario_config(snakemake)
fn = snakemake.input.cleaned_gas_network
df = pd.read_csv(fn, index_col=0)
for col in ["point0", "point1"]:
df[col] = df[col].apply(wkt.loads)
bus_regions = load_bus_regions(
snakemake.input.regions_onshore, snakemake.input.regions_offshore
)
gas_network = build_clustered_gas_network(df, bus_regions)
reindex_pipes(gas_network)
gas_network = aggregate_parallel_pipes(gas_network)
gas_network.to_csv(snakemake.output.clustered_gas_network)