# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ Cluster gas transmission network to clustered model regions. """ import logging import geopandas as gpd import pandas as pd from _helpers import configure_logging, set_scenario_config from pypsa.geo import haversine_pts from shapely import wkt logger = logging.getLogger(__name__) def concat_gdf(gdf_list, crs="EPSG:4326"): """ Concatenate multiple geopandas dataframes with common coordinate reference system (crs). """ return gpd.GeoDataFrame(pd.concat(gdf_list), crs=crs) def load_bus_regions(onshore_path, offshore_path): """ Load pypsa-eur on- and offshore regions and concat. """ bus_regions_offshore = gpd.read_file(offshore_path) bus_regions_onshore = gpd.read_file(onshore_path) bus_regions = concat_gdf([bus_regions_offshore, bus_regions_onshore]) bus_regions = bus_regions.dissolve(by="name", aggfunc="sum") return bus_regions def build_clustered_gas_network(df, bus_regions, length_factor=1.25): for i in [0, 1]: gdf = gpd.GeoDataFrame(geometry=df[f"point{i}"], crs="EPSG:4326") bus_mapping = gpd.sjoin(gdf, bus_regions, how="left", predicate="within")[ "name" ] bus_mapping = bus_mapping.groupby(bus_mapping.index).first() df[f"bus{i}"] = bus_mapping df[f"point{i}"] = df[f"bus{i}"].map( bus_regions.to_crs(3035).centroid.to_crs(4326) ) # drop pipes where not both buses are inside regions df = df.loc[~df.bus0.isna() & ~df.bus1.isna()] # drop pipes within the same region df = df.loc[df.bus1 != df.bus0] if df.empty: return df # recalculate lengths as center to center * length factor df["length"] = df.apply( lambda p: length_factor * haversine_pts([p.point0.x, p.point0.y], [p.point1.x, p.point1.y]), axis=1, ) # tidy and create new numbered index df.drop(["point0", "point1"], axis=1, inplace=True) df.reset_index(drop=True, inplace=True) return df def reindex_pipes(df, prefix="gas pipeline"): def make_index(x): connector = " <-> " if x.bidirectional else " -> " return prefix + " " + x.bus0 + connector + x.bus1 df.index = df.apply(make_index, axis=1) df["p_min_pu"] = df.bidirectional.apply(lambda bi: -1 if bi else 0) df.drop("bidirectional", axis=1, inplace=True) df.sort_index(axis=1, inplace=True) def aggregate_parallel_pipes(df): strategies = { "bus0": "first", "bus1": "first", "p_nom": "sum", "p_nom_diameter": "sum", "max_pressure_bar": "mean", "build_year": "mean", "diameter_mm": "mean", "length": "mean", "name": " ".join, "p_min_pu": "min", } return df.groupby(df.index).agg(strategies) if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake("cluster_gas_network", clusters="37") configure_logging(snakemake) set_scenario_config(snakemake) fn = snakemake.input.cleaned_gas_network df = pd.read_csv(fn, index_col=0) for col in ["point0", "point1"]: df[col] = df[col].apply(wkt.loads) bus_regions = load_bus_regions( snakemake.input.regions_onshore, snakemake.input.regions_offshore ) gas_network = build_clustered_gas_network(df, bus_regions) reindex_pipes(gas_network) gas_network = aggregate_parallel_pipes(gas_network) gas_network.to_csv(snakemake.output.clustered_gas_network)